

GROUND WATER REMEDIATION ALTERNATIVES USING ZERO VALENCE IRON CONTINUOUS REACTIVE WALL AT THE ASH LANDFILL

CONTRACT NO. DACA87-92-D-0022 MODIFICATION 04 TO DELIVERY ORDER NO. 31

AUGUST 2000

# DRAFT FEASIBILITY MEMORANDUM FOR GROUNDWATER REMEDIATION ALTERNATIVES USING ZERO VALENT IRON REACTIVE WALL AT THE ASH LANDFILL

# SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

**Prepared For:** 

Army Corps of Engineers 4820 University Square Huntsville, Alabama

**Prepared By:** 

Parsons Engineering Science, Inc. 30 Dan Road Canton, Massachusetts

August 2000

.

# TABLE OF CONTENTS

| Sectio | <u>on</u> |          |                                             | Page |
|--------|-----------|----------|---------------------------------------------|------|
| 1.0    | EXE       | CUTIVE   | SUMMARY                                     | 1-1  |
| 2.0    | SITE      | BACKG    | GROUND                                      | 2-1  |
|        | 2.1       | Site Lo  | ocation                                     | 2-1  |
|        | 2.2       | Site Ge  | eology/Hydrogeology                         | 2-1  |
|        | 2.3       | Site Hi  | istory                                      | 2-2  |
|        | 2.4       | Site G   | roundwater Impacts                          | 2-7  |
| 3.0    | TEC       | HNOLO    | GY BACKGROUND                               | 3-1  |
|        | 3.1       | Reduct   | tive Dechlorination using Zero Valent Iron  | 3-3  |
|        | 3.2       | Techno   | ology Applications                          | 3-4  |
| 4.0    | DESI      | GN ANI   | D INSTALLATION OF CONTINUOUS REACTIVE WALL  | 4-1  |
|        | 4.1       | Introdu  | uction                                      | 4-1  |
|        | 4.2       | Groun    | dwater Modeling                             | 4-1  |
|        | 4.3       | Locati   | on and Length of Continuous Reactive Wall   | 4-3  |
|        | 4.4       | Reside   | ence Time and Quantity of Iron              | 4-3  |
|        | 4.5       | Installa | ation of the Continuous Reactive Wall       | 4-4  |
|        |           | 4.5.1    | Pre-Construction Submittals                 | 4-5  |
|        |           | 4.5.2    | Mobilization                                | 4-5  |
|        |           | 4.5.3    | Test Pits Along Proposed Centerline of Wall | 4-6  |
|        |           | 4.5.4    | Trenching                                   | 4-7  |
|        |           | 4.5.5    | Filling                                     | 4-8  |
|        |           | 4.5.6    | Iron Ratio                                  | 4-8  |
|        |           | 4.5.7    | Moisture Content                            | 4-9  |
|        | 4.6       | Install  | ation of Monitoring Wells                   | 4-9  |
|        |           | 4.6.1    | Procedure for Well Point Installation       | 4-11 |
|        |           | 4.6.2    | Procedure for Monitoring Well Installation  | 4-12 |
|        | 4.7       | Slug T   | esting                                      | 4-12 |

| 5.0 | QUARTERLY GROUNDWATER MONITORING                        |                                                                        | 5-1  |
|-----|---------------------------------------------------------|------------------------------------------------------------------------|------|
|     | 5.1                                                     | Analytical Parameters and Monitoring Frequency                         | 5-1  |
|     | 5.2                                                     | Sampling Procedures                                                    | 5-1  |
| 6.0 | BARI                                                    | NER WALL DEMONSTRATION STUDY RESULTS                                   |      |
|     | AND                                                     | CONCLUSIONS                                                            | 6-1  |
|     | 6.1                                                     | Analytical Performance Results and Conclusions                         | 6-2  |
|     | 6.2                                                     | Hydraulic Performance Results and Conclusions                          | 6-6  |
|     | 6.3                                                     | Comments on Groundwater Sampling and Wall Installation with Regard to  |      |
|     |                                                         | Reactive Wall Performance                                              | 6-13 |
|     | 6.4                                                     | Results of Groundwater Monitoring at the Ash Landfill-October 1999 and |      |
|     |                                                         | January 2000                                                           | 6-16 |
| 7.0 | BASIS OF DESIGN FOR GROUNDWATER REMEDIATION ALTERNATIVE |                                                                        |      |
|     | AT T                                                    | HE ASH LANDFILL                                                        | 7-1  |
|     | 7.1                                                     | Conclusions of Treatability Study                                      | 7-1  |
|     | 7.2                                                     | Conclusions of Groundwater Modeling to Assess Iron Wall Configurations | 7-2  |
|     | 7.3                                                     | Summary of Focused Groundwater Treatment Alternatives                  |      |
|     |                                                         | at the Ash Landfill                                                    | 7-3  |
|     | 7.4                                                     | Design of Continuous Reactive Walls                                    | 7-4  |
|     |                                                         | 7.4.1 Half-Life of Chlorinated Ethenes                                 | 7-5  |
|     |                                                         | 7.4.2 Concentration of Influent Chlorinated Ethenes and Residence Time | 7-5  |
|     |                                                         | 7.4.3 Groundwater Velocity                                             | 7-7  |
|     |                                                         | 7.4.4 Length of Proposed Reactive Walls                                | 7-7  |
|     |                                                         | 7.4.5 Design Life (based on rate of precipitation of minerals and      |      |
|     |                                                         | Consumption of iron)                                                   | 7-8  |
|     |                                                         | 7.4.6 Time to Treat the Chlorinated Ethenes Plume                      | 7-9  |
|     |                                                         | 7.4.7 Application of Vegetable Oil to Enhance Biodegradation           |      |
|     | -                                                       | Of Chlorinated Ethenes                                                 | 7-9  |
|     | 7.5                                                     | Focused Groundwater Remediation Alternatives                           | 7-10 |
|     |                                                         | 7.5.1 Alternative 1: One Reactive Wall Downgradient of Existing        |      |
|     |                                                         | Boundary Wall and Natural Attenuation of Plume Upgradient of           |      |
|     |                                                         | Boundary Wall                                                          | 7-10 |
|     |                                                         | 7.5.2 Alternative 2: One Reactive Wall Downgradient of Existing        |      |
|     |                                                         | Boundary Wall and Two Reactive Walls Upgradient of Boundary            |      |

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\TOC2.doc

August 2000 iii

|     | Wall with Carbon Addition                           | 7-12 |
|-----|-----------------------------------------------------|------|
| 7.6 | Costs of Focused Groundwater Treatment Alternatives | 7-14 |
| 7.7 | Selected Alternative                                | 7-15 |

# LIST OF TABLES

| Table 5-1 | Sampling Plan for Ash Landfill Groundwater Treatability Study Using Zero                             |  |  |
|-----------|------------------------------------------------------------------------------------------------------|--|--|
| •         | Valence Iron Continuous Reactive Wall                                                                |  |  |
| Table 6-1 | pH and Redox Potential of Groundwater Flowing Into and Out of Reactive Wall                          |  |  |
| Table 6-2 | Zero Valent Iron Reactive Wall Treatment Effectiveness for TCE and cDCE                              |  |  |
| Table 6-3 | Monthly Groundwater Elevation Measurements, Groundwater Velocities, and Residence Times Measurements |  |  |
| Table 6-4 | Calculation of Radius of Influence of Monitoring Wells within Reactive Wall                          |  |  |
| Table 6-5 | Round 1 Groundwater Monitoring - October 1999 - Indicator Parameters and                             |  |  |
|           | Field Measurements                                                                                   |  |  |
| Table 6-6 | Round 2 Groundwater Monitoring – January 2000 – Indicator Parameters and                             |  |  |
|           | Field Measurements                                                                                   |  |  |
| Table 7-1 | Summary of Sub-Alternatives of Alternative 3a                                                        |  |  |
| Table 7-2 | Pre-Construction and Groundwater Monitoring Program for Sub-Alternative 1 of Alternative 3a          |  |  |
| Table 7-3 | Pre-Construction and Groundwater Monitoring Program for Sub-Alternative 2 of Alternative 3a          |  |  |
| Table 7-4 | Costs of Groundwater Treatment Alternatives at the Ash Landfill                                      |  |  |
|           |                                                                                                      |  |  |

## LIST OF FIGURES

| Figure 2-1 | Location Map                                                                 |
|------------|------------------------------------------------------------------------------|
| Figure 2-2 | Location of Ash Landfill at the Seneca Army Depot Activity                   |
| Figure 2-3 | Ash Landfill Site Map with Volatile Organics Plume: Post Removal Action      |
|            | Conditions                                                                   |
| Figure 2-4 | Ash Landfill Site Map with Total Chlorinated Ethenes in Till Weathered Shale |
|            | Aquifer-Based on Results of Groundwater Samples Collected in October, 1999   |
| Figure 2-5 | Ash Landfill Site Map with Total Chlorinated Ethenes in Till Weathered Shale |
|            | Aquifer-Based on Results of Groundwater Samples Collected in January, 2000   |
| Figure 3-1 | Reductive Dechlorination of TCE to Ethene                                    |
| Figure 3-2 | Typical Molar Conversions of Chlorinated Ethenes                             |
| Figure 4-1 | Reactive Wall Cross Section                                                  |
| Figure 4-2 | Approximate Location of Former Building and Leaching Field in the Area of    |
| -          | Continuous Reactive Wall                                                     |
| Figure 6-1 | Trichloroethene, Cis-1,2 Dichloroethene, Ethene, Ethane, and Methane         |
|            | Concentrations of Groundwater Samples Collected in April, 1999               |
| Figure 6-2 | Chloride, Sulfate, Nitrate, and Phosphorous Concentrations of Groundwater    |
|            | Samples Collected in April, 1999                                             |
| Figure 6-3 | Iron and Calcium Concentrations, pH, Alkalinity, and Total Dissolved Solids  |
|            | Contents of Groundwater Samples Collected in April, 1999                     |
| Figure 6-4 | Trichloroethene, Cis-1,2 Dichloroethene, Ethene, Ethane, and Methane         |
|            | Concentrations of Groundwater Samples Collected in June, 1999                |
| Figure 6-5 | Chloride, Sulfate, Nitrate, and Phosphorous Concentrations of Groundwater    |
| -          | Samples Collected in June, 1999                                              |
| Figure 6-6 | Iron and Calcium Concentrations, pH, Alkalinity, and Total Dissolved Solids  |
|            | Contents of Groundwater Samples Collected in June, 1999                      |
| Figure 6-7 | Trichloroethene, Cis-1,2 Dichloroethene, Ethene, Ethane, Methane, and        |
|            | Hydrogen Concentrations of Groundwater Samples Collected in September, 1999  |
| Figure 6-8 | Chloride, Sulfate, Nitrate, and Phosphorous Concentrations of Groundwater    |
|            | Samples Collected in September, 1999                                         |
| Figure 6-9 | Iron, Ferrous Iron, and Calcium Concentrations, pH, Alkalinity, and Total    |
|            | Dissolved Solids Contents of Groundwater Samples Collected in September,     |
|            | 1999                                                                         |

# LIST OF FIGURES (Continued)

| Figure 6-10 | Trichloroethene, Cis-1,2 Dichloroethene, Ethene, Ethane, Methane, and              |  |
|-------------|------------------------------------------------------------------------------------|--|
|             | Hydrogen Concentrations of Groundwater Samples Collected in January, 2000          |  |
| Figure 6-11 | Chloride, Sulfate, Nitrate, and Phosphorous Concentrations of Groundwater          |  |
|             | Samples Collected in January, 2000                                                 |  |
| Figure 6-12 | Iron, Ferrous Iron, and Calcium Concentrations, pH, Alkalinity, and Total          |  |
|             | Dissolved Solids Contents of Groundwater Samples Collected in January, 2000        |  |
| Figure 6-13 | Ash Landfill Reactive Wall Trichloroethene and Cis-1,2-Dichloroethene Results      |  |
| Figure 6-14 | Groundwater Elevations for Continuous Reactive Wall, April, 1999                   |  |
| Figure 6-15 | Groundwater Elevations for Continuous Reactive Wall, May, 1999                     |  |
| Figure 6-16 | Groundwater Elevations for Continuous Reactive Wall, June, 1999                    |  |
| Figure 6-17 | Groundwater Elevations for Continuous Reactive Wall, July, 1999                    |  |
| Figure 6-18 | Groundwater Elevations for Continuous Reactive Wall, August, 1999                  |  |
| Figure 6-19 | Groundwater Elevations for Continuous Reactive Wall, September, 1999               |  |
| Figure 6-20 | Groundwater Elevations for Continuous Reactive Wall, October, 1999                 |  |
| Figure 6-21 | Groundwater Elevations for Continuous Reactive Wall, December, 1999                |  |
| Figure 6-22 | Groundwater Elevations for Continuous Reactive Wall, January, 1999                 |  |
| Figure 6-23 | Groundwater Elevations for Continuous Reactive Wall, February, 1999                |  |
| Figure 7-1  | Layout of Continuous Iron Wall Scenarios One Through Four                          |  |
| Figure 7-2  | Alternative 1 Location of Iron Walls and Monitoring Wells                          |  |
| Figure 7-3  | Alternative 2 Location of Iron Walls, Monitoring Wells, and Vegetable Oil Trenches |  |
| Figure 7-4  | Costs of Groundwater Treatment Alternatives at the Ash Landfill                    |  |

.

# LIST OF APPENDICES

| Appendix A: | Design and Installation of Boundary (Existing) Continuous Reactive Wall                    |
|-------------|--------------------------------------------------------------------------------------------|
| Appendix B: | Well Diagrams, Slug Test Results, Hydraulic Conductivity Results, and Selected Boring Logs |
| Appendix C: | Analytical Results                                                                         |
| Appendix D: | Correspondence with ETI                                                                    |
| Appendix E: | Groundwater Monitoring and Modeling at the Ash Landfill                                    |
| Appendix F: | Trichloroethylene, Cis-1,2-Dichloroethylene, and Vinyl Chloride Degradation<br>Modeling    |
| Appendix G: | Cost Estimation for Focused Groundwater Remediation Alternatives                           |

# LIST OF ACRONYMS

| ASTM              | American Society of Testing and Materials                            |
|-------------------|----------------------------------------------------------------------|
| AWQS              | Ambient Water Quality Standards                                      |
| Са                | Calcium                                                              |
| cDCE              | cis-1,2-dichloroethene                                               |
| Cl                | Chloride ion                                                         |
| CF                | cubic feet                                                           |
| CO3 <sup>2-</sup> | carbonate ion                                                        |
| CY                | cubic yards                                                          |
| DeWind            | DeWind DeWatering, Inc.                                              |
| EPA               | Environmental Protection Agency                                      |
| ETI               | EnviroMetal Technologies, Inc.                                       |
| Fe <sup>o</sup>   | Zero valent iron                                                     |
| $Fe^{2+}$         | Ferrous iron                                                         |
| Fe <sup>3+</sup>  | Ferric iron                                                          |
| FFA               | Federal Facility Agreement                                           |
| F&G               | Funnel & Gate                                                        |
| FS                | Feasibility Study                                                    |
| ft                | Feet                                                                 |
| $\mathrm{H}^{+}$  | Hydrogen ion                                                         |
| H <sub>2</sub> O  | Water                                                                |
| HRC               | Hydrogen Releasing Compound                                          |
| IRM               | Interim Remedial Measure                                             |
| ITRC              | Interstate Technology Regulatory Cooperation                         |
| LTTD              | Low Temperature Thermal Desorption                                   |
| mg/L              | milligrams per liter                                                 |
| MW                | Monitoring Well                                                      |
| NCFL              | Non-Combustible Fill Landfill                                        |
| nM/L              | nanomoles per liter                                                  |
| NYSDEC            | New York State Department of Environmental Conservation              |
| O&M               | Operation and Maintenance                                            |
| O <sub>2</sub>    | Oxygen                                                               |
| OH.               | Hydroxide ion                                                        |
| OU                | Operable Unit                                                        |
| PVC               | Polyvinyl chloride                                                   |
| RCl               | Chlorinated ethene                                                   |
| RH                | End-product of reductive dechlorination (methane, ethane, or ethene) |
|                   |                                                                      |

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\TOC2.doc

August 2000 ix

Draft Ash Landfill Feasibility Memorandum

| RI/FS | Remedial Investigation/Feasibility Study |
|-------|------------------------------------------|
| SEAD  | Seneca Army Depot                        |
| SEDA  | Seneca Army Depot Activity               |
| TAL   | Target Analyte List                      |
| TCE   | Trichloroethene                          |
| TCL   | Target Compound List                     |
| TOC   | Total Organic Carbon                     |
| VC    | Vinyl Chloride                           |
| VOC   | Volatile Organic Compound                |
| μg/L  | Micrograms Per Liter                     |

### REFERENCES

Focht, R., Vogan, J, and O'Hannesin, S., 1996. Field Application of Reactive Iron Walls for In-Situ Degradation of Volatile Organic Compounds in Groundwater, <u>Remediation</u>, John Wiley & Sons.

Gallant, W.A. and Myller, B., 1997. *The Results of Zero Valence Metal Reactive Wall Demonstration at Lowry AFB, Colorado.* Air & Waste Management Association's 90<sup>th</sup> Annual Meeting & Exhibition, Toronto, Ontario, Canada

Interstate Technology Regulatory Cooperation, 1997. Regulatory Guidance for Permeable Barrier Walls Designed to Remediate Chlorinated Solvents, Final.

Parsons Engineering Science, Inc., 1996a, Groundwater Modeling Report at the Ash Landfill Site, Romulus, New York.

Parsons Engineering Science, Inc., 1996b, Feasibility Study Report at the Ash Landfill Site, Seneca Army Depot Activity, Romulus, New York.

Parsons Engineering Science, Inc., December 1999, Final Technical Report for the Evaluation of Groundwater Diffusion Samplers, Prepared for Air Force Center for Environmental Excellence Technology Transfer Division.

Parsons Engineering Science, Inc., August, 1995, Generic Installation Remedial Investigation/Feasibility Study Work Plan, Seneca Army Depot Activity, Romulus, New York.

Parsons Engineering Science, Inc., 1994, Remedial Investigation at the Ash Landfill Site, Seneca Army Depot Activity, Romulus, New York.

Parsons Engineering Science, Inc., 1999, Treatability Study Workplan for Zero Valence Iron Continuous Reactive Wall at the Ash Landfill, Romulus, New York.

Parsons Engineering Science, Inc., 2000, OU2 Groundwater Plume Evaluation for Treatment of Method Alternative Final Report, Ogden, Utah.

United States Environmental Protection Agency, 1994, *In-Situ Remediation Technology Status Report: Treatment Walls*, EPA 542-K-94-004.

Vidic, R.D. and Pohland, F.G., 1996, *Treatment Walls*, Technology Evaluation Report TE-96-01, Ground-Water Remediation Technologies Analysis Center.

Vogan, J.L., Focht, R.M., Clark, D.K., and Graham, S.L., 1999, *Performance Evaluation of a Permeable Reactive Barrier for Remediation of Dissolved Chlorinated Solvents in Groundwater*. Journal of Hazardous Materials. Vol. 68, pp 97-108

Vroblesky, D.A. and Hyde, W.T., 1997, *Diffusion Samplers as an Inexpensive Approach to Monitoring VOCs in Ground Water*. <u>Ground Water Monitoring and Remediation</u>, Vol. 17, Summer, pp. 177-184

Wiedemeier, T.H., Wilson, J.T., and Kampbell, D.H., 1997, Natural Attenuation of Chlorinated Aliphatic Hydrocarbons at Plattsburgh Air Force Base, New York. Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, United States Environmental Protection Agency

1.0

### EXECUTIVE SUMMARY

This report presents the results of an in-situ groundwater remediation technology study involving the use of zero valence iron. Results of a full-scale, year-long demonstration evaluation is provided along with details related to the design, construction and monitoring of this system. Treatment effectiveness and hydraulic performance measurements are provided along with recommendations for future application of this technology. This report is intended to serve as the basis for future decisions regarding the use of the zero valence iron technology as part of a final remedy for groundwater contamination.

This study has been authorized and has been conducted in accordance with the requirements of Delivery Order 0031 of the Parsons Engineering Science (Parsons ES) contract with the US Army Corps of Engineers, Huntsville Center of Engineering Support, Contract Number DACA87-92-D0022. During the project, the Seneca Army Depot Activity (SEDA), US Army Corps of Engineer, Huntsville Center for Engineering Support, the US Army Corps of Engineers, New York District, the US Army Environmental Center, the US Environmental Protection Agency (USEPA) and the New York Department of Environmental Conservation (NYSDEC) provided oversight and valuable suggestions and comments. Guidance for evaluation of this technology was obtained from the Interstate Technology and Regulatory Cooperation (ITRC) Permeable Barriers Subgroup. The methods and the procedures followed for evaluation of this technology was described in the "Workplan for Evaluation of a Permeable Reactive Wall", (Parsons ES, 1998).

The site selected for the study is the Ash Landfill Operable Unit. The Ash Landfill Operable Unit is located within the Seneca Army Depot Activity (SEDA). The SEDA is a 10,587-acre military facility located in Seneca County, Romulus, New York. The facility is located in an uplands area between two of the New York Finger Lakes, Cayuga Lake on the east and Seneca Lake on the west. The depot has been owned by the United States Government and operated by the Department of the Army since 1941. The primary military mission of the depot had been the storage and management of various military items, including munitions. However, since 1995, the SEDA has been undergoing Base Realignment and Closure (BRAC). The military mission at the SEDA will end in July 2000. Environmental closure of sites within the depot will continue beyond the termination of base for military purposes.

Since 1989, the SEDA has been listed on the federal facility list of National Priority List (NPL) of Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) sites. Shortly after the NPL listing of the SEDA, the US Army entered into a Federal Facility

Agreement (FFA) with the US Environmental Protection Agency (USEPA) and the New York State Department of Environmental Conservation (NYSDEC). The FFA describes the process to be followed for identification, evaluation and eventual closure of all sites located within the depot. The Ash Landfill Operable Unit has been investigated and evaluated following the requirements of CERCLA. A remedial investigation (RI) and a feasibility study (FS) had been completed at the Ash Landfill Operable Unit prior to the performance of this study.

The Ash Landfill Operable Unit is located along the western boundary of SEDA. The area of the Ash Landfill Operable Unit is approximately 23 acres. The Ash Landfill Operable Unit was a location of solid waste disposal activities for several years. Although specific details of the operation remain unknown, solid waste was stored, incinerated and buried at the Ash Landfill Operable Unit during the years of operation. Ash from the on-site municipal incinerator was cooled and landfilled near the incinerator. The operable unit was named after this landfill but the Ash Landfill Operable Unit includes several other sites adjacent to the landfill. The Ash Landfill Operable Unit is comprised of five Solid Waste Management Unit (SWMU)s including: the Incinerator Cooling Water Pond (SEAD-3), the Ash Landfill (SEAD-6), the Non-Combustible Fill Landfill (NCFL) (SEAD-8), the Refuse Burning Pits (SEAD-14) and the Abandoned Solid Waste Incinerator Building (SEAD-15). The Ash Landfill (SEAD-6) also includes a groundwater plume that emanates from the northern corner of the Ash Landfill.

The Ash Landfill Operable Unit includes a dissolved groundwater plume, which is the focus of this technology evaluation. The source of the plume was leaching of chlorinated solvents from soils adjacent to and within the northern corner of the Ash Landfill. Presumably, this material was residue from degreasing operations within the depot during the 1960s and 1970s. The groundwater plume extends approximately 1,500 feet west and consists primarily of dissolved trichloroethene (TCE) and 1,2-dichloroethene (c1,2-DCE). Vinyl chloride (VC) was detected in a limited number of wells located within the area considered to be the source of the groundwater plume. However, VC was not detected in wells downgradient of the source area. The maximum width of the plume is approximately 650 feet. Vertically, the plume is believed to be restricted to the upper till/weathered shale aquifer and is not present in the deeper competent shale aquifer.

Zero valence iron technology was identified as a cost-effective remedial technology following the assembly and evaluation of remedial alternatives that was conducted as part of the Feasibility Study (FS), (Parsons ES, 1996). In-situ treatment was determined to be a cost-effective alternative compared to other groundwater extraction, treatment and discharge options. The advantages of in-situ treatment include low capital costs, ease of constructability and continual treatment during periods of low water conditions when pumping would be impractical. In

addition, with closure of SEDA, in-situ treatment using a chemical reactant, such as zero valence iron, is preferred over other in-situ technologies, such as air sparging, since a chemical reactant does not require operation and maintenance of a mechanical sparging system. Low operational requirements would reduce the Army's long-term labor commitment to the site, which is consistent with the Army's objective to minimize the Army's long term presence at the depot.

Since the technology is considered innovative, the Army committed to demonstrate the technology because of concerns regarding the effectiveness of the technology. Expected treatment effectiveness, design criteria, susceptibility to fouling, constructability and cost data were identified as key components that supported the decision to conduct the study. This report describes the results of several phases of work including: the design of the in-situ reactive wall, the construction of the reactive wall and the year-long groundwater monitoring program.

The initial phase of work involved the design of the reactive wall. Section 4 provides a description of the design process. The initial aspect of the design involved groundwater modeling of the Ash Landfill Operable Unit. The purpose of this effort was to select an optimal configuration for in-situ groundwater treatment. One option considered was the funnel and gate configuration. The other option involved a continuous, permeable wall. Groundwater mounding was identified as a drawback of the funnel and gate option at the Ash Landfill. Based on the results of the groundwater modeling, it was decided to abandon the funnel and gate configuration and focus the design and the demonstration study on the continuous permeable wall configuration.

The zero valence iron technology has been developed and patented by researchers from the University of Waterloo, Waterloo Canada, (Gilliam and O'Hannesin). Envirometals Inc. (ETI) is the sole license holder of this technology. During the design phase of this study, Parsons ES retained ETI to provide consultation in the design. ETI performed predictive modeling to determine the required residence time from influent groundwater concentrations and expected groundwater velocities in the vicinity of where the reactive wall was to be installed. These parameters were obtained from site data collected during the RI.

It was determined to install the reactive barrier wall near the downgradient portion of the plume, within the boundary of the depot. This location was selected because it would be within the secured boundary of the depot and the concentrations of the plume were thought to be consistent. The expected groundwater concentration of dissolved chlorinated ethenes was approximately 100  $\mu$ g/L. The expected groundwater velocity was approximately 0.17 feet/day. From this data and the degradation models, ETI recommended a retention time of 1.2 days. Modeling,

performed by ETI indicated that a retention time of 1.2 days would be sufficient to completely degrade TCE and c1,2-DCE to ethene and ethane. A groundwater velocity of 0.17 feet/day would correspond to a required trench width of 0.24 feet (3 inches) using 100% iron.

The installation of the reactive barrier wall was completed in one week in December 1998. This required the coordinated effort of several contractors. Materials testing were performed in the weeks preceding the actual installation. Reactive iron was purchased from Peerless Metal Powders and Abrasive of Detroit Michigan and shipped to the site in 3000-lb sacks. A local supplier of clean sand was selected prior to the reactive barrier wall construction. These materials met the requirements of technical specifications that were prepared for this installation.

The installation of the reactive wall was performed with a continuous trenching excavator. The continuous trenching excavator placed the reactive iron and sand mixture and excavated soil from the trench in one continuous process. This eliminated the need for shoring, increased worker safety and increased the efficiency of the construction process. The width of the trencher was fixed at 14-inches. The backfilled sand and reactive iron material formed the permeable reactive wall. Both the reactive material and the backfill were of a higher hydraulic conductivity than the surrounding soils, which would eliminate the potential for mounding since there should be no additional resistance to flow through the trench. The permeability of the mixed soil and reactive iron, (48% reactive iron/52% sand) was measured at 21.0 feet/day (7.4 x  $10^{-3}$  cm/sec) by the falling head method.

To ensure adequate contact, the wall was placed perpendicular to groundwater flow. The length of the reactive wall encompassed the entire width of the plume, which was 650 feet. The wall was installed from approximately 6 inches below the ground surface to the competent bedrock, approximately 7 to 12 feet below ground surface. The wall was 14 inches wide. The depth and length of the reactive wall ensured continuous contact with groundwater, regardless of the fluctuation of groundwater.

A total of eleven (11) monitoring wells were installed within, upgradient and downgradient of the reactive wall. Three (3) clusters of three wells were positioned along the reactive wall to facilitate groundwater sample collection. An additional monitoring well was installed at both ends of the wall. All wells were 2-inch diameter PVC wells except the three (3) monitoring wells within the reactive iron. The wells installed within the reactive iron were 1-inch diameter wells. Well screen lengths varied between 5 and 10 feet, depending upon the thickness of the till. The well screen spanned the entire vertical thickness of the reactive barrier wall.

Following installation of the reactive barrier wall and the eleven monitoring wells, a year- long monitoring program was conducted. Groundwater samples were collected from all eleven monitoring wells and analyzed for volatile organic compounds, metals, pH, specific conductivity, redox potential, dissolved oxygen (DO), ferrous iron (Fe+2), methane, ethane, ethene, dissolved organic carbon (DOC), nitrate/nitrite (NO<sub>3</sub>/NO<sub>2</sub>), alkalinity, sulfate (SO<sub>4</sub>) and chloride (Cl-). Four quarterly groundwater sampling events were performed for the eleven wells associated with the reactive barrier wall. The first sampling quarter was April 1999, approximately three months after reactive wall installation. In addition, two complete sampling events were conducted for all monitoring wells.

Slug tests were conducted in each upgradient and downgradient monitoring well following the installation of the reactive wall. The slug tests were conducted in May 1999 to allow for complete consolidation of the reactive iron following the rise in the water table due to spring recharge. Data from the slug testing is present in Appendix B. Since the reactive wall was only 14-inches thick, wells within the reactive iron were not slug tested to avoid influencing the groundwater concentration within the wall. Hydraulic conductivity measurements of the reactive iron and sand mixture had already been tested, prior to installation. In addition to quarterly sampling of wells, water level measurements were made on a monthly basis to observe the potential for mounding due to fouling of the reactive iron.

The results of the slug testing in the upgradient and downgradient locations indicated that the aquifer material in the area surrounding the reactive barrier wall was more conductive than other areas of the site. The range of hydraulic conductivity measurements in the eight (8) upgradient and downgradient wells surrounding the reactive barrier wall was 0.4 feet/day to 55 feet/day, with the average of the measurements being 17.7 feet/day. The range of hydraulic conductivity data, obtained during the RI for the glacial till/weathered shale over the entire site, was 0.088 feet/day to 12.7 feet/day. Twelve (12) hydraulic conductivity measurements were made during the RI. The average hydraulic conductivity for the wells screened in the till/weathered shale material was 0.77 feet/day. This suggested that the velocities through the reactive wall would be faster than expected and the retention time required to achieve complete degradation of the target compounds would not be sufficient, even though the amount of iron installed in the trench was at least twice as much as what was required.

The analytical results from groundwater samples were used to evaluate the effectiveness of the treatment process. Treatment effectiveness was determined by comparison of the upgradient monitoring well data to the analytical data collected from wells located within the reactive wall. Downgradient monitoring well data were not considered as an indicator of the treatment

effectiveness because groundwater at the downgradient location is affected by the dilution of clean water, out of the reactive wall, with residual contaminant concentrations that remain within the aquifer. Eventually flushing of residual concentrations would yield data that would represent effluent reactive wall concentrations but this was not observed during this study. Groundwater concentrations observed at the downgradient location were therefore not used to determine the treatment effectiveness.

There are several indications that the reactive wall is actively degrading chlorinated contaminants. The measured Eh values from within the reactive wall ranged from 90.1 mV to -404.3 mV, which is consistent with reducing conditions. pH measurements ranged from 7.83 to 9.74, which are also indicative that iron is reacting with chlorinated organics. Concentrations of the degradation endpoints, methane, ethene and ethane, were measured in wells within the reactive wall and downgradient monitoring wells. These are all strong indications that the reactive iron technology is operating as expected. The remaining question is how effective is the technology in achieving the required target contaminant levels. This is addressed with a review and evaluation of the analytical groundwater monitoring well data.

Significant reductions in the concentrations of TCE were observed between the upgradient monitoring wells and the reactive wall wells at each monitoring well cluster. The concentration of TCE at each of the three monitoring wells located within the reactive barrier wall was non-detectable for each of the four quarterly rounds of sampling. This data is indicative that the technology is successful in removing TCE to below the target levels. In particular, the monitoring well cluster that included MWT-7 and MWT-8, located in the southernmost portion of the reactive wall, showed the most dramatic reductions. At this cluster, the influent concentration of TCE at MWT-7 in June 1999, was 530  $\mu$ g/L, whereas the concentration within the trench at MWT-8 was below detectable limits at less than 2  $\mu$ g/L. This corresponds to a removal efficiency of better than 99.6%. Removal efficiencies of similar degree of removal has been observed during the other three quarterly monitoring events. At the two other monitoring well cluster locations the removal efficiency is less but only because the influent concentration was less.

The removal efficiencies for the breakdown product, cis 1,2-dichloroethene (c1,2-DCE), which is known to be more difficult to degrade than TCE, are less dramatic but do indicate that the technology is effective in removing this contaminant. For example, during the April 1999 monitoring event, the influent concentration of c1,2-DCE at MWT-4, the upgradient monitoring well at the middle monitoring well cluster location, was 49 ug/L, whereas the concentration of c1,2-DCE at MWT-5, the monitoring well within the reactive barrier wall, was below detectable

levels at 0.7 ug/L. This corresponds to a removal of 98.5%. However, during the next monitoring round in June 1999, the upgradient concentration at MWT-4 was 82 ug/L, whereas the concentration of c1,2-DCE at MWT-5 was 20 ug/L. This corresponds to a removal of 75.6%. It is unclear why these removal efficiencies varied.

Several factors are likely contributing to the lower than expected reductions of c1,2-DCE. It is possible that the high influent concentrations of TCE may have produced c1,2-DCE as a breakdown product within the wall. Due to this additional loading, the residence time was not sufficient to account for c1,2-DCE being produced within the wall. Concentrations of TCE entering the trench were approximately 500 ug/L, which was higher than the 260 ug/L design concentration. Additionally, hydraulic conductivities were also variable and appear to be related to the anisotropy of the aquifer. Following the installation of the reactive wall, in-situ hydraulic conductivity measurements were made at the newly installed monitoring wells, upgradient, within the wall and downgradient of the wall. The range of hydraulic conductivity measurements in the wells surrounding the reactive barrier wall was between 0.4 feet/day to 55 feet/day, with the average of the measurements being 17.7 feet/day. The higher values were over ten times higher than any previously measured value at the site.

Probably the most significant factor is the retention time. If the retention time within the reactive wall is less than expected due to higher velocities, then the retention times within the reactive wall will be less than that required by the design. The design residence time was established at 1.25 days. Residence times through the wall were halved to account for the fact that the reactive wall is a mixture of 50% reactive iron and 50% clean sand. The range of equivalent reactive iron wall residence times is 0.09 days to 2.7 days, with the average of the residence times being 1.12 days.

The design velocity was established at 0.17 feet/day. Excluding the instances of reverse flow caused by a change in gradient, the groundwater velocities through the trench ranged from 0.22 feet/day to 6.8 feet/day over the year long study. The average of these measurements is 1.2 feet/day.

The technology appears to be a viable technology, however, future applications at this site will require longer reactive iron residence times in order to meet the targeted groundwater levels.

#### 2.0 SITE BACKGROUND

### 2.1 SITE LOCATION

The SEDA is a former military facility, constructed in 1941 that has been undergoing Base Realignment and Closure (BRAC) since 1995. The depot is located approximately 40 miles south of Lake Ontario, near Romulus, New York as shown in **Figure 2-1**. The facility is located in an uplands area, at an elevation of approximately 600 feet Mean Sea Level (MSL), that forms a divide separating two of the New York Finger Lakes, Cayuga Lake on the east and Seneca Lake on the west. Sparsely populated farmland covers most of the surrounding area. New York State Highways 96 and 96A adjoin SEDA on the east and west boundaries, respectively.

The Ash Landfill Operable Unit is situated on an upland area along the western border of the SEDA. The Operable Unit is bounded on the north by Cemetery Road, on the east by the Seneca Army Depot Railroad line, and on the south by open grassland and brush. Beyond the depot's western boundary, on Smith Farm Road and along Route 96A, are farmland and residences. A map identifying the location of the site on the depot is included as **Figure 2-2**. This map also provides the future land areas of the depot that have guided the BRAC closure process. The Ash Landfill Operable Unit is located within the area that has been designated for use as a conservation/recreational area.

A site map of the Ash Landfill Operable Unit, identifying the location of the Solid Waste Management Unit (SWMU)s, is provided as **Figure 2-3**. The Ash Landfill Operable Unit is comprised of five SWMUs including: the Incinerator Cooling Water Pond (SEAD-3), the Ash Landfill (SEAD-6) the Non-Combustible Fill Landfill (NCFL) (SEAD-8), the Refuse Burning Pits (SEAD-14) and the Abandoned Solid Waste Incinerator Building (SEAD-15). SEAD-14 is also known as the Debris Piles. A groundwater plume that emanated from the northern corner of the Ash Landfill area is also provided in **Figure 2-3**. The groundwater plume is shown following completion of a Non-Time Critical Removal Action (NTCRA) that was conducted by the Army in 1994-1995. Remediation of this groundwater plume is the focus of this demonstration study.

## 2.2 SITE GEOLOGY/HYDROGEOLOGY

The site is underlain by a broad north-to-south trending series of rock terraces covered by a mantle of till. As part of the Appalachian Plateau, the region is underlain by a tectonically

undisturbed sequence of Paleozoic rocks consisting of shales, sandstones, conglomerates, limestones and dolostones. At the Ash Landfill site, these rocks (the Ludlowville Formation) are characterized by gray, calcareous shales and mudstones and thin limestones with numerous zones of abundant invertebrate fossils. Locally, the shale is soft, gray, and fissile. Pleistocene age (Late Wisconsin age, 20,000 years bp) till deposits overlie the shales, which have a thin (2 to 3 feet) weathered zone at the top. The till matrix varies locally but generally consists of horizons of unsorted silt, clay, sand, and gravel. The soils at the site contain varying amounts of inorganic clays, inorganic silts, and silty sands. At the Ash Landfill Operable Unit, the thickness of the till generally ranges from 4 to 15 feet. At the location of the continuous reactive wall system, the thickness of the till and weathered shale is approximately 8 to 12 feet.

Groundwater is present in both the shallow till/weathered shale aquifer and in the deeper competent shale aquifer. In both aquifers, the predominant direction of groundwater flow is to the west, toward Seneca Lake.

The hydraulic conductivity of the till and the weathered shale zone ranged between 0.001035 feet /min (5.3 x  $10^{-4}$  cm/sec) to 0.00006083 feet/min (3.9 x  $10^{-5}$  cm/sec), with the average being 0.000535 feet/min (4.6 x  $10^{-4}$  cm/sec). The weathered shale eventually transitions to a competent shale. The hydraulic conductivity of the competent shale ranged between 0.000245 feet/min (1.2 x  $10^{-4}$ ) to 0.00000039 feet/min (1.9 x  $10^{-7}$  cm/sec), with the average being 0.0000727 (3.7 x  $10^{-5}$  cm/sec). These soils are generally considered to be poorly draining.

### 2.3 SITE HISTORY

Since its inception in 1941, SEDA's primary mission had been the receipt, storage, maintenance, and supply of military items.

The SEDA was proposed for the National Priority List (NPL) in July 1989. In August 1990, SEDA was finalized and listed in Group 14 on the Federal Section of the National Priority List (NPL). The EPA, NYSDEC, and the Army entered into an agreement, called the Federal Facility Agreement (FFA), also known as the Interagency Agreement (IAG). This agreement determined that future investigations were to be based on CERCLA guidelines, RCRA was considered to be an Applicable or Relevant and Appropriate Requirement (ARAR) pursuant to Section 121 of CERCLA. In October 1995, SEDA was designated as a facility to be closed under the provisions of the Base Realignment and Closure (BRAC) process.

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

Prior to the development of the Ash Landfill site, the land in this area was used for farming. From 1941 (the date SEDA was constructed) to 1974, uncontaminated trash was burned in a series of burn pits near the abandoned incinerator building (Building 2207). According to a U.S. Army Environmental Hygiene Agency (USAEHA) Interim Final Report, Groundwater Contamination Survey No. 38-26-0868-88 (July 1987), from 1941 until the late 1950's or early 1960's, the ash from the refuse burning pits was buried in the Ash Landfill (SEAD-6).

The incinerator was built in 1974. Between 1974 and 1979, materials intended for disposal were transported to the incinerator. The incinerator was a multiple chamber, batch-fed 2,000 pound per hour capacity unit which burned rubbish and garbage. The incinerator unit contained an automatic ram-type feeder, a refractory lined furnace with secondary combustion and settling chamber, a reciprocating stoker, a residue conveyor for ash removal, combustion air fans, a wet gas scrubber, an induced draft fan, and a refractory-lined stack (USAEHA, 1975). Nearly all of the approximately 18 tons of refuse generated per week on the depot were incinerated. The source for the refuse was domestic waste from depot activities and family housing. Large items that could not be burned were disposed of at the NCFL (SEAD-8). The NCFL is approximately two acres and is located southeast of the incinerator building (immediately south of the SEDA railroad line). The NCFL was used as a disposal site for non-combustible materials, including construction debris, from 1969 until 1977.

Ashes and other residues from the incinerator were temporarily disposed in an unlined cooling pond immediately north of the incinerator building. The cooling pond consisted of an unlined depression approximately 50 feet in diameter and approximately 6 to 8 feet deep. When the pond filled, the fly ash and residues were removed, transported, and buried in the adjacent ash landfill east of the cooling pond. The refuse was dumped in piles and occasionally spread and compacted. No daily or final cover was applied during operation. The active area of the Ash Landfill extended at least 500 feet north of the incinerator building, near a bend in a dirt road, based on an undated aerial photograph of the incinerator during operation. A fire destroyed the incinerator on May 8, 1979, and the landfill was subsequently closed. The landfill was apparently covered with native soils of various thicknesses but has not been closed with an engineered cover or cap. Other areas on the site were used for a grease pit and burning of debris. The Ash Landfill Operable Unit was initially estimated to encompass an area approximately 130-acres. This larger area was investigated to ensure that no, previously unknown, waste disposal areas were overlooked. Following the remedial investigation the area of the Ash Landfill Operable Unit was refocused to an area of approximately 23 acres.

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

The first phase of RI fieldwork was completed in January 1992. The RI report was prepared in two phases. The first document provided was the Preliminary Site Characterization Summary Report (PSCR) submitted on April 27, 1992. The PSCR constituted the first four chapters of the RI and was intended to: provide a description of the site conditions, present the Phase 1 data, and identify any data gaps. The PSCR served as the basis for the second phase of data collection. Phase 2 fieldwork was completed in April 1993. The RI report was submitted final on October 3, 1994.

The nature and extent of the constituents of concern at the Ash Landfill were evaluated through the comprehensive RI program. The primary media investigated at the Ash Landfill were soil, surface water and sediment from Kendaia Creek, on-site wetlands, drainage swales, and groundwater. The primary constituents of concern at the Ash Landfill are Volatile Organic Compounds (VOC) (primarily chlorinated and aromatic compounds), semivolatile organics, mainly Polynuclear Aromatic Hydrocarbons (PAHs), and, to a lesser degree, metals. The constituents of concern are believed to have been released to the environment during former activities conducted at the Ash Landfill Operable Unit.

A Non-Time Critical Removal Action (NTCRA), also known as an Interim Removal Measure (IRM), was conducted by the Army between August 1994 and June 1995, under the requirements of the CERCLA, as amended. The NTCRA successfully eliminated continued leaching of VOCs to groundwater associated with this operable unit The removal action consisted of excavation and thermal treatment of VOC-impacted soils using Low Temperature Thermal Desorption (LTTD). The action thermally treated VOCs and PAHs in soils at two source areas near an area, along a winding access road, near the northwestern edge of the Ash Landfill. Sampling performed during the RI identified elevated concentrations of VOCs and PAHs to be present. This area was named the "Bend in the Road" area.

The treatment of soils involved two distinct source areas at the "Bend in the Road" area. Soil within this area was identified during the RI as the source of groundwater contamination. One of the goals of the IRM was to eliminate the source of groundwater pollution. Approximately 35,000 tons of soil were excavated from the two source areas and heated to 800-900°F in the LTTD system. After the soil was heated and cooled, soil was tested prior to backfilling into the excavation area. Following backfilling and proper grading for drainage control, a vegetative cover was established to prevent erosion. Sampling and analysis of the excavated and treated soil material indicated that these soils were successfully treated and met the VOC clean-up criteria for the project.

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

The IRM thermal treatment project provided a positive benefit for the long-term remedial action by eliminating continued leaching of VOCs into groundwater and preventing further exposure to humans and wildlife. In the several years that have passed since the IRM, the positive benefits of the IRM have been observed as the concentration of groundwater in this area has decreased over 100 fold.

Treatment of wastewater and monitoring of air dispersion impacts were also performed as part of the NTCRA. Wastewater in the excavation areas (consisting of infiltrating groundwater; precipitation, runoff, and water generated from other project operations) was collected, pumped, and treated by an on-site water treatment system prior to discharge in a nearby field. The treated water met the requirements of the NYSDEC groundwater criteria for a Class GA groundwater. Class GA groundwater means that the groundwater is suitable for use as a source of potable water.

The maximum concentration of TCE in soil at the "Bend in the Road" area, prior to the non-time critical removal action, was 540,000  $\mu$ g/Kg or 540 mg/kg. The maximum concentration of trichloroethene in soil following thermal treatment was 46  $\mu$ g/kg or 0.046 mg/kg. This is a reduction in concentration of approximately 10,000. Of the 156 valid soil samples collected from the treated soil, excluding duplicates, only this one sample was detected above the Practical Quantitation Limits (PQL) of the analytical method. These samples represent soil from approximately 150 cubic yard piles of soil that had been thermally treated, prior to replacement in the excavation. The typical PQL for trichloroethene in soil was approximately 10  $\mu$ g/kg. Following analytical documentation that treatment had been successful, the soil was placed back to the excavation.

Prior to full operation, a prove-out test was performed to document the effectiveness of the proposed thermal treatment technology and evaluate the potential for the treated soil to leach metals. Thermal treatment is not effective in removing metals from soil. A total of 89 post treatment soil samples were collected and analyzed for the 8 Toxicity Characteristics Leaching Procedure (TCLP) metals following treatment. The 8 metals that are included in the TCLP test are: arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver.

The treated soil was tested to evaluate the potential for metals in soil to leach and ensure that the leachable levels did not exceed hazardous waste characteristic levels. The TCLP test is an EPA RCRA test that is used to assess the potential for a waste to leach. It is also used to classify

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

waste as hazardous. Of the 8 TCLP metals lead was used as an indicator metal. Lead was chosen as the indicator metal due to the toxicity of lead, the potential to leach and the concentrations of lead in soil that were measured during the RI.

The TCLP metal analytical data indicated that the maximum concentration of leachable lead in the soil samples associated with the IRM thermal treatment project was 814  $\mu$ g/L. The regulatory limit for the RCRA characteristic of toxicity for lead, using the TCLP test, is 5,000  $\mu$ g/L, therefore no soil tested were found to be a RCRA characteristic hazardous waste. Numerous TCLP sample results for leachable lead in soil were non-detectable. Total concentrations of lead in soil were not measured during the IRM. The concentration of total lead in soil was measured during the RI in the area of the IRM. Total lead in soil measured in the area of the IRM ranged from 4.1 mg/kg to 696 mg/kg. The highest concentration of total lead in soil measured during the RI was 2,890 mg/kg. This sample was obtained from one of the surface debris piles.

The primary VOCs in soils at the Ash Landfill site were cis 1,2-dichloroethene (c1,2-DCE) (maximum=79 mg/kg), trichloroethene (TCE) (maximum=540 mg/kg), and vinyl chloride (VC) (maximum=1.0 mg/kg). The highest concentrations of these compounds were measured in a two-acre area, located in the northwestern corner of the Ash Landfill, near a bend in the access road. The primary aromatic constituents of concern were xylene (maximum=17 mg/kg) and toluene (maximum=5.7 mg/kg). The semivolatiles of principal concern were Polynuclear Aromatic Hydrocarbons (PAH)s. PAHs were measured at concentrations above the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) cleanup guidelines. The metals that were detected at elevated concentrations in soils were copper (maximum=836 mg/kg), lead (maximum=2,890 mg/kg), mercury (maximum=1.2 mg/kg) and zinc (maximum=55,7000 mg/kg). The highest concentrations of metals were detected in the subsurface. The extent of the aromatics in the horizontal direction was smaller than that for the chlorinated volatile organics (approximately one-half acre). The vertical impacts extended from the land surface to 4 feet below the surface (above the water table).

No volatile or semi-volatile organic compounds were detected in any of the on-site surface waters or Kendaia Creek. Kendaia Creek has been classified by NYSDEC as a Class C stream. The on-site drainage ditches and wetlands have not been classified by NYSDEC. The on-site wetlands and drainage ditches do not contain surface water throughout the entire year

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

#### 2.4 SITE GROUNDWATER IMPACTS

Groundwater at the site is impacted primarily by a plume of chlorinated ethene volatile organic compounds (TCE, c1,2-DCE and VC). The plume extends from an area near the Ash Landfill, westerly, to the boundary of the depot, approximately 1,500 feet away. Figure 2-3, Figure 2-4 and Figure 2-5 provide a plan view depiction of the plume in 1997, 1999 and 2000. Quarterly monitoring in 1996, 1997 and 1998 detected c1,2-DCE between 0.2  $\mu$ g/L and 2  $\mu$ g/L at monitoring well MW-56, which is 225 feet past the depot boundary. The most recent sampling of MW-56 in January 2000 did not detect c1,2-DCE at a concentration of 1  $\mu$ g/L. The NYSDEC GA groundwater quality standard for c1,2-DCE is 5  $\mu$ g/L. It is likely that the boundary of the plume extends westward to slightly beyond the depot boundary. Exceedances over the NYSDEC GA groundwater standard, beyond the depot boundary, have not been observed. At the widest point, the plume is approximately 625 feet. The highest concentrations were detected in the area considered to be the source of the contamination. From this area, concentrations of dissolved chlorinated organic compounds in groundwater decrease as the plume migrates with the natural flow of groundwater.

The main source area, located in the northwestern portion of the Ash Landfill, was designated as the "Bend in the Road" area since it was located at the bend in the unpaved access road. Historically, the maximum volatile organics concentration was detected in monitoring well MW-44, located within the area considered to be the source area prior to the soil removal action. In November 1993, the concentrations of TCE, c1,2-DCE and VC were 51,000  $\mu$ g/L, 130,000  $\mu$ g/L, and 23,000  $\mu$ g/L, respectively, for a total chlorinated ethene concentration of 204,000  $\mu$ g/L in MW-44. This area was eliminated in 1995 through a NTCRA that treated approximately 34,000 CY of soil using LTTD. Prior to the IRM, the maximum detected concentration of total chlorinated ethenes at the site was 132,360 µg/L (at MW-44, which is now MW-44A). After the source removal, which occurred between September 1994 and June 1995, concentrations of chlorinated compounds were reduced significantly, based on a June 1997 sampling event (Figure 2-3). For example, prior to the removal action the concentration of total chlorinated ethenes in MW-44 was 204,000 µg/L. In October 1999, the concentration in MW-44A, the replacement well for MW-44, was 1,104  $\mu$ g/L, a 100-fold decrease in concentration. In January 2000, the concentration of total VOCs in MW-44A was 399  $\mu$ g/L. Following completion of the NTCRA in June 1997, the concentration of total chlorinated ethenes in the downgradient portion of the plume (i.e., at the proposed location of the reactive wall) ranged between 55  $\mu$ g/L and 233  $\mu g/L$  (Figure 2-3). The concentrations of chlorinated ethenes in this area remained similar to the

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

levels observed in 1997. Figures 2-4 and 2-5 depict the groundwater VOC plume approximately five years after the removal action.

The nearest exposure points for groundwater are the three farmhouse wells, located approximately 1,250 feet from the leading edge of the plume. At least one of the farmhouse wells draws water from the till/weathered shale aquifer and the remaining two wells derive water from the bedrock aquifer. Vertically, the plume is believed to be restricted to the upper till/weathered shale aquifer and is not present in the deeper competent shale aquifer.

Although exceedances of the NYSDEC GA groundwater standards were observed, in at least several wells, during the RI for the metals chromium, lead, nickel, zinc, antimony, barium beryllium and copper, the data appears to be related to the turbidity of the sample. It was noted that wells with high turbidity have high metals concentrations. Subsequent improvements to the sampling techniques provided less turbid samples with a corresponding decrease in the concentration of metals. For example, lead in MW-44, with a turbidity of 100 NTU was measured during the second round of the RI was 147  $\mu$ g/L, which was above both the EPA criteria of 15  $\mu$ g/L and the NYSDEC GA standard of 25  $\mu$ g/L. During the quarterly sampling, conducted following the RI, the concentration of lead in MW-44 was non-detectable at less than 2  $\mu$ g/L. This same trend was observed for other wells. The turbidity of the quarterly monitoring samples were less than 10 NTU. Furthermore, the locations of the exceedances did not correlate to form a continuous plume, rather the exceedances were randomly distributed and did not related to a source of metal contamination. As a result of this data, concern over exceedances of metals in groundwater were resolved and attributed to turbidity.

Based on recent groundwater chemistry data (October 1999 and January 2000), the overall configuration of the plume is similar to that shown in June 1997 (Figure 2-4 and Figure 2-5, respectively). Concentrations of chlorinated ethenes are generally unchanged in the immediate vicinity of the continuous reactive wall since 1997. And, while the concentrations of chlorinated ethenes remained similar in most locations in the former source area (MW-44A and PT-12A), there was an increase in concentration of total VOCs in the area near PT-18 (up to 10,591  $\mu$ g/L) in October 1999 compared to the 1997 results. In January 2000, however, total chlorinated ethenes concentrations had fallen back to levels similar to the 1997 results. This cycle of increase and decrease in chlorinated ethene concentrations is most likely due to seasonal fluctuations in groundwater at the Ash Landfill.

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-2.doc

## 3.0 TECHNOLOGY BACKGROUND

Researchers at the University of Waterloo identified the application of and obtained a patent for use of zero valence iron as a viable technology for remediation of contaminated groundwater (Gavaskar, 1997). In 1994, EnviroMetals Technologies, Inc. (ETI) was granted a license to commercially apply the technology. While the patent describes the use of zero valence iron it does not describe or include the groundwater system required to successfully apply the technology at a site. Successful application of this technology requires both groundwater collection and treatment. ETI has been instrumental in performing bench scale and pilot scale studies to obtain vital design parameters and has pursued commercial applications of zero valence iron. These applications have typically involved a combination of engineering consulting firms, contractors and ETI. Through a subcontracting agreement with Parsons, ETI has issued a license to Parsons to apply this technology at the Ash Landfill Operable Unit. ETI, through the terms of this agreement, has provided technical support and oversight during the design, installation and evaluation phases of this project. Several correspondences with ETI are provided in **Appendix D**.

Zero valence iron destroys dissolved chlorinated organic compounds via reductive dechlorination (Matheson and Tratnyek, 1994). During this reaction, zero valence iron, an electron donor, is oxidized to ferrous iron thereby providing two electrons. These two electrons reduce hydrogen ions and chloride cause chloride ions to be released from the organic compound. In the case of TCE and c1,2-DCE, this results in the formation of the alkane compound, ethane, or the formation of the alkene compound, ethene. Additionally water is split, eventually forming hydrogen gas,  $H_2$ , and hydroxide ions, OH<sup>-</sup>. The increase in hydroxide ions causes the pH to increase to alkaline conditions. Thus an increase in pH and hydrogen gas in solution are indications that the iron is active and capable of reducing alkyl halides.

The technology is typically applied in-situ. Successful application this technology requires both adequate collection of capture of the plume and sufficient contact time between the contaminated groundwater and the zero valence iron. Applications of this technology have included various ways to ensure capture and contact time. Capture and treatment with a funnel and gate approach or a continuous permeable reactive wall are two configurations that have been the most widely used. The approach selected for demonstration at this site is the permeable reactive wall.

The technology offers several distinct advantages over other conventional groundwater treatment technologies. In-situ treatment schemes utilize the natural gradients and hydraulic conductivity of the aquifer to drive groundwater through the reactive material. Since the technology is

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-3a.doc

passive and the destruction is accomplished in-situ there is no need to additional costs associated with construction of an above ground treatment facility. The costs for equipment, such as pumps and piping are also eliminated, in addition to the costs for operation and maintenance of an above ground treatment facility. Costs associated with collecting and treating off-gases from vapor extraction systems or air stripping units are also not a factor.

Another advantage of in-situ treatment, is the elimination of issues associated with permitting effluent discharge points, i.e. surface water bodies, or air.

With this technology, treatment of groundwater remains continuous even during saturated water table conditions that may vary over the year. This advantage was considered significant at this site since the water level elevation data identified a large seasonal change in saturated thickness. During low levels, the ability to effectively remove water from the aquifer with a conventional pumping system is a concern. Such conditions may require groundwater extraction to stop or to be extracted at a low flow rate such that treatment cannot occur continuously. Under such a scenario contaminated groundwater may continue to migrate or may place significant restrictions on the design and operation of an aboveground system. These concerns would be eliminated with a passive in-situ treatment system since an in-situ system would continue to provide treatment under low water table conditions.

Land use is not dramatically affected by such an in-situ treatment system. Thus, use of the area for conservation/recreational land use, which is the current intended future use for this area, would be allowed for an in-situ reactive wall.

The cost of reactive iron is relatively inexpensive and is a by-product of industrial manufacturing operations. Reactive iron has a large capacity to degrade chlorinated organic contaminants and has been shown to be unaffected by fouling due to inorganic precipitation or premature oxidation. (O'Hannesin and Gillham, 1998, Vogan et. al, 1998 and McMahon et. al, 1999) Although these are limited long-term demonstration studies, the data collected to date has shown that, once operating, the iron in the wall would be effective for a relatively long period of time. Estimates provided by ETI indicate that that iron typically would require replacement after about ten years.

For these reasons the use of zero valence iron as a cost-effective technology for groundwater remediation has been applied at several sites. The technology was selected for demonstration at the Ash Landfill site with the intent of obtaining treatment effectiveness data and other design data that would be then used as the basis for a final remedy at this site.

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-3a.doc

## 3.1 REDUCTIVE DECHLORINATION using ZERO VALENT IRON

Zero valence iron is an effective reactant in destroying dissolved chlorinated organics from groundwater. Chlorinated organics undergo reductive dechlorination in the presence of a proton donor (water) and zero valent iron, which provides electrons. During the process, compounds such as TCE, cDCE, and VC are reduced and iron is oxidized. The end products are methane, ethane, ethene, and chloride. **Figure 3-1** shows the process of reductive dechlorination and **Figure 3-2** shows percent molar conversions of chlorinated compounds during reductive dechlorination.

There are three general pathways leading to the dechlorination of alkyl chlorides, (Matheson and Tratnyek, (1994). The first involves direct reduction of chlorinated solvents that are adsorbed on the metal surface:

$$Fe^{\circ} + RCl + H^{+} \rightarrow Fe^{+2} + RH + Cl^{-}$$
 [Equation 1]

The second pathway involves oxidation of  $Fe^{+2}$  that is an immediate product of corrosion in aqueous systems:

 $Fe^{\circ} + 2H_2O \rightarrow Fe^{+2} + H_2 + 2OH^{-}$ [Equation 2]  $Fe^{+2} + RCl + H^+ \rightarrow Fe^{+3} + RH + Cl^{-}$ [Equation 3]

The third pathway involves reduction of alkyl halides from interaction with hydrogen. Hydrogen is produced during iron corrosion, See Equation 2,:

 $H_2 + RCI \rightarrow RH + H^+ + CI^- \qquad [Equation 4]$ 

These three pathways, described by Equations 1, 3, and 4, are all contributors to the reductive dechlorination process that is occurring at the Ash Landfill.

Loss of the reactive iron as an effective treatment reactant can under certain conditions. Under aerobic conditions, dissolved oxygen is the preferred reactant during iron corrosion. This results in a rapid reduction reaction with  $O_2$  instead of water:

 $Fe^{\circ} + O_2 + 2H_2O \rightarrow Fe^{+2} + 4OH^{-1}$ 

[Equation 5]

```
\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-3a.doc
```

Like oxygen, three other chemical constituents, sulfates, nitrates, and phosphates can also serve as oxidants during iron corrosion. Iron corrosion results in a decrease in redox potential, an increase in pH, ferrous iron, and hydrogen. Therefore, to monitor iron corrosion, groundwater was analyzed for redox potential, pH, ferrous iron, and hydrogen.

#### 3.2 TECHNOLOGY APPLICATIONS

Several applications of this technology has been documented, Vidic, R.D. and Pohland, F.G., (1996), Gavaskar, Arun et. al, (1997).

One of the first applications of this technology was at the Canadian Forces Base, Borden, Ontario in 1991. This application involved a permeable wall configuration that included the use of sealable sheet pilings, installed to a depth of approximately 33 feet, to allow excavation and backfilling with a mixture of 22% reactive iron and 78% concrete sand. Once backfilling with the reactive mixture was complete, the sheet pilings were removed. The reactive wall was placed perpendicular to groundwater flow and was 5.2 feet wide and 18 feet long. Residence time was estimated at 16 days. Maximum concentrations of TCE and PCE were 250,000  $\mu$ g/L and 43,000  $\mu$ g/L, respectively. The system was monitored for a 17-month period. Final results of monitoring showed 90% reductions of TCE and 88% reductions of PCE. Follow-up laboratory studies indicated that a higher percentage of reactive iron would be required to increase the reductions of TCE and PCE.

A continuous reactive wall was installed at the United States Coast Guard (USCG) Center at Elizabeth City, NC in June, 1996. The site is located near the Pasquotank River. The aquifer material is largely fine sand, silt and clay. Higher permeable zones in the surficial aquifer occur at depth of approximately 16 at 22 feet below land surface. The installation was performed using a continuous trenching machine that excavated soil and installed reactive iron at the same time. Installation was completed in 12 hours. The continuous reactive wall was installed with 100% reactive iron. The iron wall was 15 feet long, 24 feet deep and 2 feet wide. The wall was keyed into a layer of low-permeability sandy clay located between 22 and 26 feet below ground surface. Maximum influent contaminant concentrations were 8 mg/L, 12 mg/L 1 mg/L and 0.1 mg/L for chromate, TCE and c1,2-DCE and vinyl chloride, respectively. Monitoring of the reactive wall included an array of 10 compliance monitoring wells and 15 multi-level samplers, located upgradient, downgradient and within the barrier wall. Monitoring data indicates that the majority of the TCE breakdown occurs within the first foot of the barrier with no TCE being detected above the drinking water criteria. Vinyl chloride and less than 2 ug/L. However, TCE

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-3a.doc

was detected in a downgradient well, suggesting that some TCE had migrated underneath the barrier.

A 1,200-foot long funnel and gate reactive wall was installed at the Denver Federal Center in 1996 (McMahon, P.B. et al, (1999). Groundwater flows through unconsolidated alluvial sediments and weathered sediment. The mean hydraulic conductivity obtained from slug tests performed on individual wells was 1.64 feet/day. The underlying bedrock consists of a less permeable, unweathered claystone of the Denver Formation. Four gates, each 40 foot wide and 10 foot deep, were installed at various intervals within the 1,200-foot long impermeable barrier, which was comprised of interlocking metal sheet piles that were driven into unweathered bedrock. Each gate contained pea gravel on the upgradient and downgradient ends with reactive iron in the middle. The thickness of the reactive iron varied from 6 feet to 2 feet, depending upon the anticipated groundwater velocity. The maximum concentrations of contaminants entering the gates were 200 µg/L, 15 µg/L 600 µg/L, 230 µg/L and 18 µg/L for trichloroethane (TCA), 1,1-dichloroethane (DCA), TCE, 1,1-dichloroethene (1,1-DCE) and vinyl chloride (VC), respectively. The only contaminant detected exiting the gates was DCE at a maximum concentration of 15 µg/L. This amount represents about 0.7% of the total contaminant mass that was entering the gates. It was suggested that the presence of DCA within the gates may be a result of the production of DCA in the gates and the relative resistance of DCA to degradation by zero valence iron. Hydraulic monitoring of the reactive wall was performed to evaluate the potential for migration under, around and over the reactive wall. Data suggested that water movement was possible under the reactive wall in only one area near one of the gates. Movement of groundwater around the reactive wall was indicated in one end of the reactive wall. This movement around the reactive wall caused formation of groundwater seeps, which eventually discharged to a nearby stream. However, the amount of leakage did not cause a measurable increase in the concentration of contaminants in the receiving stream flow. Mounding caused by the presence of the impermeable steel sheet pile was identified in all upgradient monitoring wells. A portion of this groundwater was attributed to leakage from a nearby reservoir. Flux calculations performed indicated that approximately 77% of the groundwater moving toward the reactive wall moved through the gates. The rest of the water either accumulate on the upgradient side of the reactive ball or bypassed the reactive wall. Migration of groundwater over the reactive iron in the gates was identified at one location. As a result of the groundwater mounding upgradient of the reactive wall, velocities through the gates were increased. In Gates 2 and 3, the velocities ranged from 0.2 feet/day to 1.3 feet/day. In another gate, Gate 3, the velocities ranged from 0.2 feet/day to 1.5 feet/day. The median groundwater velocity in Gates 2 and 3 were 0.36 feet/day and 0.59 feet/day. The conclusions of the evaluation of this system indicated that while zero valence iron is capable of destroying

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-3a.doc

chlorinated contaminants, hydraulic movement of contamination around the reactive wall is of greater concern.

The EPA SITE demonstration program conducted a 6-monthdemonstration study at an industrial facility located in central New York state, EPA/540/R-98/501 (1998). The study involved evaluation of a funnel and gate application of the zero valence iron technology. The site is located in a river valley. Unconsolidated geological deposits consisting of clavey sand and gravel comprise the aquifer materials. These deposits overlie a dense clay confining layer. The top of the confining clay unit is approximately 13 to 16 feet below ground surface. The depth to groundwater ranges from approximately 3 to 7 feet. Following bench-scale and pilot studies, ETI established the required residence time at 56 hours. The system design allowed for a minimum residence time of approximately 72 hours. This was based upon a predicted maximum design groundwater flow of 1 foot per day through the reactive iron. Groundwater velocities assumed a horizontal gradient of 0.002 foot/foot, a hydraulic conductivity of 142 feet per day and a porosity of 0.4 for the reactive iron. The system was constructed in May 1995 by driving sealable-joint sheet piling one foot into the clay aquitard. The sheet piling formed a rectangular box area approximately 12 feet by 6.5 feet. The long portion of the box was placed perpendicular to the groundwater flow direction. Additional 15-foot long sheets were also driven one foot into the clay confining layer on either site of the box to act as the groundwater diversion funnel.

Soil within the box was then excavated to the top of the clay layer and the water within the box was removed. Steel sheet piling was then used to segregate the box into three compartments. Pea gravel was placed within the two end compartments. Each end compartment was approximately 1.75 feet wide. The middle 3-foot wide compartment was backfilled with reactive iron. Pea gravel was used to establish a mixing zone to eliminate short-circuiting caused by the anisotropy of the aquifer. Three monitoring wells were installed within each compartment. Following placement of the monitoring wells and backfilling, the two steel compartment dividers and the two ends of the reactive zone were removed. Groundwater flow through the reactive wall commenced on May 18, 1995.

The influent TCE groundwater concentrations ranged from 32 ug/l to 330 ug/L; for c1,2-DCE the concentrations ranged from 98 ug/L to 550 ug/L; for VC the concentrations ranged from 5 ug/l to 79 ug/L. Traces of 1,1-DCA and t-1,2-DCE have occasionally been detected al levels below 5 ug/L. Analytical samples were collected during the months of June, July, August, October, November and December 1995.

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-3a.doc

Excluding the June data as unrepresentative due to the dewatering performed during construction, the observed data indicated the treatment system was effective in destroying chlorinated organics. Most of the samples collected from the downgradient wells did not detect chlorinated organics at a detection limit of 1 ug/L. The only exception was for c1,2-DCE that was detected at low levels. Critical chlorinated organic contaminants were below the New York State Department of Environmental Conservation (NYSDEC) target levels for 86 out of 90 measurements. The NYSDEC target criteria for c1,2-DCE were slightly above the target level of 5 ug/L for four measurement, however, the highest measured value was only slightly above the 5 ug/L value at 7.5 ug/L.

A recently published report by Gavaskar, Arun et. al (2000) provides a summary of the status of the of the zero valence iron reactive wall technology. This discussion notes that the confidence in this technology has grown as data from various demonstration studies becomes available. More of the recent applications have been configured as continuous permeable reactive wall rather than as funnel and gate configurations. One reason for this apparent shift is the decrease in cost for reactive iron, which has decreased from approximately \$650/ton to \$300/ton. The benefits of continuous reactive walls included easier design and construction. Groundwater mounding is also lessened with a continuous reactive wall as opposed to the funnel and gate approach. Application of this technology has occurred for a wide variety of site conditions. Groundwater velocities, where this technology has been applied has ranged from 0.0003 ft/day to 2.8 ft/day.

The full-scale applications of this technology have also been helpful in identifying the critical aspects that are essential for success. Hydraulic performance of any reactive wall is essential for adequate system performance. Incomplete plume capture, less than required residence time and aquifer anisotropy are all facets that contribute to these systems not meeting the target goals.

#### 4.0 DESIGN AND INSTALLATION OF CONTINUOUS REACTIVE WALL

## 4.1 INTRODUCTION

The zero valence iron technology has been developed and patented by researchers from the University of Waterloo, Waterloo Canada, (Gilliam and O'Hannesin). Envirometals Inc. (ETI) is the sole license holder of this technology. During the design phase of this study, Parsons ES retained ETI to provide consultation in the design. Parsons ES provided ETI with a license fee to utilize this technology. The patent involves the use of zero valence iron for groundwater treatment but does not extend to the method by which the reactive iron is contacted with groundwater. However, since attaining sufficient residence time between groundwater and reactive material is an important component for success, ETI was consulted and supported the decision of utilizing a permeable wall configuration.

The design of the zero valence iron reactive wall included a groundwater modeling study of the site prior to conducting the treatability study to determine whether a funnel and gate system or continuous reactive wall would be appropriate for the Ash Landfill site. Parsons ES performed the groundwater study for the site. Calculations of key design parameters including residence time and volume of reactive iron were done by ETI.

#### 4.2 GROUNDWATER MODELING

In-situ reactive treatment walls can achieve contaminant reductions through chemical and/or physical interactions between dissolved pollutants and reactive wall constituents [Vidic and Pohland (1996) and EPA (1995)]. For the treatment to be effective, groundwater must pass through the reactive wall and have a sufficient residence time in the reactive portion of the wall for reductive dechlorination to occur. This is typically accomplished by an efficient wall design configuration using either a funnel and gate configuration or a continuous reaction wall configuration. Groundwater modeling was utilized to evaluate these two in-situ treatment configurations.

The funnel and gate configuration involves diverting groundwater flow through areas where reactive material is placed. As the diverted groundwater migrates through the gate, the appropriate reaction occurs. A funnel and gate configuration has advantages over other configurations because the length of reaction can be controlled by the length of the gate. Maintaining saturated conditions in the zero valence iron during seasons when the groundwater

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-4b.doc

August 2000 4-1 level is low is easier in a funnel and gate system. In addition, if change-out of the reactive material is required, only the material within the gate would need to be removed, rather than the entire wall. The disadvantage of the funnel and gate configuration includes an increased potential for groundwater mounding, leading to possible breakout of groundwater at the ground surface, and difficulties of construction.

Groundwater monitoring conducted during the RI identified large fluctuations in the elevation of the water table. During the spring, water levels in several wells were measured to be within six inches of the ground surface, whereas, during the late summer and fall, the water table drops by approximately six feet. This change in water levels has been observed over several years of monitoring and appears to be consistent and cyclical. The springtime water level elevations, combined with site soils of moderate to poor hydraulic transmissivity, raised concerns of groundwater mounding with a funnel and gate configuration for effective in-situ treatment of groundwater.

The results of the groundwater modeling confirmed that during high water conditions at the site, groundwater mounding could be sufficient for breakout of the plume to occur at the ground surface or groundwater to move around the confines of the funnel and gate section. This effect could be minimized to less than one foot if four gates, each approximately 40 feet wide, were utilized. However, under worst case conditions, modeling suggested that breakout of contaminated groundwater at the surface was possible. After investigating the design of each system further, a continuous reaction wall was selected for the treatability study for the following reasons:

• A funnel and gate system raises hydraulic concerns. High water table conditions, combined with the low hydraulic conductivity soils at the Ash Landfill, can lead to groundwater mounding. Although the modeling results concluded that the rise in the groundwater table for the funnel and four-gate configuration was within an acceptable margin (using permeable upgradient collection and downgradient discharge zones), use of a continuous reactive wall does not have similar mounding concerns.

• Generally, unsaturated conditions cause iron to oxidize. Based on the experience of ETI, iron within a reactive wall that is subjected to unsaturated conditions shows negligible oxidation and, therefore, does not appear to become ineffective when resaturation occurs. ETI has found little evidence of oxidation of the iron from core samples taken of iron in earlier reactive wall applications where the iron has been subjected to unsaturated conditions. Therefore, the change out of any oxidized iron due to exposure to unsaturated

conditions will be unlikely and the advantage of maintaining saturated conditions by using a funnel and gate system is no longer relevant.

• Design and installation of a continuous reactive wall is simpler and, based on sitespecific conditions, may be more cost effective than that of a funnel and gate system.

## 4.3 LOCATION AND LENGTH OF CONTINUOUS REACTIVE WALL

The continuous reactive wall was installed near the toe of the plume which is approximately 350 feet downgradient of the source area and adjacent to the SEDA boundary. This location was selected because it would be within the secured boundary of the depot and the concentrations of the plume were thought to be consistent. At the proposed location of the reactive wall, the width of the plume was approximately 550 feet. Therefore, a design length of approximately 650 feet was chosen for the reactive wall, which would provide for a margin of safety along the edges of the plume.

## 4.4 **RESIDENCE TIME AND QUANTITY OF IRON**

ETI performed first order degradation modeling to determine the required residence time from influent groundwater concentrations and expected groundwater velocities in the vicinity of where the reactive wall was to be installed. This model is described in greater detail in **Appendix A**. The groundwater data were obtained from site data collected during the RI.

The reactive wall was designed based on a maximum residence time that was required to treat the concentration of chlorinated ethenes near the downgradient portion of the plume within the boundary of the depot. Prior to installation of the reactive iron wall, the only volatile organics detected in the monitoring wells at this location were TCE, cDCE, and VC. Table A-1 summarizes the maximum concentrations encountered in monitoring wells located near the continuous reactive wall.

ETI's modeling results showed that the concentrations of TCE and 1,2-DCE present near the reactive wall would be reduced to NYSDEC GA Standards if the water remained in contact with iron for 1.25 days. ETI included a safety factor into the residence time to provide enough residence time to reduce chlorinated ethenes with concentrations up to 1,000  $\mu$ g/L to below NYSDEC GA Standards of 5  $\mu$ g/L.

Based on the residence time of 1.25 days and a maximum velocity of the groundwater of 60.5 ft/year from the Groundwater Modeling Report at the Ash Landfill Site, (Parsons ES, 1996), the

quantity of iron necessary to treat the water was calculated to be 1,387 cubic feet. A safety factor of 2 was applied to this quantity for a total of 2,774 cubic feet of iron. This quantity of iron was to be mixed with sand having a similar grain size to make up the total volume of the excavated trench. The Technical Specifications required that the iron be evenly distributed over the volume of a 1-foot wide trench to ensure adequate contact between the water and the iron. According to ETI, a minimum of 20% by volume of the trench contents was required to be iron to ensure adequate contact of groundwater and iron. Based on the quantity of iron required for treatment and the dimensions of the reactive wall to be installed at the Ash Landfill, the trench fill material was designed to be comprised of at least 48% iron by volume. (See Appendix A for design calculations.)

## 4.5 INSTALLATION OF THE CONTINUOUS REACTIVE WALL

The reactive wall was installed according to the Technical Specifications presented in the "Treatability Study Work Plan for Zero Valence Iron Continuous Reactive Wall at the Ash Landfill" (Parsons 1998). The notes and data collected during the installation of the reactive wall are included in **Appendix A**.

Materials testing on the reactive iron, sand, and iron/sand mixture were performed in the weeks preceding the actual installation. Reactive iron was purchased from Peerless Metal Powders and Abrasive of Detroit Michigan and shipped to the site in 3000-lb sacks. Mixing of material was performed on-site to avoid the added cost of shipping sand. A local supplier of clean sand was selected prior to the reactive barrier wall construction.

Construction of the continuous reactive wall began on Wednesday, December 9, 1998 and was completed on Monday, December 14, 1998. DeWind DeWatering, Inc. (DeWind) from Holland, Michigan was awarded the contract to construct the wall using a one-pass trenching machine to dig the trench and backfill the iron/sand mixture without an open trench. The trenching machine consisted of a cutting boom resembling a large chain saw and a sand/iron delivery system attached to the cutting boom. This delivery system stabilized the trench side walls during construction to allow placement of the permeable treatment media before the side walls could collapse. The trenching and delivery operation cut a 14-inch wide trench and continuously backfilled the trench with the sand/iron mixture.

Clean sand was supplied to the site and mixed in a cement mixer by a local supplier, DeWitt, Inc. To accommodate the practicality of construction the minimum trench width was 14-inches. To minimize the required volume and cost of reactive iron that would be required to fill this

excavation volume it was determined that a combination of clean sand and reactive iron in a 50/50 ratio, by volume, was sufficient to fill the excavated cavity and ensure that sufficient iron would be present. Since half of the trench would be iron, the equivalent reactive iron thickness was 7-inches, which provided a factor of safety of over 2 since the required iron thickness was determined to be 3-inches. Upon arrival of the clean sand on the site, reactive iron was added in sufficient volume, approximately 5 bags of reactive iron, to achieve a minimum ratio of 50/50 sand and iron, by volume. Mixing of sand and iron was performed for approximately 10 minutes. The mixture of sand and iron was then placed in a temporary stockpile area. Each batch of reactive iron and sand was tested in the field to ensure that the proper ratio of reactive iron and sand had been attained. The reactive iron and sand mixture was then supplied to the trench excavator in order to maintain continuous operation, as needed.

Oversight personnel from DeWind, Parsons ES, and EnviroMetal Technologies, Inc. (ETI) were at the site during the installation.

### 4.5.1 <u>Pre-construction Submittals</u>

Prior to the construction of the wall, DeWind arranged for chemical and geotechnical testing of representative samples of the sand fill material and topsoil as required by the Technical Specifications for the project. Both the sand fill material and topsoil were tested for constituents contained in the USEPA target analyte list (TAL) and the target compound list (TCL) to ensure that no additional contamination was added to the reactive wall. A sieve analysis was also performed on the sand.

The analytical results indicated that there were no TAL or TCL impacts in the sand and topsoil materials. The sieve analysis performed on the sand was the sieve analysis of fine and coarse aggregates as per ASTM C136. The sand material was determined to be a well graded, fine to medium grained sand (**Appendix A**).

A permeability test was run on a sample of iron/sand mixture. The results of the permeability test indicated that the sand/iron mixture had a hydraulic conductivity of 7.4 x  $10^{-3}$  cm/sec, which was within the required limit specified as no less than 1 x  $10^{-3}$  cm/sec.

#### 4.5.2 Mobilization

Mobilization for the project began on Tuesday, December 8 1998, with the arrival of DeWind's trenching machine and other equipment. Parsons ES personnel staked the proposed centerline of

the continuous reactive wall and determined that the end of a 6-inch water line crossed the centerline of the wall. Subsequently, the centerline of the wall was moved west of the end of the water line to avoid intercepting the water line during trench installation.

Stationing for the wall began at West Smith Farm Road as Station 0 + 00 and proceeded north to Station 0 + 645. See Figure 4-1 for a cross sectional view of the reactive wall.

Just prior to the installation of the trench, a drawing of the site was obtained from SEDA which indicated that a building had been located along the depot fence line, beginning approximately 100 feet north of West Smith Farm Road and extending approximately 475 feet north. Foundations were visible at the site. The drawing also indicated that a septic system with a leach field was located along the fence, near the northern end of the wall, beginning approximately 850 feet from the road. **Figure 4-2** shows the location of the building foundation, septic system, and reactive wall.

### 4.5.3 Test Pits Along Proposed Centerline of Wall

Prior to construction of the wall, seven test pits were excavated at 100-foot intervals along the proposed centerline of the wall to determine the depth to competent bedrock. The wall depth was measured as depth on grade to the top of bedrock between the test pit locations (where there was a known depth to bedrock) using a laser-guided depth control system. The following is the depth to competent bedrock:

| Test Pit | Distance from West     | Depth from Ground Surface to |
|----------|------------------------|------------------------------|
|          | Smith Farm Road (feet) | Competent Shale (feet)       |
| 1        | 0 + 00                 | 7.5                          |
| 2        | 0 + 100                | 10.9                         |
| 3        | 0 + 200                | 11.2                         |
| 4        | 0 + 300                | 9.0                          |
| 5        | 0 + 425                | 8.1                          |
| 6        | 0 + 525                | 7.0                          |
| 7        | 0 + 640                | 6.5                          |

Bedrock along the centerline of the wall varied from approximately 6 to 11 feet below the ground surface. To ensure that no groundwater flows beneath the wall, the wall was extended several inches into the top of competent bedrock.

Groundwater (less than one foot) was encountered in two test pits at 0 + 300 and 0 + 425. The sidewalls stayed open in all the pits.

Clay pipes and gravel material, which were part of a former leaching field (Figure 4-2), were encountered in the test pits at 0 + 425 to 0 + 640.

### 4.5.4 Trenching

The trenching machine was set up at the edge of West Smith Farm Road at Station 0 + 00. The depth to the top of the iron/sand mixture was measured and adjusted as necessary with a shovel so that the top of the permeable treatment media was one foot below ground surface. A geotextile was laid out over the top of the iron/sand mixture as the trenching machine proceeded to prevent the backfill from falling directly onto the treatment mixture.

At 100 feet and 175 feet, the trenching machine encountered foundation material. The trenching machine was stopped and the foundation material removed with an excavator. At 300 feet, the excavated material was saturated and began falling on top of the newly installed iron/sand mixture. DeWind removed the soil with the excavator before the geotextile was installed.

The wall was completed by the end of the day on December 11. The actual length of the installed wall at the bottom is 643.1 feet. However, the wall extended slightly beyond the 645-foot design length on the ground level to empty the hopper on the trencher of iron material. Approximately 23 cy of iron/sand mixture was left over for stockpiling. Because the overall wall depth was shallower than the 10-foot depth that was originally estimated in the design, construction was completed a day early.

On December 12, DeWind worked on the surface completion of the wall. At the end of the wall, the elevation of the iron/sand mixture within the wall was adjusted so that it was one foot from the ground surface. Installation of the geotextile was completed and the trench was backfilled. The upper one-foot of the trench was filled with 8 inches of excavated material and 4 inches of top soil. Two soil samples were collected from the excavated material and analyzed for VOCs before the material could be used as backfill. The lab results on the excavated material used to backfill the upper one-foot of the wall are presented in **Appendix A**. The area was graded after backfilling was completed. The surplus excavated material and iron/sand mixture were stockpiled near the Abandoned Incinerator Building. The piles were covered with plastic and anchored with palettes.

### 4.5.5 Filling

The sand/iron mixture was placed from the top of competent bedrock to one foot below ground surface at a nominal width of approximately 14 inches. The volume of the iron/sand mixture actually place in the reactive wall was measured to be 5,525 ft<sup>3</sup> (Table 2 of ETI Report in **Appendix D**) This volume was compared to the volume determined during the design based on the dimensions of the trench in order to verify that the trench was being filled completely and that there were no void spaces within the trench. ETI's construction report in **Appendix D** has more discussion about the installation of the zero-valent reactive wall.

Based on the average total depth of 8.8 feet below ground surface, a top depth of 1 foot below ground surface, and an average width of 1.1 feet, the total volume of the excavation was 5,577 ft<sup>3</sup>. This volume was close to the volume of material measured to have been placed in the trench. This suggests that no significant voids were left unfilled at depth and that the dimensions of the trench were as expected.

#### 4.5.6 <u>Iron Ratio</u>

The Technical Specifications for installation of the reactive wall required the following: (1) a minimum of 2,600 CF of iron filings be placed along the entire length of the wall; (2) the iron/sand mixture consist of about 48% by volume iron and the balance a local sand; and (3) the iron and sand be mixed prior to filling such that the iron was distributed uniformly.

A total of 28 cement trucks, each containing 11,500 pounds of sand arrived on site on Thursday and Friday, December 10 and 11. Based on a sand bulk density of 106 lb/ft<sup>3</sup> and an iron bulk density of 150 lb/ft<sup>3</sup>, each truck was loaded on site with five bags of iron filings to produce the required 48% ratio by volume. The iron and sand materials were mixed for 10 minutes then stockpiled on site for use later in the day. These data are also presented in **Appendix A**.

The volumetric ratio of iron to sand was verified by Parsons ES and ETI field engineers to be between 50% and 88%. To verify the ratio, a representative sample was collected from the iron/sand mixture after 10 minutes of mixing and the iron was separated from the sand using a hand-held magnet. The iron was separated two to three times with the magnet to remove most of the sand particles. The volume of the separated iron was determined and compared to the target volumetric percentage to determine if the correct ratio was achieved. In all the tests, the iron volume was greater than the sand volume. This occurred because some sand particles remained in the iron even after three separations and also because of the assumed bulk densities of the two

materials. The iron bulk density of 150  $lb/ft^3$  used in the calculation is the density of packed iron, however the loose bulk density can be as low as 110 to 125  $lb/ft^3$ . Therefore, because the amount of iron added was loose material, the volume would be greater.

## 4.5.7 Moisture Content

According to the Technical Specifications, samples of the sand fill material were collected and analyzed for moisture content to confirm that moisture content of the sand did not exceed 5 to 7%. If the sand had too high a moisture content, it could cause oxidation of the iron surface, potentially reducing its reactivity. The analysis was conducted by Paratt-Wolfe in Syracuse, NY.

The DeWitt batch plant routinely checked the moisture content on the first load of sand in the morning. It was agreed that if the moisture content was determined to be more than 7%, the batch plant would get drier sand from another source pile.

Two samples were required to be collected each day - one from the first load and one from a load at the end of the day. However, because the moisture content was measured at the batch plant on the first load of each day, one sample from the 10 loads delivered to the site on December 11 was sent for moisture content analysis. On December 12, two sand samples were sent because 20 loads of sand were delivered to the site. Sand was delivered to the site only on December 11 and December 12.

The moisture content of the first load of sand material delivered on December 11 was 3.8% as measured by DeWitt at their batch plant. A sample of sand material from Load #8 on December 11 was collected and analyzed by Paratt-Wolfe. The moisture content of this sample was 5.4%.

The moisture content of the first load of sand delivered on December 12 was 3.5% as measured by DeWitt. The batch plant at DeWitt recalculated the moisture content of the sand delivered at noon (Load #14), which was 3.7%. Samples of sand from Loads #12 and #20 on December 12 were collected and analyzed by Paratt-Wolfe for moisture content analysis. Moisture content for these loads were 4.5% and 4.9%, respectively. See **Appendix B** for moisture content measurement results.

## 4.6 INSTALLATION OF MONITORING WELLS

The monitoring plan described below was created based on input from ETI and protocols described in "Regulatory Guidance for Permeable Barriers Design to Remediate Chlorinated

Solvents", ITRC, 1997. The ITRC guidelines outline the location and installation of the wells, the sampling frequency, and the sampling parameters.

As described in the ITRC guidelines, monitoring wells were installed upgradient, downgradient, and within the reactive wall to monitor the effectiveness of the performance of the reactive iron wall. Two monitoring wells were also installed at each endpoint of the wall to ensure plume capture. The purpose of monitoring upgradient monitoring wells was to determine the upgradient concentration of contaminants and groundwater flow rate. The purpose of collecting downgradient well data was to ensure treatment and determine groundwater flow rate. Data from monitoring wells within the wall was used to determine treatment, groundwater flow rate, and precipitate formation.

A total of 11 monitoring wells were installed between March 30, 1999 and April 1, 1999. Three clusters of monitoring wells were installed with each cluster consisting of three wells: (1) an upgradient well in the till/weathered shale aquifer (MW-T1, MW-T4, and MW-T7); (2) a well point within the reactive iron (MW-T2, MW-T5, and MW-T8); and (3) a downgradient well within the aquifer (MW-T3, MW-T6, and MW-T9). The upgradient and downgradient monitoring wells were located approximately 2.5 feet from the respective edge of the reactive wall. Within the reactive wall, monitoring wells MW-T2, MW-T5, and MW-T5, and MW-T8 were located as close as possible to the downgradient reactive material/aquifer interface to provide chemical data that is representative of groundwater exiting through the downgradient side of the wall.

Two additional monitoring wells, MWT-10 and MW-T11, were located at each end of the reactive wall. MW-T11 was located at the centerline of West Smith Farm Road. MW-T10 was located at the northern endpoint and was partially installed within the iron/sand mixture.

The position selected for the clusters of monitoring wells were based upon the known distribution of pollutants within the plume. The first cluster of monitoring wells, MWT-1, MWT-2 and MWT-3, were installed approximately 190 feet from the northern end of the reactive wall. MWT-1 is located approximately 2.5 feet upgradient of the reactive wall. MWT-2 is located within the reactive barrier wall. MWT-3 is located approximately 2.5 feet downgradient of the reactive wall. These wells were positioned to monitor a zone of equivalent groundwater contamination between 10 and 100  $\mu$ g/L. The second cluster of monitoring wells, MWT-4, MWT-5 and MWT-6, were installed approximately 200 feet south of the first cluster. MWT-4 is located approximately 2.5 feet upgradient of the reactive barrier wall. MWT-6 is located approximately 2.5 feet downgradient of the reactive barrier wall. MWT-6 is located approximately 2.5 feet downgradient of the reactive barrier wall. MWT-6 is located approximately 2.5 feet downgradient of the reactive barrier wall. MWT-6 is located approximately 2.5 feet downgradient of the reactive barrier wall. MWT-6 is located approximately 2.5 feet downgradient of the reactive wall. These wells were positioned to monitor a zone of equivalent of the reactive barrier wall. MWT-6 is located approximately 2.5 feet downgradient of the reactive wall.

contamination at approximately 100  $\mu$ g/L. The third cluster of monitoring wells, MWT-7, MWT-8 and MWT-9, were installed approximately 200 feet south of the first cluster. These wells were positioned to monitor a zone of highest groundwater contamination, thought to be potentially 100 ug/L. Groundwater monitoring data showed this zone to be approximately 500 ug/L. Prior to collection of these data this zone was not known to exist. MWT-7 is located approximately 2.5 feet upgradient of the reactive wall. MWT-8 is located within the reactive barrier wall. MWT-9 is located approximately 2.5 feet downgradient of the reactive wall.

The monitoring wells and well points within the aquifer were constructed in accordance with the Generic Installation RI/FS Work Plan (Parsons ES, 1995) and the ITRC guidelines. As described in the ITRC guidelines, wells points were constructed within the reactive wall using the direct push method. The direct push method was used to minimize the amount of disturbance of the reactive iron media. At each of the three well points, a core was collected from the reactive media (See **Appendix B** for monitoring well logs).

#### 4.6.1 <u>Procedure for Well Point Installation</u>

The design of the monitoring wells located within the reactive wall was outlined in the ITRC guidelines. These wells do not incorporate a sand pack or grouting, but are surrounded by the bakefilled reactive media. The monitoring wells were constructed with a 1-inch diameter PVC casing.

Because the well points were installed within the reactive wall after its installation, a pipe locator was used to locate the upgradient and downgradient edges of the reactive wall. At the downgradient edge, the Parsons ES field engineer dug down approximately one foot and located the downgradient edge of the geotextile. The hydraulic push system, which was mounted on a small truck, was then positioned over each well point location and the well was advanced to refusal using the hydraulic push system. Well points were located within the reactive iron approximately three inches from the downgradient edge of the wall. Each well was comprised of a 1-inch diameter, five- or ten-foot, pre-packed stainless steel screened section with a polyvinyl chloride (PVC) riser. If necessary, after installation of the well, the void space around the PVC at the surface was backfilled with the iron/sand mixture to bring it to one foot below the ground surface.

## 4.6.2 Procedure for Monitoring Well Installation

The monitoring wells were installed in borings (4.25-inch hollow stem augers) drilled with a hollow stem auger rig. The borings were advanced to auger refusal, which for the purposes of this investigation defined the contact between weathered shale and competent shale. Monitoring wells were constructed of 2-inch I.D. Schedule 40 PVC with a wire-wrap well screen slot size of 0.010-inches. Wells were screened from 3 feet above the water table (if space allowed) to the top of competent bedrock. A sand pack was placed by tremie pipe in the annulus and extended a few feet above the well screen. A bentonite seal was placed on the sand pack. In some instances, the bentonite extended to the surface if there was no vertical space available for a cement/bentonite grout. A steel protective casing with a locking cap was installed at the surface and held in place with a 2-foot by 2-foot cement pad. The end of PVC riser was equipped with an expandable well cap. In the instances when bedrock was shallow in depth, i.e., less than 8 feet, modifications were made. The sand pack was extended to 1 foot above the well screen. Bentonite thickness was decreased to a minimum of 0.5 foot, but in most instances was at least 1 foot thick. Following well installation, the elevations of the well protective casing, PVC riser, and ground surface were surveyed.

#### 4.7 SLUG TESTING

On May 8, 1999 rising head slug tests were conducted in monitoring wells MWT-1, -3, -4, -6, -7, -9, -10, and -11 to determine the hydraulic conductivity of the formation material immediately surrounding the trench. During the tests, Hermit 2000 and Hermit 3000 data loggers were used to record the rise in the water level in each well (**Appendix B**). Slug testing was not originally outlined in the work plan for this treatability study. However, it was decided to conduct these tests after installation of the reactive wall, in particular because of the unexpected subsurface disturbances (i.e., former building foundations and leach field) encountered during the wall installation. Slug tests were conducted in accordance with the Generic Installation Work plan.

## 5.0 OUARTERLY GROUNDWATER MONITORING

Following installation of the reactive barrier wall and the eleven monitoring wells, a year long monitoring program was conducted. Groundwater monitoring that was conducted as part of this treatability study was developed by Parsons using protocols described in "Regulatory Guidance for Permeable Barriers Design to Remediate Chlorinated Solvents" (ITRC, 1997) and, in addition, from input provided by ETI.

#### 5.1 ANALYTICAL PARAMETERS AND MONITORING FREQUENCY

The monitoring program for the treatability study included measurements of both the groundwater elevations and chemistry in the wells on the site. The measurement of groundwater elevations was made in the eleven monitoring wells associated with the reactive wall and seven nearby monitoring wells. These measurements helped determine seasonal changes in groundwater flow, and possible damming of the aquifer behind the reactive wall due to reduction in the wall's permeability. These elevations were measured each month from April 1999 to February 2000.

In addition, groundwater chemistry data were collected during four groundwater sampling events at wells MW-T1 through MW-T11: 1) April 1999, 2) June 1999, 3) September 1999, and 4) January 2000. The list of analytes for which the groundwater samples were analyzed, including laboratory methods, frequency of sampling, quality control samples, and field measurements are shown in **Table 5-1**.

Groundwater analysis of VOCs provided information on the reduction of chlorinated compounds due to the presence of the reactive wall. The half lives of TCE and cDCE degradation were calculated by ETI using their software Scientist® for Windows® Ver 2.0 which uses a first order degradation model to predict the half life for certain compounds. To calculate the observed TCE and cDCE half lives, the model used residence times and influent and effluent concentrations measured in the field.

Analyses for chloride, ethene, ethane, and methane were used to assess the by-products of reductive dechlorination. The results of the ferrous iron, redox potential, hydrogen, pH, nitrate, sulfate, and phosphate analyses were used to monitor the extent of iron oxidation. Other indicator parameters were collected during these sampling events to gauge the amount of mineral precipitation occurring in the reactive wall.

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-5a.doc

#### 5.2 SAMPLING PROCEDURES

Sampling the monitoring wells within the reactive wall required special consideration in order to obtain a representative sample that reflected the true conditions within the wall. Typical well purging methods and volume requirements were not used for these wells, since such methods would likely have drawn groundwater from different reactive zones within the reactive wall or even from areas outside of the reactive wall. Thus, groundwater samples were collected such that the volume of groundwater removed was at a rate that did not greatly influence the residence time within the reactive wall. A very low flow purge rate was used and a small volume of groundwater was purged to ensure that the groundwater sampled was from a discrete zone around the well within the reactive iron wall. Low flow purging procedures outlined in the Generic Installation RI/FS Work Plan were used to sample monitoring wells outside the reactive wall. However, for the wells within the reactive iron (MW-T2, -T5, and -T8), a very small diameter polyethylene tubing with a bottom check valve was used and the well was purged until either a) one well volume was removed, or b) field indicator parameters had stabilized, whichever occurred first. Samples were collected as described in the Generic Installation RI/FS Work Plan. When field indicator parameters had not stabilized prior to sample collection, purging of the well (using bailers or polyethylene tubing with bottom check valve) was continued until field indicator parameters had stabilized. Field indicator parameters were recorded to demonstrate that stabilization had occurred.

The order of sampling was as follows: (1) wells within the reactive wall, (2) downgradient wells, and (3) upgradient wells. Wells within the reactive wall were sampled first so that they were not affected by the removal of water from upgradient and downgradient wells.

#### 6.0 BARRIER WALL DEMONSTRATION STUDY RESULTS and CONCLUSIONS

The use of zero valence iron as a means to remediate dissolved chlorinated ethene compounds, by reductive dechlorination, in groundwater has been successfully demonstrated under both laboratory conditions and also under field conditions, Gillham, et. al (1994), EPA (1995), and Vidic and Pohland (1996). From these applications, there is sufficient evidence to conclude that this technology is capable of destroying chlorinated ethenes. The treatment effectiveness is related to the application of the technology. Site-specific factors will therefore be significant for the successful application of this technology. The purpose of this study is to collect the data to document treatment effectiveness and identify those sit-specific factors that contributed to the treatment effectiveness and identify those sit-specific data that was collected to evaluate treatment effectiveness and the other data, such as hydraulic data, that are considered important factors in understanding the technology performance.

Regardless of the application, treatment effectiveness is the ratio of the influent concentration to the effluent concentration. In this instance, the influent concentration is the groundwater concentration entering from the upgradient side of the reactive wall and the effluent concentration is the groundwater concentration leaving the wall from the downgradient side of the reactive wall. Since the downgradient monitoring well is approximately 2.5 feet from the downgradient side of the wall and is affected by residual chlorinated ethene concentrations that were not subject to treatment, the groundwater concentration. Residual concentrations from the downgradient side of the reactive wall are expected to decrease over time as treated water from the reactive wall mixes with the downgradient residual pore water.

Hydraulic performance is considered an important parameter to evaluate since treatment performance is closely related to residence time, which is a function of hydraulic behavior. Residence time is critical to ensuring that sufficient treatment has occurred. Residence time is defined as the ratio of the groundwater velocity through the wall to the thickness of the wall. However, because the reactive wall is 50% reactive iron, the equivalent reactive iron residence time is used as a basis of comparison to the design residence time in the following section. Since the reactive barrier wall is a passive system, the movement of groundwater through the wall is determined by the natural flow of groundwater. **Section 6.2** presents data to evaluate the hydraulic behavior of the reactive wall.

### 6.1 ANALYTICAL PERFORMANCE RESULTS and CONCLUSIONS

A goal of this demonstration study is to document the effectiveness of the reactive barrier wall in removing dissolved chlorinated compounds from the Ash Landfill Operable Unit groundwater plume. Analytical data was collected from eleven (11) monitoring wells in and around the reactive wall. These data were collected during four quarterly monitoring events for the purpose of assessing the removal effectiveness.

There are strong indications that the process of reductive dechlorination is occurring in the reactive wall. One indication is the measurement of the endproducts of the degradation process, such as methane, ethane, ethene, and chloride. The concentrations of these compounds were higher in wells in the reactive wall (MWT-2, MWT-5 and MWT-8) than in wells upgradient of the wall (MWT-1, MWT-4, and MWT-7). Additionally, the pH measured in wells upgradient of the wall compared to those obtained within the wall were also consistent with what would be expected from reductive dechlorination process. The pH values within the reactive wall, (MWT-2, MWT-5 and MWT-8), are consistently alkaline, ranging from 7.8 to 9.6 standard units. Further, redox potentials, measured as Eh, are also indicators that reductive conditions are occurring within the reactive wall. The redox potentials upgradient of the wall are positive values ranging between 48 mV to 257 mV. With the exception of the April 1999 sampling event, the redox potentials within the reactive wall are all negative values ranging from -69 mV to -404 mV. This increase in pH and decrease in redox potential are strong indicators that the reduction process is occurring within the wall. Table 6-1 provides pH and Eh data to highlight this relationship. These data are also provided in Appendix C. Figures 6-1, 6-2, 6-4, 6-5, 6-7, 6-8, 6-10, and 6-11 provide a site view of these data posted next to the locations from where the samples were obtained.

Dissolved hydrogen, a product of iron corrosion that is available for use in the dechlorination process, was also measured at high concentrations, both within the reactive wall and downgradient of the reactive wall. Hydrogen concentrations in monitoring wells downgradient from the iron wall, MWT-3, MWT-6, and MWT-9, ranged from 0.026  $\mu$ g/L to 0.101  $\mu$ g/L (**Figures 6-7** and **6-10**). These concentrations are higher than hydrogen concentrations at other part of the Ash Landfill, which range from 0.001  $\mu$ g/L to 0.052  $\mu$ g/L (**Table 6-5** and **Table 6-6**).

Removal of the target compounds, TCE and c1,2-DCE, were used as the indication of treatment effectiveness. Table 6-2 presents a summary of the groundwater analytical data collected for

TCE and c1,2-DCE from the four quarterly monitoring events. The northern transect includes monitoring wells MWT-1, MWT-2, and MWT-3, the middle transect includes monitoring wells MWT-4, MWT-5, and MWT-6, and the southern transect includes monitoring wells MWT-7, MWT-8, and MWT-9. Included in this table is an indication of the percent reduction of these two compounds. Percent reduction was calculated as the ratio of the concentration within the reactive wall to the upgradient concentration. Since the monitoring well installed within the reactive wall is not at the most downgradient edge of the wall (but still within the wall), the concentrations obtained from these wells are likely to be higher than the final effluent concentration since additional treatment will occur as the groundwater moves past the monitoring well within the wall. The downgradient concentration (from the well just outside the wall) was not used for this calculation due to the presence of residual contaminated groundwater that will require additional time to be flushed from the aquifer. Figures 6-1 through 6-12 presents the concentrations of the target compound, TCE, c1,2-DCE, and the degradation endpoint analytes, ethene, ethane and methane. Other components, normally present in groundwater, such as chloride, sulfate, nitrate, phosphate, iron, calcium, pH, alkalinity and total dissolved solids are also presented in these figures. Each of the four monitoring events is provided in a series of three figures. For example, Figure 6-1, Figure 6-2 and Figure 6-3 present the results from the first quarterly monitoring event performed in April 1999, approximately 4 months following installation of the reactive wall. Figure 6-4, Figure 6-5 and Figure 6-6 present the results from the second quarterly monitoring event performed in June 1999. Figure 6-7, Figure 6-8 and Figure 6-9 present the results from the third quarterly monitoring event performed in September 1999. Figure 6-10, Figure 6-11 and Figure 6-12 present the results from the fourth quarterly monitoring event performed in January 2000. Appendix C provides a tabular compilation of the chemical data used to assess the effectiveness of the reactive wall.

Analytical results presented in **Table 6-2** indicate that the reactive wall is effectively reducing TCE. Removal efficiencies range from greater than 50% to greater than 99.8%. The average of these removal efficiencies calculates to greater than 75%. The actual average removal is likely higher than this since this average is affected by several removal efficiencies that are greater than 50% and greater than 66%. These removals are the result of low upgradient TCE concentrations and non-detectable concentrations within the wall. In many instances the TCE concentration within the reactive wall were non-detectable, therefore, the removal efficiencies can only be estimated as being greater than the detectable concentration limit. TCE concentrations in wells upgradient of the reactive wall range from 530  $\mu$ g/L to 2  $\mu$ g/L. TCE concentrations in wells

within the reactive wall ranged from non-detectable levels (less than 1  $\mu$ g/L) to 3  $\mu$ g/L. TCE was detected in the reactive wall at 1  $\mu$ g/L only once out of the four quarterly rounds of sampling. In all instances the concentration of TCE within the wall were below the NYSDEC AWQS GA criteria of 5  $\mu$ g/L. Figures 6-1, 6-4, 6-7, and 6-10 provide the concentration obtained and the location of these data. TCE and c1,2-DCE concentrations upgradient, within, and downgradient of the reactive wall for each sampling event are shown in Figure 6-13; results for the two end wells, MWT-10 and MWT-11 are not shown.

Analytical results for c1,2-DCE concentrations indicate that overall removal efficiencies are similar to those obtained for TCE, however, concentrations of c1,2-DCE within the reactive wall are higher than those for TCE. Excluding the one instance when flow was reversed, i.e. no treatment, but including the two instances when the wall concentration was higher than the upgradient concentration, i.e. zero removal, the removal efficiencies ranged from 0% to 98.5%, with the average removal being 66.3%. The increase in c1,2-DCE within the wall is due to the production of c1,2-DCE as TCE is degraded in the wall, and in some instances the walls inability to further degrade the c1,2-DCE. The concentrations of c1,2-DCE in wells upgradient of the reactive wall range from 6  $\mu$ g/L to 82  $\mu$ g/L, whereas, concentrations of c1,2-DCE within the reactive wall range from non-detectable at 1  $\mu$ g/L to 55  $\mu$ g/L. The concentration of c1,2-DCE within the neutral range from 6  $\mu$ g/L to 82  $\mu$ g/L, whereas, concentrations of c1,2-DCE within the reactive wall range from 6  $\mu$ g/L to 82  $\mu$ g/L, whereas, concentrations of c1,2-DCE within the reactive wall range from 6  $\mu$ g/L to 82  $\mu$ g/L, whereas, concentrations of c1,2-DCE within the reactive wall range from 6  $\mu$ g/L to 82  $\mu$ g/L, whereas, concentrations of c1,2-DCE within the reactive wall range from 6  $\mu$ g/L to 82  $\mu$ g/L, whereas, concentrations of c1,2-DCE within the reactive wall range from non-detectable at 1  $\mu$ g/L to 55  $\mu$ g/L. The concentration of c1,2-DCE within the reactive wall met the NYSDEC AWQS Class GA standard of 5  $\mu$ g/L for 4 out of the 12 monitoring wells sampled during the four quarters of sampling.

The amount of reduction of c1,2-DCE varied during each sampling event and at each location along the reactive wall. For example, in September 1999, c1,2-DCE concentrations within the wall in the northern and middle transects met the GA standard, while in the southern transect the concentration of c1,2-DCE was just slightly above the standard of 5  $\mu$ g/L, at a concentration of 7  $\mu$ g/L (**Figure 6-13**). However, in January 2000, none of the c1,2-DCE concentrations in the wall met NYSDEC Class GA standards; from northern to the southern transect the c1,2-DCE concentrations were 23  $\mu$ g/L, 7  $\mu$ g/L, and 55  $\mu$ g/L, respectively.

From a review of the data presented in **Table 6-1**, these variations in treatment performance appear related to iron residence time within the wall. During the April 1999 sampling event, the upgradient concentration of c1,2-DCE was 49  $\mu$ g/L and the concentration of c1,2-DCE within the wall at the middle transect was 0.7 J  $\mu$ g/L. This corresponds to a removal of 98.5%. The calculated equivalent reactive iron residence time for the middle transect during this event was 1.62 days. The design residence time (in contact with iron) was established at 1.25 days,

therefore, an iron residence time higher than 1.25 days should provide adequate treatment, which in this instance was true. The same relationship is true for the southern transect where the removal efficiency is greater than 95% and the iron residence time is 1.22 days. However, during this same event, the removal efficiencies for the northern transect were only 63% and the iron residence time was 0.36 days, which is below the residence time design requirement of 1.25 days. These data indicates that flow through the wall is variable and therefore treatment efficiencies, which are dependent upon sufficient residence time, will also vary.

During the June 1999 sampling event, the upgradient concentration of c1,2-DCE was 82  $\mu$ g/L and the concentration of c1,2-DCE within the wall at the middle transect was 20  $\mu$ g/L. This corresponds to a removal of 75.6%. The calculated iron residence time for the middle transect during this event was 2.03 days. Since the residence time was greater than 1.25 days, adequate treatment should have occurred and the concentration within the wall should be lower than 20  $\mu$ g/L. It is possible that since the c1,2-DCE influent concentration of 82  $\mu$ g/L was the highest measured from all of the monitoring events, it caused this slug of c1,2-DCE to surpass the trench capacity as expected from the design criteria. The relationship between percent reduction and residence time holds true for the northern transect where the removal efficiency is 81.3% and the iron residence time is 2.54 days. However, during this same event, the removal efficiencies for the southern transect were only 0% since the concentration within the wall was higher than the upgradient concentration.

During the September 1999 sampling event, the upgradient concentration of c1,2-DCE was 40  $\mu$ g/L and the concentration of c1,2-DCE within the wall at the middle transect was 5  $\mu$ g/L, corresponding to a removal of 87.5%. The calculated iron residence time for the middle transect during this event was 2.70 days. Since adequate treatment was attained and sufficient residence time was provided, the wall was operating as expected. However for the southern transect, the upgradient concentration of c1,2-DCE was 25  $\mu$ g/L and the concentration of c1,2-DCE within the wall at the southern transect was 7  $\mu$ g/L, corresponding to a removal of 72% with a iron residence time of 0.43 days.

During the January 2000 sampling event, the upgradient concentration of c1,2-DCE was 72  $\mu$ g/L and the concentration of c1,2-DCE within the wall at the northern transect was 23  $\mu$ g/L, corresponding to a removal of 68.1%. The calculated residence time for the northern transect during this event was 0.85 days. At this location adequate treatment was not attained and the iron residence time was less than desired. At the middle transect, the upgradient concentration of

c1,2-DCE was 58  $\mu$ g/L and the concentration of c1,2-DCE within the wall at the middle transect was 7  $\mu$ g/L, corresponding to a removal of 87.9% with an iron residence time was 1.62 days. Thus, the expected target concentration of 5  $\mu$ g/L was not attained even though the iron residence time was greater than design iron residence time of 1.25 days. At the southern transect, the concentration within the wall was higher than the upgradient concentration, therefore, the percent removal was considered to be zero.

In summary, the analytical data indicates complete removal of TCE within the reactive wall. Although the removal of c1,2-DCE is observable, concentrations of c1,2DCE remain above the target level of 5  $\mu$ g/L. Residence times less than the design goal of 1.25 days are the most likely reason for the higher than expected concentrations of c1,2-DCE within the reactive wall. The relationship between residence time and percent removal is a function of the hydraulic behavior of the reactive wall. The following section describes the hydraulic performance of the wall in more detail.

## 6.2 HYDRAULIC PERFORMANCE RESULTS and CONCLUSIONS

Variation in groundwater velocities throughout the length of the reactive wall is a likely reason for the variability of reductions observed during the demonstration study. These variations in groundwater velocities are thought to result from unexpected differences in the hydraulic conductivity of the glacial till/weathered shale, with possible influences from the buried remains of former on-site structures. Hydraulic conductivity in the glacial till/weathered shale were obtained from in-situ slug testing. Similar tests were performed during the RI on several monitoring well throughout the site. Slug testing in the immediate vicinity of the wall indicated that hydraulic conductivities of the aquifer materials were greater than that observed for the undisturbed till/weathered shale during the RI. Table 6-3 presents the hydraulic conductivities and the associated groundwater velocities that were measured at the reactive wall transects. The slug test data and the analysis of the data are provided in Appendix B. Only the upgradient and downgradient monitoring wells were tested due to the effect that the small diameter size of the monitoring wells, within the reactive material, may have on the test. The hydraulic conductivity of the sand/zero valence iron within the trench was obtained from an ex-situ falling head permeability test. This test was conducted prior to installation of the reactive wall. The hydraulic conductivity of the reactive material was determined to be 21 feet/day.

#### Seneca Army Depot Activity

Hydraulic conductivity is considered to be an important parameter to understand the movement of groundwater with a passive treatment scheme such as the reactive wall. Treatment effectiveness is directly related to the groundwater flow velocity and residence time of the groundwater within the reactive wall.

Equation 6 was used to calculate the velocity of groundwater through the wall.

 $v = \frac{Ki}{n_a}$ 

[Equation 6]

where:

v = groundwater velocity (ft/day),

K = ave. hydraulic conductivity, upgradient, within the wall and downgradient (ft/day),

i = hydraulic gradient, change in water elevation over distance between upgradient and downgradient wells, ft/ft, and

 $n_e$  = effective porosity, volume of voids over total volume of soil (assumed to be 0.15) cm<sup>3</sup>/cm<sup>3</sup>.

The results of slug tests performed in all monitoring wells upgradient and downgradient of the reactive wall (within 2.5 feet) indicate that hydraulic conductivity values ranged from 0.4 ft/day to 55 ft/day (Table 6-3). Many of these conductivities are considerably greater than the average hydraulic conductivity of the till/weathered shale aquifer, which was determined to be about 1 ft/day (range of 0.1 ft/day to 2 ft/day), based on data in the Remedial Investigation (RI) report (Parsons Engineering Science, 1994) (Appendix B). Hydraulic conductivities near the southern section of the wall were 4 ft/day and 7 ft/day in monitoring wells MWT-7 and MWT-9, respectively. Hydraulic conductivities are somewhat higher in downgradient wells in the western portion of the reactive wall (MWT-6 and MWT-9), compared to the upgradient wells (MWT-4 and MWT-7). This could be due to disturbances caused during the excavation of the foundation uncovered on the downgradient side of the wall or to an unusually thick layer of weathered shale. The thick layer of weathered shale is identified in the boring log for MW-29, which is located just upgradient of these locations (Appendix B). At the northern section of the iron wall, hydraulic conductivities are unusually high (34 ft/day at MWT-1 and 28 ft/day at MWT-3). This is likely to be due to gravel material at this location, the remains of an old leachfield (Figure 4-2).

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-6d.doc

August 2000 Page 6-7 Because the actual hydraulic conductivities measured in the immediate vicinity of the reactive wall were greater than those used to design the wall, it is likely that localized, high groundwater velocity zones exist near the trench. These high velocity zones have the potential to transmit groundwater through the trench at a rate that exceeds the design residence time. The variability of the hydraulic conductivity along the wall is evident from Table 6-3. In the northern portion of the wall, the hydraulic conductivities were 33.8 feet/day and 28.3 feet/day for MWT-1 and MWT-3, respectively. In the middle and southern portion of the reactive wall the hydraulic conductivities were 3.9 feet/day, 8.6 feet/day, 3.8 feet/day and 7.4 feet/day for MWT-4, MWT-6, MWT-7 and MWT-9, respectively. The hydraulic conductivity in MWT-10 was the highest measured at the site, at 55.1 feet/day. At the opposite, southern, end of the reactive wall the hydraulic conductivity was the lowest measured during the demonstration study at 0.39 feet/day. Compared to the hydraulic conductivities obtained during the RI, which ranged from 0.1 feet/day to 2 feet/day, there appears to be a significant difference in the hydraulic properties of the material in the vicinity of the reactive wall. At the southern portion of the wall, the thickness of the till thickens to approximately 12 feet. Monitoring wells MWT-7, MWT-8 and MWT-9 are located within this thick till zone. Figure 4-1 provide a cross-section view of the till thickness along the reactive wall. The hydraulic conductivities, combined with the thickness of the till in this portion of the wall, appear to be providing a pathway for contaminant transport. This preferred pathway is observable from the plume maps Figure 2-3, Figure 2-4 and Figure 2-5, which show a shift towards the southern portion of the reactive wall. This coincides with the area where the glacial till is known to be the thickest.

During the installation of the reactive wall a previously unknown leaching field was uncovered along the northern portion of the reactive wall, which is likely responsible for the high velocities observed in this region of the wall. The leach field appeared to be approximately 4 to 5 feet below the ground surface and consisted of a bed of gravel with drain pipe occasionally observed within the gravel. Following the installation of the wall, historical information was uncovered that identified the presence of a former building foundation in the middle and southern portion of the reactive wall. The building foundation may also have affected the subsurface during excavation of the building foundation. The approximate location of these items and their proximity to the reactive wall are presented on **Figure 4-2**. The increased conductivities would increase the velocity of the impacted groundwater through the wall, and subsequently shorten the residence time required to treat the chlorinated compounds.

At the northern transect of the wall, where the leaching field exists, groundwater elevation and effectiveness of treatment appear related. At times when the groundwater table was high, there was less effective treatment of c1,2-DCE, which may be due to the higher groundwater flow velocities through the former leaching field materials. However, when the water table drops, the impacted groundwater flows through material that is more representative of the natural till material, which has a lower conductivity, which results in an increase in the residence time. During April 1999 and January 2000, when the groundwater elevations were relatively high, effluent c1,2-DCE concentrations were 27  $\mu$ g/L and 23  $\mu$ g/L, respectively, but during June 1999 and September 1999 when groundwater elevations were lower, effluent c1,2-DCE concentrations were 6  $\mu$ g/L and 0.6  $\mu$ g/L, respectively. Thus, the changes observed in reduction of c1,2-DCE concentrations appear to be due to higher than expected velocities through the reactive wall during times of elevated groundwater when groundwater reaches the level of the leaching field, which is approximately 4 to 5 feet below the ground surface.

Variability in the velocity field around the treatment wall is the most likely cause for the inconsistencies observed in the performance of the treatment wall. These velocity variations are believed to be caused by the presence of man-made subsurface disturbances in the ground that were not known during the treatment wall design. These disturbances include a former building foundation along a portion of the wall (although the depth of the former foundation is not known) and a former leaching field near the northern extent of the wall.

An additional factor to be considered is the greater than expected influent concentrations that were observed in the upgradient monitoring well, MWT-7, of the southern transect. The concentration of TCE and c1,2-DCE were higher than the anticipated design concentration. The reactive wall was designed for maximum TCE and c1,2-DCE concentrations of 260  $\mu$ g/L and 150  $\mu$ g/L, respectively. These were the highest TCE and c1,2-DCE concentrations observed historically at the site in the area of the reactive wall. During the demonstration study, the influent TCE concentrations measured in upgradient wells at the northern and middle transects were below the design concentration, however, at the southern transect the influent concentrations of c1,2-DCE ranged from 6  $\mu$ g/L to 82  $\mu$ g/L, which are less than the design maximum, the amount of c1,2-DCE produced during the reductive dechlorination of TCE is not accounted for. It is likely that because of the high concentrations of TCE entering the wall there is insufficient time to completely decompose all the TCE and the c1,2-DCE. The trend is consistent with the residence times calculated for the southern transect and the

concentration of c1,2-DCE in the well, MWT-8, located within the wall. For example, during the June 1999, the September 1999 and the January 2000 monitoring events the influent concentration of TCE at MWT-7 were 530  $\mu$ g/L, 480  $\mu$ g/L and 480  $\mu$ g/L, respectively. The concentration of c1,2-DCE in the monitoring well, MWT-8, located within the reactive wall was 42  $\mu$ g/L, 7  $\mu$ g/L and 55  $\mu$ g/L, respectively, which are all above the target concentration of 5  $\mu$ g/L. The residence times for the southern transect for these three events were 0.66 days, 0.43 days and 0.42 days, which are less than the design residence time of 1.25 days. Therefore, the inability of the reactive wall to achieve the target concentrations is likely due to higher than expected groundwater velocities (caused by the higher hydraulic conductivities of the subsurface materials), which resulted in a less residence time than was expected, and, in addition, to influent concentrations that were higher than expected.

Results of groundwater analyses from wells installed just beyond the ends of the reactive wall indicate that the chlorinated solvents plume at the Ash Landfill site was captured by the reactive wall. TCE and c1,2-DCE concentrations in the wells installed to the north and south of the reactive wall (MWT-10 and MWT-11) were below NYSDEC Class GA standards in all four rounds of groundwater sampling. In most instances, the concentrations within these wells were below detection limits. The only exception was the c1,2-DCE concentration (6  $\mu$ g/L) found in MWT-10 at the northern end of the wall in April 1999 (**Figures 6-1, 6-4, 6-7** and **6-10**).

The demonstration study assessed the possible decline in the performance of the reactive wall due to precipitation of minerals and eventual loss of porosity in the reactive material. While there is no direct evidence of porosity loss in the wall, there is some associated evidence (groundwater chemistry data) that suggest that mineral precipitation is occurring. The evidence is the alkalinity and calcium data that were measure in the upgradient wells relative to the concentrations measured in wells located within the wall. The concentrations of alkalinity and calcium were lower in wells within the wall compared to the concentrations measured immediately upgradient of the wall in the 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> rounds of sampling. The loss of alkalinity and calcium is an indication that some precipitation is occurring within the wall. As chlorinated compounds are reduced and iron is oxidized, the pH within the wall increases. At elevated pH levels, bicarbonate ions in solution convert to carbonate ions, which are less soluble. This leads to the precipitation of carbonate minerals, which may explain the decrease in calcium concentrations and alkalinity levels within the wall. The carbonate ions may precipitate as calcite (CaCO<sub>3</sub>) or siderite (FeCO<sub>3</sub>.)

#### Seneca Army Depot Activity

In determining whether there would be a loss in porosity, due to precipitation, within the reactive wall over time, water level measurements were made on a monthly basis to observe the behavior of groundwater in and around the reactive wall. Although the monitoring period was short to observe such effects, if increases of hydraulic head were observed upgradient or within the reactive wall then there may be an indication that precipitation of insoluble carbonate salts could be fouling the wall by decreasing the porosity. Groundwater elevations were made on a monthly basis between April 1999 through February 2000 for the study duration and are presented in **Table 6-3**. The data, plotted in **Figures 6-14** through **Figure 6-23** did not indicate that significant mounding was occurring. In some months, water elevations in upgradient wells were actually lower than in wells within the wall. This is especially true for the north transect of the wall, where in the months of May, August, September, October, and December, the upgradient well (MWT-1) had either a lower or equal water elevation than MWT-2, the well within the reactive wall (**Figures 6-15, 6-18, 6-19, 6-20**, and **6-21**).

In addition to the observations made in the field, an estimation was made of the maximum amount of carbonate that could form. For this estimation, it was assumed that groundwater would continue to flow through the reactive wall if its porosity was greater than 15%, which is the estimated effective porosity of the surrounding aquifer. The porosity of the iron/sand mixture in the reactive wall was estimated at approximately 40%. Results of theoretical calculations indicate that the maximum theoretical porosity loss due to carbonate precipitation is 3.5% per year (see Memorandum of March 2, 2000 in **Appendix D**). At this rate, it would take approximately 18 years to reduce the porosity within the reactive wall from 40% to 15%. If the porosity of the wall were to become less than that of the surrounding aquifer, then groundwater would tend to pass around the sides of the reactive wall.

In general, groundwater flows east to west, following the slope of the land. However, the monthly groundwater elevation monitoring suggests that beginning from approximately June 1999 to October 1999, the flow direction shifted to a southeasterly direction. This shift in direction is observable by a review of the groundwater elevation figures (Figure 6-14 through Figure 6-23). This shift is evident in Figure 6-17 for the month of July 1999. The movement of groundwater appears to move toward the south in this month. The presence of the permeable material within the reactive wall may be increasing this effect. For example, during the July 1999 groundwater elevation measurement, the difference in hydraulic head between the northernmost monitoring well, MWT-10, and the southernmost monitoring well, within the trench, MWT-8, is 3.14 feet, (629.67 – 629.53). The effect is also observable during the June

1999 groundwater elevation and groundwater sampling event, where the difference in hydraulic head between the northernmost monitoring well, MWT-10, and the southernmost monitoring well within the trench, MWT-8, is 2.26 feet (630.98 - 628.72). In some instances, this north-south movement coincides with concentrations that were above the target concentrations. During the June 1999 sampling event, the concentrations of c1,2-DCE in the middle and southern transect wells within the wall were above the target concentration of 5 µg/L. The north-south trend in groundwater movement is noticeable until December 1999, when the difference in hydraulic head between the wells in the trench suggest that the flow is more east-west than north-south.

During the December 1999 monitoring event, the elevation at MWT-10 is 631.71 and the elevation at MWT-2 is 631.73, which is approximately 190 feet away to the south. Therefore, since the difference is only 0.02 feet the movement is most likely to the west rather than along the north-south axis of the reactive wall. The east-west trend in groundwater movement is also consistent during the following month of January 2000, when there is little evidence of a north-south trend. However, the groundwater quality data collected during the January 2000 sampling event does not coincide with what was observed during the June 1999 sampling event when the groundwater movement shifted to a north-south trend. During the January 2000 sampling event, the concentrations of c1,2-DCE in the northern, middle and southern transect wells within the wall were all above the target concentration of 5  $\mu$ g/L. This shift in groundwater flow direction, although present, does not provide a reason to explain the reactive wall performance data obtained from within the trench. If contaminated groundwater moves down the axis of the wall, as suggested by the groundwater elevation maps, groundwater retention times would be greater than if flow was directly through the wall, thus, such a path would afford more treatment time, since the travel path would be increased rather than decreased.

The movement of groundwater during the summer and fall months shifts unexpectedly to the south along the axis of the reactive wall. During the winter and spring months the shift is less noticeable and flow is as would be expected from the east to the west, following the slope of the land.

The groundwater velocities calculated in the immediate vicinity of the reactive wall are greater than expected. The greater velocities are attributed to higher hydraulic conductivities in the formation materials in which the trench was installed. The high conductivities are possibly due to the combined influences of a former building foundation near the central portion of the trench

and a former leaching field at the north end of the trench. Both of these former structures were not known at the time of the initial trench design.

## 6.3 COMMENTS ON GROUNDWATER SAMPLING AND WALL INSTALLATION WITH REGARD TO REACTIVE WALL PERFORMANCE

The comments provided below are intended to provide explanation for some of the inconstancies noted in the performance of the reactive iron wall.

Throughout the study, TCE and c1,2-DCE concentrations were higher in wells located downgradient from the reactive wall than in wells located in the wall (Figures 6-1, 6-4, 6-7, 6-10, and 6-13). The reactive iron within the wall reduced the level of chlorinated solvents as evidenced by the decrease in chlorinated compound concentrations within the wall. However, chlorinated compound concentrations increased once the groundwater exited the reactive wall as observed in the downgradient well data. This observation is likely due to the presence of residual chlorinated compounds in the aquifer material downgradient of the reactive wall. Over time, as groundwater passes through the wall and enters the downgradient side of the aquifer, TCE and c1,2-DCE that are present within the pore water of the silt and clay particles in the aquifer at the toe of the plume will be reduced as the clean water mixes with the residual groundwater. Additional comments on this phenomenon are provided by ETI, the developer of the in-situ reactive iron wall technology (Appendix D).

Another possible cause for the observed inconsistent c1,2-DCE reduction in the reactive wall is that non-representative groundwater samples were collected from within the wall. Non-representative samples could have been collected if: 1) an excessive amount of water was removed from the wells within the reactive wall during purging and sample collection, or 2) if the wells within the reactive wall were not installed vertically.

Neither sampling or well installation methods are believed to have caused non-representative groundwater samples to be collected and the resulting treatment wall inconsistencies observed during the treatability study. First, to evaluate whether or not an excessive amount of water was removed from wells within the reactive wall during purging and sampling, two items were considered, a) the sampling methodology and b) the volume of water removed during each sampling event. Because the residence time of the groundwater in the wall is dependent on the distance it has flowed through the reactive wall, as well as the velocity within the wall, samples

within the reactive wall were collected in such a way as to minimize the amount of purge water and minimize the groundwater flow velocity to the well point. Samples were collected using a very small diameter polyethylene tubing with a bottom check valve. The well was purged until either: a) one well volume was removed, or b) field indicator parameters have stabilized, whichever occurred first. In all cases, one well volume was removed before field indicator parameters had stabilized.

In evaluating the volume of water removed during each sampling event, the amount of purge water and sampling water was calculated. The area around the well from which this water could potentially have been drawn (if drawn uniformly around the well radius) was calculated to determine how far upgradient of the well water may have been collected (**Table 6-4**). The potential distance upgradient that water may have been drawn was compared to the results during the four rounds of groundwater sampling. If a greater amount of water removed from the aquifer during the sampling event corresponded to less reduction of chlorinated compounds within the reactive wall, then it may be possible that water having inadequate residence time was collected from the trench, making the sample non-representative. However, no such relationship was observed. The amount of reduction of chlorinated compounds did not decrease when greater quantities of water were removed during sampling. In addition, if such a relationship existed, one would expect to observe elevated TCE levels within the reactive wall, having been drawn from upgradient. This was not observed.

In addition, samples collected from a monitoring well that is not installed vertically may not be characteristic of conditions within the wall, as noted by ETI in its Memorandum dated March 2, 2000 (Appendix D). Groundwater collected from improperly installed monitoring wells might not be representative of treated groundwater because it could have been collected from upgradient regions where it has not had sufficient contact time with the reactive iron. However, if this were the case, one would expect to find elevated levels of TCE within the samples collected from the reactive wall. Groundwater results do not support this explanation. Monitoring wells within the reactive wall were installed using the direct push method as outlined in Section 4.2. Since there was not much resistance in the iron/sand media, there is confidence that the monitoring wells within the reactive wall were installed vertically.

Even though extreme care was taken to collect representative groundwater samples during the treatability study, the relatively narrow width of the reactive wall did pose challenges in assuring that absolutely representative samples were collected from the wall. One way to reduce the

uncertainty in the representativeness of the wall samples is to conduct an additional round of groundwater sampling using diffusion samplers, which are a relatively new technology that has recently been demonstrated to be comparable to conventional purge sampling methods. The diffusion method involves the placement of semi-impermeable polyethylene bags filled with distilled water into the monitoring wells. Volatile organic compounds diffuse through the polyethylene, and after being in place for at least 11 days, the samplers equilibrate with the aquifer. This method eliminates the need to remove purge water prior to groundwater sampling. The advantages of diffusion sampling are the elimination of artificial turbidity and mixing of contaminated water with stagnant water caused by high speed sample collection, and the forcing of screened and stagnant water into the aquifer in all directions, including upgradient when a pump is inserted into a monitoring well. An independent evaluation of diffusion samplers is provided in **Appendix D**.

Proper installation methods are required to ensure the optimal performance of the reactive wall. Two aspects of the reactive wall installation that are important to its performance are: a) evenly distributed iron within the reactive wall and b) iron media that extends down to intercept the entire groundwater plume.

Based on the planning and execution during wall installation, we do not believe that improper installation of the reactive wall is a cause for the inconsistent performance observed in the treatability study. Additional information to support this is provided below.

Heterogeneity of the iron and sand mixture within the wall could potentially result in inconsistent performance. Uneven mixing of iron and sand prior to installation could potentially result in sections along the wall with less than adequate quantities of iron. Groundwater flowing through sections of the reactive wall with less than the required volumetric percentage of iron would not have sufficient residence time with the iron to adequately reduce the chlorinated compounds present.

Based on review of the installation records and the in-field testing that was performed on the iron and sand mixture prior to installation, the iron and sand reactive mixture was mixed in proper proportions and for an adequate amount of time to result in uniform mixing. Therefore, it is not believed that regions of low iron content exist along the reactive wall. As indicated in **Section 4**, the volumetric ratio of iron to sand was verified by Parsons ES and ETI field engineers to be between 50% to 88%, equal to or greater than the design ratio of 50%. In addition, samples were

collected from every mixed batch to verify the volumetric ratio of iron and sand. While field tests performed prior to installation showed that the desired ratio of iron and sand was installed in the reactive wall, analysis of core samples from the wall would be a method to confirm that the desired ratio of iron and sand actually exist.

Improper depth of the reactive wall could also result in failure of the reactive wall to capture the entire thickness of the groundwater plume. If the trench in which the iron/sand mixture was placed was not excavated to competent shale, then a portion of the groundwater plume could be flowing beneath the wall. Additionally, if groundwater monitoring points within the trench were screened beneath the iron/sand mixture, untreated groundwater would be collected. For reasons presented below, the depth of installation of the wall is not believed to contribute to its inconsistent performance.

During installation of the iron trench, test pits were dug every 100 feet to determine the depth to the top of the competent shale. Then, the continuous, laser-guided trencher excavated in a straight line between every 100-foot depth measurement, and while it is possible that a small localized dip in the top of competent shale existed between the two test pits, we believe this method was adequate to ensure that the iron and sand mixture was installed all the way to competent shale. Monitoring well point installation logs in the trench indicated that the points were installed to the top of competent shale, which was also the depth to which the reactive wall extended. Also, if the iron was not installed to the depth of the competent shale and untreated groundwater flowing beneath the iron was collected from well points within the wall, one would also expect to find TCE in these samples. However, no TCE was detected in any of the samples collected from within the reactive wall. For these reasons, it is not suspected that improper depth of installation of the wall is a significant cause for the inconsistent performance observed.

## 6.4 RESULTS OF GROUNDWATER MONITORING AT THE ASH LANDFILL – OCTOBER 1999 AND JANUARY 2000

During the demonstration study two additional complete rounds of groundwater sampling (October 1999 and January 2000) were also performed that included all existing monitoring wells in addition to the monitoring wells installed to monitor the reactive wall. Results of this additional groundwater sampling are presented in Figure 2-4 and Figure 2-5. The data posted in these two figures are provided in tabular form in Appendix E. In general the groundwater plume appears to have remained in a similar configuration to that identified following the

completion of the Interim Remedial Measure (IRM) in June 1996 that thermally treated approximately 34,000 tons of VOC contaminated soil. The concentration of VOCs at MW44a, located within the former source area have remained similar to when the collected in June 1997. In June 1997, the concentration of total VOCs at MW44a was 930  $\mu$ g/L. In October 1999, the concentration of total VOCs at MW44a was 1,104  $\mu$ g/L and in January 2000, the concentration of total VOCs was 399  $\mu$ g/l. A well useful in determining if the groundwater plume is migrating is MW-56, which is located approximately 250 feet beyond the depot boundary. In June 1997, the concentration of total VOCs was 1.6  $\mu$ g/L. In October 1999, the concentration of total VOCs was 1.6  $\mu$ g/L. In October 1999, the concentration of total VOCs was 1.6  $\mu$ g/L. In October 1999, the concentration of total VOCs was 1.6  $\mu$ g/L. In October 1999, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 10  $\mu$ g/L and in January 2000, the concentration of total VOCs was non-detectable at 1  $\mu$ g/l. Therefore, it appears that the plume has remained as previously shown following the IRM.

The two additional complete rounds of groundwater sampling (October 1999 and January 2000) data were also used in Section 7 for the following purposes:

- A synoptic round of groundwater conditions had not been obtained since the completion of the IRM. Reductions in groundwater concentrations in and around the former source area were essential for future remedial decisions.
- VOC results (Appendix E) were a requirement for future design efforts that could include additional reactive walls. Section 7.4.2 discusses how residence times based of VOC results of the groundwater monitoring were used in the design of additional reactive walls.
- Indicator parameters and field measurements were collected to understand if natural biodegradation is occurring at the site. Field measurements are listed in Table 6-5 and Table 6-6, for Round 1 (October 1999) and Round 2 (January 2000), respectively. These tables also list optimum conditions for indicator parameters that would be required for biological reductive dechlorination to be an active USEPA (1998).

The results of the two recent rounds of groundwater sampling were also compared to previous groundwater sampling conducted at the Ash Landfill. The following observations were made based on the recent monitoring results:

• There has not been an overall decrease in chlorinated ethene concentrations at the Ash Landfill from 1996 to 1999; only seasonal fluctuations confirming previous conclusions about the site that natural degradation of chlorinated ethenes occurs at a very slow rate.

- Indicators of biological degradation, such as increased concentrations of sulfide, methane or ferrous iron were observed in October 1999 and January 2000. There has be and no corresponding decrease in sulfate and nitrate/nitrite levels from September 1998 (Appendix E) to October 1999. This means that other biological activities such as sulfate reduction methane generation and denitrification continue to occur at slow rates.
- Low total organic carbon (TOC) concentrations were observed in September 1998 (Appendix E), October 1999, and January 2000. These concentrations were below 20 mg/L, which is the optimum level for biological reductive dechlorination as suggested by USEPA (1998).
- Oxidation-reduction potentials (ORP)s are variable throughout the aquifer. Near the former source area, they were mostly higher than 50 mV, which indicates that reductive dechlorination is not likely to occur according to USEPA (1998), however, at PT-18 in October 1999 ORP was well below this value indicating that reductive chlorination is possible. Farther away from the former source area (at PT-21A and MW-46) there is evidence that reductive dechlorination is possible, as indicated by oxidation-reduction potentials that are lower than 50 mV. Even at these areas, ORPs are still not below the optimum level of -100 mV.
- Hydrogen concentrations are lower in the source area than at other parts of the Ash Landfill. In MW-12A and MW-21A hydrogen concentrations were below detection limit in both rounds of groundwater sampling.

In summary, the conditions within the aquifer do not support natural biodegradation as a significant process in reducing the concentrations of chlorinated ethenes. The lack of a robust environment for natural degradation may be mostly due to a lack of a source of carbon. Addition of a carbon source at the Ash Landfill would possibly be an alternative to enhance biological activity especially at the source area where hydrogen has been detected only at low concentrations or not at all.

## 7.0 FEASIBILITY OF ALTERNATIVES FOR GROUNDWATER REMEDIATION

This section presents focused groundwater treatment alternatives for the Ash Landfill site that use in-situ zero valent iron as the treatment technology. These focused alternatives (or subalternatives) are part of Alternative 3a - In-situ Treatment with Zero Valent Iron, which was developed in the Feasibility Study (Parsons ES, 1996). This section also discusses the procedures used for the conceptual design of the proposed zero valent iron wall(s) as well as costs associated with the alternatives. The conceptual design is based on the results of the Treatability Study for the reactive iron wall, and the groundwater flow and transport modeling of different treatment wall configurations, both of which are summarized below.

## 7.1 CONCLUSIONS OF TREATABILITY STUDY

As previously discussed in detail in **Section 6**, the treatability study results demonstrated that the zero valent iron treatment wall at the depot boundary was effective since chlorinated compounds in the reactive wall were reduced. Concentrations of TCE within the wall were degraded to below detection limits and cDCE levels generally decreased. The TCE half-life estimated from the field data, in general, confirmed the design TCE half-life. By-products of reductive dechlorination (i.e., methane, ethane, ethene, and chloride) were also formed. In addition, the chemical data documented that corrosion of iron was taking place as evidenced by the increased pH and decreased redox potential within the reactive wall, and the generation of hydrogen. The treatment wall was effective in capturing the chlorinated ethenes plume as indicated by negligible amounts of TCE and cDCE in wells installed just beyond the ends of the reactive wall. The design life of the existing boundary wall is estimated to be 18 years. During the treatability study, no significant loss in porosity and negligible damming effects were observed within the reactive wall.

Results of the treatability study also indicated that complex hydraulics exist at the existing boundary wall. Groundwater flow through the wall was not uniform, and was greater than expected due to unexpectedly high formation hydraulic conductivities. Half-lives of cDCE that were estimated based on field data were not consistent. Influent concentrations of TCE and cDCE were higher than expected at one part of the wall, although the wall was designed to treat groundwater with these higher concentrations. Therefore, while the overall treatability results proved to be successful, there was some field evidence (e.g., complex hydraulics and

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-7e.doc

August 2000 Page 7-1 inconsistent half-life for cDCE) that must be considered in the selection of the final design parameters (Section 7.4).

## 7.2 CONCLUSIONS OF GROUNDWATER MODELING TO ASSESS IRON WALL CONFIGURATIONS

Groundwater flow and solute transport modeling was used to evaluate four designs of additional continuous, zero-valent (reactive) iron walls at the Ash Landfill, and to assess the potential impact of the plume on the downgradient Farm House wells. A summary of the modeling results is presented below. The modeling report is provided in **Appendix E**.

The wall designs (scenarios) evaluated in the modeling, all of which supplement the existing iron (boundary) wall that was installed on the site in 1998, were as follows:

1. Scenario 1 - One additional cut-off wall (located at the middle of the plume) installed perpendicular to the direction of groundwater flow;

2. Scenario 2 - Two additional cut-off walls (located at the middle and at the source) installed perpendicular to the direction of groundwater flow;

3. Scenario 3 – V-wall and parallel wall configuration; and

4. Scenario 4 – Multiple parallel walls and single cut-off wall.

Figure 2 of Appendix E shows the layout of the walls for each scenario.

The results of the wall design modeling showed that Scenario 2 (three cut-off walls) segmented the total chlorinated ethenes plume and minimized the travel distances needed before it was treated in the walls compared to the other scenarios. The Scenario 2 wall configuration indicated that the plume would be remediated in approximately 15 years (**Appendix E**). Matrix-controlled diffusion was identified as an important factor in evaluating the effectiveness of the scenarios and clean-up times for the plume. Long-term diffusion of chemicals (e.g., TCE, cDCE, and VC) from the aquifer matrix was considered to be a significant factor at the site due to the presence of the till aquifer, which has a relatively high silt and clay content. Therefore, the transport model accounted for multiple flushes of pore water that would be ultimately needed to remove the dissolved chemicals sorbed to the solid phase. Scenario 2 also considered the beneficial affects of the addition of hydrogen (as an electron donor) to the aquifer from chemical reactions in the

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-7e.doc

August 2000 Page 7-2 iron walls, which would increase the rate of microbial degradation of chlorinated hydrocarbons in the zones between the treatment walls.

The results of the simulation to evaluate the potential for the plume to impact the wells at the Farmhouse showed that a slug of the plume continued to move beyond the boundary reactive iron wall, however, the concentrations within the slug were degraded as they moved farther downgradient of the wall. The simulation showed that a maximum concentration of approximately 0.2  $\mu$ g/L (total chlorinated ethenes) would reach a point approximately one-half way between the depot boundary and the Farmhouse in approximately 25 years. At the Farmhouse, the results indicated that the maximum concentration would be approximately two orders of magnitude less than this (~0.008  $\mu$ g/L) in about 40 years (**Appendix E**).

# 7.3 SUMMARY OF FOCUSED GROUNDWATER TREATMENT ALTERNATIVES AT THE ASH LANDFILL

The focused groundwater treatment alternatives for the Ash Landfill were developed based on results of the treatability study (Section 7.1) and the groundwater modeling (Section 7.2). These alternatives, which fall under Alternative 3a in the FS, address the impacts upgradient of the boundary reactive wall as well as the impacts downgradient of the boundary wall. These alternatives are summarized in Table 7-1.

Alternative 1: One reactive wall (compliance wall) downgradient of the existing boundary wall and natural attenuation of aquifer upgradient of boundary reactive wall. [This is a base case that assumes a non-aggressive approach to remediate portions of the plume upgradient of the existing boundary iron wall].

Alternative 2: One reactive wall (compliance wall) downgradient of existing boundary wall and two reactive walls (source wall and middle wall) upgradient of the boundary wall. Carbon addition upgradient of the source wall. [This is an aggressive approach that uses results of the modeling (Scenario 2) to design the most effective reactive iron wall configuration to remediate the plume].

[Equation 7]

## 7.4 DESIGN OF CONTINUOUS REACTIVE WALLS

For the design of the reactive walls that are part of Alternatives 1 and 2, the following procedure was used:

1. <u>Determine the residence time</u> - Recommended residence time is determined for the wall based on degradation half-life and concentration of influent chlorinated ethenes at the proposed location of the wall using ETI's software Scientist® for Windows® Ver. 2.0. Recommended residence time is the time chlorinated ethenes have to spend in a treatment zone made up of 100% iron until their concentrations reduce to within acceptable levels (5  $\mu$ g/L for TCE and cDCE and 2  $\mu$ g/L for VC).

2. <u>Calculate treatment wall thickness</u> - Using the recommended residence time and the maximum expected groundwater velocity, the recommended thickness of the wall is calculated using the following equation:

$$h = SF \times v_{\max} \times t_{rec} \times \frac{1 \, day}{24 \, hour}$$

where

h = recommended wall thickness, ft

SF = safety factor, SF = 2

 $t_{rec}$  = recommended residence time, hours

3. <u>Determine length of wall</u> - Length of the wall is determined based on the dimensions of the plume at the proposed location of the wall.

4. <u>Determine design life</u> - Design life is determined based on the rate of precipitation of minerals and consumption of iron. Time to treat the majority of the plume is determined based on the groundwater modeling study. Determination of design life of the wall and treatment time of groundwater are important in the evaluation of operation and maintenance cost of a proposed reactive wall.

In order to follow the above design procedure, the following design parameters of groundwater treatment systems have to be accurately determined:

- 1. Half-life of chlorinated ethenes,
- 2. Concentrations of influent chlorinated ethenes and residence time,
- 3. Groundwater velocity,
- 4. Length of wall,
- 5. Design life (based on rate of precipitation of minerals and consumption of iron), and
- 6. Time to treat the chlorinated ethenes plume.

### 7.4.1 Half-life of Chlorinated Ethenes

For the design of additional reactive walls, TCE was assigned a degradation half-life of three hours, and cDCE and VC both were assigned degradation half-lives of six hours. These are the empirical values developed by ETI. The TCE half-life of three hours was supported by field data gathered during the Treatability Study at the Ash Landfill. However, cDCE half-life values calculated based on field data were varied (4 hours to 42 hours), and the higher values were not considered to be representative, possibly due to inconsistencies in the hydraulic conductivities and groundwater flow near the wall. The six-hour half-life for cDCE degradation was estimated by ETI. This estimate is based on several bench scale column tests involving reaction of chlorinated ethenes with 100% zero valent iron; the maximum value of their column test, 2.4 hours, multiplied by a safety factor of 2.5, is 6 hours (See memorandum of March 20, 2000 and memorandum of March 24, 2000 in Appendix D). There was no bench scale column test conducted specifically for the Ash Landfill site. However, a bench scale test was conducted for a former industrial facility located in upstate New York. This site had characteristics and chemical constituents similar to that of the Ash Landfill. Results of this test indicated that the half-life of cDCE is 1.5 to 4 hours. cDCE half-lives estimated based on field residence times and VOC concentrations at the industrial site ranged from 3 to 5 hours (Vogan et al. 1999). Therefore, the 6-hour half-life for cDCE was considered to be a reasonable estimate (Appendix D.)

#### 7.4.2 Concentrations of Influent Chlorinated Ethenes and Residence Time

For the determination of residence times necessary to reduce TCE and cDCE to below concentrations of 5  $\mu$ g/L, and to reduce VC to concentration below 2  $\mu$ g/L, the concentrations of influent contaminants had to be determined first. ETI provided the degradation data for these influent concentrations. After plotting degradation data (**Appendix F**), maximum residence times were selected for each system. **Table F-1** includes these maximum residence times. The

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-7e.doc

August 2000 Page 7-5 reasoning to support the representative of influent concentrations selected for each proposed reactive wall is discussed below.

*Middle wall:* To calculate the recommended residence time in the proposed middle wall (**Figure** 7-2), it was conservatively assumed that the maximum influent concentration would be similar to the concentration measured in MWT-7 (TCE - 530  $\mu$ g/L, cDCE - 32  $\mu$ g/L, and VC - 15.5  $\mu$ g/L), which is about 500 ft away from the proposed location of the wall. The reason these influent concentrations were chosen is because concentrations in wells at the proposed location of this reactive wall (PT-22 and PT-20) are much lower than those measured in a downgradient location (MWT-7). For example, in PT-22 TCE and cDCE concentrations are 74  $\mu$ g/L and 88  $\mu$ g/L, respectively and in PT-20 TCE and cDCE concentrations are 36  $\mu$ g/L and 28  $\mu$ g/L, respectively. Thus, use of the higher concentrations ensures that the wall will accommodate higher than anticipated influent concentrations. Using the MWT-7 data, the recommended residence time used for the design of the source wall was 33 hours.

Source wall: To calculate the recommended residence time in the proposed source wall (Figure 7-2), it was assumed that the maximum influent concentration at this location would be as high as the concentration at the source of the plume. The three monitoring wells that are close to the source are PT-12A, MW-44A and PT-18A. Based on ETI's degradation model, it takes the most time to degrade chlorinated ethenes in PT-18A, 59 hours. Therefore, influent concentrations at PT-18A (TCE - 9,100  $\mu$ g/L, cDCE - 1,100  $\mu$ g/L, and VC - 270  $\mu$ g/L) were used for the design of this wall. Using the PT-18A data, the recommended residence time used for the design of the source wall was 59 hours.

Compliance wall: The compliance wall (see either Figure 7-1 or Figure 7-2) has to be designed based on maximum chlorinated ethene concentrations that are expected to exit the boundary reactive wall, and considering the fact that, over time, TCE and cDCE downgradient of the boundary wall will eventually migrate to the compliance wall. The maximum effluent cDCE concentration measured throughout the Treatability Study was of 55  $\mu$ g/L, at MWT-8 in January 2000. (There was no TCE and VC at concentrations above detection limit in monitoring wells within the wall throughout the Treatability Study.) For the determination of required residence time, 55  $\mu$ g/L was assumed to be the influent cDCE concentration. TCE and VC concentrations in groundwater flowing into the new wall are assumed to be below the detection limit since they were not detected in the effluent of the reactive wall in any of the four rounds of sampling. The residence time using the influent cDCE concentration of 55  $\mu$ g/L is 21 hours. The wall is

P:\PIT\Projects\SENECA\IRONTRNC\DraftMemo\final\Sec-7e.doc

August 2000 Page 7-6 designed with a factor of safety of 2, and therefore it has a maximum residence time of 2 x 21 hours, which is 42 hours. This time is enough to treat even TCE and cDCE downgradient of the boundary wall. The highest chlorinated ethenes concentrations downgradient (TCE - 52  $\mu$ g/L, Cdce - 150  $\mu$ g/L, and VC - 4  $\mu$ g/L) were measured in MWT-9 in June 1999. The time to treat these concentrations to within acceptable levels is 31 hours which is less than the maximum capacity of the wall.

### 7.4.3 Groundwater Velocity

For the design of the existing boundary wall, the expected groundwater velocity was estimated using the average of hydraulic conductivities measured at the Ash Landfill 1.03 ft/day (Parsons, 1994). For the design of additional reactive walls upgradient of the boundary wall (middle wall and source wall) a more conservative approach was used. For these walls the maximum expected velocity was calculated using the maximum hydraulic conductivity measured at the Ash Landfill, 2.21 ft/day (Parsons, 1994). For the design of the compliance wall, the highest groundwater velocity that was measured along the reactive wall in the Treatability Study, excluding the velocities measured at the former leachfield, was used. The maximum expected velocities that were used for the design of the three proposed reactive walls are shown in Table G-1.

Prior to installation of middle and source reactive walls, two monitoring wells will be installed in the area immediately upgradient of each of the proposed walls. At the compliance wall three wells be installed. Results of slug tests at these wells and other nearby monitoring wells will be used to confirm the hydraulic conductivity of the aquifer in the proposed wall locations and, if necessary, these data will be used to make final revisions to the design (such as thickness of wall, or location of wall).

### 7.4.4 Length of Proposed Reactive Walls

The length of the boundary reactive wall was determined so that it would extend 100 ft beyond the 100  $\mu$ g/L total chlorinated ethene contour line. Results of the treatability study at the Ash Landfill indicated that the plume was captured to its full extent. Therefore, for the lengths of the proposed reactive walls, a 100 ft clearance beyond the 100  $\mu$ g/L total chlorinated ethene contour line was used to determine the total length of the wall. **Table G-3** has the dimensions of the proposed reactive walls.

### 7.4.5 Design Life (based on rate of precipitation of minerals and consumption of iron)

The design life of the reactive walls is affected by porosity loss and iron consumption. The former affects the ability of the wall to transmit impacted groundwater, and the later affects the ability of the wall to chemically treat the chlorinated organics dissolved in groundwater.

The design life of the existing boundary wall, 18 years, was calculated based on maximum porosity loss estimation (Section 6.1). For the additional reactive walls the same design life was assumed. This is a conservative assumption due to the fact that:

- Porosity loss is highly dependent on calcium content of groundwater and groundwater velocity. Since the amount of calcium reduction in the proposed walls is not known, it was assumed that the reduction in calcium in the proposed walls will be the same as the maximum reduction in calcium in the boundary reactive wall, 144.5 mg/L.
- A portion of the existing boundary reactive wall was placed in a highly conductive area of the site (influence from former leaching field) and, it is assumed that the conductivity of the area where the proposed walls are to be installed will be lower. Therefore, the amount of mineral precipitation would be lower in these walls, which would result in an extended design life.

Consumption of iron is another mechanism affecting the ability of the reactive wall to degrade chlorinated ethenes. However, design life of the wall was not significantly affected by consumption of iron. Consumption of iron can be due to corrosion in an aqueous system, VOC degradation, or aerobic reaction with dissolved oxygen. Iron consumption was evaluated for all of the proposed walls by ETI (memorandum of April 20, 2000, in **Appendix D**) and the results show that iron is consumed after 642 years, 695 years, and 756 years for the proposed source wall, middle wall and compliance wall, respectively. At this rate, after 18 years only 3 % of the iron is used up in the source wall and the middle wall, and only 2 % of the iron is used up in the compliance wall. Therefore, consumption of iron has only a minor influence on the design life of the reactive walls.

Since porosity loss controls the design life of the reactive wall, agitation of the iron in the wall, which combat porosity loss through mineral precipitation, will be performed every 10 years to maintain consistent performance. This method is recommended by ETI (memorandum of April 20, 2000 in **Appendix D**).

### 7.4.6 <u>Time to Treat the Chlorinated Ethenes Plume</u>

One of the goals of the conceptual design is to develop an alternative that will remediate the plume of dissolved chlorinated ethenes at the site in less than 30 years. This goal is based on previous comments by EPA, which indicated a preference that the selected alternative meet this goal.

### 7.4.7 Application of Vegetable Oil to Enhance Biodegradation of Chlorinated Ethenes

Natural attenuation was evaluated at the Ash Landfill as part of the Feasibility Study. Due to long treatment times, it was not chosen to be the preferred remedial alternative. One reason for this long treatment time is that the aquifer lacks a source of carbon that fosters anaerobic biological reactions. Carbon sources (anthropogenic or natural organic matter) are necessary, because they release hydrogen as they degrade. In turn, hydrogen is consumed by microorganisms that use nitrate, Fe(III), sulfate, or CO<sub>2</sub> as terminal electron acceptors. Chlorinated ethenes can also function as electron acceptors, in reductive dechlorination, and they compete with the terminal electron accepting processes noted above. Therefore, it is necessary for hydrogen to be present at sites contaminated by chlorinated ethenes for biodegradation to take place. At sites where carbon sources are low, the following can be done to enhance biodegradation:

- A hydrogen releasing compound (HRC) can be applied. At the Ash Landfill, an HRC can be the zero valent iron reactive wall. Corrosion of iron in the reactive walls can generate hydrogen.
- A carbon source such as vegetable oil can be added to the aquifer.

The use of vegetable oil to enhance degradation of chlorinated ethenes has recently proven to be effective. The application of vegetable oil was recently tested at DDHU, an army installation at Ogden, UT (Parsons, 2000). The groundwater at the DDHU site was impacted mostly by dissolved TCE. Vegetable oil was added to the aquifer and the groundwater was monitored over a 63-day period. Some of the pertinent results from the pilot test conducted by Parsons are as follows:

• At the injection well TCE concentration decreased from 624  $\mu$ g/L to 4  $\mu$ g/L in 22 days.

- Downgradient from the injection well, TCE concentrations have generally decreased and cDCE and VC concentrations increased proving that reductive dechlorination was taking place.
- The reaction zone (zone where vegetable oil is present) radius of influence was 7 feet after 22 days, and influences from the reaction zone were apparent at least 10 ft downgradient from the injection point.
- The amount of vegetable oil required for a 10-ft diameter radius of influence in the aquifer would be sufficient for a relatively long period of time, approximately 50 years.

### 7.5 FOCUSED GROUNDWATER REMEDIATION ALTERNATIVES

Below are two groundwater remediation alternatives for the Ash Landfill Site. The first (Alternative 1) is a base case that includes a less aggressive approach that focuses on preventing off-site migration of the plume of chlorinated ethenes, and the second (Alternative 2), which also prevents off-site migration, provides an aggressive approach to address upgradient areas of the dissolved chlorinated ethene plume.

### 7.5.1 <u>Alternative 1: One Reactive Wall Downgradient of Existing Boundary Wall and</u> <u>Natural Attenuation of Plume Upgradient of Boundary Wall</u>

Alternative 1 uses a total of two reactive walls and it serves as a base alternative (**Table 7-1**). This alternative uses the existing reactive wall at the depot boundary and a second wall to be installed downgradient of the boundary wall. The second wall provides further support in degrading the plume and, through the implementation of a monitoring program, ensures that no VOC's will impact the downgradient wells at the Farmhouse. In detail, the alternative involves the following:

- Use of the existing boundary reactive iron wall (50% iron).
- Installation of a compliance continuous reactive wall made up of 100% iron on the west side of the railroad line, about 100 ft downgradient from the existing boundary wall (Figure 7-1). The wall would be 645 ft long, 8 ft deep, and 2.1ft thick.
- Installation of seven monitoring wells (MW-61, MW-62, MW-63, MW-64, MW-65, MW-66, and MWT-12) to determine exact location of compliance wall and to monitor groundwater beyond the SEDA boundary (Figure 7-1). Results of slug tests and VOCs

analyses in selected monitoring wells near the proposed location of compliance wall will be used in the selection of final location for the compliance wall (**Table 7-2**).

- In the first year, groundwater in wells around the compliance wall and in the compliance wall (total of five) will be sampled twice and analyzed for VOC's in order to document that wall is working properly (**Table 7-2**.)
- Every year, eight wells near the compliance wall and in off-site locations will be sampled and tested for VOC's. The purpose of this monitoring is to monitor the performance of the compliance wall and the possible off-site migration of the chlorinated ethenes plume. The off-site sampling includes the sentry well, trigger well, and compliance well. The sentry well is MW-56, and its purpose is as a warning signal that will indicate the movement of the plume. The trigger well, MW-65, will be located halfway between the Farmhouse wells and MW-56, the sentry well. The trigger well is a location where, if concentrations of chemicals of interest are exceeded, immediate action will be taken to protect the source of water at the Farmhouse (e.g., connection to the town water line and/or supply of drinking water). The compliance well, MW-66, will be located on the Farmhouse property and this location defines the point at which the concentrations of constituents in groundwater must meet the New York GA Standards (**Table 7-2**).
- Every year groundwater elevations throughout the entire site will be measured (a total of 67). These measurements will indicate groundwater flow directions on the site and any mounding of groundwater near the walls (**Table 7-2**).
- Every five years, 60 selected wells at the Ash Landfill will be sampled and tested for VOC's to document the changes in plume concentrations and extent of the plume. For wells in and around the two reactive walls, groundwater will also be analyzed for inorganic parameters such as sulfate, alkalinity, nitrate, total dissolved solids, phosphate, chloride, calcium, magnesium, potassium, sodium, iron, manganese, and pH as well as methane, ethane and ethene. Wells in the reactive walls will also be analyzed for hydrogen. The inorganic parameters will be used to assess performance of the reactive walls and to assess the degree of fouling of the iron (Table 7-2).
- Maintenance of the boundary and compliance walls will involve agitation of the iron/aquifer interface with overlapping 1-foot augers. This agitation would be done once every 10 years.

According to results obtained from the groundwater and solute transport modeling, it is estimated that it would take approximately 60 years to remediate the plume of chlorinated organics dissolved in the groundwater at the Ash Landfill site. Under this alternative, the existing boundary reactive iron wall and the compliance reactive wall would, through in-situ

treatment, prevent further downgradient migration of the plume. Upgradient portions of the plume would be treated mostly by natural attenuation, however, these portions of the plume are expected to eventually reach the boundary iron wall where they will be treated.

### 7.5.2 <u>Alternative 2: One Reactive Wall Downgradient of Boundary Wall and Two</u> <u>Reactive Walls Upgradient of the Boundary Wall with Carbon Addition</u>

Alternative 2 uses a total of four reactive walls (Table 7-1). This groundwater treatment alternative involves the following:

- Use of the existing boundary reactive iron wall (50% iron).
- Installation of a middle reactive wall and source reactive wall, both made up of 100 % iron, upgradient of the existing boundary wall. The middle wall, would be installed about 300 feet east of the boundary wall and it would have a thickness of 1.2 ft, a depth of 9 ft, and a length of 700 ft. The source wall would be installed closer to the former source area of the plume, 600 feet east of the boundary wall. This wall would be 2.1 ft thick, about 11 ft deep and 700 ft long (Figure 7-2).
- Installation of a compliance reactive wall made up of 100% iron located about 100 ft downgradient from the existing boundary wall, on the west side of the railroad tracks (Figure 7-2). The wall would be 2.1 ft thick, about 8 ft deep, and 645 ft long.
- Installation of 13 monitoring wells (MWT-12 to MWT-18, and MW-61 to MW-66) (Figure 7-2). Slug tests at selected monitoring wells will determine exact locations of proposed reactive walls (Table 7-3). MW-65 and MW-66 are the trigger and compliance wells, respectively. VOC results in monitoring wells nearby proposed location of compliance wall will also aid in the selection of final location for the compliance wall.
- Vegetable oil will be applied to the portion of the plume that is upgradient of the source wall. The vegetable oil is to act as a source of carbon for microbial degradation. Degradation of oil will produce hydrogen, which is necessary for microorganisms that reduce chlorinated ethenes. The oil will be introduced directly into the aquifer using a series of 20-foot long trenches (**Figure 7-2**). The oil's effect on the aquifer microorganisms is expected to last 50 years, therefore the oil will only have to be applied once. This will complement the hydrogen addition to the aquifer that is expected from chemical reactions in the downgradient iron walls. Together, the hydrogen addition from these sources is expected to help degrade the chlorinated organics in areas outside the iron treatment walls faster than they would ordinarily be degraded in the absence of increased hydrogen.

- In the first year, groundwater in wells around newly installed walls (compliance wall, source wall, middle wall) will be sampled twice and analyzed for VOC's in order to document that the wall is working properly (**Table 7-3**).
- Every year, eight wells will be sampled and tested for VOC's. The purpose of this monitoring is to monitor the performance of the compliance wall and the possible off-site migration of the chlorinated ethenes plume. The off-site sampling includes the sentry well, trigger well, and compliance well. The sentry well is MW-56, and its purpose is as a warning signal that will indicate the movement of the plume. The trigger well, MW-65, will be located halfway between the Farm House wells and MW-56, the sentry well. The trigger well is a location where, if concentrations of chemicals of interest are exceeded, immediate action will be taken to protect the source of water at the Farmhouse (e.g., connection to the town water line and/or supply of drinking water). The compliance well, MW-66, will be located on the Farm House property and this location defines the point at which the concentrations of constituents in groundwater must meet the New York GA Standards (Table 7-3).
- Every year groundwater elevations throughout the entire site will be measured (a total of 73). These measurements will indicate groundwater flow directions on the site and any mounding of groundwater near the walls (**Table 7-3**).
- Every five years, 66 selected wells at the Ash Landfill will be sampled and tested for VOC's to document the changes in plume concentrations and extent of the plume. For wells in and around the four reactive walls, groundwater analysis will include analysis for inorganic parameters such as sulfate, alkalinity, nitrate, total dissolved solids, phosphate, chloride, calcium, magnesium, potassium, sodium, iron, manganese, and pH as well as methane, ethane and ethene. Wells in the reactive wall will be analyzed for hydrogen as well. These activities will be done in order to assess performance of the reactive walls and to assess the degree of fouling of the iron (Table 7-3).
- Maintenance of the boundary, compliance, middle and source walls involves agitation of the iron/aquifer interface with overlapping 1-foot augers. This agitation would be done once every 10 years.

According to the results of the groundwater and solute transport modeling, the plume of chlorinated ethenes will be remediated in approximately 15 years using the four reactive iron walls with carbon addition in the upper portion of the plume.

### 7.6 COSTS OF FOCUSED GROUNDWATER TREATMENT ALTERNATIVES

Costs of both of the focused groundwater treatment alternatives for the Ash Landfill were developed and evaluated. The total present worth costs for the alternatives are estimated as follows:

Alternative 1: \$1,564,200 Alternative 2: \$2,705,300

The unit costs that were used in the estimates were based on the following source documents (which are included in **Appendix G**):

• Costs provided by Peerless Metal Powders and Abrasive prior to installation of border reactive wall. These costs include cost of iron filings including packaging and shipment to the site.

• Costs provided by Diverse Solutions on April 14, 2000. This includes the cost of excavation and installation of reactive walls using the continuous trencher, and mobilization/demobilization, backfilling, and revegetation.

• Cost associated with maintenance of reactive wails is  $7/ft^2$ . This cost was developed by ETI in their April 20 Memorandum (Appendix D).

The following assumptions were used in the evaluation of costs associated with treatment of groundwater at the Ash Landfill:

- contingency (20%),
- engineering/oversight (20%), and
- interest (10%)

These percentages were also used in the cost estimates for the Feasibility Study.

Cost calculations are developed in **Tables G-4** and **G-6**. Detailed costs of both treatment alternatives are provided in **Table G-7** and are summarized in **Table 7-4**.

### 7.7 SELECTED ALTERNATIVE

Based on the analysis conducted in this focused feasibility memorandum report, Alternative 2, a sub-alternative under Alternative 3a in the FS, is the preferred alternative to remediate the plume of dissolved chlorinated organics at the Ash Landfill site. This alternative uses four reactive iron walls and vegetable oil addition (Figure 7-2). The components of the alternative are as follows:

- 1. Compliance wall (proposed),
- 2. Boundary wall (existing),
- 3. Middle wall (proposed),
- 4. Source wall (proposed),
- 5. Hydrogen addition to the aquifer through chemical reactions in the iron walls and through addition and degradation of vegetable oil (a carbon source) in the upgradient portion of the plume.

The treatability study results indicated that the in-situ reactive iron wall technology was effective in treating groundwater that contains dissolved concentrations of chlorinated organics at the Ash Landfill. The conceptual design for the proposed reactive iron walls carefully considers the parameters that were shown to be integral to the effectiveness of the walls (e.g., hydraulic conductivity of the aquifer, influent concentrations, residence time in the wall, % iron in wall). In addition, this analysis incorporated the benefits of hydrogen addition to the aquifer, both through chemical reactions in the iron walls and through degradation of vegetable oil (a carbon source) introduced in trenches, which is expected to increase the rate of degradation of chlorinated ethenes in the zones between the walls. Together, the reactive iron walls and beneficial affects from hydrogen addition are expected to remediate the plume of chlorinated organics in approximately 15 years.

The monitoring plan under Alternative 2 is designed to provide the necessary data to locate the position of the compliance wall, and to evaluate the effectiveness and longevity of the walls. The plan also provides for periodic sampling to assess the progress in the remediation of the plume on-site. A sentry well, trigger well, and compliance well, will be used to ensure that the drinking water at downgradient receptors at the Farmhouse are not impacted by dissolved chlorinated organics.

### Table 5-1 Sampling Plan for Ash Landfill Groundwater Treatability Study Using Zero Valence Iron Continuous Reactive Wall Ash Landfill Feasibilility Memorandum Seneca Army Depot Activity

| -            | Well ID:       | MW-T1 | MW-T2 | MW-T3 | MW-T4 | MW-T5 | MW-T6  | MW-T7 | MW-T8 | MW-T9 | MW-T10     | MW-T11 | 0    | A/QC (2)   | Total |
|--------------|----------------|-------|-------|-------|-------|-------|--------|-------|-------|-------|------------|--------|------|------------|-------|
| Analysis     | Method No      |       |       |       |       |       |        | Colle |       |       | _          |        |      |            |       |
|              | Degradation Pr | oduc  | ts    |       |       |       | -<br>- | · ·   |       |       | Г <u> </u> |        | l `´ |            |       |
|              |                |       |       |       |       |       |        |       |       |       |            |        |      | rb,tb,dup, |       |
| VOCs         | NYSDEC OLC     | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 20   | MS/MSD     | 64    |
| Methane      | EPA Method     | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 12   | rb,tb,dup  | 56    |
| Ethane       | RSKSOP-        | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 12   | rb,tb,dup  | 56    |
| Ethene       | 175            | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 12   | rb,tb,dup  | 56    |
| Inorganic Pa | rameters       |       |       |       |       |       |        |       |       |       |            |        |      |            |       |
| Sulfate      | EPA 300.0      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Alkalinity   | EPA 310.1      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Nitrate      | EPA 300.0      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| TDS          | EPA 160.2      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Phosphate    | EPA 365.2      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Chloride     | EPA 300.0      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | - 4  | dup        | 48    |
| Calcium      | EPA 200.7      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Magnesium    | EPA 200.7      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Potassium    | EPA 200.7      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Sodium       | EPA 200.7      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Iron         | EPA 200.7      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Manganese    | EPA 200.7      | 4     | 4     | 4     | 4     | 4     | 4      | 4     | - 4   | 4     | 4          | 4      | 4    | dup        | 48    |
| pH           | EPA 9040       | 4     | 4     | 4     | 4     | 4     | 4      | 4     | 4     | 4     | 4          | 4      | 4    | dup        | 48    |
| Hydrogen     | Chapelle, 1997 |       |       | 2     |       |       | 2      |       |       | 2     |            |        |      |            | 6     |

Note 1:

Samples were collected initially after well installation, three months after well installation, six months after installation and nine months after well installation.

Note 2:

One set of QA/QC samples were collected during each sampling event.

rb-rinse blank, tb - trip blank, dup - duplicate, MS - matrix spike, MSD - matrix spike duplicate

Note 3:

pH, conductivity, temperature, turbidity, redox potential, dissolved oxygen, ferrous iron, and water level were also measured in field. Note 4:

Water level measurements were conducted monthly from the eleven wells listed above as well as in PT-24, MW-29, MW-28, MW-27, MW-53, PT-17, and MW-30.

# Table 6-1 pH and Redox Potential of Groundwater Flowing Into and Out of Reactive Wall Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

### pH and Redox Potential of Groundwater Flowing Into Reactive Wall

|                  | North 7     | Transect    | Middle      | Transect    | South Transect |             |  |
|------------------|-------------|-------------|-------------|-------------|----------------|-------------|--|
|                  | pH at MW-T1 | Eh at MW-T1 | Ph at MW-T4 | Eh at MW-T4 | pH at MW-T7    | Eh at MW-T7 |  |
| Time of Sampling |             | mV          |             | mV          |                | mV          |  |
| April 1999       | 7.19        | 207.7       | 7.16        | 267.6       | 7.17           | 297.1       |  |
| June 1999        | 7.19        | 48          | 7.14        | 96.3        | 7.06           | 69.1        |  |
| September 1999   | 7.27        | 116         | 7.46        | 131.7       | 7.18           | 113.8       |  |
| January 2000     | 7.27        | 87.4        | 7.15        | 97          | 7.12           | 85          |  |

### pH and Redox Potential of Groundwater Flowing out of Reactive Wall

|                  | North 7     | ransect     | Middle      | South Transect |             |             |
|------------------|-------------|-------------|-------------|----------------|-------------|-------------|
|                  | pH at MW-T2 | Eh at MW-T2 | Ph at MW-T5 | Eh at MW-T5    | pH at MW-T8 | Eh at MW-T8 |
| Time of Sampling |             | mV          |             | mV             |             | mV          |
| April 1999       | 7.83        | 90.1        | 9.14        | 0              | 9.74        | 20          |
| June 1999        | 9.1         | -274        | 9.5         | -314           | 9.22        | -362        |
| September 1999   | 9.15        | -256        | 9.56        | -328           | 9.4         | -404.3      |
| January 2000     | 8.07        | -90 ·       | 9.35        | -193.7         | 9.55        | -69.2       |

### Table 6-2 Zero Valent Iron Reactive Wall Treatment Effectiveness for TCE and cDCE (1) Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

| Monitoring Well      | Velocity     | Residence             | Reactive Iron         |            |             | TCE           |                                        |            | cl          | ,2-DCE       |                   |
|----------------------|--------------|-----------------------|-----------------------|------------|-------------|---------------|----------------------------------------|------------|-------------|--------------|-------------------|
|                      | thru Wall    | Time in Wall          | <b>Residence</b> Time |            |             | μ <b>g/L)</b> |                                        |            | (           | (μg/L)       |                   |
|                      | (ft/day) (2) | (days) <sub>(3)</sub> | (days) (4)            | Upgradient | Within Wall | Downgradient  | % Reduction (5)                        | Upgradient | Within Wall | Downgradient | % Reduction (5)   |
| April 26-28,1999     |              |                       |                       |            |             |               |                                        |            |             |              |                   |
| Northern Transect    |              |                       |                       | MWT-1      | MWT-2       | MWT-3         | のない                                    | MWT-1      | MWT-2       | MWT-3        | 就設計書の単語はは         |
|                      | 1.66         | 0.72                  | 0.36                  | 23         | . 1         | 1 J           | 95.7                                   | 73         | 27          | 27           | 63 - 3            |
| Middle Transect      |              |                       |                       | MWT-4      | MWT-5       | MWT-6         |                                        | MWT-4      | MWT-5       | MWT-6        | 法法律师法法            |
|                      | 0.37         | 3.24                  | 1.62                  | 2 J        | 1 U         | 1 U           |                                        | 49         | 0.7 J       | 3            | 98.5              |
| Southern Transect    |              |                       |                       | MWT-7      | MWT-8       | MWT-9         | の高齢に変換するな                              | MWT-7      | MWT-8       | MWT-9        | 語を言語を言い           |
|                      | 0.49         | 2.45                  | 1.22                  | 430        | 1 U         | 43            | >99.8                                  | 20 J       | 1 U         | 32           | >95               |
| June 29, 1999        |              |                       |                       |            |             |               | の言語を教育の思い                              |            |             |              | 語の認識              |
| Northern Transect    |              |                       |                       | MWT-1      | MWT-2       | MWT-3         | での変要な思                                 | MWT-1      | MWT-2       | MWT-3        | などの実現であ           |
|                      | 0.24         | 5.07                  | 2.54                  | 8          | 1 U         | 0.8 J         | * = > <b>87.5</b>                      | . 32       | 6           | 10           | 16 <b>813</b> 816 |
| Middle Transect      |              |                       |                       | MWT-4      | MWT-5       | MWT-6         |                                        | MWT-4      | MWT-5       | MWT-6        | 2.6.5%的资源         |
|                      | 0.30         | 4.05                  | 2.03                  | 2          | 1 U         | 1 U           | >50                                    | 82         | 20          | 17           | 75:6              |
| Southern Transect    |              |                       |                       | MWT-7      | MWT-8       | MWT-9         | は認識が認識が思い                              | MWT-7      | MWT-8       | MWT-9        | 語言語語言語            |
|                      | 0.91         | 1.32                  | 0.66                  | 530 J      | 2 U         | 52            | *10.299.6*常生                           | 32         | 42          | 150          |                   |
| September 28-29,1999 |              |                       |                       |            |             |               |                                        |            |             |              |                   |
| Northern Transect    |              |                       |                       | MWT-1      | MWT-2       | MWT-3         | るでは                                    | MWT-1      | MWT-2       | MWT-3        | 調整に               |
|                      | -0.72        | NA(6)                 | NA(6)                 | 2 Ŭ        | 1 U         | 1 U           | NA <sub>(6)</sub>                      | 6          | 0.6 J       | 2            | NA <sub>(6</sub>  |
| Middle Transect      |              |                       |                       | MWT-4      | MWT-5       | MWT-6         |                                        | MWT-4      | MWT-5       | MWT-6        | 2019年20日1日        |
|                      | 0.22         | 5.40                  | 2.70                  | 3 U        | 1 U         | 1 U           | <i>≈</i>                               | 40         | 5           | 11           | 87,5              |
| Southern Transect    |              |                       |                       | MWT-7      | MWT-8       | MWT-9         |                                        | MWT-7      | MWT-8       | MWT-9        | <b>建設電影響電影</b>    |
|                      | 1.40         | 0.86                  | 0.43                  | 480        | 1 U         | 56            | >99.8                                  | 25         | 7           | 38           | 今、三、72 日本<br>第    |
| January 4-5, 2000    | (            |                       |                       |            |             |               | <b>法国际部部部的</b> 第三                      |            |             |              | なないない。            |
| Northern Transect    |              |                       |                       | MWT-1      | MWT-2       | MWT-3         | 語言語語の言                                 | MWT-1      | MWT-2       | MWT-3        | るが変換する            |
|                      | 0.71         | 1.69                  | 0.85                  | 18         | 2 U         | 2 J           | >88.9                                  | 72         | 23          | 48           | 68-1              |
| Middle Transect      |              |                       |                       | MWT-4      | MWT-5       | MWT-6         | 言語語語語を                                 | MWT-4      | MWT-5       | MWT-6        | 深地の空空に読む          |
|                      | 0.37         | 3.24                  | 1.62                  | 3 U        | 1 U         | 2 J           | ≥667                                   | 58         | 7           | 10           | 87.9              |
| Southern Transect    |              |                       |                       | MWT-7      | MWT-8       | MWT-9         |                                        | MWT-7      | MWT-8       | MWT-9        | な相応で変換的に見思す。      |
|                      | 1.43         | 0.84                  | 0.42                  | 480        | 3 U         | 32            | :::::::::::::::::::::::::::::::::::::: | 22         | 55          | 44           | 2%是月0月2日月2        |

Ave % >66.3 %

#### <u>Notes</u>

(1) TCE and DCE concentrations are based on Treatability Study groundwater results. See Appendix D for raw chemical data.

(2) Velocity =  $Ki/n_e$  where: K is Distance Weighted Hydraulic Conductivity of each Transect (See Table 6-3 for Velocity)

i = Hydraulic Gradient (ratio of elevation difference between upgradient and downgradient wells to distance ) and ne = effective porosity (assumed to be 0.2)

(3) Residence Time is Distance (width of iron wall) over Velocity. Distance is from Upgradient Side of Wall to Well (assumed to be 1.2 feet).

(4) Reactive Iron Residence Time is one-half Residence Time in Wall since Half of the Wall is Reactive Iron.

(5) % Reductions =1 - ( Ratio of Upgradient Concentration to Concentration within Wall).

(6) Not Applicable since a negative velocity implies flow is reversed, therefore, removal efficiencies are not calcualted.

p:\pit\projects\seneca\irontrnc\draftmemo\Tab6-2a.xls

### Table 6-3 Monthy Groundwater Elevation Measurements, Groundwater Velocities and Residence Times Measurements Ash landfill Feasibility Memorandum Seneca Army Depot Activity

| Monitoring     | Monitoring                                                          | Hydraulic                                                                                                       | Elevation at                                                                                                    | April 2              | 8, 1999           | May 2                        | 8, 1999          | June 2            | 8, 1999                |
|----------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-------------------|------------------------------|------------------|-------------------|------------------------|
| Well ID        | Well                                                                | Conductivity(i)                                                                                                 | Top of Riser                                                                                                    | Depth from Top       | Elevation of      | Depth from Top               | Elevation of     | Depth from Top    | Elevation of           |
|                | Location                                                            | (ft/day)                                                                                                        | (MSL)                                                                                                           | of Riser (ft)        | Water Level (ft)  | of Riser (ft)                | Water Level (ft) | of Riser (ft)     | Water Level (ft)       |
| MWT-1          | Upgradient                                                          | 33.8                                                                                                            | 637.24                                                                                                          | 4.99                 | 632.25            | 5.50                         | 631.74           | 6.37              | 630.87                 |
| MWT-2          | Within Wall                                                         | 21                                                                                                              | 637.19                                                                                                          | 5.00                 | 632.19            | 5.42                         | 631.77           | 6.35              | 630.84                 |
| MWT-3          | Downgradient                                                        | 28.3                                                                                                            | 637.31                                                                                                          | 5.13                 | 632.18            | 5.40                         | 631.91           | 6.45              | 630.86                 |
|                | Hydraulic Gradient throug                                           | h Wall (ft/ft)                                                                                                  | Sec. 172                                                                                                        |                      | 0.011             | (Sec., et al. S              | -0.027           |                   | 0:002                  |
| 2. A           | Groundwater Velocity thro                                           | Contraction of the second s | las                                                                                                             |                      | 1.66              |                              | -4.02            | 14 A 4            | 0.24                   |
|                | Residence Time in Wall (                                            | i and i a start i a s | <i></i>                                                                                                         |                      | 0.72              |                              | -0.30            |                   | 5.07                   |
| and the second |                                                                     |                                                                                                                 | (dan)                                                                                                           |                      | 0.36              |                              |                  |                   |                        |
| A GUET A       | Equivalent Reactive Iron                                            |                                                                                                                 | Sector in the second | 5.46                 | 1                 | 6.40                         | -0.15            |                   | 2.54                   |
| MWT-4          | Upgradient                                                          | 3.9                                                                                                             | 637.68                                                                                                          | 5.46                 | 632.22            | 6.40                         | 631.28           | 8.20              | 629.48                 |
| MWT-5<br>MWT-6 | Within Wall                                                         | · 21<br>8.6                                                                                                     | 637.72                                                                                                          | 5.55                 | 632.17            | 6.54                         | 631.18           | 8.25              | 629.47                 |
| MW1-0          | Downgradient                                                        |                                                                                                                 | 637.59                                                                                                          | 5.42                 | 632.17            | 6.39                         | 631.20           | 8.15              | 629.44                 |
|                | Hydraulic Gradient throug                                           | the second s  |                                                                                                                 |                      | 0.008             |                              | 0.013            |                   | 0.006                  |
|                | Groundwater Velocity thro                                           |                                                                                                                 | )(3)                                                                                                            |                      | 0.37              |                              | 0.59             |                   | 0.30                   |
| 5.4            | Residence Time in Wall (                                            | (day) <sub>(4)(5)</sub>                                                                                         |                                                                                                                 |                      | 3.24              |                              | 2.03             |                   | 4.05                   |
|                | <b>Equivalent Reactive Iron</b>                                     | Residence Time                                                                                                  | e (day) <sub>(6)</sub>                                                                                          |                      | 1.62              | Sector Sector Sector         | 1.01             |                   | 2.03                   |
| MWT-7          | Upgradient                                                          | 3.8                                                                                                             | 638.34                                                                                                          | 6.10                 | 632.24            | 7.25                         | 631.09           | 9.58              | 628.76                 |
| MWT-8          | Within Wall                                                         | 21                                                                                                              | 638.4                                                                                                           | 6.17                 | 632.23            | 7.37                         | 631.03           | 9.68              | 628.72                 |
| MWT-9          | Downgradient                                                        | 7.4                                                                                                             | 638.08                                                                                                          | 5.91                 | 632.17            | 7.97                         | 630.11           | 9.45              | 628.63                 |
|                | Hydraulic Gradient throug                                           | h Wall (ft/ft) <sub>(2)</sub>                                                                                   | Same and the Korn                                                                                               | STATISTICS PROVIDENT |                   | Selection and the second     | 0.158            | - te dette para a | 0.021                  |
|                | Groundwater Velocity thro                                           | ough Wall (fl/dav                                                                                               | la l                                                                        |                      | 0.49              |                              | 6.84             |                   | 0.91                   |
|                | Residence Time in Wall (                                            | 2                                                                                                               |                                                                                                                 |                      | 2.46              | Sector and the sector of the | 0.18             |                   | 1.32                   |
|                | Equivalent Reactive Iron                                            | 1. S.                                                                       | (day)                                                                                                           |                      | 1.23              |                              | 0.09             |                   | and the set of the set |
| MWT-10         | Northernmost Wall End                                               | 55.1                                                                                                            | 636.07                                                                                                          | 6.86                 | 629.21            | 4.25                         | 631.82           | 5.09              | 0.66<br>630.98         |
| MWT-11         | Southernmost Wall End                                               | 0.39                                                                                                            | 635.9                                                                                                           | 2.41                 | 633.49            | 4.25                         | 631.45           | 7.30              | 628.60                 |
| PT-24          | Mid-Wall, Downgradient                                              | NA                                                                                                              | 636.4                                                                                                           | 4.55                 | 631.84            | 5.19                         | 631.21           | 6,54              | 629.86                 |
| MW-29          | Upgradient, Mid-Cluster                                             | NA                                                                                                              | 637.31                                                                                                          | 5.76                 | 631.55            | 6.79                         | 630.52           | 8.80              | 628.51                 |
| MW-29<br>MW-28 | Upgradient, North-Cluste                                            | NA                                                                                                              | 637.21                                                                                                          | 4.56                 | 632.65            | 5.59                         | 631.62           | 6.85              | 630.36                 |
| MW-28<br>MW-27 | Upgradient, North-Cluste                                            | NA                                                                                                              | 639.32                                                                                                          | 4.95                 | 634,37            | 6.58                         | 632.74           | 7.61              | 631.71                 |
| MW-27<br>MW-53 | Upgradient, Mid-Cluster                                             | NA                                                                                                              | 639.41                                                                                                          | 5.87                 | 633.54            | 7.65                         | 631.76           | 9.70              | 629.71                 |
| PT-17          | Upgradient, South-Cluste                                            | NA                                                                                                              | 640.14                                                                                                          | 4.54                 | 635.60            | 7.44                         | 632.70           | 9.58              | 630.56                 |
| MW-30          | Upgradient, Southern End                                            | NA                                                                                                              | 640.32                                                                                                          | 5.02                 | 635.30            | 8.60                         | 631.72           | dry               | dry                    |
| Notes:         | oppratione, boundern End                                            |                                                                                                                 | 0.0.02                                                                                                          | 5.02                 |                   | 0.00                         | 001.72           | ,<br>             |                        |
| l              | Conductivity of Glacial Till/Weathe                                 | red Shale from In-situ                                                                                          | Slug Tests,                                                                                                     |                      |                   |                              |                  |                   |                        |
| Hydraulic (    | Conductivity of Iron/Sand from Fall                                 | ing Head Permeability                                                                                           | Test.                                                                                                           |                      |                   |                              |                  |                   |                        |
|                | s the Length Between the Upgradie                                   |                                                                                                                 |                                                                                                                 |                      |                   |                              |                  |                   |                        |
|                | where: K = Ave, Hydraulic Conduc                                    | tivity, I = Hydrualic Gr                                                                                        | adient and                                                                                                      |                      |                   |                              |                  |                   |                        |
| -              | ive porosity, (assumed to be 0.15)                                  |                                                                                                                 |                                                                                                                 |                      |                   |                              |                  |                   |                        |
| <u> </u>       | Time is the Ratio of Velocity to Transidence Times indicate Reverse |                                                                                                                 |                                                                                                                 |                      | · ··· · · · · · · |                              |                  |                   |                        |
|                | Reactive Iron Residence Time is o                                   |                                                                                                                 | dence Time                                                                                                      |                      |                   |                              |                  |                   |                        |
|                | e wall is 50% reactive iron.                                        |                                                                                                                 |                                                                                                                 |                      |                   |                              |                  |                   |                        |
|                |                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                                                                                 |                      |                   |                              |                  |                   |                        |

### Table 6-3 Monthy Groundwater Elevation Measurements, Groundwater Velocities and Residence Times Measurements Ash landfill Feasibility Memorandum Seneca Army Depot Activity

| Monitoring  | Monitoring                                                                | Hydraulic                                  | Elevation at                    | July 2         | 9, 1999          | August         | 30, 1999         | Septembe                                                                                                       | r 27, 1999       |
|-------------|---------------------------------------------------------------------------|--------------------------------------------|---------------------------------|----------------|------------------|----------------|------------------|----------------------------------------------------------------------------------------------------------------|------------------|
| Well ID     | Well                                                                      | Conductivity(1)                            | Top of Riser                    | Depth from Top | Elevation of     | Depth from Top | Elevation of     | Depth from Top                                                                                                 | Elevation of     |
|             | Location                                                                  | (ft/day)                                   | (MSL)                           | of Riser (ft)  | Water Level (ft) | of Riser (ft)  | Water Level (ft) | of Riser (ft)                                                                                                  | Water Level (ft) |
| MWT-1       | Upgradient                                                                | 33.8                                       | 637.24                          | 8.06           | 629.18           | 9.05           | 628.19           | 7.92                                                                                                           | 629.32           |
| MWT-2       | Within Wall                                                               | 21                                         | 637.19                          | 8.06           | 629.13           | 9.00           | 628.19           | 7.90                                                                                                           | 629.29           |
| MWT-3       | Downgradient                                                              | 28.3                                       | 637.31                          | 8.16           | 629.15           | 9.14           | 628.17           | 7.92                                                                                                           | 629.39           |
|             | Hydraulic Gradient throug                                                 | h Wall (fl/ft) <sub>(2)</sub>              |                                 |                | 0.005            |                | 0.003            | district the second | -0.011           |
|             | Groundwater Velocity thro                                                 | ough Wall (ft/day                          | )(3)                            |                | 0.71             |                | 0.47             | and the second                                                                                                 | -1.66            |
|             | Residence Time in Wall (                                                  | (day) <sub>(4)(5)</sub>                    |                                 |                | 1.69             |                | 2.54             |                                                                                                                | -0.72            |
|             | Equivalent Reactive Iron                                                  | Residence Time                             | (day) <sub>(6)</sub>            |                | 0.85             |                | 1.27             |                                                                                                                | -0.36            |
| MWT-4       | Upgradient                                                                | 3.9                                        | 637.68                          | 10.29          | 627.39           | 11.25          | 626.43           | 9.96                                                                                                           | 627.72           |
| MWT-5       | Within Wall                                                               | 21                                         | 637.72                          | 10.34          | 627.38           | 11.36          | 626.36           | 10.00                                                                                                          | 627.72           |
| MWT-6       | Downgradient                                                              | 8.6                                        | 637.59                          | 10.24          | 627.35           | 11.21          | 626.38           | 9.90                                                                                                           | 627.69           |
| 1           | Hydraulic Gradient throug                                                 | h Wall (fl/ft) <sub>(2)</sub>              |                                 |                | 0.006            |                | 0.008            |                                                                                                                | 0.005            |
|             | Groundwater Velocity thro                                                 | ough Wall (ft/day                          | )(3)                            |                | 0.30             |                | 0.37             |                                                                                                                | 0.22             |
|             | Residence Time in Wall (                                                  | (day) <sub>(4)(5)</sub>                    | h an baile, ist                 |                | 4.05             |                | 3.24             |                                                                                                                | -5.40            |
|             | <b>Equivalent Reactive Iron</b>                                           | <b>Residence</b> Time                      | (day) <sub>@</sub>              |                | 2.03             |                | 1.62             |                                                                                                                | 2.70             |
| MWT-7       | Upgradient                                                                | 3.8                                        | 638.34                          | 11.77          | 626.57           | 12.70          | 625.64           | 10.64                                                                                                          | 627.70           |
| MWT-8       | Within Wall                                                               | 21                                         | 638.4                           | 11.87          | 626.53           | dry            | dry              | 10.78                                                                                                          | 627.62           |
| MWT-9       | Downgradient                                                              | 7.4                                        | 638.08                          | 11.65          | 626.43           | 12.60          | 625.48           | 10.58                                                                                                          | 627.50           |
|             | Hydraulic Gradient throug                                                 | h Wall (ft/ft) <sub>(2)</sub>              |                                 |                | 0.023            |                | 0.026            |                                                                                                                |                  |
|             | Groundwater Velocity thro                                                 | ough Wall (ft/day                          | )a)                             |                | 0.98             |                | 1.12             |                                                                                                                | 1.40             |
|             | Residence Time in Wall (                                                  | day)(a)(5)                                 |                                 |                | 1.23             |                | 1.08             |                                                                                                                | 0.86             |
| 1. J. 2. Pe | Equivalent Reactive Iron                                                  | ter an | (day) <sub>60</sub>             |                | 0.61             |                | 0.54             |                                                                                                                | 0.43             |
| MWT-10      | Northernmost Wall End                                                     | 55.1                                       | 636.07                          | 6.40           | 629.67           | 7.55           | 628.52           | 6.50                                                                                                           | 629.57           |
| MWT-11      | Southernmost Wall End                                                     | 0.39                                       | 635.9                           | 8.55           | 627.35           | 8.95           | 626.95           | 7.14                                                                                                           | 628.76           |
| PT-24       | Mid-Wall, Downgradient                                                    | NA                                         | 636.4                           | 8.31           | 628.09           | 8.20           | 628.20           | 8,04                                                                                                           | 628.36           |
| MW-29       | Upgradient, Mid-Cluster                                                   | NA                                         | 637.31                          | dry            | dry              | dry            | dry              | dry                                                                                                            | dry              |
| MW-28       | Upgradient, North-Cluste                                                  | NA                                         | 637.21                          | 8.30           | 628.91           | 9.05           | 628.16           | 7.92                                                                                                           | 629.29           |
| MW-27       | Upgradient, North-Cluste                                                  | NA                                         | 639.32                          | 8.43           | 630.89           | 8.70           | 630.62           | 7.14                                                                                                           | 632.18           |
| MW-53       | Upgradient, Mid-Cluster                                                   | NA                                         | 639.41                          | dry            | dry              | 10.00          | 629.41           | 9.88                                                                                                           | 629.53           |
| PT-17       | Upgradient, South-Cluste                                                  | NA                                         | 640.14                          | dry            | dry              | 11.00          | 629.14           | 9.10                                                                                                           | 631.04           |
| MW-30       | Upgradient, Southern End                                                  | NA                                         | 640.32                          | dry            | dry              | dry            | dry .            | dry                                                                                                            | dry              |
| Notes:      |                                                                           |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |
| <u></u>     | Conductivity of Glacial Till/Weather                                      |                                            | and all and and a location of a |                |                  |                |                  |                                                                                                                |                  |
|             | Conductivity of Iron/Sand from Falli<br>s the Length Between the Upgradie |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |
|             | where: K = Ave. Hydraulic Conduc                                          |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |
| P           | tive porosity, (assumed to be 0.15)                                       |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |
| <u>``</u>   | Time is the Ratio of Velocity to Tre                                      |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |
|             | Residence Times indicate Reverse                                          |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |
|             | Reactive Iron Residence Time is a                                         | one-half the Wall Resi                     | dence Time                      |                |                  |                |                  |                                                                                                                |                  |
| pecause the | e wall is 50% reactive iron.                                              |                                            |                                 |                |                  |                |                  |                                                                                                                |                  |

Page 2 of 4

### Table 6-3 Monthy Groundwater Elevation Measurements, Groundwater Velocities and Residence Times Measurements Ash landfill Feasibility Memorandum Seneca Army Depot Activity

| Monitoring                              | Monitoring                                                             | Hydraulic                                 | Elevation at           | October        | 29, 1999         | Decembe                                        | er 2, 1999       | January        | 3,2000           |
|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------|------------------------|----------------|------------------|------------------------------------------------|------------------|----------------|------------------|
| Well ID                                 | Well                                                                   | Conductivity(1)                           | Top of Riser           | Depth from Top | Elevation of     | Depth from Top                                 | Elevation of     | Depth from Top | Elevation of     |
|                                         | Location                                                               | (ft/day)                                  | (MSL)                  | of Riser (ft)  | Water Level (ft) | of Riser (ft)                                  | Water Level (ft) | of Riser (ft)  | Water Level (ft) |
| MWT-1                                   | Upgradient                                                             | 33.8                                      | 637.24                 | 6.26           | 630.98           | 5.53                                           | 631.71           | 5.26           | 631.98           |
| MWT-2                                   | Within Wall                                                            | 21                                        | 637.19                 | 6.26           | 630.93           | 5.46                                           | 631.73           | 5.22           | 631.97           |
| MWT-3                                   | Downgradient                                                           | 28.3                                      | 637.31                 | 6.37           | 630.94           | 5.59                                           | 631.72           | 5.36           | 631.95           |
|                                         | Hydraulic Gradient throug                                              | h Wall (ft/ft)(2)                         |                        |                | 0.006            | 100 M                                          | -0.002           | Southern Party | 0,005            |
|                                         | Groundwater Velocity three                                             | ough Wall (ft/day                         | )m                     |                | 0.95             |                                                | -0.24            | State Courses  | 0.71             |
|                                         | Residence Time in Wall                                                 | (day)(act)                                |                        |                | 1.27             |                                                | -5.07            |                | 1.69             |
| the second                              | Equivalent Reactive Iron                                               | Residence Time                            | e (day) <sub>(6)</sub> |                | 0.63             |                                                | -2.54            |                | 0.85             |
| MWT-4                                   | Upgradient                                                             | 3.9                                       | 637.68                 | 7.57           | 630.11           | 6.45                                           | 631.23           | 6.06           | 631.62           |
| MWT-5                                   | Within Wall                                                            | 21                                        | 637.72                 | 7.66           | 630.06           | 6.53                                           | 631.19           | 6.1            | 631.62           |
| MWT-6                                   | Downgradient                                                           | 8.6                                       | 637.59                 | 7.52           | 630.07           | 6.41                                           | 631.18           | 6.02           | 631.57           |
| Cettore                                 | Hydraulic Gradient throug                                              | h Wall (ft/ft)(2)                         |                        |                | 0.006            |                                                | 0.008            | 1              | 0.008            |
|                                         | Groundwater Velocity thro                                              | ough Wall (ft/day                         | )m                     |                | 0:30             | 11 77 - 10 00 00 00 00 00 00 00 00 00 00 00 00 | 0.37             |                | 0.37             |
|                                         | Residence Time in Wall                                                 | 17 . L.                                   |                        |                | 4.05             |                                                | 3.24             |                | 3.24             |
| Contraction of the second               | Equivalent Reactive Iron                                               |                                           | e (dav) e              |                | 2.03             |                                                | 1.62             |                | 1.62             |
| MWT-7                                   | Upgradient                                                             | 3.8                                       | 638.34                 | 8.44           | 629.90           | 7.13                                           | 631.21           | 6.66           | 631.68           |
| MWT-8                                   | Within Wall                                                            | 21                                        | 638.4                  | 8.54           | 629.86           | 7.22                                           | 631.18           | 6.74           | 631.66           |
| MWT-9                                   | Downgradient                                                           | 7.4                                       | 638.08                 | 8,25           | 629.83           | 6.95                                           | 631.13           | 6.52           | 631.56           |
|                                         | Hydraulic Gradient throug                                              |                                           |                        |                | 0.011            |                                                | 0.013            |                | 0.019            |
|                                         | Groundwater Velocity thro                                              |                                           | )                      |                | 0,49             | 1.000                                          | 0.56             | Sec. 2010 Sec. | 0.84             |
| 1000                                    | Residence Time in Wall                                                 | eni ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | <b>(5)</b>             |                | 2.46             |                                                | 2.15             |                | 1,43             |
|                                         | Equivalent Reactive Iron                                               |                                           | e (deb) e              |                | 1.23             |                                                | 1,08             |                | 0.72             |
| MWT-10                                  | Northernmost Wall End                                                  | 55.1                                      | 636.07                 | 5.25           | 630.82           | 4 36                                           | 631.71           | 4,14           | 631.93           |
| MWT-11                                  | Southernmost Wall End                                                  | 0,39                                      | 635.9                  | 5.52           | 630.38           | 4.15                                           | 631.75           | 3.22           | 632.68           |
| PT-24                                   | Mid-Wall, Downgradient                                                 |                                           | 636.4                  | 6.10           | 630.30           | 5.04                                           | 631.36           | 4.8            | 631.60           |
| MW-29                                   | Upgradient, Mid-Cluster                                                | NA                                        | 637.31                 | 8,00           | 629.31           | 6.79                                           | 630.52           | 6.34           | 630.97           |
| MW-28                                   | Upgradient, North-Cluste                                               | NA                                        | 637.21                 | 6.34           | 630.87           | 5.5                                            | 631.71           | 5.16           | 632.05           |
| MW-27                                   | Upgradient, North-Cluste                                               | NA                                        | 639.32                 | 6.60           | 632.72           | 5.21                                           | 634.11           | 5.46           | 633.86           |
| MW-53                                   | Upgradient, Mid-Cluster                                                | NA                                        | 639.41                 | 8.71           | 630.70           | 7.61                                           | 631.80           | 6.7            | 632.71           |
| PT-17                                   | Upgradient, South-Cluste                                               | NA                                        | 640.14                 | 8.05           | 632.09           | 5.14                                           | 635.00           | 5.08           | 635.06           |
| MW-30                                   | Upgradient, Southern End                                               | NA                                        | 640.32                 | 9.57           | 630.75           | 7.27                                           | 633.05           | 6.78           | 633.54           |
| Notes:                                  |                                                                        |                                           |                        |                |                  |                                                |                  |                |                  |
|                                         | Conductivity of Glacial Till/Weathe                                    |                                           | and the second second  |                |                  |                                                |                  |                |                  |
|                                         | Conductivity of Iron/Sand from Fall                                    |                                           |                        |                |                  |                                                |                  |                |                  |
| <u></u>                                 | s the Length Between the Upgradie<br>where: K = Ave. Hydraulic Conduct |                                           |                        |                |                  | · · · · · · · · · · · · · · · · · · ·          |                  |                |                  |
| · · · · · · · · · · · · · · · · · · ·   | tive porosity, (assumed to be 0.15)                                    |                                           |                        |                |                  |                                                | ······           |                |                  |
|                                         | Time is the Ratio of Velocity to Tr                                    |                                           |                        |                |                  |                                                |                  |                |                  |
| <u>`</u>                                | Residence Times indicate Reverse                                       |                                           |                        |                |                  |                                                |                  |                |                  |
| • · · · · · · · · · · · · · · · · · · · | t Reactive Iron Residence Time is                                      | one-half the Wall Res                     | idence Time            |                |                  |                                                |                  |                |                  |
| because the                             | e wall is 50% reactive iron.                                           |                                           |                        |                |                  |                                                |                  |                |                  |

p:\pit\projects\seneca\irontrenc\Tab6-3a.xls

### Table 6-3

### Monthy Groundwater Elevation Measurements, Groundwater Velocities and Residence Times Measurements Ash landfill Feasibility Memorandum

Seneca Army Depot Activity .

| Monitoring                                                                                                      | Monitoring                                                           | Hydraulic                                                                                                      | Elevation at | February       | 29, 2000              | April 1        | 7, 2000          |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|----------------|-----------------------|----------------|------------------|
| Well ID                                                                                                         | Well                                                                 | Conductivity())                                                                                                | Top of Riser | Depth from Top | Elevation of          | Depth from Top | Elevation of     |
|                                                                                                                 | Location                                                             | (ft/day)                                                                                                       | (MSL)        | of Riser (ft)  | Water Level (ft)      | of Riser (ft)  | Water Level (ft) |
| MWT-1                                                                                                           | Upgradient                                                           | 33.8                                                                                                           | 637.24       | 3.94           | 633.30                | 4.69           | 632.55           |
| MWT-2                                                                                                           | Within Wall                                                          | 21                                                                                                             | 637.19       | 4.11           | 633.08                | 4.93           | 632.26           |
| MWT-3                                                                                                           | Downgradient                                                         | 28.3                                                                                                           | 637.31       | 4.22           | 633.09                | 5.04           | 632.27           |
|                                                                                                                 | Hydraulic Gradient throug                                            | h Wall (ft/ft)(2)                                                                                              |              |                | 0.034                 | -              | 0.045            |
|                                                                                                                 | Groundwater Velocity thro                                            |                                                                                                                | )a           |                | 4.97                  | 100 Hills      | 6,63             |
| 1. The second | Residence Time in Wall (                                             |                                                                                                                | (3)          |                | 0.24                  |                | 0.18             |
|                                                                                                                 | Equivalent Reactive Iron                                             | Residence Time                                                                                                 | (dav)        |                | 0.12                  |                | 0.09             |
| MWT-4                                                                                                           | Upgradient                                                           | 3.9                                                                                                            | 637.68       | 4.77           | 632.91                | 5.07           | 632.61           |
| MWT-5                                                                                                           | Within Wall                                                          | 21                                                                                                             | 637.72       | 4.85           | 632.87                | 5.16           | 632.56           |
| MWT-6                                                                                                           | Downgradient                                                         | 8.6                                                                                                            | 637.59       | 4.74           | 632.85                | 5.05           | 632.54           |
|                                                                                                                 | Hydraulic Gradient throug                                            | h Wall (ft/ft)/2                                                                                               |              | 147            | 0.010                 |                | 0.011            |
|                                                                                                                 | Groundwater Velocity thro                                            | • • • • • • • • • • • • • • • • • • • •                                                                        | ka.          |                | 0.44                  |                | 0.52             |
|                                                                                                                 | Residence Time in Wall (                                             | J                                                                                                              | /(3)         |                | 2.70                  | 0.000          | 2.32             |
|                                                                                                                 | Equivalent Reactive Iron                                             |                                                                                                                | (day)        |                | 1.35                  |                | 1.16             |
| MWT-7                                                                                                           | Upgradient                                                           | 3.8                                                                                                            | 638.34       | 5.19           | 633.15                | 5.54           | 632.80           |
| MWT-8                                                                                                           | Within Wall                                                          | 21                                                                                                             | 638.4        | 5.31           | 633.09                | 5.65           | 632.75           |
| MWT-9                                                                                                           | Downgradient                                                         | 7.4                                                                                                            | 638.08       | 5.05           | 633.03                | 5.38           | 632.70           |
|                                                                                                                 | Hydraulic Gradient throug                                            |                                                                                                                | 050.00       |                | 0.019                 |                | 0.016            |
|                                                                                                                 | Groundwater Velocity thro                                            | the second s | <b>,</b>     |                | 0.84                  |                | 0.70             |
|                                                                                                                 | a destruction of the second states of the                            | k Carles a statistic                                                                                           | /(3)         |                | Cherry and the second |                |                  |
| a she had a she had                                                                                             | Residence Time in Wall (                                             |                                                                                                                |              |                | 1.43                  | 1.04           | 1.72             |
|                                                                                                                 | <b>Equivalent Reactive Iron</b>                                      |                                                                                                                |              |                | 0.72                  |                | 0.86             |
| MWT-10                                                                                                          | Northernmost Wall End                                                | 55.1                                                                                                           | 636.07       | 2.95           | 633.12                | 3.74           | 632.33           |
| MWT-11                                                                                                          | Southernmost Wall End                                                | 0.39                                                                                                           | 635.9        | 1.6            | 634.30                | 2.36           | 633.54           |
| PT-24                                                                                                           | Mid-Wall, Downgradient                                               | NA                                                                                                             | 636.4        | 3.91           | 632:49                | 4.41           | 631.99           |
| MW-29                                                                                                           | Upgradient, Mid-Cluster                                              | NA                                                                                                             | 637.31       | 4.96           | 632.35                | 5.21           | 632.10           |
|                                                                                                                 | Upgradient, North-Cluste                                             | NA                                                                                                             | 637.21       | 3.61           | 633.60                | 4.44           | 632.77           |
|                                                                                                                 | Upgradient, North-Cluste                                             | NA                                                                                                             | 639.32       | 3.82           | 635.50                | 5.11           | 634.21           |
| MW-53                                                                                                           | Upgradient, Mid-Cluster                                              | NA                                                                                                             | 639.41       | 5.1            | 634.31                | 5.72           | 633.69           |
|                                                                                                                 | Upgradient, South-Cluste                                             | NA                                                                                                             | 640.14       | 4.02           | 636.12                | 4.59           | 635.55           |
|                                                                                                                 | Upgradient, Southern End                                             | NA                                                                                                             | 640.32       | 4.1            | 636.22                | 5.55           | 634.77           |
| Notes:                                                                                                          | conductivity of Glacial Till/Weather                                 | nd Shale from In-situ                                                                                          | Slug Tests   |                |                       |                |                  |
| <u> </u>                                                                                                        | onductivity of Iron/Sand from Fall                                   |                                                                                                                |              |                |                       |                | i                |
|                                                                                                                 | the Length Between the Upgradie                                      |                                                                                                                |              |                |                       |                |                  |
| (3) V = Kī/n <sub>e</sub> ;v                                                                                    | where: K = Ave. Hydraulic Conduc                                     | tivity, I = Hydrualic Gr                                                                                       | adient and   |                |                       |                |                  |
|                                                                                                                 | ve porosity, (assumed to be 0.15)                                    |                                                                                                                |              |                |                       |                |                  |
| <u> </u>                                                                                                        | Time is the Ratio of Velocity to Tr                                  |                                                                                                                |              |                |                       |                |                  |
|                                                                                                                 | esidence Times indicate Reverse<br>Reactive Iron Residence Time is o |                                                                                                                | dance Time   |                |                       |                |                  |
| <u>``</u>                                                                                                       | wall is 50% reactive iron.                                           | ute-nati the vvail Resi                                                                                        |              |                |                       |                |                  |
|                                                                                                                 |                                                                      |                                                                                                                |              |                |                       |                |                  |

| Table 6-4                                                                   |
|-----------------------------------------------------------------------------|
| Calculation of Radius of Influence of Monitoring Wells within Reactive Wall |
| Ash Landfill Feasibility Memorandum                                         |
| Seneca Army Depot Activity                                                  |

|            | Vw       | Vw       | Va          | Va   | <b>r</b> 1  | r1   | r2               | r2   | h                                       |
|------------|----------|----------|-------------|------|-------------|------|------------------|------|-----------------------------------------|
| Monitoring | Vol      | Vol      | Aquifer vol |      | well radius |      | radius of        |      | height of                               |
| Well       | of water | of water | holding Vw  |      |             |      | water in aquifer |      | water column                            |
|            | (gal)    | (L)      | (L)         | ft3  | inches      | feet | inches           | feet | ft                                      |
| Apr-99     |          |          |             |      |             |      |                  |      |                                         |
| MW-T2      | 0.06     | 0.24     | 0.60        | 0.02 | 0.5         | 0.04 | 0.63             | 0.05 | 6.90                                    |
| MW-T5      | 0.26     | 1.00     | 2.50        | 0.09 | 0.5         | 0.04 | 0.94             | 0.08 | 6.47                                    |
| MW-T8      | 0.26     | 1.00     | 2.50        | 0.09 | 0.5         | 0.04 | 0.94             | 0.08 | 6.42                                    |
| Jun-99     |          |          |             |      |             |      |                  |      |                                         |
| MW-T2      | 0.33     | 1.26     | 3.15        | 0.11 | 0.5         | 0.04 | 1.34             | 0.11 | 3.33                                    |
| MW-T5      | 0.38     | 1.44     | 3.60        | 0.13 | 1.5         | 0.13 | 1.96             | 0.16 | 3.65                                    |
| MW-T8      | 0.60     | 2.27     | 5.68        | 0.20 | 2.5         | 0.21 | 2.80             | 0.23 | 5.85                                    |
| Sep-99     |          |          |             |      |             |      |                  |      |                                         |
| MW-T2      | 1.00     | 3.79     | 9.46        | 0.33 | 0.5         | 0.04 | 2.96             | 0.25 | 1.80                                    |
| MW-T5      | 1.00     | 3.79     | 9.46        | 0.33 | 1.5         | 0.13 | 3.09             | 0.26 | 2.10                                    |
| MW-T8      | 1.50     | 5.68     | 14.19       | 0.50 | 2.5         | 0.21 | 4.20             | 0.35 | 2.02                                    |
| Jan-00     |          |          |             |      |             |      |                  |      | • • • • • • • • • • • • • • • • • • • • |
| MW-T2      | 0.20     | 0.76     | 1.89        | 0.07 | 0.5         | 0.04 | 0.95             | 0.08 | 4.72                                    |
| MW-T5      | 0.22     | 0.83     | 2.08        | 0.07 | 0.5         | 0.04 | 0.88             | 0.07 | 6.50                                    |
| MW-T8      | 0.22     | 0.83     | 2.08        | 0.07 | 0.5         | 0.04 | 0.88             | 0.07 | 6.54                                    |

### Notes:

1) Assume effective porosity,  $n_e$ , for the iron/sand media to be 0.4

2) 
$$V_a = V_w / n_e$$
  
3)  $V_a = \pi \cdot h(r_2^2 - r_1^2)$ 

### Table 6-5 Round 1 Groundwater Monitoring-October 1999 Indicator Parameters and Field Measurements Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

| Weil ID  | Location<br>Optimum:             | DO<br>(mg/l)<br><0.5 mg/L | Temp<br>(deg. C)<br>>20C, accelerated | Spec. Cond.<br>(umhos/cm) | pH<br>(units)<br>5 <ph<9< th=""><th>ORP<br/>(mV)<br/>&lt;50 possible, &lt;-100 likely</th><th>Turbidity<br/>(ntu)</th><th>Fe+2<br/>(mg/l)<br/>&gt;1 mg/L</th><th>Sulfide<br/>(mg/l)<br/>&gt;l mg/L</th><th>Methane<br/>(ug/l)<br/>&gt;500 ug/L</th><th>Ethane<br/>(ug/l)</th></ph<9<> | ORP<br>(mV)<br><50 possible, <-100 likely | Turbidity<br>(ntu) | Fe+2<br>(mg/l)<br>>1 mg/L | Sulfide<br>(mg/l)<br>>l mg/L | Methane<br>(ug/l)<br>>500 ug/L | Ethane<br>(ug/l) |
|----------|----------------------------------|---------------------------|---------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|---------------------------|------------------------------|--------------------------------|------------------|
|          | Comments:                        |                           |                                       |                           |                                                                                                                                                                                                                                                                                       |                                           |                    |                           |                              | daughter product               | daughter product |
|          |                                  |                           |                                       |                           |                                                                                                                                                                                                                                                                                       |                                           |                    |                           |                              |                                |                  |
| PT-10    | East of impact area              | NA                        | 12.09                                 | 799                       | 7.14                                                                                                                                                                                                                                                                                  | 79.8                                      | 0.90               | 0.06                      | 0.000                        | 8.9                            | 0.02             |
| PT-11    | South of West<br>Smith Farm Road | NA                        | 13.78                                 | 870                       | 7.38                                                                                                                                                                                                                                                                                  | 70.0                                      | <50                | 0.02                      | ND                           | 1.4                            | 0.01             |
| PT-12A   | Plume                            | 1.20                      | 15.39                                 | 1652                      | 6.73                                                                                                                                                                                                                                                                                  | 92.5                                      | 2.25               | 0.00                      | 0.012                        | 4.2                            | 0.36             |
| PT-15    | South of West<br>Smith Farm Road | 5.90                      | 12.58                                 | 578                       | 7.39                                                                                                                                                                                                                                                                                  | 60.5                                      | 25.00              | NA                        | NA                           | 3.0                            | 0.01             |
| PT-16    | North of impact<br>area          | NA                        | 15.22                                 | 555                       | 6.93                                                                                                                                                                                                                                                                                  | 103.2                                     | 1.00               | 0.00                      | NA                           | 0.2                            | ND               |
| PT-16Dup | North of impact<br>area          | NA                        | NA                                    | NA                        | NA                                                                                                                                                                                                                                                                                    | NA                                        | · NA ·             | 0.00                      | NA.                          | 0.2                            | ND               |
| PT-17    | Plume                            | 4.45                      | 14.78                                 | 617                       | 6.98                                                                                                                                                                                                                                                                                  | -5.0                                      | 1.00               | 0.00                      | 0.022                        | ND                             | 0.03             |
| PT-18    | Plume .                          | 0.92                      | 14.84                                 | 1340                      | 6.70                                                                                                                                                                                                                                                                                  | -57.0                                     | 2.20               | 0.13                      | 0.037                        | 515.0                          | 0.98             |
| PT-19    | South of West<br>Smith Farm Road | NA                        | 13.89                                 | 1234                      | 6.62                                                                                                                                                                                                                                                                                  | -90.0                                     | 7.00               | 9.48                      | NA                           | 1208.2                         | 0.07             |
| PT-20    | Plume                            | 1.91                      | 15.20                                 | 855                       | 6.78                                                                                                                                                                                                                                                                                  | 130.0                                     | 0.50               | 0.01                      | 0.008                        | ND                             | ND               |
| PT-20Dup | Plume                            | NA                        | NA                                    | NA                        | NA                                                                                                                                                                                                                                                                                    | NA                                        | NA                 | 0.02                      | 0.008                        | ND                             | ND               |
| PT-21A   | Plume                            | 0.94                      | 13.06                                 | 1252                      | 7.14                                                                                                                                                                                                                                                                                  | -4.0                                      | 2.09               | 0.58                      | 0.016                        | 7.7                            | 0.43             |
| PT-22    | Plume                            | 3.92                      | 13.03                                 | 1452                      | 6.92                                                                                                                                                                                                                                                                                  | 105.0                                     | 4.82               | 0.00                      | 0.080                        | ND                             | 0.20             |
| PT-23    | North of impact<br>area          | NA                        | 16.16                                 | 603                       | 7.14                                                                                                                                                                                                                                                                                  | 80.1                                      | 10.00              | 0.06                      | NA                           | 4.8                            | ND               |
| PT-24    | Plume                            | 1.78                      | 15.00                                 | 625                       | 7.08                                                                                                                                                                                                                                                                                  | 124.0                                     | 0.95               | 0.01                      | NA                           | ND                             | 0.02             |
| PT-25    | South of West<br>Smith Farm Road | 6.77                      | 15.03                                 | 417                       | 6.92                                                                                                                                                                                                                                                                                  | 117.3                                     | 1.80               | 0.00                      | NA                           | ND                             | ND               |
| PT-26    | Off of SEDA<br>property          | . 2.05                    | 12.30                                 | 667                       | 7.46                                                                                                                                                                                                                                                                                  | 0.7                                       | 5.80               | 0.08                      | 0.021                        | 29.6                           | 0.02             |
| MW-27    | North of impact<br>area          | 8.90                      | 14.24                                 | 559                       | 7.41                                                                                                                                                                                                                                                                                  | 44.8                                      | 100.00             | 0.01                      | 0.013                        | 393.0                          | ND               |
| MW-28    | Plume                            | 4.32                      | 14.58                                 | 618                       | 6.99                                                                                                                                                                                                                                                                                  | 111.0                                     | 1.25               | 0.00                      | 0.018                        | ND                             | ND               |
| MW-29    | Plume                            | 6.12                      | 14.97                                 | 931                       | 6.96                                                                                                                                                                                                                                                                                  | 113.0                                     | 4.85               | 0.00                      | 0.042                        | ND                             | ND               |
| MW-30    | South of West<br>Smith Farm Road | 6.84                      | 13.55                                 | 652                       | 6.97                                                                                                                                                                                                                                                                                  | 131.0                                     | 0.75               | 0.00                      | 0.011                        | ND                             | ND               |
| MW-31    | South of West<br>Smith Farm Road | NA                        | 15.74                                 | 569                       | 7.07                                                                                                                                                                                                                                                                                  | 106.6                                     | 3.00               | 0.06                      | 0.000                        | ND                             | ND               |
| MW-32    | Plume                            | 1.83                      | 12.99                                 | 662                       | 6.96                                                                                                                                                                                                                                                                                  | -20.5                                     | 2.50               | 0.17                      | 0.016                        | 6.6                            | ND               |
| MW-33    | South of West<br>Smith Farm Road | 6.07                      | 15.80                                 | 567                       | 7.00                                                                                                                                                                                                                                                                                  | 94.0                                      | 3.00               | 0.00                      | NA                           | ND                             | 0.01             |
| MW-34    | Off of Ash Landfill site         | 0.94                      | 14.98                                 | 509                       | 7.47                                                                                                                                                                                                                                                                                  | 49.7                                      | 5.40               | 0.07                      | NA                           | 3.1                            | ND               |
| MW-35D   | Off of SEDA<br>property          | 0.63                      | 11.37                                 | 541                       | 8.43                                                                                                                                                                                                                                                                                  | 2.8                                       | 1.50               | . 0.00                    | 0.028                        | 6.3                            | 0.03             |
| MW-36    | Off of SEDA<br>property          | 1.20                      | 13.70                                 | 734                       | 7.17                                                                                                                                                                                                                                                                                  | 77.1                                      | 2.20               | 0.00                      | 0.013                        | ND                             | ND               |

|               | Location                           | DO                  | Temp                          | Spec. Cond. | pH                                                                                                                                                                                                            | ORP                                | Turbidity | Fe+2              | Sulfide           | Methane             | Ethane           |
|---------------|------------------------------------|---------------------|-------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|-------------------|-------------------|---------------------|------------------|
| Well ID       | Optimum:                           | (mg/l)<br><0.5 mg/L | (deg. C)<br>>20C, accelerated | (umhos/cm)  | (units)<br>5 <ph<9< th=""><th>(mV)<br/>&lt;50 possible, &lt;-100 likely</th><th>(ntu)</th><th>(mg/l)<br/>&gt;1 mg/L</th><th>(mg/l)<br/>&gt;1 mg/L</th><th>(ug/l)<br/>&gt;500 ug/L</th><th>(ug/l)</th></ph<9<> | (mV)<br><50 possible, <-100 likely | (ntu)     | (mg/l)<br>>1 mg/L | (mg/l)<br>>1 mg/L | (ug/l)<br>>500 ug/L | (ug/l)           |
|               | Comments:                          |                     |                               | 1.          |                                                                                                                                                                                                               | possion, - roo mility              |           |                   | i i ing b         | daughter product    | daughter product |
|               |                                    |                     |                               |             |                                                                                                                                                                                                               |                                    |           | L                 |                   | dudginor product    | augner product   |
| MW-36Dup      | Off of SEDA<br>property            | NA                  | NA                            | NA          | NA                                                                                                                                                                                                            | NA                                 | NA        | NA                | NA                | ND                  | ND               |
| <b>MW-</b> 37 | North of impact<br>area            | NA                  | 16.52                         | 569         | 7.09                                                                                                                                                                                                          | 93.1                               | 7.36      | 0.00              | NA                | ND                  | ND               |
| MW-38D        | North of impact<br>area            | NA                  | 13.52                         | 550         | 7.02                                                                                                                                                                                                          | 25.1                               | 1.35      | 0.12              | NA                | 1.5                 | 0.04             |
| MW-39         | NE of impact area                  | NA                  | 15.07                         | 546         | 7.17                                                                                                                                                                                                          | 84.9                               | 0.58      | 0.01              | NA                | ND                  | ND               |
| MW-40         | East of impact area                | NA                  | 15.54                         | 603         | 7.23                                                                                                                                                                                                          | 94.6                               | 2.00      | 0.07              | NA                | ND                  | ND               |
| MW-41D        | Upgradient of Ash<br>Landfill site | NA                  | 11.62                         | 773         | 7.01                                                                                                                                                                                                          | 108.0                              | 1.50      | 0.00              | 0.060             | 2.9                 | 0.06             |
| MW-42D        | Upgradient of Ash<br>Landfill site | 0.78                | 11.39                         | 547         | 7.40                                                                                                                                                                                                          | 78.8                               | 0.90      | 0.00              | 0.014             | 1.0                 | 0.05             |
| MW-43         | East of impact area                | 8.95                | 13.38                         | 585         | 7.10                                                                                                                                                                                                          | 115.8                              | 2.10      | 0.00              | 0.016             | ND                  | ND               |
| MW-44A        | Plume                              | 0.30                | 12.95                         | 1401        | 7.09                                                                                                                                                                                                          | 112.2                              | 1.11      | 0.03              | 0.021             | 0.6                 | 0.85             |
| MW-45         | Plume                              | 7.73                | 13.77                         | 542         | 7.18                                                                                                                                                                                                          | 108.0                              | 1.45      | 0.00              | 0.018             | ND                  | ND               |
| MW-46         | Plune                              | NA                  | 15.45                         | 771         | 6.95                                                                                                                                                                                                          | -113.2                             | 1.50      | 0.77              | NA                | 130.9               | 0.16             |
| MW-47         | Off of SEDA<br>property            | 4.88                | 14.07                         | 621         | 7.13                                                                                                                                                                                                          | 85.7                               | 2.88      | 0.09              | 0.010             | ND                  | ND               |
| MW-48         | Plume                              | NA                  | 15.82                         | 585         | 7.11                                                                                                                                                                                                          | 73.0                               | 1.20      | 0.03              | NA                | ND                  | ND               |
| MW-49D        | Plume                              | NA                  | 12.65                         | 656         | 7.23                                                                                                                                                                                                          | -6.2                               | 2.10      | 0.22              | NA                | 1.1                 | 0.01             |
| MW-50D        | Plune                              | NA                  | 12.41                         | 519         | 7.56                                                                                                                                                                                                          | -63.4                              | 2,60      | 0.09              | NA                | 4.4                 | 0.01             |
| MW-51D        | Off of SEDA<br>property            | 0.70                | 12.28                         | 595         | 7.30                                                                                                                                                                                                          | 26.6                               | 1.58      | 0.92              | 0.009             | 3.7                 | 0.02             |
| MW-52D        | Off of SEDA<br>property            | 0.67                | 11.65                         | 482         | 8.65                                                                                                                                                                                                          | -14.5                              | 90.70     | 0.04              | 0.290             | 8.6                 | 0.01             |
| MW-53         | Plume                              | 4.47                | 14.25                         | 926         | 6.89                                                                                                                                                                                                          | 108.0                              | 0.46      | 0.00              | 0.010             | ND                  | ND               |
| MW-54D        | Plume                              | 0.34                | 12.47                         | 664         | 7.22                                                                                                                                                                                                          | 57.4                               | 0.47      | 0.03              | 0.008             | 2.9                 | 0.01             |
| MW-55D        | Plume                              | 0.43                | 13.32                         | 525         | 9.02                                                                                                                                                                                                          | -15.0                              | 27.00     | 0.02              | 0.141             | 10.4                | ND               |
| MW-56         | 250 ft West of<br>boundary of SEDA | 3.28                | 13.30                         | 669         | 7.00                                                                                                                                                                                                          | 112.0                              | 0.50      | 0.01              | 0.012             | ND                  | ND -             |
| MW-57D        | Off of SEDA<br>property            | 0.26                | 11.45                         | 590         | 9.12                                                                                                                                                                                                          | -32.1                              | 20.80     | 0.00              | 0.017             | 7.9                 | 0.02             |
| MW-58D        | Off of SEDA<br>property            | 0.15                | 11.17                         | 610         | 9.12                                                                                                                                                                                                          | -110.0                             | 138.00    | 0.00              | 0,500             | 10.9                | ND               |
| MW-59         | South of West<br>Smith Farm Road   | NA                  | 14.95                         | 1286        | 6.89                                                                                                                                                                                                          | 82.9                               | 0.60      | 0.01              | NA                | 18.5                | ND               |
| MW-60         | South of West<br>Smith Farm Road   | NA                  | 14.65                         | 768         | 7.11                                                                                                                                                                                                          | -40.0                              | 1.00      | 0.01              | NA                | ND                  | ND               |

ND = Not Detected

.

NA = Not Available

- 8/10/2000/7:24 AM

### Table 6-5 Round 1 Groundwater Monitoring-October 1999 Indicator Parameters and Field Measurements Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

| Well ID  | Location<br>Optimum:             | Ethene<br>(ug/l) | TOC<br>(mg/l)<br>>20 mg/L | Nitrate/Nitrite<br>(mg/l)<br><1 mg/L | Tot. Alkalinity<br>(mg/l CaCO3)<br>>2 x background | Sulfate<br>(mg/l)<br><20 mg/L | Chloride<br>.(mg/l)<br>>2 x background | Hardness<br>(CaCO3) | Hydrogen<br>(nM/l)<br>>1 nM | Hydrogen<br>(ug/l) |
|----------|----------------------------------|------------------|---------------------------|--------------------------------------|----------------------------------------------------|-------------------------------|----------------------------------------|---------------------|-----------------------------|--------------------|
|          | Comments:                        | daughter product |                           |                                      |                                                    |                               | daughter product                       |                     |                             |                    |
|          |                                  |                  |                           | 1                                    |                                                    |                               |                                        |                     |                             | T                  |
| PT-10    | East of impact area              | 0.03             | 4.1                       | 0.01                                 | 340                                                | 24.4                          | 58.2                                   | 350                 | 0.8                         | 1.613E-03          |
| PT-11    | South of West<br>Smith Farm Road | ND               | 8.3                       | 0.50                                 | 220                                                | 65.1                          | 83.8                                   | 328                 | ND                          | NA                 |
| PT-12A   | Plume                            | 0.26             | 4.9                       | 0.10                                 | 396                                                | 508.0                         | 91.2                                   | 935                 | ND                          | NA                 |
| PT-15    | South of West<br>Smith Farm Road | ND               | 2.2                       | . 0.12                               | NA                                                 | NA                            | NA                                     | NA                  | ND                          | NA                 |
| PT-16    | North of impact<br>area          | ND               | 2.7                       | 0.12                                 | 264                                                | 33.0                          | 8.8                                    | 300                 | 1.2                         | 2.419E-03          |
| PT-16Dup | North of impact<br>area          | ND               | 2.7                       | 0.11                                 | 262                                                | 34.0                          | 8.9                                    | 296                 | ND                          | NA                 |
| PT-17    | Plume                            | ND               | 4.3                       | 0.09                                 | 250                                                | 88.8                          | 10.4                                   | 280                 | 0.8                         | 0.002              |
| PT-18    | Plume                            | 4.47             | 8.5                       | 0.08                                 | 516                                                | 210.0                         | 23.7                                   | 660                 | 2.8                         | 0.006              |
| PT-19    | South of West<br>Smith Farm Road | 0.08             | 116.0                     | <0.01                                | 500                                                | <5                            | 63.7                                   | 656                 | 0.9                         | 0.002              |
| PT-20    | Plume                            | ND               | 4.5                       | 0.21                                 | 310                                                | 185.0                         | 12.7                                   | 412                 | 0.8                         | 0.002              |
| PT-20Dup | Plume                            | ND               | NA                        | NA                                   | NA                                                 | NA                            | NA                                     | 425                 | ND                          | NA                 |
| PT-21A   | Plume                            | ND               | 3.1                       | 0.19                                 | 302                                                | 265.0                         | 116.0                                  | 740                 | 6.1                         | 0.012              |
| PT-22    | Plume                            | ND               | 4.3                       | 0.24                                 | 310                                                | 339.0                         | 86.7                                   | 680                 | ND                          | NA                 |
| PT-23    | North of impact<br>area          | 0.01             | 2.3                       | 0.03                                 | 280                                                | 37.7                          | 9.2                                    | 310                 | ND                          | NA                 |
| PT-24    | Рішпе                            | ND               | 3.6                       | 0.94                                 | 226                                                | 80.3                          | 13.7                                   | 308                 | 0.8                         | 0.002              |
| PT-25    | South of West<br>Smith Farm Road | ND               | 2.4                       | 0.66                                 | 184                                                | 31.3                          | 9.6                                    | 204                 | 0.8                         | 0.002              |
| PT-26    | Off of SEDA<br>property          | ND               | 2.2                       | 0.10                                 | 270                                                | 51.4                          | 42.3                                   | 164                 | ND                          | NA                 |
| MW-27    | North of impact<br>area          | ND               | 3.3                       | 1.00                                 | 256                                                | 122.0                         | 10.5                                   | 240                 | ND                          | NA                 |
| MW-28    | Plume                            | ND               | 2.6                       | 0.02                                 | 272                                                | 55.7                          | 10.1                                   | 370                 | ND                          | NA                 |
| MW-29    | Plume                            | ND               | 2.9                       | 0.58                                 | 324                                                | 143.0                         | 31.0                                   | 590                 | 0.6                         | 0.001              |
| MW-30    | South of West<br>Smith Farm Road | ND               | 4.2                       | 0.17                                 | 290                                                | 58.8                          | 14.0                                   | 308                 | 1.3                         | 0.003              |
| MW-31    | South of West<br>Smith Farm Road | ND               | 3.4                       | 0.55                                 | 268                                                | 28.9                          | . 9.4                                  | 256                 | 26.0                        | 0.052              |
| MW-32    | Plume                            | ND               | 3.7                       | 0.74                                 | 300                                                | 53.1                          | 11.9                                   | 302                 | 8.1                         | 0.016              |
| MW-33    | South of West<br>Smith Farm Road | ND               | 2.9                       | 1.40                                 | 228                                                | 50.2                          | 16.9                                   | 292                 | 0.7                         | 0.001              |
| MW-34    | Off of Ash Landfill site         | ND               | 2.2                       | 0.05                                 | 264                                                | 31.1                          | 4.4                                    | 160                 | 13.8                        | 0.028              |
| MW-35D   | Off of SEDA<br>property          | 0.07             | 2.0                       | 0.04                                 | 232                                                | 34.9                          | 19.0                                   | 100                 | 1.4                         | 0.003              |
| MW-36    | Off of SEDA<br>property          | ND               | 4.2                       | 0.81                                 | 298                                                | 59.9                          | 20.2                                   | 340                 | 1.3                         | 0.003              |

### Table 6-5 Round 1 Groundwater Monitoring-October 1999 Indicator Parameters and Field Measurements Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

| Well ID       | Location                           | Ethene<br>(ug/l) | TOC<br>(mg/l) | Nitrate/Nitrite<br>(mg/l) | Tot. Alkalinity<br>(mg/l CaCO3) | Sulfate<br>(mg/l) | Chloride<br>(mg/l) | Hardness<br>(CaCO3) | Hydrogen<br>(nM/l) | Hydrogen<br>(ug/l) |
|---------------|------------------------------------|------------------|---------------|---------------------------|---------------------------------|-------------------|--------------------|---------------------|--------------------|--------------------|
|               | Optimum:                           |                  | >20 mg/L      | <1 mg/L                   | >2 x background                 | <20 mg/L          | >2 x background    |                     | >1 nM              |                    |
|               | Comments:                          | daughter product |               |                           |                                 |                   | daughter product   |                     |                    |                    |
|               | 000 00001                          |                  |               |                           |                                 |                   |                    |                     |                    |                    |
| MW-36Dup      | Off of SEDA<br>property            | ND               | NA            | NA                        | NA                              | NA                | NA                 | 346                 | ND                 | NA                 |
| <b>MW-</b> 37 | North of impact area               | 0.07             | 3.2           | 0.17                      | 272                             | 35.1              | 7.7                | 300                 | 0.8                | 1.613E-03          |
| MW-38D        | North of impact<br>area            | ND               | 2.5           | 0.01                      | 248                             | 31.2              | 12.2               | 280                 | 1.2                | 2.419E-03          |
| MW-39         | NE of impact area                  | ND               | 3.5           | 0.11                      | 244                             | 34.2              | 10.3               | 278                 | 2.0                | 4.032E-03          |
| MW-40         | East of impact area                | ND               | 2.9           | 0.33                      | 248                             | 85.0              | 6.3                | 294                 | 0.8                | 0.002              |
| MW-41D        | Upgradient of Ash<br>Landfill site | 0.02             | 7.5           | 0.08                      | 340                             | 76.6              | . 8.1              | 348                 | 1.0                | `2.016E-03         |
| MW-42D        | Upgradient of Ash<br>Landfill site | 0.02             | 2.5           | 0.09                      | 272                             | 27.7              | 3.8                | 300                 | ND                 | NA                 |
| MW-43         | East of impact area                | ND               | 4.0           | 0.03                      | 264                             | 69.0              | 11.2               | 330                 | ND                 | NA                 |
| MW-44A        | Рішпе                              | 4.72             | 7.9           | NA                        | NA                              | NA                | NA                 | 710                 | ND                 | NA                 |
| MW-45         | Plume                              | ND               | 2.8           | 0.02                      | 240                             | 40.1              | 11.5               | 270                 | 4.2                | 0.008              |
| MW-46         | Plume                              | 0.05             | 5.2           | 0.12                      | 316                             | 77.1              | 18.1               | 404                 | ND                 | NA                 |
| MW-47         | Off of SEDA<br>property            | ND               | 2.8           | 2.20                      | 238                             | 69.8              | 19.2               | 288                 | 9.3                | 1.875E-02          |
| MW-48 ·       | Plume                              | ND               | 3.2           | 0.18                      | 260                             | 60.1              | 10.8               | 304                 | 1.0                | 0.002              |
| MW-49D        | Plume                              | 0.01             | 2.7           | 0.02                      | 276                             | 66.6              | 18.5               | 340                 | 1.2                | 0.002              |
| MW-50D        | Plume                              | 0.02             | 2.6           | 0.04                      | 240                             | . 28.7            | 12.5               | 228                 | 1.6                | 0.003              |
| MW-51D        | Off of SEDA<br>property            | 0.02             | 2.5           | 1.30                      | 242                             | 61.4              | 15.9               | 242                 | 0.8                | 0.002              |
| MW-52D        | Off of SEDA<br>property            | 0.06             | 1.7           | 0.11                      | 208                             | 39.9              | 2.2                | <2                  | 5.3                | 0.011              |
| MW-53         | Plume                              | ND               | 2.9           | 0.35                      | 314                             | 161.0             | 32.5               | 500                 | 0.6                | 0.001              |
| MW-54D        | Plume                              | ND               | 1.9           | 0.03                      | 240                             | 67.3              | 51.0               | 298                 | 4,2                | 0.008              |
| MW-55D        | Plume                              | 0.02             | 2.2           | 0.23                      | 252                             | 33.5              | 1.8                | 10                  | 1.6                | 0.003              |
| MW-56         | 250 ft West of<br>boundary of SEDA | ND               | 2.9           | 1.80                      | 200                             | 112.0             | 28.8               | 308                 | 4.7                | 0.009              |
| MW-57D        | Off of SEDA<br>property            | 0.05             | 1.9           | 0.03                      | 258                             | 50.8              | 4.9                | 10                  | 3.4                | 0.007              |
| MW-58D        | Off of SEDA<br>property            | 0.02             | 2.0           | 0.02                      | 276                             | 53.1              | 2.4                | 20                  | 1.9                | 0.004              |
| MW-59         | South of West<br>Smith Farm Road   | ND               | 3.9           | 0.02                      | 284                             | 88.2              | 47.4               | 364                 | 2.1                | 4.233E-03          |
| <b>MW-6</b> 0 | South of West<br>Smith Farm Road   | ND               | 8.1           | 0.05                      | 516                             | 230.0             | 27.6               | 688                 | 0.9                | 1.814E-03          |

ND = Not Detected

NA = Not Available

| Well ID        | Location                         | DO<br>(maff)        | Temp<br>(deg.C)                       | Spec. Cond.<br>(umhos/cm) | рН                                                                                                                                       | ORP<br>(mV)            | Turbidity | Fe+2    | Sulfide | Methane             |
|----------------|----------------------------------|---------------------|---------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|---------|---------|---------------------|
| weir ID        | Optimum:                         | (mg/l)<br><0.5 mg/L | >20C, accelerated                     | (unnios/cm)               | 5 <ph<9< td=""><td>&lt;50 poss, &lt;-100 likely</td><td>(ntu)</td><td>(mg/l)</td><td>(mg/l)</td><td>(ug/l)<br/>&gt;500 ug/L</td></ph<9<> | <50 poss, <-100 likely | (ntu)     | (mg/l)  | (mg/l)  | (ug/l)<br>>500 ug/L |
|                | Comments:                        | <0.5 mg/L           | ~20C, acceletateu                     |                           | J~pn~y                                                                                                                                   | 50 poss, <-100 likely  |           | >1 mg/L | >1 mg/L | daughter product    |
|                | Comments.                        |                     |                                       |                           |                                                                                                                                          |                        |           |         |         | daugmei product     |
| PT-10          | East of impact area              | 1.6                 | 9.43                                  | 765                       | 7.28                                                                                                                                     | 71.3                   | 1.3       | 0.10    | 0.011   | 7.5                 |
|                | South of West                    |                     | · · · · · · · · · · · · · · · · · · · |                           |                                                                                                                                          |                        |           |         |         |                     |
| PT-11          | Smith Farm Road                  | 8.04                | 8.36                                  | 968                       | 7.42                                                                                                                                     | 78.0                   | 50.5      | 0.00    | 0.110   | 1.8                 |
| PT-12A         | Plume                            | 1.55                | 5                                     | 1462                      | 7                                                                                                                                        | 53.0                   | 1.1       | 0.06    | 0.014   | 4.4                 |
| PT-15          | South of West<br>Smith Farm Road | 9.32                | 10.24                                 | 512                       | 7.58                                                                                                                                     | 86.5                   | 5.91      | 0.13    | ND      | 1.0                 |
| PT-16          | North of impact<br>area          | 3.8                 | 7.27                                  | 500                       | 7.07                                                                                                                                     | 119.0                  | 1.25      | 0.00    | 0.000   | ND                  |
| PT-16Dup       | North of impact                  | NA                  | NA                                    | NA                        | NA                                                                                                                                       | NA                     | NA        | NA      | NA      | ND                  |
| PT-17          | area<br>Plume                    | 3.19                | 7.93                                  | 629                       | 7.01                                                                                                                                     | 108.0                  | <u> </u>  | 0.01    | 0.021   | ND                  |
| PT-17<br>PT-18 | Plume                            | 3.4                 | 6.65                                  | 1544                      | 6.82                                                                                                                                     | 108.0                  | 3.25      | 0.01    | 0.021   | 0.6                 |
| PT-19          | South of West                    | 0.4                 | 6.96                                  | 726                       | 6.96                                                                                                                                     | -144.0                 | 1.5       | 0.65    | · 0.028 | 1247.3              |
| PT-20          | Smith Farm Road<br>Plume         | 1.22                | 7.29                                  | 893                       | 6.98                                                                                                                                     | 92.3                   | 1.5       | 0.02    | 0,000   | ND                  |
| PT-21A         | Plume                            | 1.22                | 6,52                                  | 1112                      | 7.24                                                                                                                                     | 0.0                    | 0,57      | 0.35    | 0.000   | 6.5                 |
| PT-22          | Plume                            | 4.11                | 6                                     | 1175                      | 6.9                                                                                                                                      | 148.5                  | 0.37      | ND      | ND      | ND                  |
|                | North of impact                  |                     |                                       |                           |                                                                                                                                          | · · · ·                |           |         |         |                     |
| PT-23          | area                             | 7.27                | 7.36                                  | 504                       | 7.27                                                                                                                                     | 104.0                  | 7.6       | 0.18    | 0.030   | ND                  |
| PT-24          | Plume                            | 0.29                | 7.57                                  | 517                       | 7.62                                                                                                                                     | 68.5                   | 3.6       | 0.06    | 0.009   | 2880.2              |
| PT-25          | South of West<br>Smith Farm Road | 9.62                | 8.32                                  | 391                       | 7.04                                                                                                                                     | 138.7                  | 1.2 .     | 0.01    | 0.009   | ND                  |
| PT-26          | Off of SEDA<br>property          | 7.43                | 8.26                                  | 697                       | 7.23                                                                                                                                     | 92.5                   | 10        | 0.11    | ND      | 0.8                 |
| MW-27          | North of impact<br>area          | 9.57                | 6.83                                  | 547                       | 7.40                                                                                                                                     | 87.8                   | 8.95      | 0.11    | 0.030   | 12.0                |
| MW-28          | Plume                            | 5.2                 | 7.14                                  | 607                       | 7.12                                                                                                                                     | 98.0                   | 7.2       | 0.13    | 0.024   | 0.4                 |
| MW-29          | Plume                            | 7.31                | 7.37                                  | 828                       | 7.03                                                                                                                                     | 102.9                  | 4         | 0.12    | 0.033   | 0.2                 |
| MW-30          | South of West<br>Smith Farm Road | 8.67                | 7.01                                  | 569                       | 7.10                                                                                                                                     | 144.9                  | . 2.2     | 0.04    | 0.030   | ND                  |
| MW-30Dup       | South of West<br>Smith Farm Road | NA                  | NA                                    | NA                        | NA                                                                                                                                       | NA                     | NA        | 0.04    | NA      | ND                  |
| MW-31          | South of West<br>Smith Farm Road | 10.51               | 8.14                                  | 464                       | 7.18                                                                                                                                     | 133.0                  | 8.8       | 0.26    | 0.075   | ND                  |
| MW-32          | Plume                            | 4.45                | 7.11                                  | 630                       | 7,05                                                                                                                                     | 131.0                  | 9.56      | 0.09    | 0.042   | ND                  |
| MW-32<br>MW-33 | South of West<br>Smith Farm Road | 7.5                 | 7.51                                  | 553                       | 6.97                                                                                                                                     | 137.0                  | 3.2       | 0.02    | 0.019   | ND                  |
| MW-34          | Off of Ash Landfill<br>site      | 1.49                | 9.25                                  | 533                       | 7.39                                                                                                                                     | 111.0                  | 8.9       | 0.06    | 0.030   | 0.3                 |
| MW-35D         | Off of SEDA<br>property          | 4.18                | 8.78                                  | 483                       | 8.40                                                                                                                                     | 25.2                   | 6.5       | 0.04    | 0.010   | 3.5                 |

8/10/2000/7:23 AM

| Well ID      | Location                           | DO<br>(mg/l) | Temp<br>(deg.C)   | Spec. Cond.<br>(umhos/cm) | pH                                                                                                                                 | ORP<br>(mV)            | Turbidity<br>(ntu) | Fe+2<br>(mg/l) | Sulfide<br>(mg/l) | Methane<br>(ug/l) |
|--------------|------------------------------------|--------------|-------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|----------------|-------------------|-------------------|
|              | Optimum:                           | <0.5 mg/L    | >20C, accelerated | (                         | 5 <ph<9< td=""><td>&lt;50 poss, &lt;-100 likely</td><td>()</td><td>&gt;1 mg/L</td><td>&gt;1 mg/L</td><td>&gt;500 ug/L</td></ph<9<> | <50 poss, <-100 likely | ()                 | >1 mg/L        | >1 mg/L           | >500 ug/L         |
|              | Comments:                          |              |                   |                           | pri                                                                                                                                | espood, roomory        |                    |                |                   | daughter product  |
| MW-36        | Off of SEDA<br>property            | 1.51         | 8.44              | 633                       | 7.16                                                                                                                               | 32.3                   | 1.95               | 0.03           | 0.005             | ND                |
| MW-37        | North of impact<br>area            | 6.43         | 7.63              | 496                       | 7.05                                                                                                                               | 148.0                  | 3.1                | 0.00           | 0.000             | ND                |
| MW-38D       | North of impact area               | 2.9          | 9.75              | 515                       | 7.34                                                                                                                               | 76.8                   | 7.5                | 0.00           | 0.008             | 0.6               |
| MW-39        | NE of impact area                  | 3.4          | 7.64              | 554                       | 7.18                                                                                                                               | 116.5                  | 0.95               | 0.03           | 0.010             | 0.6               |
| MW-40        | East pf impact area,<br>ND         | 6.49         | 7.99              | 576                       | 7.38                                                                                                                               | 80.3                   | 1.5                | 0.01           | 0.009             | 0.5               |
| MW-41D       | Upgradient of Ash<br>Landfill site | 0.77         | 7.15              | 734                       | 7.23                                                                                                                               | 125.0                  | 2.45               | 0.00           | 0.010             | 3.0               |
| MW-42D       | Upgradient of Ash<br>Landfill site | 1.26         | 9.41              | 536                       | 7.21                                                                                                                               | 35.1                   | 1.97               | 0.17           | 0.080             | 8.2               |
| MW-43        | East impact area                   | 5.38         | 5.24              | 657                       | 7.28                                                                                                                               | 107.0                  | 0.65               | 0.01           | 0.009             | 0.6               |
| MW-44A       | Plume                              | 0.83         | 5.57              | 2242                      | 7.25                                                                                                                               | 66.5                   | 3.5                | 0.08           | 0.016             | 6.2               |
| MW-45        | Plume                              | 4.13         | 6.10              | 549                       | 7.29                                                                                                                               | 53.0                   | 4.5                | 0.01           | NA                | 0.5               |
| MW-46        | Plume                              | 1.03         | 7.19              | 758                       | 7.10                                                                                                                               | -71.1                  | 6.36               | 0.09           | 0.040             | 6.1               |
| MW-47        | Off of SEDA<br>property            | NA           | NA                | NA                        | NA                                                                                                                                 | NA                     | NA                 | NA             | NA                | ND                |
| MW-48        | Plume                              | 2.25         | 7.26              | 538                       | 7.23                                                                                                                               | 12.0                   | 4.5                | 0.06           | 0.018             | ND                |
| MW-49D       | Plume                              | 1.58         | 8.63              | 552                       | 7.27                                                                                                                               | 40.8                   | 10                 | 0.05           | 0.000             | 3.7               |
| MW-50D       | Plume                              | 1.07         | 8.04              | 460                       | 7.56                                                                                                                               | -46.0                  | 6.1                | 0.13           | 0.012             | 8.2               |
| MW-51D       | Off of SEDA<br>property            | 1.24         | 9.82              | 544                       | 7.40                                                                                                                               | 69.9                   | 1.23               | NA             | NA                | 0.6               |
| MW-52D       | Off of SEDA<br>property            | 5.2          | 6.59              | 439                       | 8.74                                                                                                                               | 31.5                   | 85.2               | 0.15           | NA                | 4.4               |
| MW-53        | Plume                              | 5.37         | 7.46              | 752                       | 6.94                                                                                                                               | 149.0                  | 6.18               | 0.01           | 0.011             | ND                |
| MW-53Dup     | Plume                              | NA           | NA                | NA                        | NA                                                                                                                                 | NA                     | NA                 | NA             | NA                | ND                |
| MW-54D       | Plume                              | 0.43         | 7.47              | 618                       | 7.39                                                                                                                               | 0.0                    | 3                  | 0.04           | 0.058             | 2.7               |
| MW-55D       | Plume                              | 1.43         | 7.24              | 464                       | 9.02                                                                                                                               | -24.0                  | . 47.9             | 0.10           | NA                | 9.1               |
| MW-56        | 250 ft West of<br>boundary of SEDA | 2.07         | 4.35              | 535                       | 7.13                                                                                                                               | 85.3                   | 152                | NA             | NA                | ND                |
| MW-57D       | Off of SEDA<br>property            | 0.83         | 10.36             | 535                       | 9.12                                                                                                                               | -79.8                  | 36.2               | 0.23           | 0.094             | 7.5               |
| MW-58D       | Off of SEDA<br>property            | 0.59         | 9.89              | 554                       | 9.24                                                                                                                               | -96.0                  | 214                | NA             | NA                | 11.0              |
| MW-59        | South of West<br>Smith Farm Road   | 2.07         | 6.21              | 1164                      | 6.95                                                                                                                               | 79.2                   | 5                  | 0.11           | 0.025             | 0.5               |
| <b>MW-60</b> | South of West<br>Smith Farm Road   | 0.7          | 6.80              | 665                       | 7.13                                                                                                                               | 13.6                   | 1.5                | NA             | NA                | 1.3               |

ND = Not Detected

NA = Not Available

p:\pit\projects\seneca\irontmc\draftmemo\indic2.xls

| Well ID  | Location                         | Ethane<br>(ug/l) | Ethene<br>(ug/l) | TOC<br>(mg/l) | Nitrate/Nitrite<br>(mg/l) | Tot. Alkalinity<br>(mg/l CaCO3) | Sulfate<br>(mg/l) | Chloride<br>(mg/l) | Hardness<br>(CaCO3) | Hydrogen<br>(nM/l) | Hydrogen<br>(ug/l) |
|----------|----------------------------------|------------------|------------------|---------------|---------------------------|---------------------------------|-------------------|--------------------|---------------------|--------------------|--------------------|
|          | Optimum:                         | (491)            | (46/1)           | >20 mg/L      | <1 mg/L                   | >2 x background                 | <20 mg/L          | >2 x background    | (CacOS)             | >1 nM              | (ug/1)             |
|          | Comments:                        | daughter product | daughter product | - 20 mg/2     | -1 mg/D                   | 2 X background                  | ~20 mg/L          | daughter product   |                     |                    |                    |
| DT 10    | E Ci                             | 0.02             | 0.02             |               |                           |                                 |                   |                    |                     |                    |                    |
| PT-10    | East of impact area              | 0.03             | 0.03             | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 0.5                | 1.008E-03          |
| PT-11    | South of West<br>Smith Farm Road | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | ND                 | NA                 |
| PT-12A   | Plume                            | · 0.34           | 0.21             | 2.7           | 0.02                      | 356                             | 506.0             | 92.0               | 708                 | ND                 | NA                 |
| PT-15    | South of West<br>Smith Farm Road | 0.03             | ND               | 1.3           | 0.11                      | 230                             | 48.9              | 8.0                | 265                 | ND                 | NA                 |
| PT-16    | North of impact<br>area          | ND               | ND               | 1.3           | <0.01                     | 248                             | 129.0             | 9.0                | 285                 | 0.8                | 1.613E-03          |
| PT-16Dup | North of impact<br>area          | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | ND                 | ND                 |
| PT-17    | Plume                            | 0.03             | ND               | 2.6           | 0.02                      | 290                             | 144.0             | 10.0               | 308                 | 2.3                | 0.005              |
| PT-18    | Plume                            | ND               | 0.02             | 6.9           | 0.03                      | 520                             | 570.0             | 27.0               | 935                 | 7.7                | 0.016              |
| PT-19    | South of West<br>Smith Farm Road | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 0.7                | 0.001              |
| PT-20    | Plume                            | 0.01             | ND               | 2.6           | 0.03                      | 302                             | 261.0             | 20.0               | 480                 | 8.2                | 0.017              |
| PT-21A   | Plume                            | 2.39             | ND               | 2.2           | 0.02                      | 268                             | 238.0             | 117.0              | 510                 | ND                 | NA                 |
| PT-22    | Plume                            | 0.01             | ND               | 2.1           | 0.06                      | 302                             | 333.0             | 49.0               | 602                 | 5.4                | 0.011              |
| PT-23    | North of impact<br>area          | ND               | ND               | 1.3           | 0.01                      | 240                             | 161.0             | 9.0                | 288                 | 1.4                | 0.003              |
| PT-24    | Plume                            | 1.56             | 0.45             | 2             | <0.01                     | 84                              | 159               | 28                 | 252                 | 5.2                | 0.010              |
| PT-25    | South of West<br>Smith Farm Road | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 4.2                | 0.008              |
| PT-26    | Off of SEDA<br>property          | ND               | ND               | 1.0           | 0.19                      | 310                             | 80.5              | 12.0               | 352                 | 4.4                | 0.009              |
| MW-27    | North of impact<br>area          | ND               | ND               | 1.6           | 0.10                      | 246                             | 45.6              | 9.0                | 252                 | ND                 | NA                 |
| MW-28    | Plume                            | 0.01             | ND               | 2.2           | 0.07                      | 278                             | 74.2              | 11.0               | 348                 | 4.9                | 0.010              |
| MW-29    | Plume                            | ND               | ND               | 2.3           | 0.03                      | 312                             | 143.0             | 24.0               | 436                 | 3.4                | 0.007              |
| MW-30    | South of West<br>Smith Farm Road | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 4.4                | . 0.009            |
| MW-30Dup | South of West<br>Smith Farm Road | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | ND                 | NA                 |
| MW-31    | South of West<br>Smith Farm Road | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 4.7                | 0.009              |
| MW-32    | Plume                            | ND               | ND               | NA            | NA                        | NĂ                              | NA                | NA                 | NA                  | 3.5                | 0.007              |
| MW-33    | South of West<br>Smith Farm Road | 0.02             | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 3.8                | 0.008              |
| MW-34    | Off of Ash Landfill<br>site      | ND               | ND               | NA            | NA                        | NA                              | NA                | NA                 | NA                  | 9.4                | 0019               |
| MW-35D   | Off of SEDA<br>property          | 0.03             | 0.07             | 1.2           | 0.26                      | 252                             | 32.8              | 12.0               | 60                  | 1.6                | 0.003              |

|                 | Location                           | Ethane           | Ethene           | TOC      | Nitrate/Nitrite | Tot. Alkalinity | Sulfate  | Chloride         | Hardness | Hydrogen | Hydrogen  |
|-----------------|------------------------------------|------------------|------------------|----------|-----------------|-----------------|----------|------------------|----------|----------|-----------|
| Well ID         |                                    | (ug/l)           | (ug/l)           | (mg/l)   | (mg/l)          | (mg/l CaCO3)    | _(mg/l)  | (mg/l)           | (CaCO3)  | (nM/l)   | (ug/l)    |
|                 | Optimum:                           | 1 1              | 1.1.1.           | >20 mg/L | <1 mg/L         | >2 x background | <20 mg/L | >2 x background  |          | >1 nM    |           |
|                 | Comments:                          | daughter product | daughter product |          |                 |                 |          | daughter product |          |          |           |
| MW-36           | Off of SEDA<br>property            | ND               | ND               | 2.4      | 0.44            | 256             | 63.5     | 16.0             | 300      | 0.9      | 0.002     |
| MW-37           | North of impact<br>area            | ND               | ND               | 1.1      | 0.10            | 248             | 151.0    | 6.0              | 280      | 0.9      | 0.002     |
| MW-38D          | North of impact<br>area            | 0.02             | ND               | 1.3      | 0.04            | 256             | 135.0    | 11.0             | 278      | 1.1      | 0.002     |
| MW-39           | NE of impact area                  | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 0.7      | 0.001     |
| MW-40           | East pf impact area,<br>ND         | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 0.8      | 0.002     |
| MW-41D          | Upgradient of Ash<br>Landfill site | 0.03             | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 1.2      | 0.002     |
| MW-42D          | Upgradient of Ash<br>Landfill site | 0.03             | 0.02             | NA       | NA              | NA              | NA       | NA               | NA       | ND       | NA        |
| MW-43           | East impact area                   | ND               | ND               | NA       | NA              | ŇA              | NA       | NA               | NA       | 0.7      | 0.001     |
| MW-44A          | Plume                              | 0.26             | 1.27             | 6.1      | 0.06            | 290             | 693.0    | 252.0            | 1090     | ND       | NA        |
| MW-45           | Plume                              | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 3.1      | 0.006     |
| MW-46           | Plume                              | 0.09             | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 1.3      | 0.003     |
| MW-47           | Off of SEDA<br>property            | ND               | ND               | NA       | NA              | NA              | NA       | NA .             | NA       | ND       | NA        |
| MW-48           | Plume                              | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 0.6      | 0.001     |
| MW-49D          | Plume                              | 0.02             | 0.04             | 1.5      | 0.24            | 246             | 50.5     | 21.0             | 326      | 6.7      | 0.014     |
| MW-50D          | Plume                              | 0.01             | 0.03             | 0.6      | 0.10            | 222             | 31.1     | 13.0             | 225      | 1.5      | 0.003     |
| MW-51D          | Off of SEDA<br>property            | 0.01             | ND               | 1.2      | 2.80            | 224             | 57.8     | 19.0             | 250      | 8.8      | 0.018     |
| MW-52D          | Off of SEDA<br>property            | 0.02             | 0.11             | 0.7      | 0.24            | 200             | 47.1     | 2.0              | 23       | ND       | NA        |
| MW-53           | Plume                              | 0.01             | ND               | 2.3      | 0.14            | 282             | 130.0    | 24.0             | 370      | 3.2      | 0.006     |
| MW-53Dup        | Plume                              | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | ND       | NA        |
| MW-54D          | Plume                              | 0.01             | ND               | 0.7      | 0.08            | 238             | 57.1     | 42.0             | 292      | 4.9      | 0.010     |
| MW-55D          | Plume                              | 0.02             | 0.08             | 1.3      | 0.15            | 240             | 32.9     | 2.0              | 11       | 2.8      | 0.006     |
| MW-56           | 250 ft West of<br>boundary of SEDA | 0.02             | ND               | 2.3      | 1.89            | 190             | 88.9     | 23.0             | 305      | 1.1      | 0.002     |
| MW-57D          | Off of SEDA<br>property            | 0.02             | 0.02             | <0.5     | 0.12            | 252             | 43.8     | 6.0              | 11       | 2.3      | 0.005     |
| MW-58D          | Off of SEDA<br>property            | 0.02             | 0.02             | <0.5     | 0.04            | 266             | 55.0     | 4.0              | 20       | 4.8      | 0.010     |
| . <b>MW-5</b> 9 | South of West<br>Smith Farm Road   | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 4.3      | 8.668E-03 |
| <b>MW-6</b> 0   | South of West<br>Smith Farm Road   | ND               | ND               | NA       | NA              | NA              | NA       | NA               | NA       | 1.2      | 2.419E-03 |

ND = Not Detected

.

NA = Not Available

.

### Table 7-1 Summary of Sub-Alternatives of Alternative 3a Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

|                                    | Alternative 1                                                                                                                                                                                                     | Alternative 2                                                                                                                                                                                                     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                        | One Reactive Wall Downgradient of Existing<br>Boundary Wall and Natural Attenuation of Plume<br>Upgradient of Boundary Wall                                                                                       | One Reactive Wall Downgradient of Boundary Wall<br>and Two Reactive Walls Upgradient of the Boundary<br>Wall with Vegatable Oil Addition Upgradient of<br>Source Wall                                             |
| Total Number of<br>Treatment Walls | 2 .                                                                                                                                                                                                               | 4                                                                                                                                                                                                                 |
| Wall Descriptions                  | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                            |                                                                                                                                                                                                                   |
| 1                                  | Boundary wall (existing)                                                                                                                                                                                          | Boundary wall (existing)                                                                                                                                                                                          |
|                                    | (1.2' thick, 6-8' deep, 645' long, 50% iron)                                                                                                                                                                      | (1.2' thick, 6-8' deep, 645' long, 50% iron)                                                                                                                                                                      |
| 2                                  | Compliance wall 100 ft west of boundary wall                                                                                                                                                                      | Compliance wall 100 ft west of boundary wall                                                                                                                                                                      |
|                                    | (2.1' thick, 8' deep, 645' long, 100% iron)                                                                                                                                                                       | (2.1' thick, 8' deep, 645' long, 100% iron)                                                                                                                                                                       |
| 3                                  |                                                                                                                                                                                                                   | Middle wall just east of West Patrol Road                                                                                                                                                                         |
|                                    |                                                                                                                                                                                                                   | (1' thick, 9' deep, 700' long, 100% iron)                                                                                                                                                                         |
| 4                                  |                                                                                                                                                                                                                   | Source wall about 600 ft east of boundary wall                                                                                                                                                                    |
|                                    | ,                                                                                                                                                                                                                 | (2' thick, 11' deep, 700' long, 100% iron)                                                                                                                                                                        |
| Additional                         | None                                                                                                                                                                                                              | Application of vegetable oil as a carbon source for                                                                                                                                                               |
| Treatment                          |                                                                                                                                                                                                                   | microbes in the zone upgradient of source wall -                                                                                                                                                                  |
|                                    |                                                                                                                                                                                                                   | yields hydrogen (electron donor) for reductive                                                                                                                                                                    |
|                                    |                                                                                                                                                                                                                   | dechlorination                                                                                                                                                                                                    |
| New Monitoring                     | 7                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                |
| Wells                              |                                                                                                                                                                                                                   | -                                                                                                                                                                                                                 |
| Monitoring<br>Program              |                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |
| -                                  | Sample 4 wells two times to monitor performance of the compliance wall.                                                                                                                                           | Sample 11 wells two times to monitor performance of newly installed walls.                                                                                                                                        |
| Every Year                         | Sample 8 wells and measure GW elevation in 67<br>wells, in order to monitor performance of<br>compliance wall and to monitor possibel off-site<br>migration of plume                                              | Sample 8 wells and measure GW elevation in 73<br>wells, in order to monitor performance of compliance<br>wall, and to monitor possible off-site migration of<br>plume                                             |
| Every 5 Years                      | Sample 60 wells on site for VOC's in order to<br>monitor extent of chlorinated ethenes plume, test<br>monitoring wells in or around walls for inorganics<br>as well to monitor possible fouling of iron in walls. | Sample 66 wells on site for VOC's in order to monitor<br>extent of chlorinated ethenes plume, test monitoring<br>wells in or around walls for inorganics as well to<br>monitor possible fouling of iron in walls. |
| Operation and<br>Maintenance       | Boundary and compliance walls                                                                                                                                                                                     | Boundary, compliance, middle and source walls                                                                                                                                                                     |
| Approximate Time<br>of Remediation | 60 years                                                                                                                                                                                                          | 15 years                                                                                                                                                                                                          |

Notes:

See Figure 7-1 for location of proposed walls

Appendix G has detailed cost calculations

p:\pit\projects\seneca\irontrnc\draftmemo\final\ironcost2.xls\Table 7-1

Pre-Construction and Groundwater Monitoring Program for Sub-Alternative 1 of Alternative 3a

### Ash Landfill Feasibility Memorandum

Seneca Army Depot Activity

|         | ]          | Monito | oring Well                       |                                       | Precons      | struction                        | I          | First Yea                        | r                             |                | Every                         | Year        | T          | Every 5 Ye                       | ars                        |                |
|---------|------------|--------|----------------------------------|---------------------------------------|--------------|----------------------------------|------------|----------------------------------|-------------------------------|----------------|-------------------------------|-------------|------------|----------------------------------|----------------------------|----------------|
| ID      | Туре       | Status | Location                         | Purpose                               | Slug Testing | voc                              | Inorganics | voc                              | Methane,<br>ethane,<br>ethene | H <sub>2</sub> | V0C                           | Water level | Inorganics | voc                              | Methane,<br>ethane, ethene | H <sub>2</sub> |
|         |            |        |                                  | , , , , , , , , , , , , , , , , , , , | # of times   | # of times (type of<br>analysis) | # of times | # of times (type of<br>analysis) | # of times                    | # of<br>times  | # of times (type of analysis) | # of times  | # of times | # of times (type of<br>analysis) | # of times                 | # of<br>times  |
| PT-10   | Bedrock    | E      | East of impact area              | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            |                                  |                            |                |
| PT-11   | Overburden | E      | South of West Smith<br>Farm Road | Plume monitoring                      | <u>.</u>     |                                  |            |                                  |                               |                |                               | 1           |            | I(CLP)                           |                            |                |
| PT-12A  | Overbarden | E      | Upgradient side of SW            | Plume monitoring                      | 1            |                                  |            |                                  |                               |                |                               | l           |            | 1(CLP modified)                  |                            | <b>—</b>       |
| PT-15   | Overburden | E      | South of West Smith<br>Farm Road | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           | -          | 1(CLP modified)                  |                            |                |
| PT-16   | Overburden | E      | North of impact area             | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |                |
| PT-17   | Overburden | E      | Plume                            | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | I           |            | I(CLP)                           |                            |                |
| PT-18   | Overburden | E      | Plume                            | Plume monitoring                      |              |                                  |            | · · · · · ·                      |                               |                |                               | 1           |            | I(CLP)                           |                            |                |
| PT-19   | Overburden | Е      | Upgradient side of SW            | Plume monitoring                      | 1            |                                  |            |                                  |                               |                |                               | 1           |            | I(CLP modified)                  |                            |                |
| PT-20   | Overburden | Ę      | Upgradient side of MW            | Plume monitoring                      | 1            | · · ·                            |            |                                  |                               |                |                               | I           |            | 1(CLP modified)                  |                            |                |
| PT-2IA  | Overburden | Ē      | Plume                            | Plume monitoring                      |              |                                  |            |                                  | ·                             |                |                               | 1           |            | 1(CLP)                           |                            |                |
| PT-22   | Overburden | . E    | Upgradient side of MW            | Plume monitoring                      | 1            |                                  |            |                                  |                               |                |                               | 1           |            | I(CLP)                           |                            |                |
| PT-23   | Overburden | E      | North of impact area             | Plume monitoring                      |              |                                  |            | · · ·                            |                               |                |                               | I           |            | 1(CLP modified)                  |                            |                |
| PT-24   | Overburden | E      | Plume                            | Plume monitoring                      | ······       |                                  |            |                                  |                               |                |                               | 1           |            | I(CLP)                           |                            |                |
| PT-25 - | Overburden | Ę      | South of West Smith<br>Farm Road | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |                |
| PT-26   | Overburden | Ę      | Off of SEDA property             | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | l           |            | I(CLP modified)                  |                            |                |
| MW-27   | Overburden | Е      | North of impact area             | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |                |
| MW-28   | Overburden | Е      | Plume                            | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | I           |            | l(CLP modified)                  |                            |                |
| MW-29   | Overburden | Ę      | Plume                            | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | I(CLP modified)                  |                            |                |
| MW-30   | Overburden | Е      | South of West Smith<br>Farm Road | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | I           |            | I(CLP)                           |                            |                |
| MW-31   | Overburden | Е      | South of West Smith<br>Farm Road | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | · 1(CLP)                         |                            |                |
| MW-32   | Overburden | E      | Upgradient side of MW            | Plume monitoring                      | I            |                                  |            |                                  |                               |                |                               | 1           |            | l(CLP)                           |                            |                |
| MW-33   | Overburden | Ē      | South of West Smith<br>Farm Road | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | I(CLP)                           |                            |                |
| MW-34   | Overburden | E      | Off of Ash Landfill site         | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | I           |            |                                  |                            |                |
| MW-35D  | Bedrock    | E      | Off of SEDA property             | Plume monitoring                      |              | ·                                |            | ·                                |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |                |
| MW-36   | Overburden | Ē      | Off of SEDA property             | Plume monitoring                      |              |                                  |            |                                  |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |                |

### Table 7-2 Pre-Construction and Groundwater Monitoring Program for Sub-Alternative 1 of Alternative 3a Ash Landfill Feasibility Memorandum

Seneca Army Depot Activity

|        |            | Monite | oring Well                         |                                   | Precons      | truction                      |            | First Yea                     | r                             |               | Every                            | Year        | T          | Every 5 Ye                       | ars                        | <del></del> 7 |
|--------|------------|--------|------------------------------------|-----------------------------------|--------------|-------------------------------|------------|-------------------------------|-------------------------------|---------------|----------------------------------|-------------|------------|----------------------------------|----------------------------|---------------|
| ID     | Туре       | Status | Location                           | Purpose                           | Slug Testing | voc                           | Inorganics | voc                           | Methane,<br>ethane,<br>ethene | H2            | voc                              | Water level | Inorganics | VOC                              | Methane,<br>ethane, ethene | Н2            |
|        |            |        |                                    |                                   | # of times   | # of times (type of analysis) | # of times | # of times (type of analysis) | # of times                    | # of<br>times | # of times (type of<br>analysis) | # of times  | # of times | # of times (type of<br>analysis) | # of times                 | # of<br>times |
| MW-37  | Overburden | Е      | North of impact area               | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-38D | Bedrock    | Е      | North of impact area               | Plutne monitoring                 |              |                               |            |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-39  | Overburden | E      | NE of impact area                  | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            | i(CLP modified)                  |                            | $\square$     |
| MW-40  | Overburden | Е      | East of impact area                | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           | <b></b>    | 1(CLP)                           |                            |               |
| MW-41D | Bedrock    | Е      | Upgradient of Ash<br>Landfill site | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-42D | Bedrock    | E      | Upgradient of Ash<br>Landfill site | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | . 1         |            |                                  |                            |               |
| MW-43  | Overburden | Е      | East of impact area                | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | l ,         | 1          | I(CLP)                           |                            |               |
| MW-44A | Overburden | Е      | Plume                              | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-45  | Overburden | Е      | Upgradient side of SW              | Plume monitoring                  | 1            |                               |            |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            |               |
| MW-46  | Overburden | E      | Upgradient side of SW              | Plume monitoring                  | I            |                               |            |                               |                               |               |                                  | 1           |            | 1(CLP)                           |                            |               |
| MW-47  | Overburden | E      | Off of SEDA property               | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | I           |            | l(CLP modified)                  |                            |               |
| MW-48  | Overburden | E      | Upgradient side of MW              | Plume monitoring                  | 1            |                               |            |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            |               |
| MW-49D | Bedrock    | E      | Plume                              | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | I           |            | 1(CLP modified)                  | -                          |               |
| MW-50D | Bedrock    | E      | Plume                              | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-51D | Bedrock    | E      | Off of SEDA property               | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | I           |            | l(CLP modified)                  |                            |               |
| MW-52D | Bedrock    | E      | Off of SEDA property               | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           | · · ·      | 1(CLP modified)                  |                            |               |
| MW-53  | Overburden | E      | Plume                              | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | l           |            | l(CLP modified)                  |                            |               |
| MW-54D | Bedrock    | E      | Plume                              | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            | l(CLP)                           |                            |               |
| MW-55D | Bedrock    | Е      | Plume                              | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           | •          | 1(CLP)                           |                            |               |
| MW-56  | Overburden | Е      | 250 ft West of boundary<br>of SEDA | Sentry well                       | 1.           |                               |            |                               |                               |               | 1(524.2)                         | 1           |            | 1(CLP modified)                  |                            |               |
| MW-57D | Bedrock    | E      | Off of SEDA property               | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            | l(CLP modified)                  |                            |               |
| MW-58D | Bedrock    | E      | Off of SEDA property               | Plume monitoring                  |              |                               |            |                               |                               |               | ·                                | · 1         |            | l(CLP modified)                  |                            |               |
| MW-59  | Overburden | E      | South of West Smith<br>Farm Road   | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | I           |            |                                  |                            |               |
| MW-60  | Overburden | E      | South of West Smith<br>Farm Road   | Plume monitoring                  |              |                               |            |                               |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-61  | Overburden | N      | 10 ft West of railroad<br>tracks   | design of CW, plume<br>monitoring | 1            | I(524.2)                      | 2          | 2(524.2)                      | 2                             |               | 1(524.2)                         | _ 1         | 1          | l(CLP)                           | I                          |               |

### Pre-Construction and Groundwater Monitoring Program for Sub-Alternative 1 of Alternative 3a

### Ash Landfill Feasibility Memorandum

### Seneca Army Depot Activity

|               | ]          | Monito | oring Well                             |                                     | Precons      | truction                      |            | First Year                    | r                             |               | Every                         | Year        |            | Every 5 Ye                       | ars                        |               |
|---------------|------------|--------|----------------------------------------|-------------------------------------|--------------|-------------------------------|------------|-------------------------------|-------------------------------|---------------|-------------------------------|-------------|------------|----------------------------------|----------------------------|---------------|
| ID            | Туре       | Status | Location                               | Purpose                             | Slug Testing | voc                           | Inorganics | voc                           | Methane,<br>ethane,<br>ethene | Н2            | voc                           | Water level | Inorganics | voc                              | Methane,<br>ethane, ethene | H2            |
|               |            |        |                                        |                                     | # of times   | # of times (type of analysis) | # of times | # of times (type of analysis) | # of times                    | # of<br>times | # of times (type of analysis) | # of times  | # of times | # of times (type of<br>analysis) | # of times                 | # of<br>times |
| MW-62         | Overburden | N      | 10 ft West of railroad<br>tracks       | design of CW, plume<br>monitoring   | 1            | 1(524.2)                      | 2          | 2(524.2)                      | 2                             |               | 1(524,2)                      | I           | 1          | I(CLP modified)                  | I                          |               |
| MW-63         | Overburden | N      | 10 ft West of railroad<br>tracks       | design of CW, plumc<br>monitoring   | 1            | 1(524.2)                      | 2          | 2(524.2)                      | 2                             |               | 1(524.2)                      | 1           | 1          | I(CLP modified)                  | I                          |               |
| MW-64         | Overburden | N      | Halfway between RR<br>tracks and MW-56 | design of CW, plume<br>monitoring   | 1            | 1(524.2)                      | 2          | 2(524.2)                      | 2                             |               | 1(524.2)                      | 1           | 1          | 1(CLP)                           | I                          |               |
| MW-65         | Overburden | N      | Between MW-56 and<br>Farmhouse         | Trigger well                        |              |                               |            |                               |                               |               | 1(524.2)                      | 1           |            | 1(524.2)                         |                            |               |
| MW-66         | Overburden | N      | At Farmhouse                           | Compliance well                     |              |                               |            |                               |                               |               | l(524.2)                      | 1           |            | I(CLP)                           |                            |               |
| MWT-I         | Overburden | E.     | Plume                                  | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(524,2)                         | 1                          |               |
| MWT-2         | Overburden | E      | Plume                                  | BW performance                      |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(524.2)                         | 1                          | 1             |
| MWT-3         | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | 1          | l(524.2)                         | I                          |               |
| MWT-4         | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(524.2)                         | 1                          | . ·           |
| MWT-5         | Overburden | Ē      | Plume                                  | BW performance                      |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(524.2)                         | 1                          | 1             |
| MWT-6         | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |              |                               |            |                               | ,                             |               |                               | 1           | 1          | 1(CLP modified)                  | · 1                        |               |
| MWT-7         | Overburden | E      | Piume                                  | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | 1          | I(CLP)                           | 1                          |               |
| MWT-8         | Overburden | E      | Plume                                  | BW performance                      |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(CLP modified)                  | 1                          | 1             |
| MWT-9         | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | I          | l(CLP)                           | 1                          |               |
| MWT-10        | Overburden | E      | North of impact area                   | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(524.2)                         | 1                          |               |
| MWT-11        | Overburden | E      | South of impact area                   | BW performance, plume<br>monitoring |              |                               |            |                               |                               |               |                               | 1           | 1          | 1(CLP)                           | 1                          |               |
| MWT-12        | Overburden | N      | In CW                                  | CW performance                      |              |                               | 2          | 2(524.2)                      | 2                             | 2             | I(524.2)                      | 1           | 1          | 1(524.2)                         | 1                          | 1             |
| Total Samples |            |        |                                        |                                     | 13           | 4                             | 10         | 10                            | 10                            | 2             | 8                             | 67          | 16         | 60                               | 16                         | 4             |
| Total QA/QC   |            |        |                                        |                                     |              | 2                             | 10         | 10                            | 10                            | 0             | 5                             | 0           | 5          | 17                               | 9                          | 0             |
| Total         |            |        |                                        |                                     |              | 4                             | 20         | 20                            | 20                            | 2             | 13                            | 67          | 21         | 77                               | 25                         | 4             |

<u>Notes:</u> H<sub>2</sub> = hydrogen

SW = source wall, MW = middle wall, CW = compliance wall, BW = boundary wall If VOC concentrations in MW-64 meet GA standard, compliance wall will be placed between monitoring wells along the railroad tracks and MW-64. If VOC concentrations in MW-64 do not meet GA standard, compliance wall will be placed between and MW-56 and MW-64. WW-64 will be left in place and used during the performance evaluation of the compliance wall.

Inorganic analysis includes analysis of sulfate, alkalinity, nitrate, total dissolved solids, phosphate, chloride, calcium, magnesium, potassium, sodium, iron, manganese, and pH.

pH, conductivity, temperature, turbidity, redox potential, dissolved oxygen, and ferrous iron, are measured in field in monitoring wells from which inorganic samples are collected.

Pre-Construction and Groundwater Monitoring Program For Sub-Alternative 2 of Alternative 3a

### Ash Landfill Feasibility Memorandum

Seneca Army Depot Activity

|        | ľ          | Monito | oring Well                       |                                   | Precon     | struction                     |            | First Year                    | •                             |                | Ever                          | y Year      |            | Every 5 Ye                       | ears                       |               |
|--------|------------|--------|----------------------------------|-----------------------------------|------------|-------------------------------|------------|-------------------------------|-------------------------------|----------------|-------------------------------|-------------|------------|----------------------------------|----------------------------|---------------|
| ID     | Турс       | Status | Location                         | Purpose                           | Slug Test  | VOC                           | Inorganics | VOC                           | Methane,<br>ethane,<br>ethene | H <sub>2</sub> | VOC                           | Water level | Inorganics | voc                              | Methane,<br>cthanc, ethene | Н2            |
|        |            |        |                                  |                                   | # of times | # of times (type of analysis) | # of times | # of times (type of analysis) | # of times                    | # of<br>times  | # of times (type of analysis) | # of times  | # of times | # of times (type of<br>analysis) | # of times                 | # of<br>times |
| PT-10  | Bedrock    | ε      | East of impact area              | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            |                                  |                            |               |
| PT-11  | Overburden | E      | South of West Smith<br>Farm Road | Plame monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |               |
| PT-12A | Overburden | Е      | Upgradient side of<br>SW         | Design of SW, plume<br>monitoring | 1          |                               |            |                               |                               |                | · ·                           | 1           |            | 1(CLP)                           |                            |               |
| PT-15  | Overburden | Е      | South of West Smith<br>Farm Road | Plume monitoring                  |            |                               |            |                               |                               |                |                               | I           |            | 1(CLP modified)                  |                            |               |
| PT-16  | Overburden | E      | North of impact area             | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |               |
| PT-17  | Overburden | ε      | Plume                            | Plume monitoring                  |            |                               |            |                               |                               |                |                               | I           |            | 1(CLP)                           |                            |               |
| PT-18  | Overburden | E      | Plume                            | Plume monitoring                  |            |                               |            |                               |                               | ·              |                               | 1           |            | I(CLP)                           |                            |               |
| PT-19  | Overburden | E      | Upgradient side of<br>SW         | Design of SW, plume<br>monitoring | 1          |                               |            | ,                             |                               |                |                               | 1           |            | l(CLP modified)                  |                            |               |
| PT-20  | Overburden | E      | Upgradient side of<br>MW         | Design of SW, plume<br>monitoring | I          |                               |            |                               |                               |                |                               | 1           |            | 1(CLP)                           |                            |               |
| PT-21A | Overburden | Ē      | Plume                            | plume monitoring                  |            |                               |            |                               |                               |                |                               | 1 .         |            | 1(CLP)                           |                            |               |
| PT-22  | Overburden | £      | Upgradient side of<br>MW         | Design of MW, plume<br>monitoring | 1          |                               |            |                               |                               |                |                               | 1           |            | I(CLP)                           |                            |               |
| РТ-23  | Overburden | Ē      | North of impact area             | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  | 3                          |               |
| PT-24  | Overburden | Е      | Plume                            | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | I(CLP)                           |                            |               |
| PT-25  | Overburden | Ē      | South of West Smith<br>Farm Road | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |               |
| PT-26  | Overburden | Ē      | Off of SEDA<br>property          | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | I(CLP modified)                  |                            |               |
| MW-27  | Overburden | E      | North of impact area             | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |               |
| MW-28  | Overburden | E      | Plume                            | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1.          |            | l(CLP)                           |                            |               |
| MW-29  | Overburden | Е      | Plume                            | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP)                           |                            |               |
| MW-30  | Overburden | E      | South of West Smith<br>Farm Road | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | l(CLP modified)                  |                            |               |
| MW-31  | Overburden | E      | South of West Smith<br>Farm Road | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |               |
| MW-32  | Overburden | E      | Upgradient side of<br>MW         | Design of MW, plume<br>monitoring | 1          |                               |            |                               |                               |                |                               | 1           |            | I(CLP modified)                  |                            |               |
| MW-33  | Overburden | E      | South of West Smith<br>Farm Road | Plume monitoring                  |            |                               |            |                               |                               |                |                               | I           |            | 1(CLP modified)                  |                            |               |
| MW-34  | Overburden | E      | Off of Ash Landfill<br>site      | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            |                                  |                            |               |
| MW-35D | Bedrock    | Ē      | Downgradient of<br>SEDA property | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1           |            | 1(CLP modified)                  |                            |               |
| MW-36  | Overburden | Ē      | Downgradient of<br>SEDA property | Plume monitoring                  |            |                               |            |                               |                               |                |                               | 1.          |            | 1(CLP modified)                  |                            |               |

### Pre-Construction and Groundwater Monitoring Program For Sub-Alternative 2 of Alternative 3a

### Ash Landfill Feasibility Memorandum

Seneca Army Depot Activity

|        | Ν          | Monito | ring Well                          |                                   | Precon     | struction                        |             | First Year                    | r                             |               | Ever                             | y Year      | I          | Every 5 Ye                       | ears                       |               |
|--------|------------|--------|------------------------------------|-----------------------------------|------------|----------------------------------|-------------|-------------------------------|-------------------------------|---------------|----------------------------------|-------------|------------|----------------------------------|----------------------------|---------------|
| ID     | Турс       | Status | Location                           | Purpose                           | Slug Test  | voc                              | Inorganics  | VOC                           | Methane,<br>ethane,<br>ethene | H2            | VOC                              | Water level | Inorganics | VOC                              | Methane,<br>ethane, ethene | 1             |
|        |            |        |                                    |                                   | # of times | # of times (type of<br>analysis) | # of times  | # of times (type of analysis) | # of times                    | # of<br>times | # of times (type of<br>analysis) | # of times  | # of times | # of times (type of<br>analysis) | # of times                 | # of<br>times |
| MW-37  | Overburden | E      | North of impact area               | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-38D | Bedrock    | E      | North of impact area               | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | E           |            | 1(CLP modified)                  |                            |               |
| MW-39  | Overburden | E      | Northcast of impact<br>area        | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | I           |            | I(CLP modified)                  |                            |               |
| MW-40  | Overburden | E      | East of impact area                | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-41D | Bedrock    | Е      | Upgradient of Ash<br>Landfill site | Plume monitoring                  |            | 1                                |             | -                             |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-42D | Bedrock    | Е      | Upgradient of Ash<br>Landfill site | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           | 1          |                                  |                            |               |
| MW-43  | Overburden | E      | East of impact area                | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           | 1          | 1(CLP modified)                  |                            |               |
| MW-44A | Overburden | E      | Plume                              | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | 1(CLP)                           |                            |               |
| MW-45  | Overburden | E      | Upgradient side of<br>SW           | Design of SW, plume<br>monitoring | 1          | <u>+</u>                         |             |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-46  | Overburden | E      | Upgradient side of<br>SW           | Design of SW, plume<br>monitoring | 1          |                                  |             |                               |                               |               |                                  | 1           |            | 1(CLP)                           |                            | <b> </b>      |
| MW-47  | Overburden | E      | Off of SEDA<br>property            | Plume monitoring                  |            | 1                                |             |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-48  | Overburden | E      | Upgradient side of<br>MW           | Design of MW, plume<br>monitoring | 1          |                                  |             |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            | İ             |
| MW-49D | Bedrock    | E      | Plume                              | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            |               |
| MW-50D | Bedrock    | Е      | Plume                              | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            |               |
| MW-51D | Bedrock    | E      | Off of SEDA<br>property            | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| MW-52D | Bedrock    | Е      | Off of SEDA property               | Plume monitoring                  |            |                                  | · · · · · · |                               |                               |               |                                  | 1           |            | 1(CLP modified)                  |                            |               |
| ^MW-53 | Overburden | Е      | Plume                              | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            |               |
| MW-54D | Bedrock    | E      | Plume                              | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            |               |
| MW-55D | Bedrock    | E      | Ріште                              | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            | I(CLP)                           |                            | [<br>[        |
| MW-56  | Overburden | E      | 250 ft West of<br>boundary of SEDA | Sentry well                       | I          |                                  |             |                               |                               |               | 1(524.2)                         | I           |            | 1(524.2)                         |                            |               |
| MW-57D | Bedrock    | Е      | Downgradient of<br>SEDA property   | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | · 1         |            | l(CLP modified)                  |                            |               |
| MW-58D | Bedrock    | E      | Downgradient of<br>SEDA property   | Plome monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           | · · · · ·  | 1(CLP modified)                  |                            |               |
| MW-59  | Overburden | E      | South of West Smith<br>Farm Road   | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-60  | Overburden | E      | South of West Smith<br>Farm Road   | Plume monitoring                  |            |                                  |             |                               |                               |               |                                  | 1           |            |                                  |                            |               |
| MW-61  | Overburden | N      | 10 ft West of railroad<br>tracks   | Design of CW, plume<br>monitoring | 1          | 1(524.2)                         | 2           | 2(524.2)                      | 2                             |               | 1(524.2)                         | 1           | 1          | I(524.2)                         | I                          |               |

÷

.

### Pre-Construction and Groundwater Monitoring Program For Sub-Alternative 2 of Alternative 3a

### Ash Landfill Feasibility Memorandum

### Seneca Army Depot Activity

| Monitoring Well |            |        |                                        |                                     | Preconstruction |                               | First Year |                                  |                               |               | Ever                          | y Year      | Every 5 Years |                                  |                            |               |
|-----------------|------------|--------|----------------------------------------|-------------------------------------|-----------------|-------------------------------|------------|----------------------------------|-------------------------------|---------------|-------------------------------|-------------|---------------|----------------------------------|----------------------------|---------------|
| ID              | Туре       | Status | Location                               | Purpose                             | Slug Test       | voc                           | Inorganics | voc                              | Methane,<br>ethane,<br>ethene | Н2            | voc                           | Water level | Inorganics    | voc                              | Methane,<br>ethane, ethene | H.            |
|                 |            |        |                                        |                                     | # of times      | # of times (type of analysis) | # of times | # of times (type of<br>analysis) | # of times                    | # of<br>times | # of times (type of analysis) | # of times  | # of times    | # of times (type of<br>analysis) | # of times                 | # of<br>times |
| MW-62           | Overburden | N      | 10 ft West of railroad<br>tracks       | Design of CW, plume<br>monitoring   | 1               | I(524.2)                      | 2          | 2(524.2)                         | 2                             |               | l(524.2)                      | 1           | 1             | 1(524.2)                         | 1                          |               |
| MW-63           | Overburden | N      | 10 ft West of railroad<br>tracks       | Design of CW, plume<br>monitoring   | I               | 1(524.2)                      | 2          | 2(524.2)                         | 2                             |               | 1(524.2)                      | 1           | 1             | 1(524.2)                         | 1                          |               |
| MW-64           | Overburden | N      | halfway between rr<br>tracks and MW-56 | Design of CW, plume<br>monitoring   | 1               | 1(524.2)                      | 2          | 2(524.2)                         | 2                             |               | 1(524.2)                      | 1           | 1             | 1(524.2)                         | 1                          | 1             |
| MW-65           | Overburden | N      | Between MW-56 and<br>Farmhouse         | Trigger well                        |                 |                               |            |                                  |                               |               | I(524.2)                      | 1           |               | 1(524.2)                         |                            |               |
| MW-66           | Overburden | N      | At Farmhouse                           | Compliance well                     |                 |                               |            |                                  |                               |               | 1(524.2)                      | 1           |               | 1(524.2)                         |                            | 1             |
| MWT-I           | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | I           | 1             | I(CLP)                           | 1                          |               |
| MWT-2           | Overburden | E      | Plume                                  | BW performance                      |                 |                               |            |                                  |                               |               |                               | 1           | 1             | 1(CLP modified)                  | 1                          | 1             |
| MWT-3           | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | I           | I             | I(CLP)                           | 1                          |               |
| MWT-4           | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | 1           | 1             | l(CLP)                           | 1                          |               |
| MWT-5           | Overburden | E      | Plume                                  | BW performance                      |                 |                               |            |                                  |                               |               |                               | 1           | 1             | 1(CLP modified)                  | 1                          | 1             |
| MWT-6           | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | 1           | 1             | l(CLP)                           | I                          |               |
| MWT-7           | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | 1           | 1             | I(CLP)                           | 1                          |               |
| MWT-8           | Overburden | E      | Plume                                  | BW performance                      |                 |                               |            |                                  |                               |               |                               | I           | 1             | 1(CLP modified)                  | 1                          | 1             |
| MWT-9           | Overburden | E      | Plume                                  | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | 1           | I             | 1(CLP)                           | 1                          |               |
| MWT-10          | Overburden | E      | North of impact area                   | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | l           | 1             | 1(CLP modified)                  | 1                          |               |
| MWT-11          | Overburden | E      | South of impact area                   | BW performance, plume<br>monitoring |                 |                               |            |                                  |                               |               |                               | 1           | 1             | l(CLP modified)                  | 1                          |               |
| MWT-12          | Overburden | N      | 2.5 ft upgrad. of SW                   | SW performance, plume<br>monitoring | 1               |                               | 2          | 2(CLP)                           | 2                             |               |                               | 1           | .1            | l(CLP)                           | 1                          |               |
| MWT-13          | Overburden | N      | 2.5 ft upgrad. of SW                   | SW performance, plume<br>monitoring | 1               |                               | 2          | 2(CLP)                           | 2                             |               |                               | 1           | 1             | l(CLP)                           | 1                          |               |
| MWT-14          | Overburden | N      | in SW                                  | SW performance, plume<br>monitoring |                 |                               | 2          | 2(CLP modified)                  | 2                             | 2             |                               | 1           | 1             | 1(CLP modified)                  | 1                          | I             |
| MWT-15          | Overburden | N      | 2.5 ft upgrad of MW                    | MW performance, plume<br>monitoring | 1               |                               | 2          | 2(CLP)                           | 2                             |               |                               | 1           | 1             | I(CLP)                           | 1                          |               |
| MWT-16          | Overburden | N      | 2.5 ft upgrad of MW                    | MW performance, plume<br>monitoring | l               |                               | 2          | 2(CLP)                           | 2                             |               |                               | 1           | 1             | I(CLP)                           | 1                          |               |
| MWT-17          | Overburden | N      | in MW                                  | MW performance, plume<br>monitoring |                 |                               | 2          | 2(CLP modified)                  | 2                             | 2             |                               | 1           | 1             | l(CLP modified)                  | 1                          | 1             |
| MWT-18          | Overburden | N      | in CW                                  | CW performance                      |                 |                               | 2          | 2(524.2)                         | 2                             | 2             | 1(524,2)                      | 1           | I             | 1(524.2)                         | I                          | 1             |
| Subtotal        |            |        |                                        |                                     | 17              | 4                             | 22         | 22                               | 22                            | 6             | 8                             | 73          | 22            | 66                               | 22                         | 6             |
| otal QA/QC      |            |        |                                        |                                     |                 | 2                             | 10         | 10                               | 10                            | 0             | 5                             | 0           | 7             | 17                               | 10                         | 0             |

.

### Pre-Construction and Groundwater Monitoring Program For Sub-Alternative 2 of Alternative 3a

Ash Landfill Feasibility Memorandum

Seneca Army Depot Activity

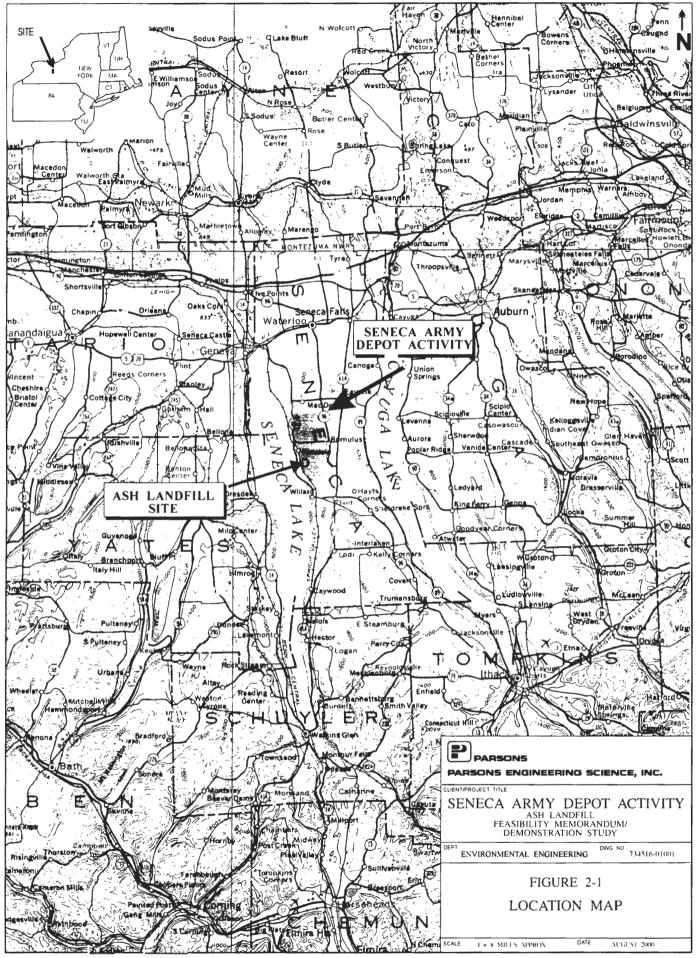
|       | Monitoring Well |        |          |         | Preconstruction |                                  | First Year |                               |                               |               | Every                            | v Year      | Every 5 Years |                                  |                            |               |
|-------|-----------------|--------|----------|---------|-----------------|----------------------------------|------------|-------------------------------|-------------------------------|---------------|----------------------------------|-------------|---------------|----------------------------------|----------------------------|---------------|
| ID    | Туре            | Status | Location | Purpose | Slug Test       | voc                              | Inorganics | voc                           | Methane,<br>ethane,<br>ethene | H2            | VOC                              | Water level | Inorganics    | voc                              | Methanc,<br>ethanc, ethene | H2            |
|       |                 |        |          |         | # of times      | # of times (type of<br>analysis) | # of times | # of times (type of analysis) | # of times                    | # of<br>times | # of times (type of<br>analysis) | # of times  | # of times    | # of times (type of<br>analysis) | # of times                 | # of<br>times |
| Total |                 |        |          |         |                 | 4                                | 32         | 32                            | 32                            | 6             | 13                               | 73          | 29            | 83                               | 32                         | 6             |

<u>Notes:</u> H<sub>2</sub> = hydrogen

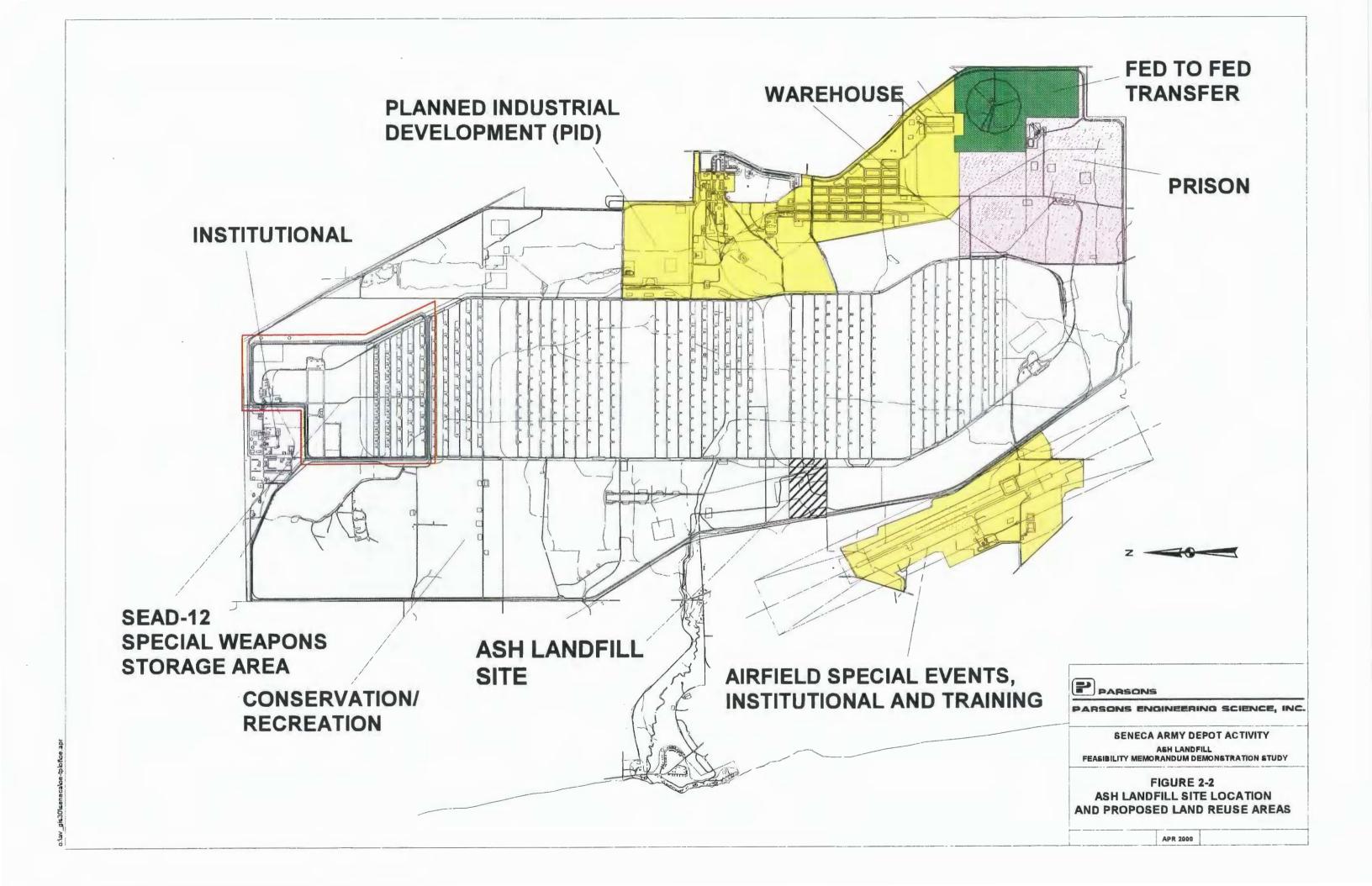
SW = source wall, MW = middle wall, CW = compliance wall, BW = boundary wall

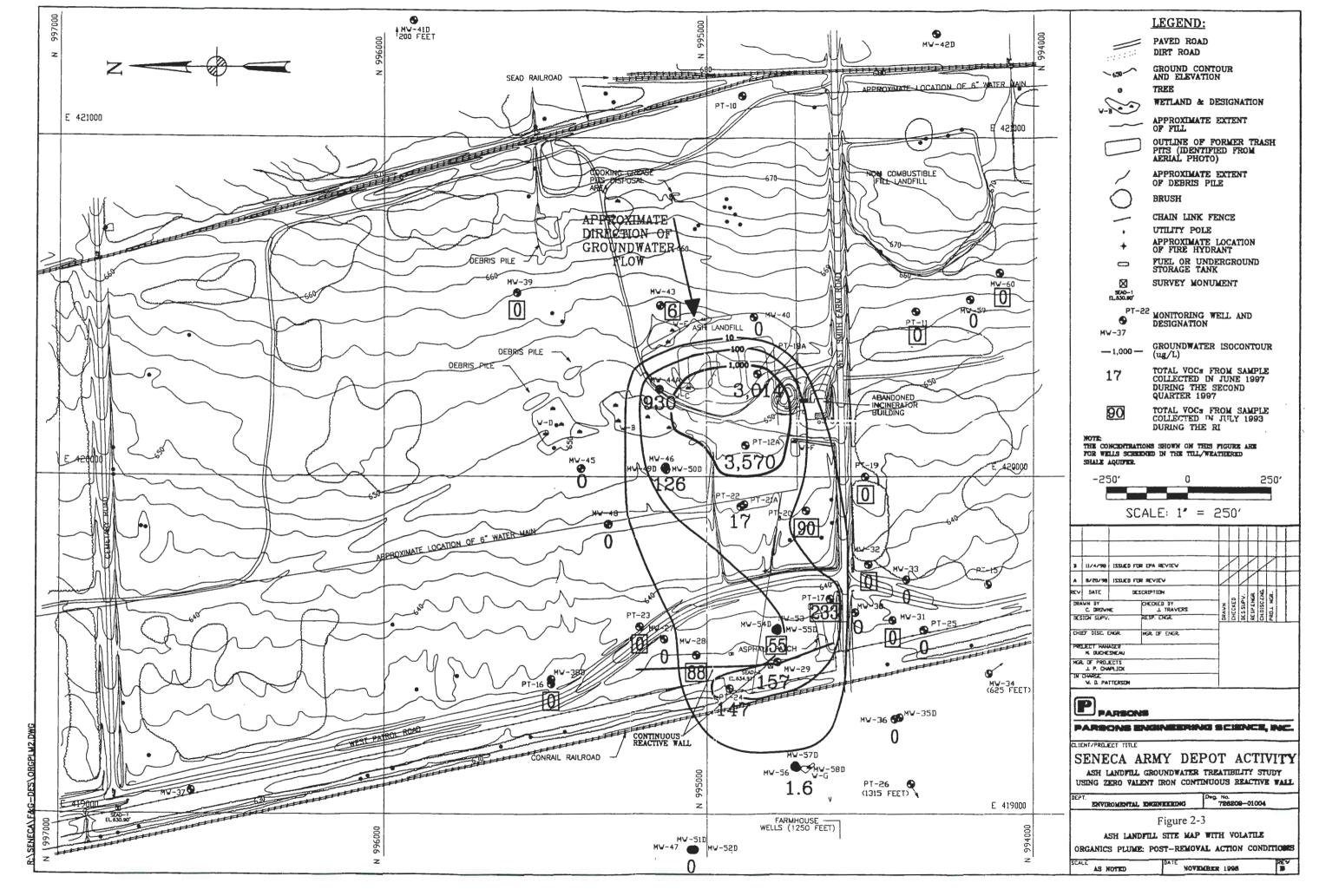
SW - source wai, WW - induce wai, CW - Company, wai, CW - Contrast, wai If VOC concentrations in MW-64 meet GA standard, compliance wall will be placed between monitoring wells along the railroad tracks and MW-64. If VOC concentrations in MW-64 do not meet GA standard, compliance wall will be placed between and MW-56 and MW-64. WW-64 will be left in place and used during the performance evaluation of the compliance wall.

Inorganic analysis includes analysis of sulfate, alkalinity, nitrate, total dissolved solids, phosphate, chloride, calcium, magnesium, potassium, sodium, iron, manganese, and pH.


pH, conductivity, temperature, turbidity, redox potential, dissolved oxygen, and ferrous iron, are measured in field in monitoring wells from which inorganic samples are collected.

### Table 7-4 Costs of Groundwater Treatment Alternatives at the Ash Landfill Ash Landfill Feasibility Memorandum Seneca Army Depot Activity

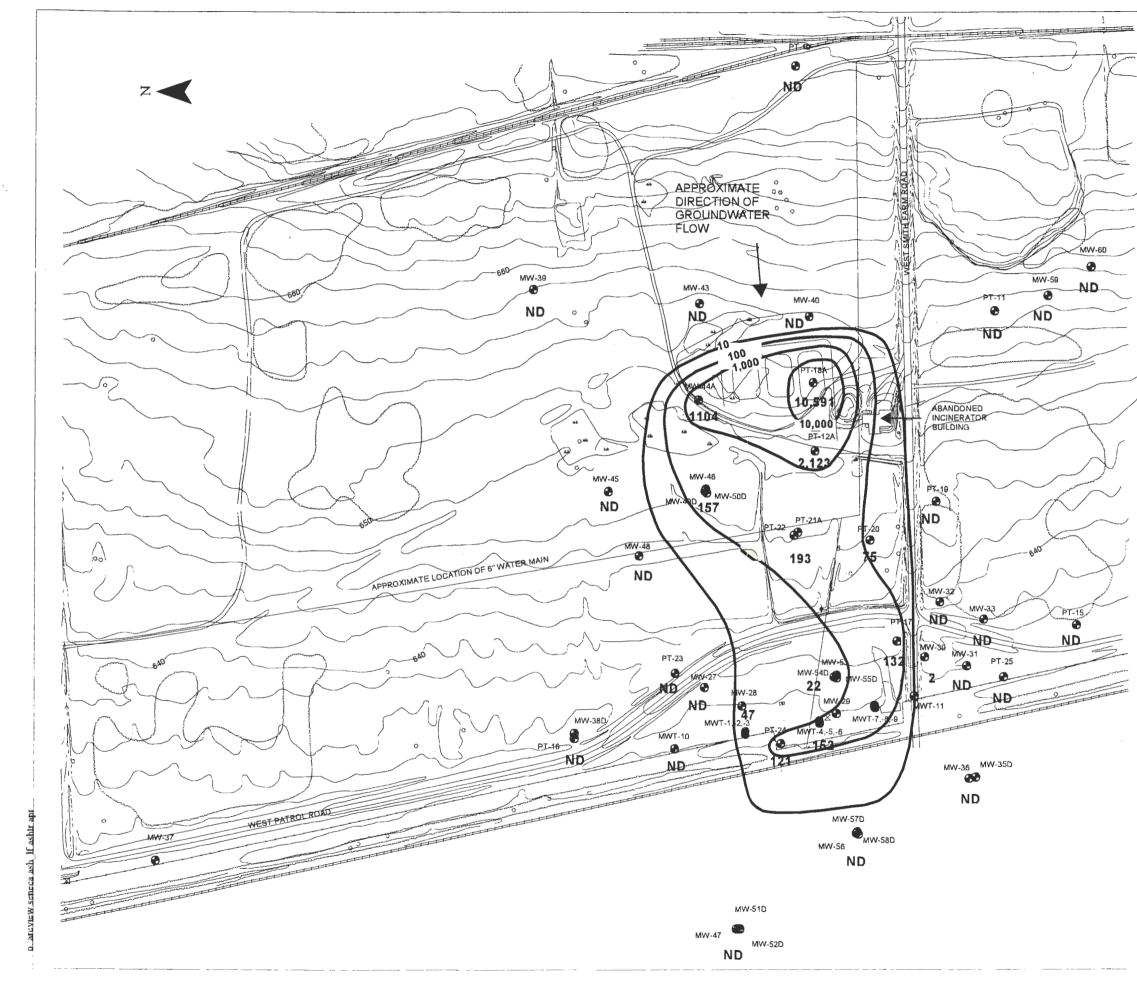

| ITEM                                                           | <b>ALTERNATIVE 1</b> | ALTERNATIVE 2 |
|----------------------------------------------------------------|----------------------|---------------|
| Sub total capital                                              | \$551,400            | \$1,464,000   |
| Contingency 20%                                                | \$110,300            | \$292,800     |
| Engineering/oversight 20%                                      | \$110,300            | \$292,800     |
| Total capital (subtotal + contingency + engineering/oversight) | \$772,000            | \$2,049,600   |
|                                                                |                      |               |
| Sub total O & M                                                | \$56,800             | \$61,600      |
| Contingency 20%                                                | \$11,400             | \$12,300      |
| Engineering/oversight 20%                                      | \$11,400             | \$12,300      |
| Total O & M (subtotal + contingency + engineering/oversight)   | \$79,500             | \$86,200      |
| Interest                                                       | 10%                  | 10%           |
| Years of operation                                             | 60                   | 15            |
| Present worth of total O & M costs                             | \$792,200            | \$655,700     |


TOTAL PRESENT WORTH COST (present worth O/M + total capital)\$1,564,200\$2,705,300

See Appendix G for detailed costs.



RAPROJECTS-GRAPHICSISENECAILOCMAPTCOR






والأنافية والمتراج المراجع

. .....

-6.2



ala s Sala s Sala s Sala s Sala s Sala s

- !

3

1

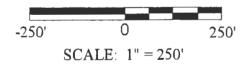
1

, ֥

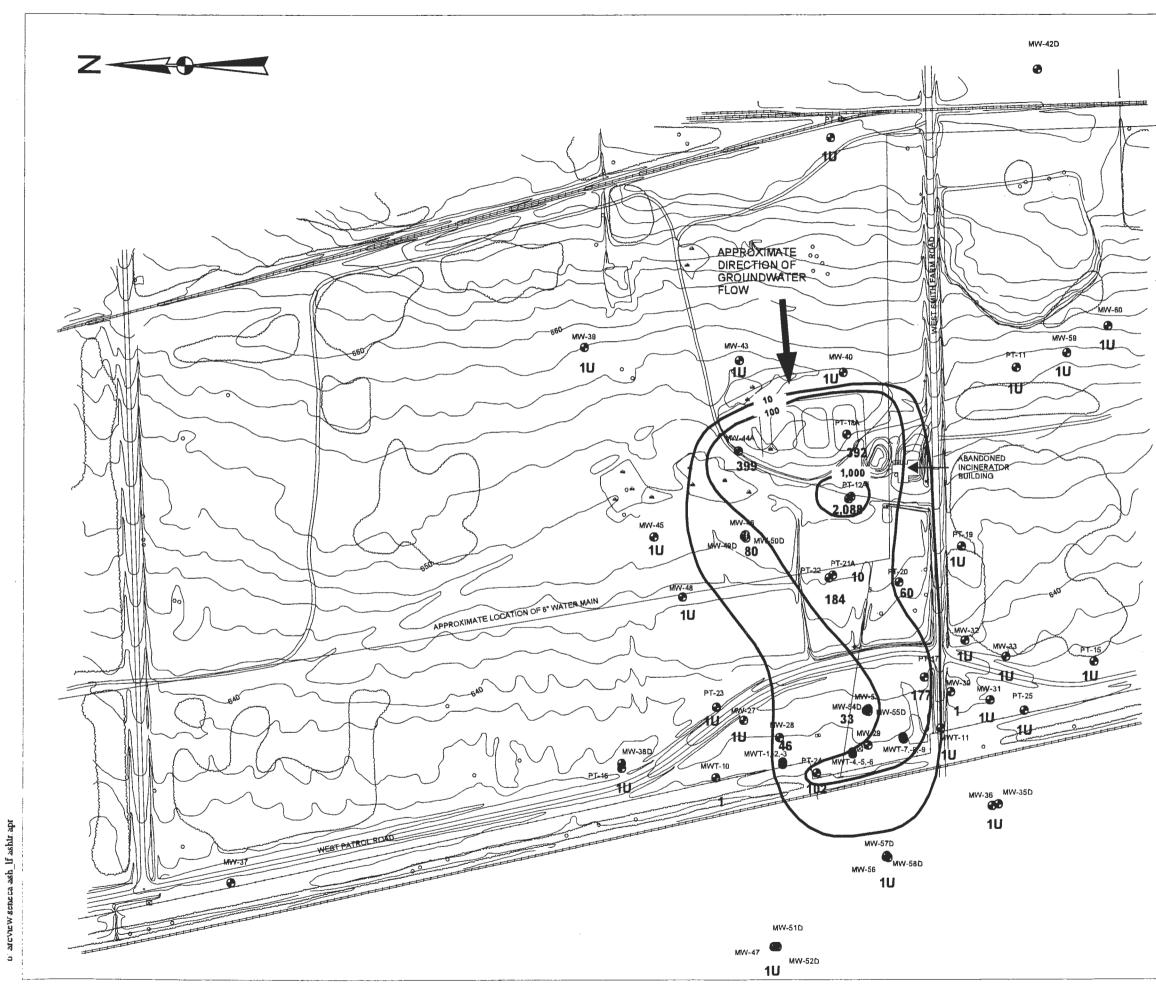
# LEGEND

|            | PAVED ROAD                                                        |
|------------|-------------------------------------------------------------------|
| - 410      | GROUND CONTOUR<br>AND ELEVATION                                   |
| °          | WETLAND & DESIGNATION                                             |
|            | OUTLINE OF FORMER TRASH<br>PITS (IDENTIFIED FROM<br>AERIAL PHOTO) |
| /          | APPROXIMATE EXTENT<br>OF DEBRIS PILE                              |
| $\bigcirc$ | BRUSH                                                             |
| -          | CHAIN LINK FENCE                                                  |
| 0          | UTILITY POLE                                                      |
| *          | APPROXIMATE LOCATION<br>OF FIRE HYDRANT                           |
| PT-22      | MONITORING WELL                                                   |
| •          | AND DESIGNATION                                                   |
| MW-37      | RAILROAD                                                          |
|            |                                                                   |

6" WATER MAIN

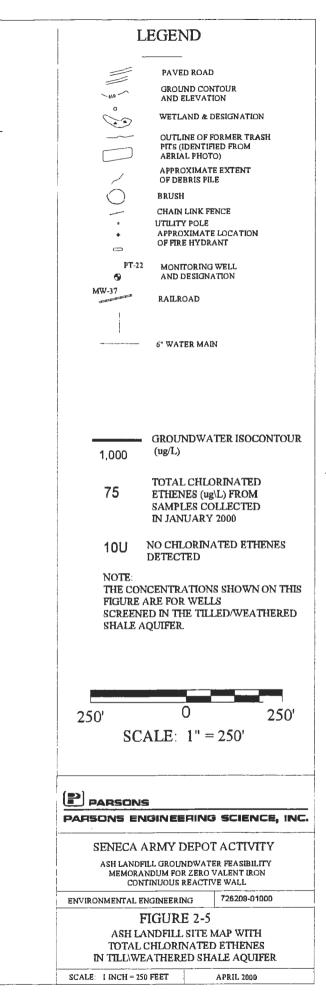

|       | GROUNDWATER ISOCONTOUR |
|-------|------------------------|
| 1,000 | (ug/L)                 |

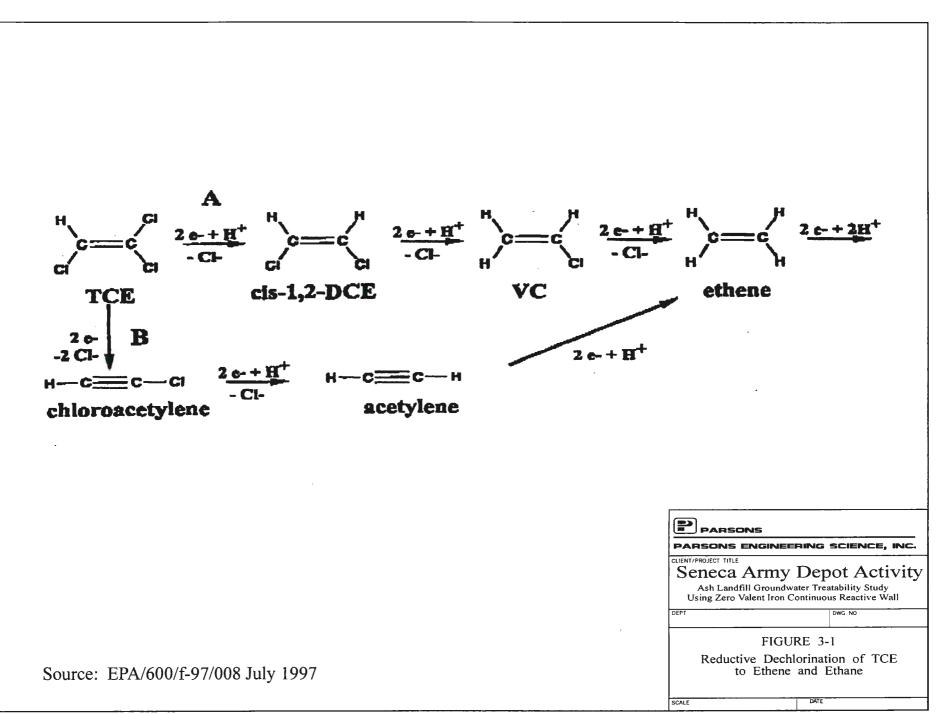
| 75 | TOTAL CHLORINATED<br>ETHENES (ug\L) FROM |  |  |
|----|------------------------------------------|--|--|
|    | SAMPLES COLLECTED                        |  |  |
|    | IN OCTOBER 1977                          |  |  |

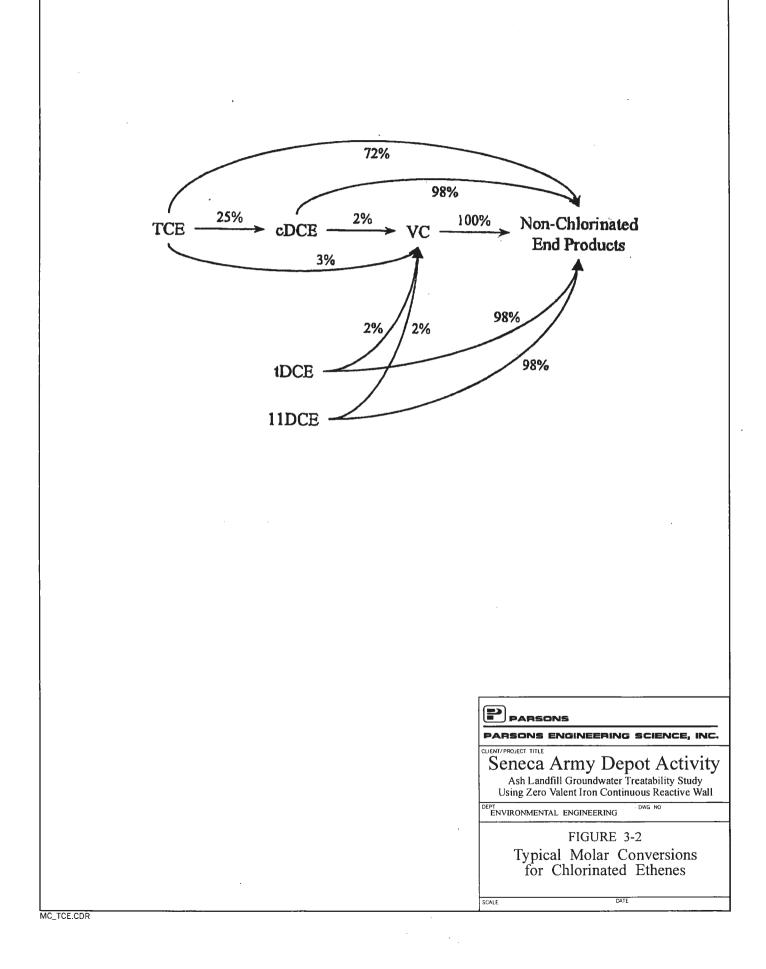

ND NO CHLORINATED ETHENES DETECTED

NOTE:

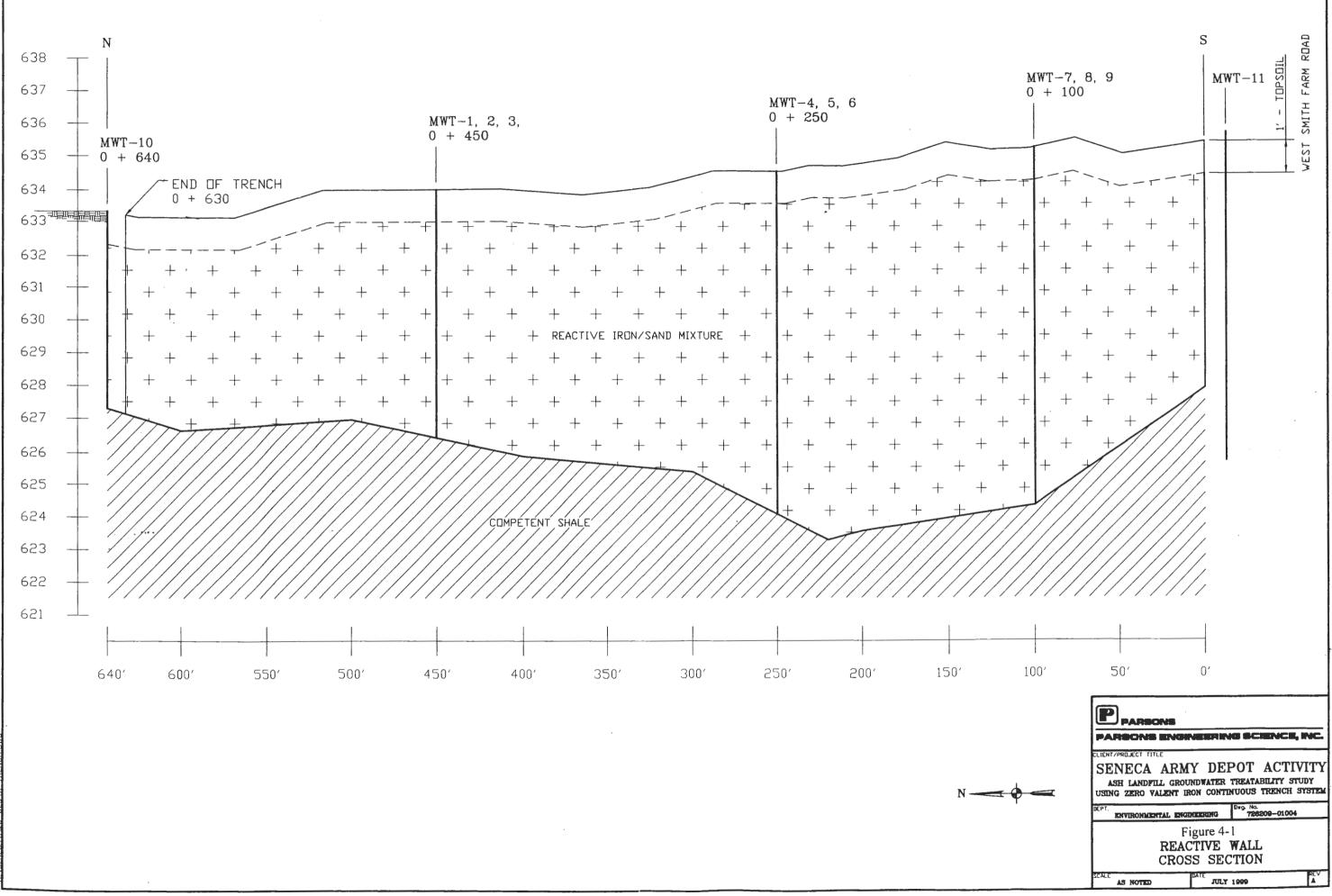
THE CONCENTRATIONS SHOWN ON THIS FIGURE ARE FOR WELLS SCREENED IN THE TILLED/WEATHERED SHALE AQUIFER.

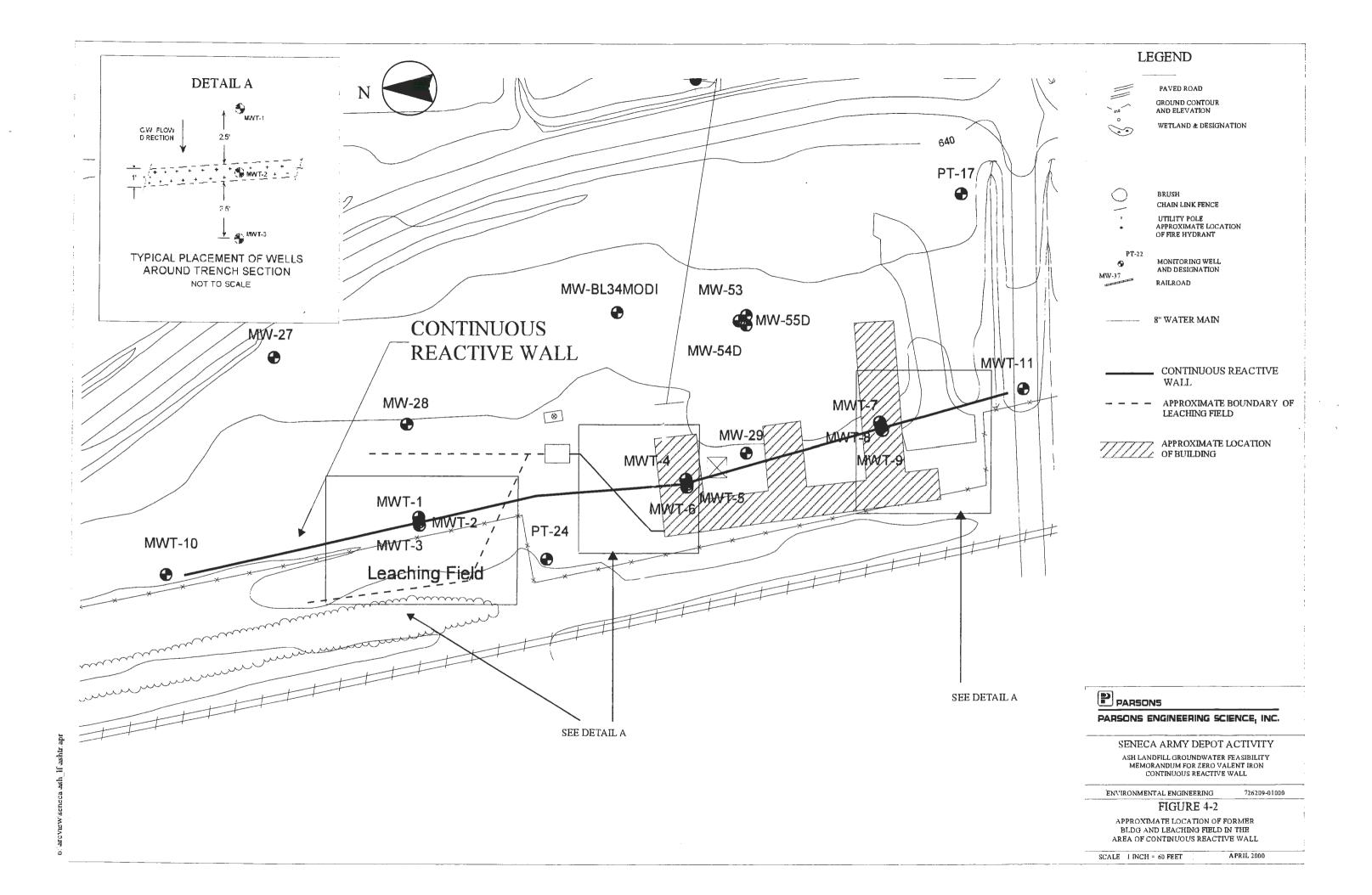


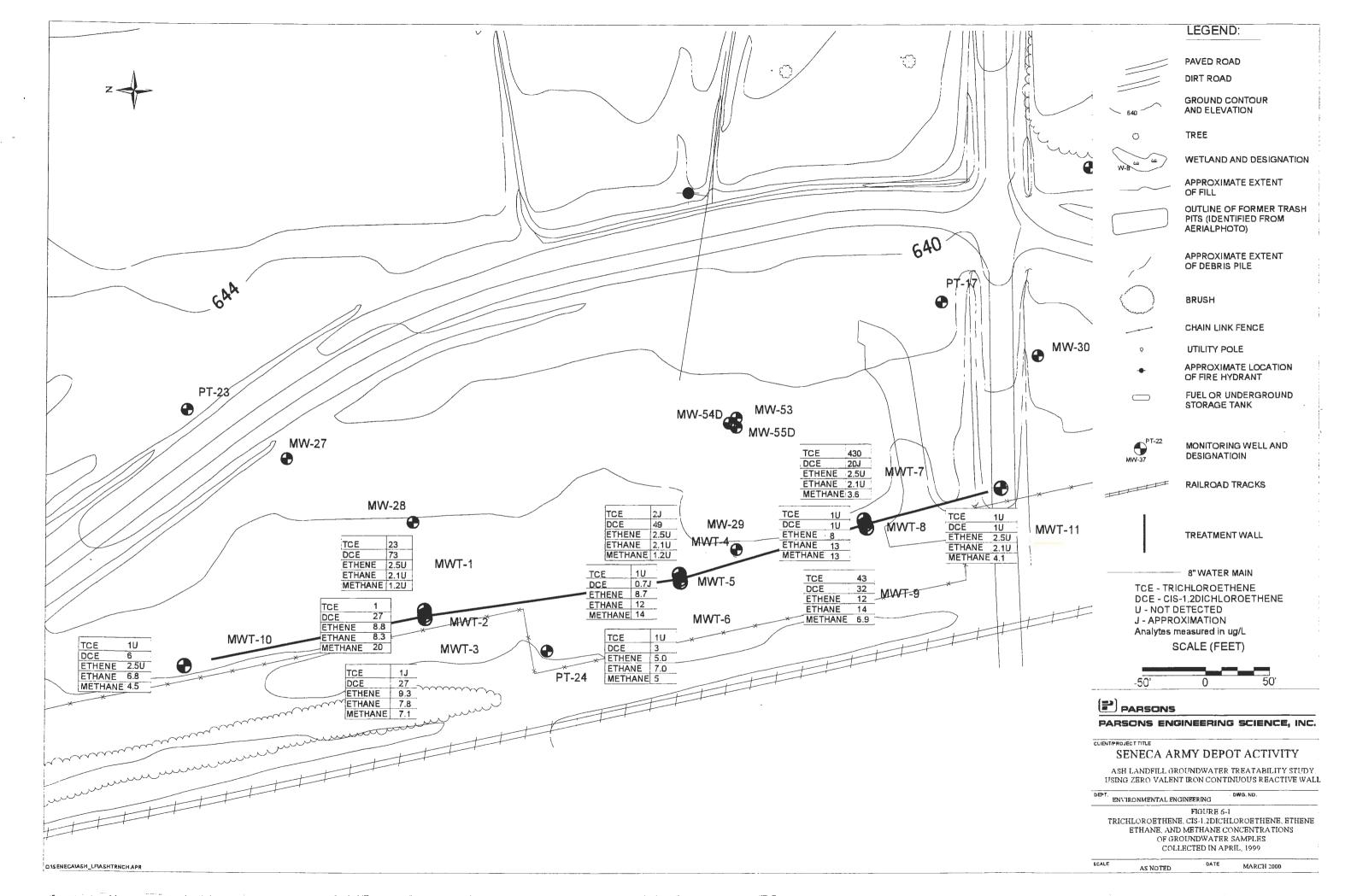


| PARSONS ENGINEERING                                              | SCIENCE, INC. |
|------------------------------------------------------------------|---------------|
|                                                                  |               |
| SENECA ARMY DEPO                                                 | ΟΤ ΛΟΤΙVΙΤΥ   |
| ASH LANDFILL GROUNDWA<br>MEMORANDUM FOR ZER(<br>CONTINUOUS REACT | O VALENT IRON |
|                                                                  | 726209-01000  |
| ENVIRONMENTAL ENGINEERING                                        | 728209-01000  |
| FIGURE 2-                                                        | 4             |
| ASH LANDFILL SITE                                                | E MAP WITH    |
| TOTAL CHLORINATI                                                 | ED ETHENES    |
| IN TILL\WEATHERED SI                                             | HALE AQUIFER  |
|                                                                  |               |




5-1


\*



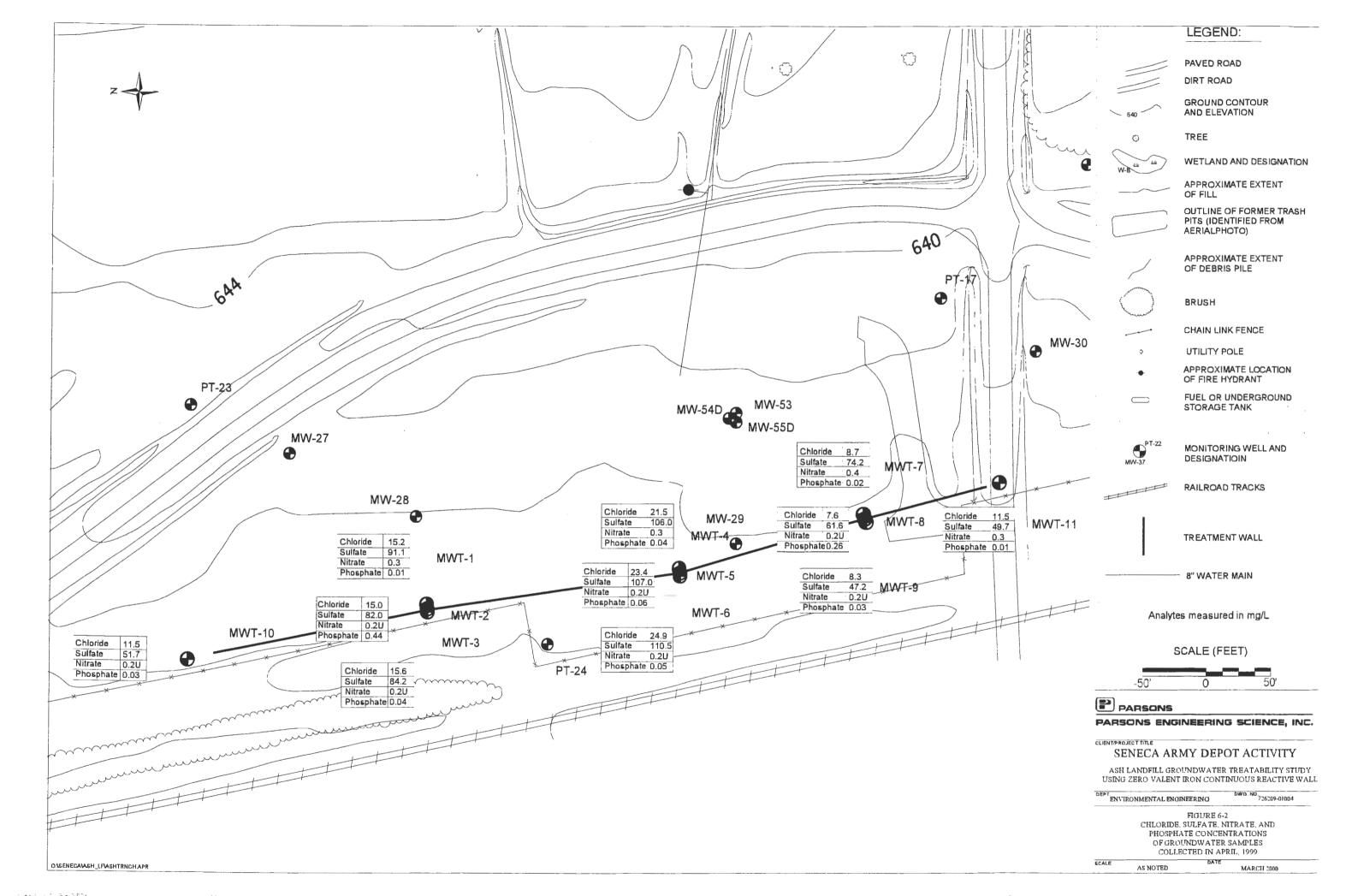






ť





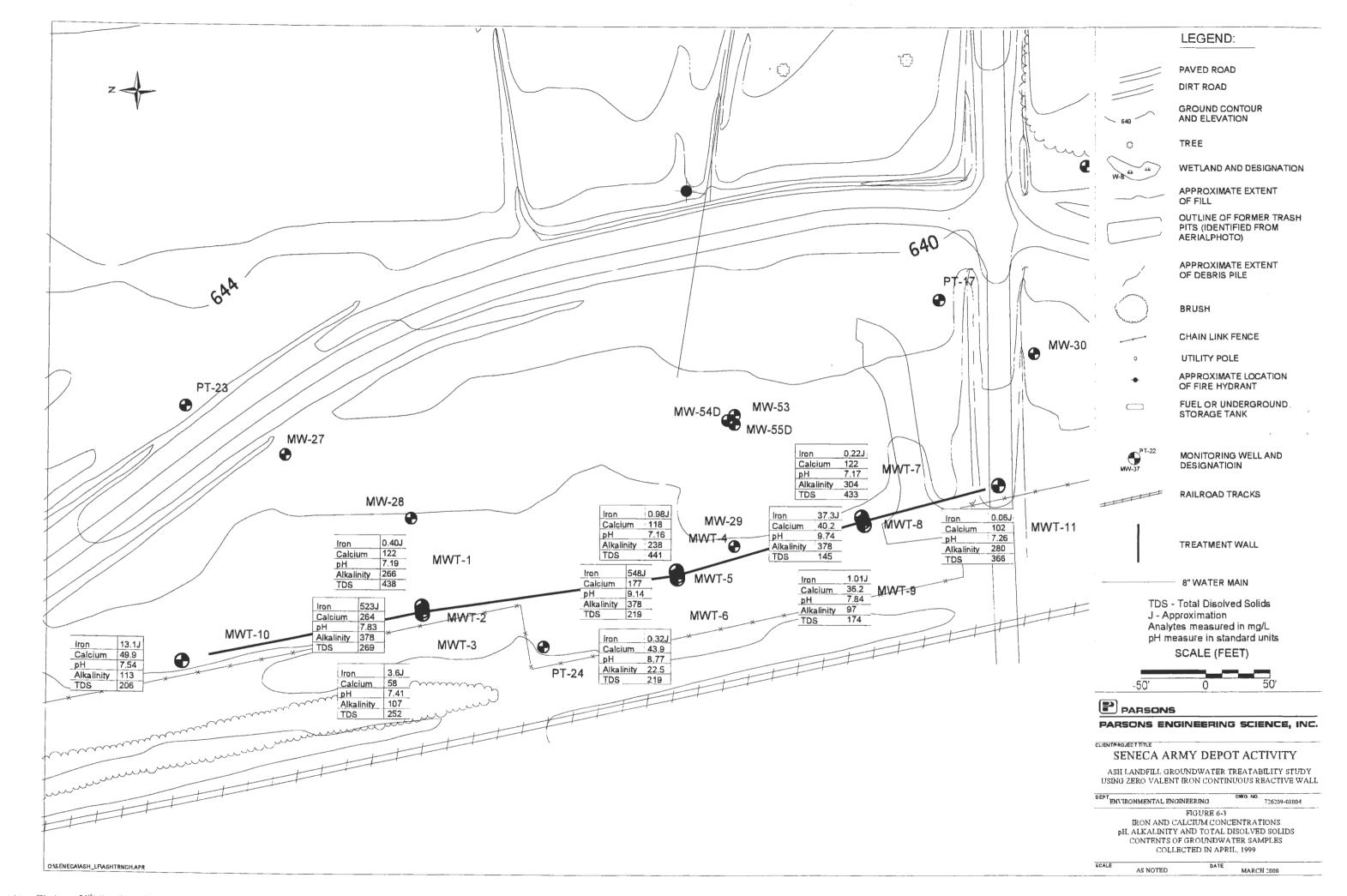



. :

1

<u>\_</u>+

in des

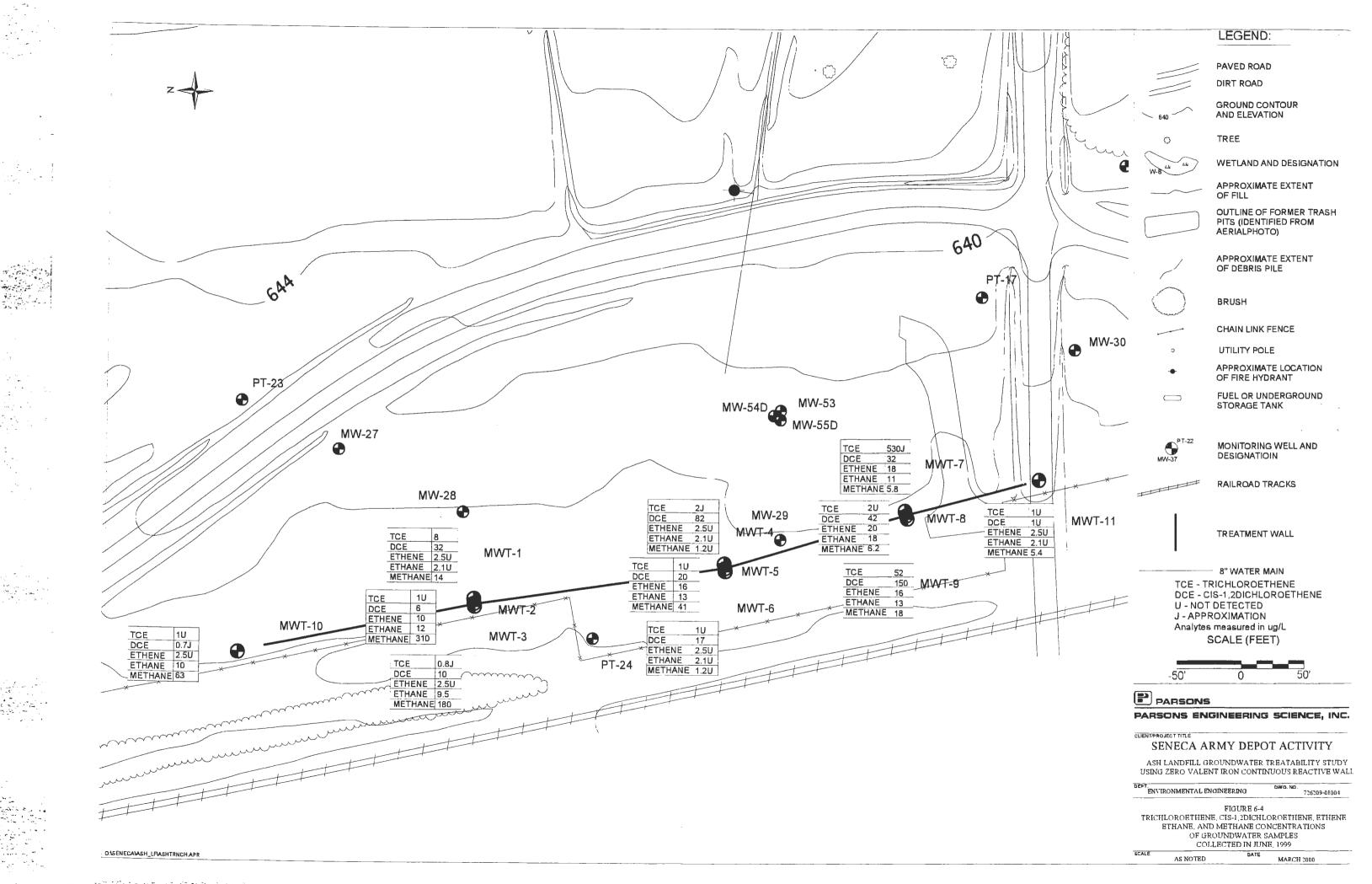

and the second 

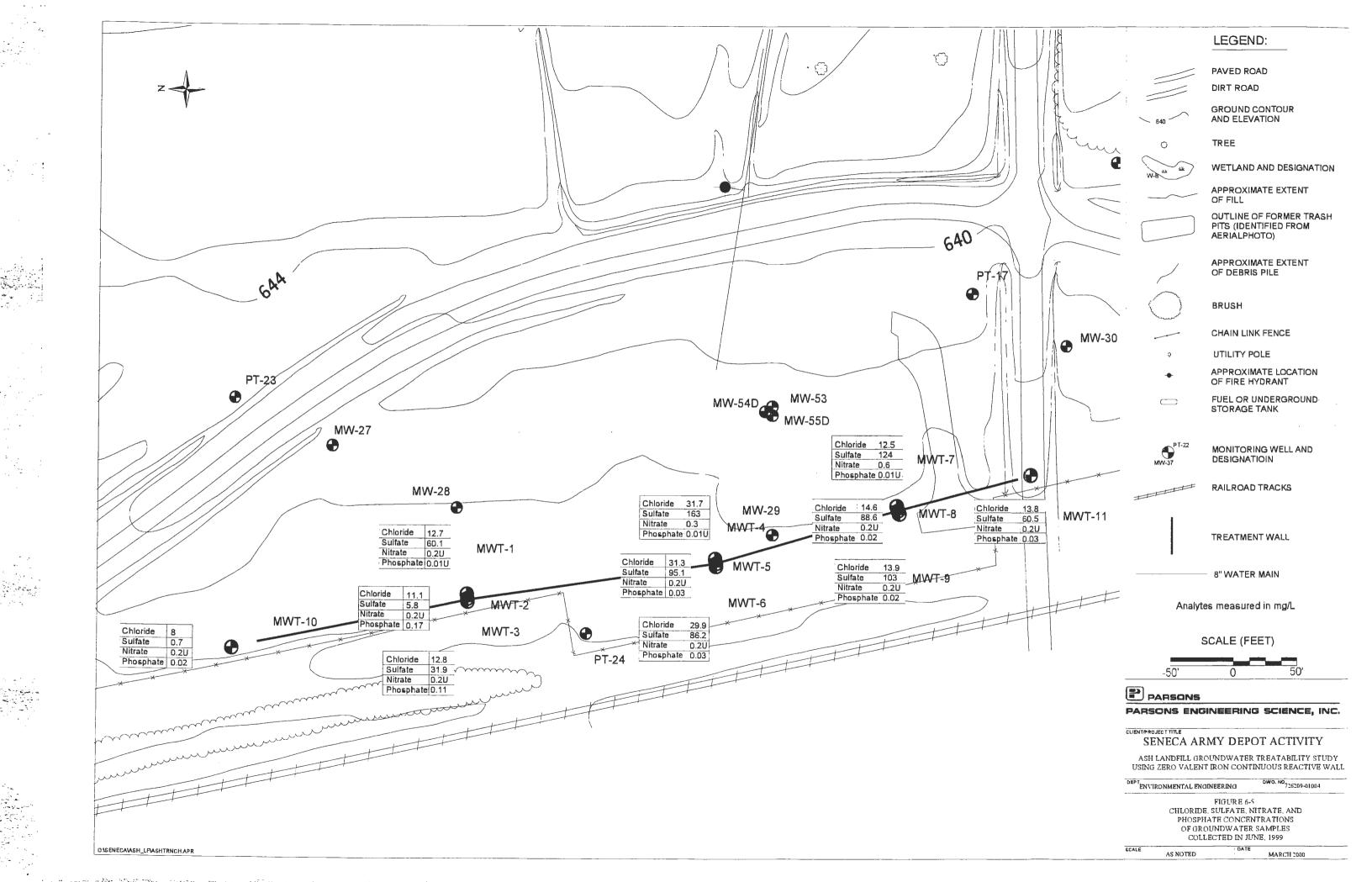

• . .

· . .

.

ومستقد الوالي والالم والمرور والاراد ومسترك المتكرة في الكراني الكرامي والمحمد المتكرة من الإكرام والإنتاق الاروس الكرام





11 j k

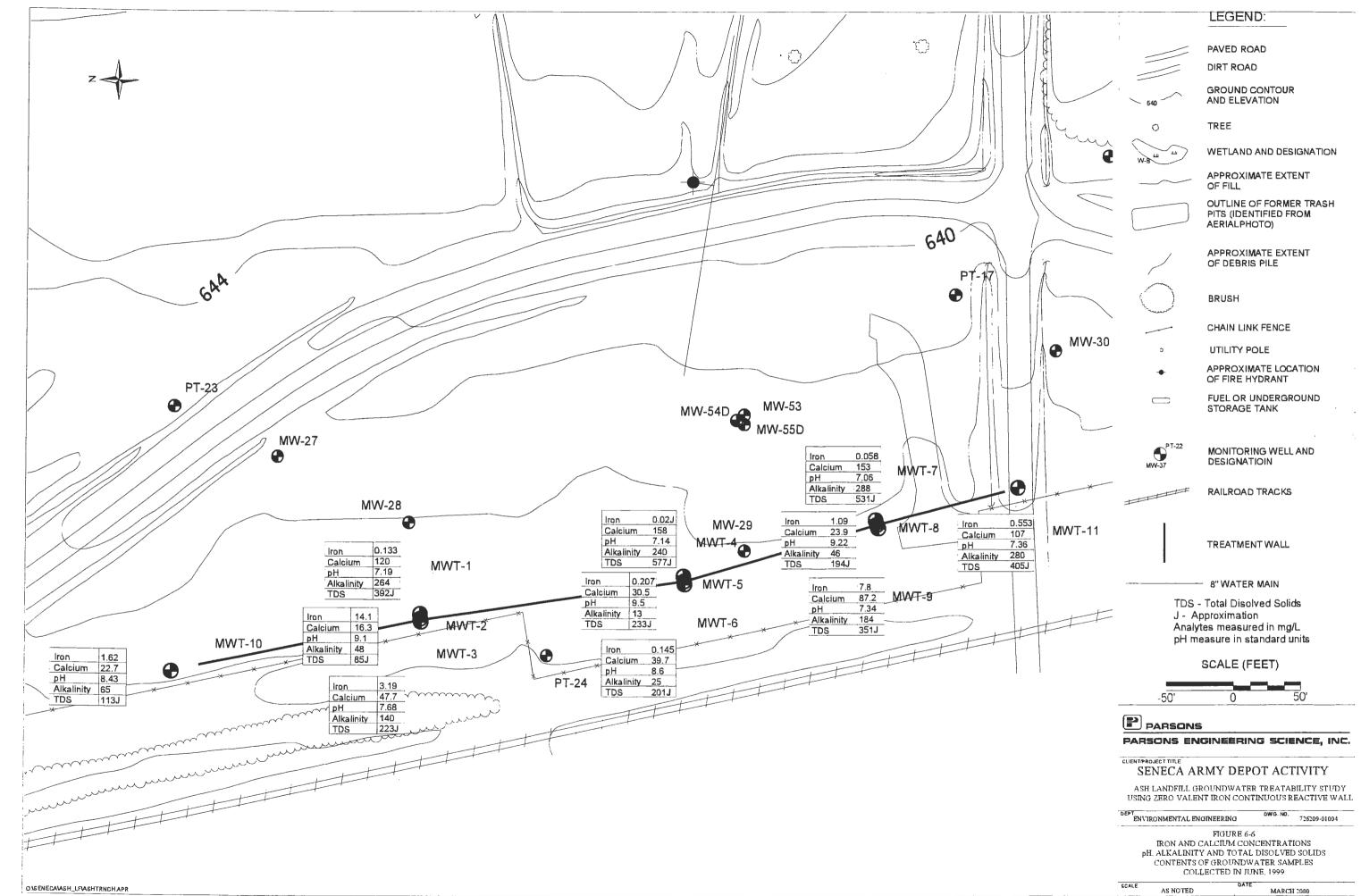
, ma

.

۲۰۰۰ ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰






Contraction of the contract of the second states of the second states of the second states of the second states

×. -

• .

. <u>+</u> 1

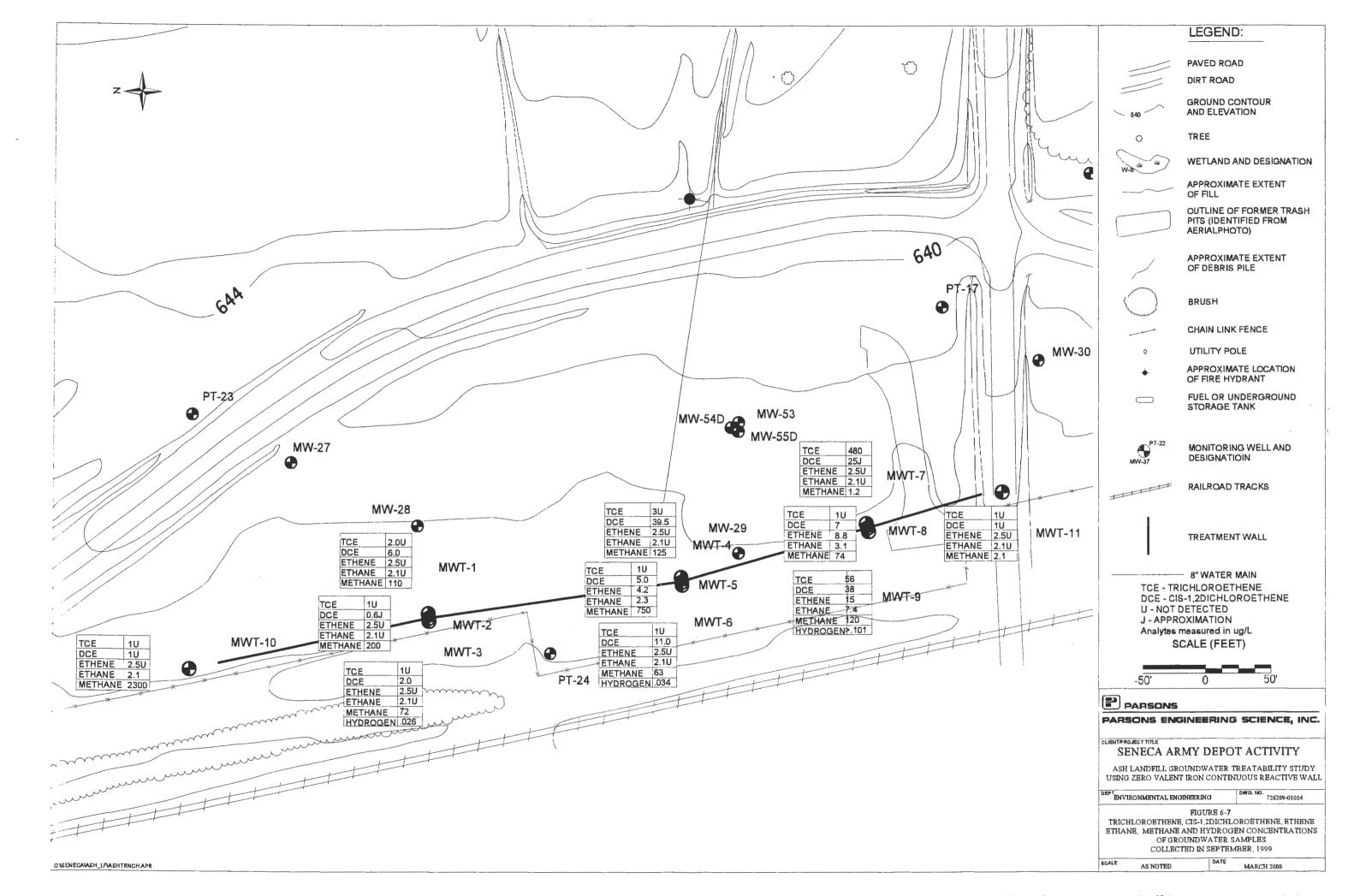
الم عبد أ



. . .

i de la constante da la constante d constante da la constante

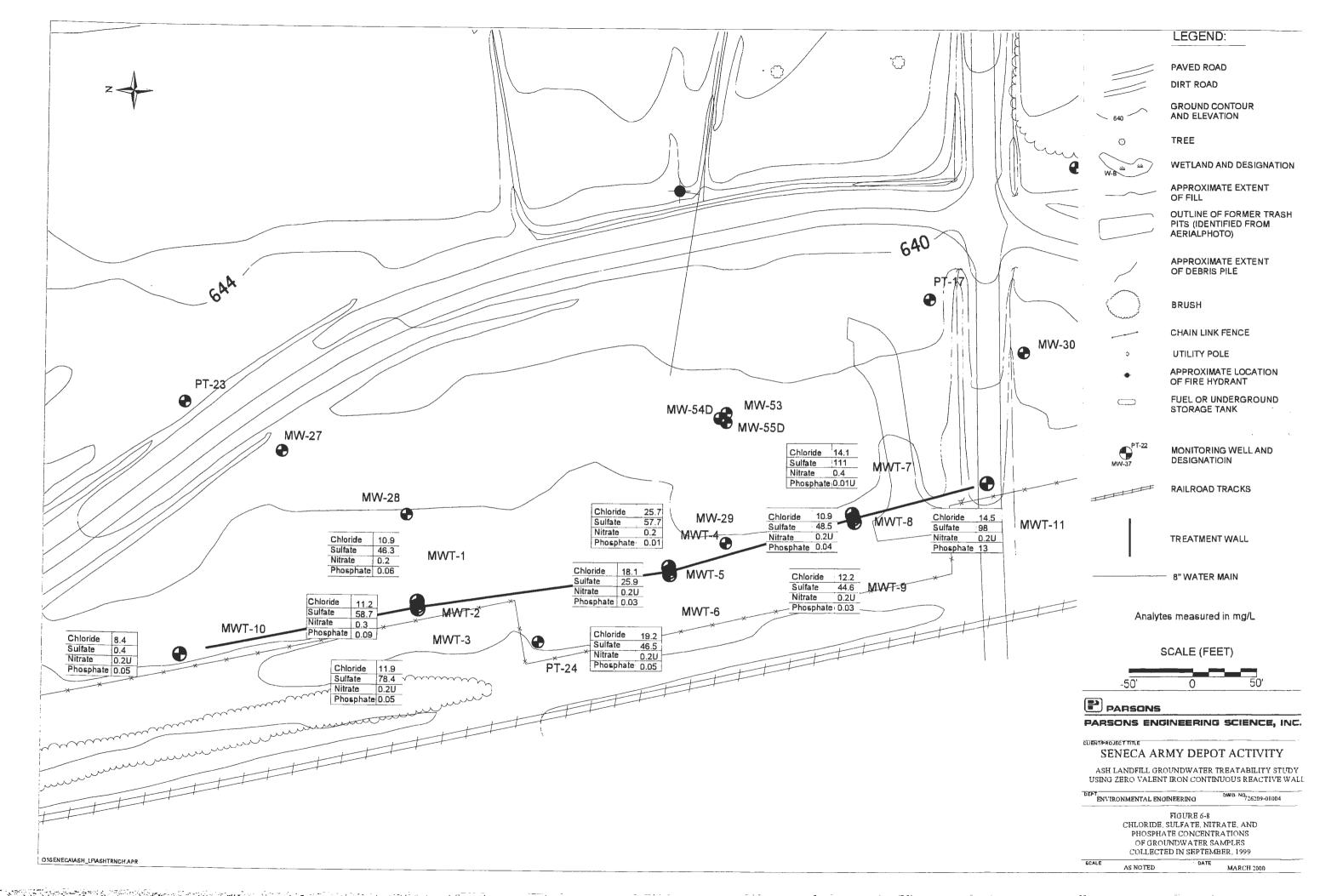
in the second


-

-

inge sold Se se se se

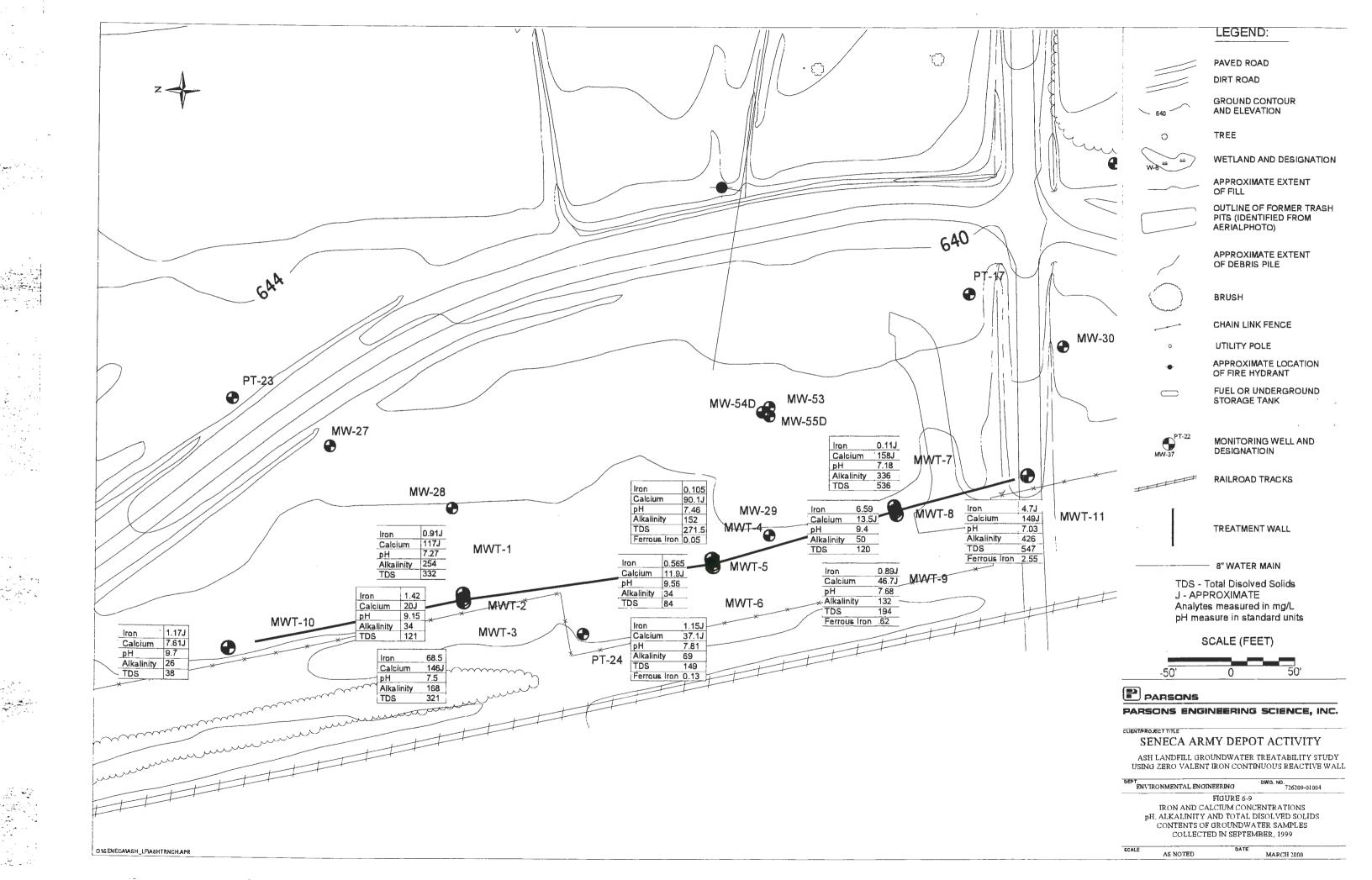
. . .


| SCALE |          | UATE      |   |  |
|-------|----------|-----------|---|--|
|       | AS NOTED | MARCH 200 | 0 |  |

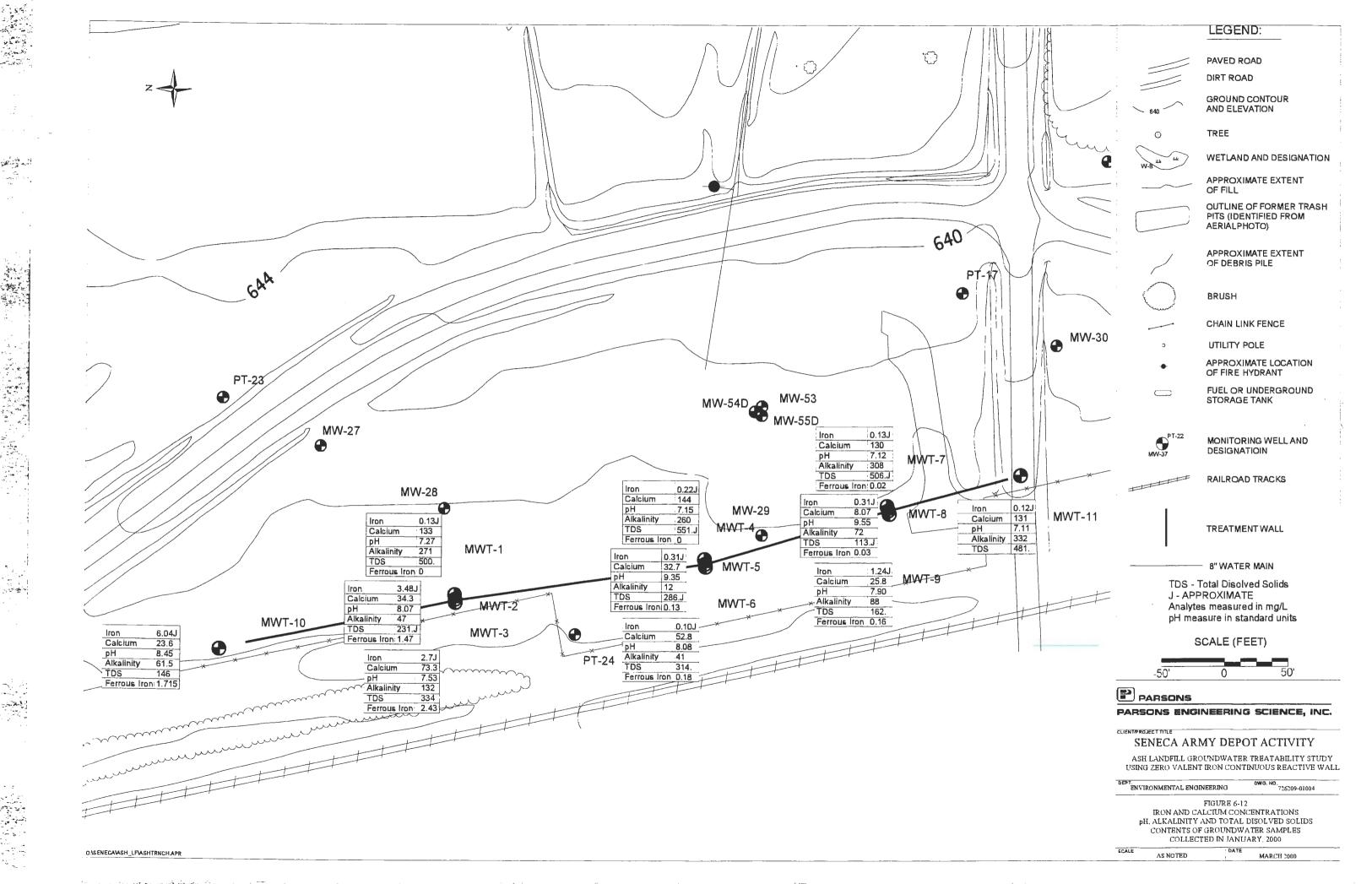


หลังได้ที่สุดที่สุดหรือสินที่สามารถสายเหตุ และสาย และสาย และสาย และสาย และสาย เป็นการการการการการการการการการกา

. محتان محتان

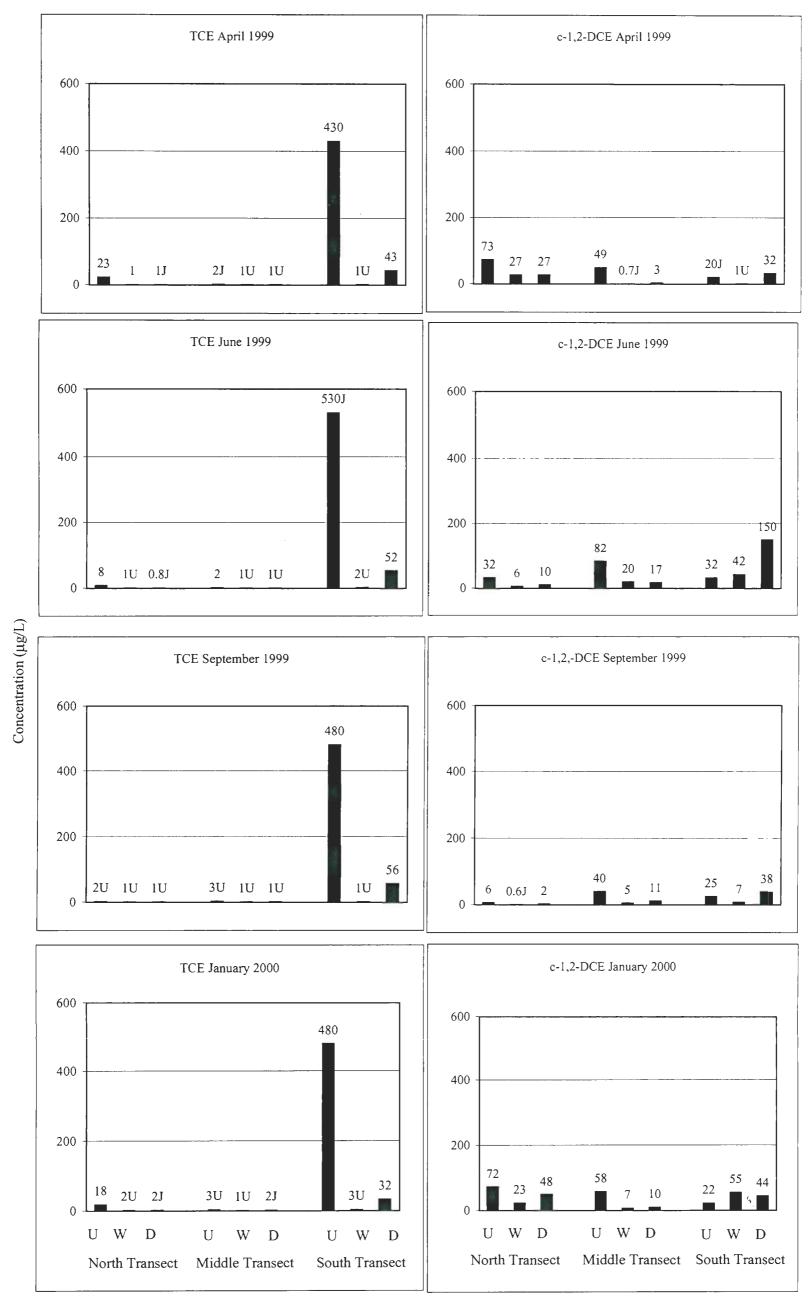

.....




at my

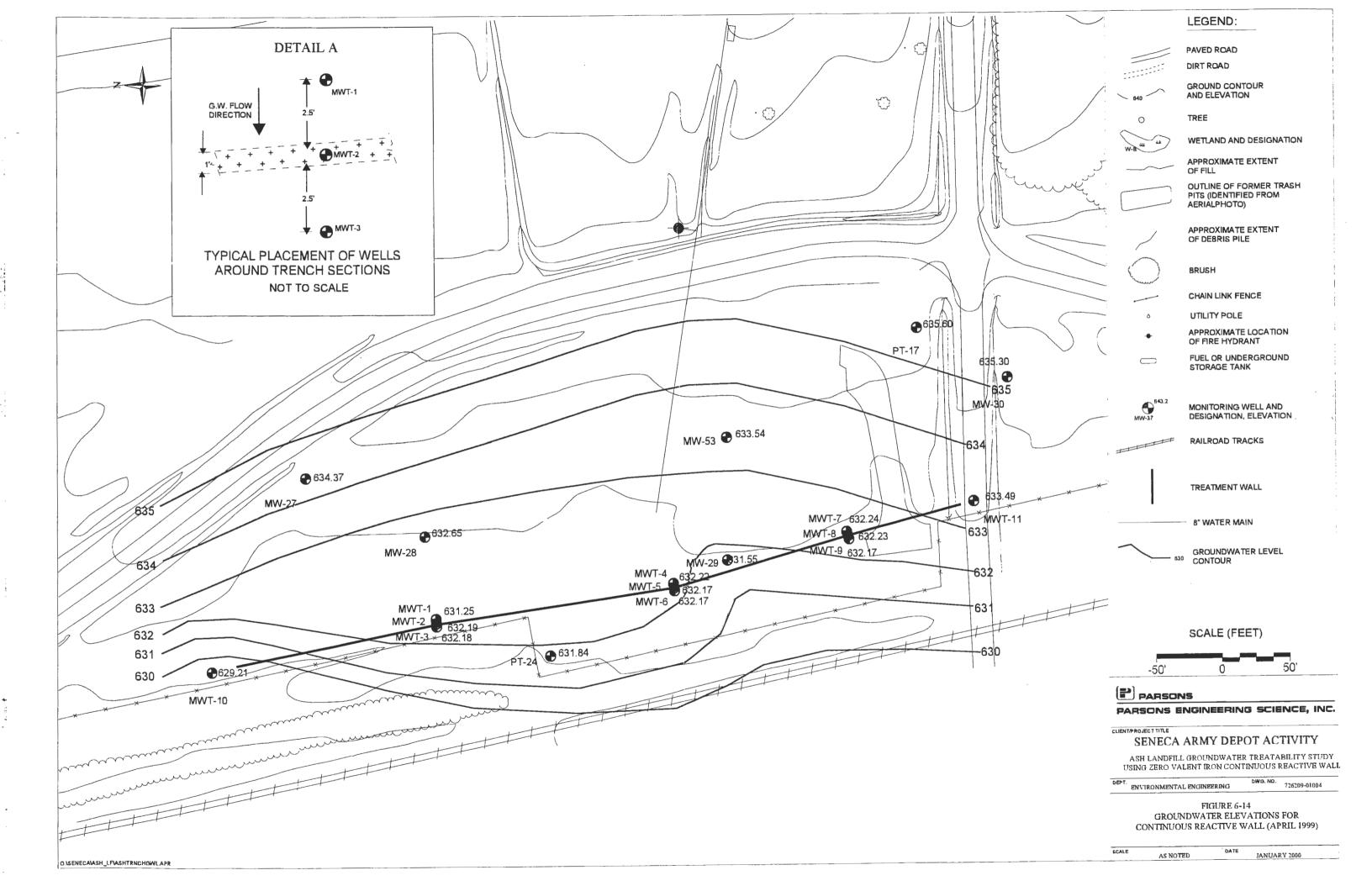
.

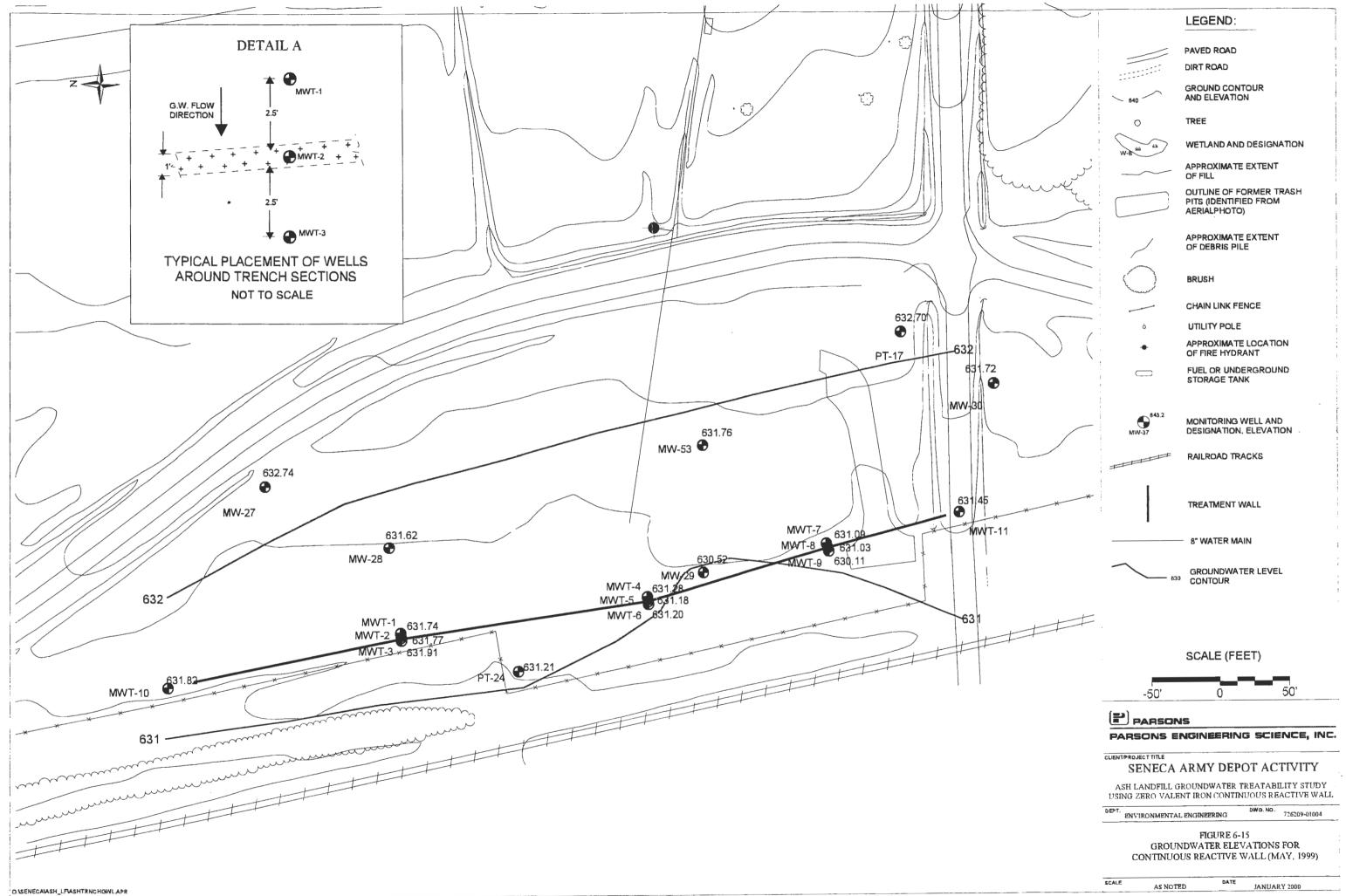
1.2

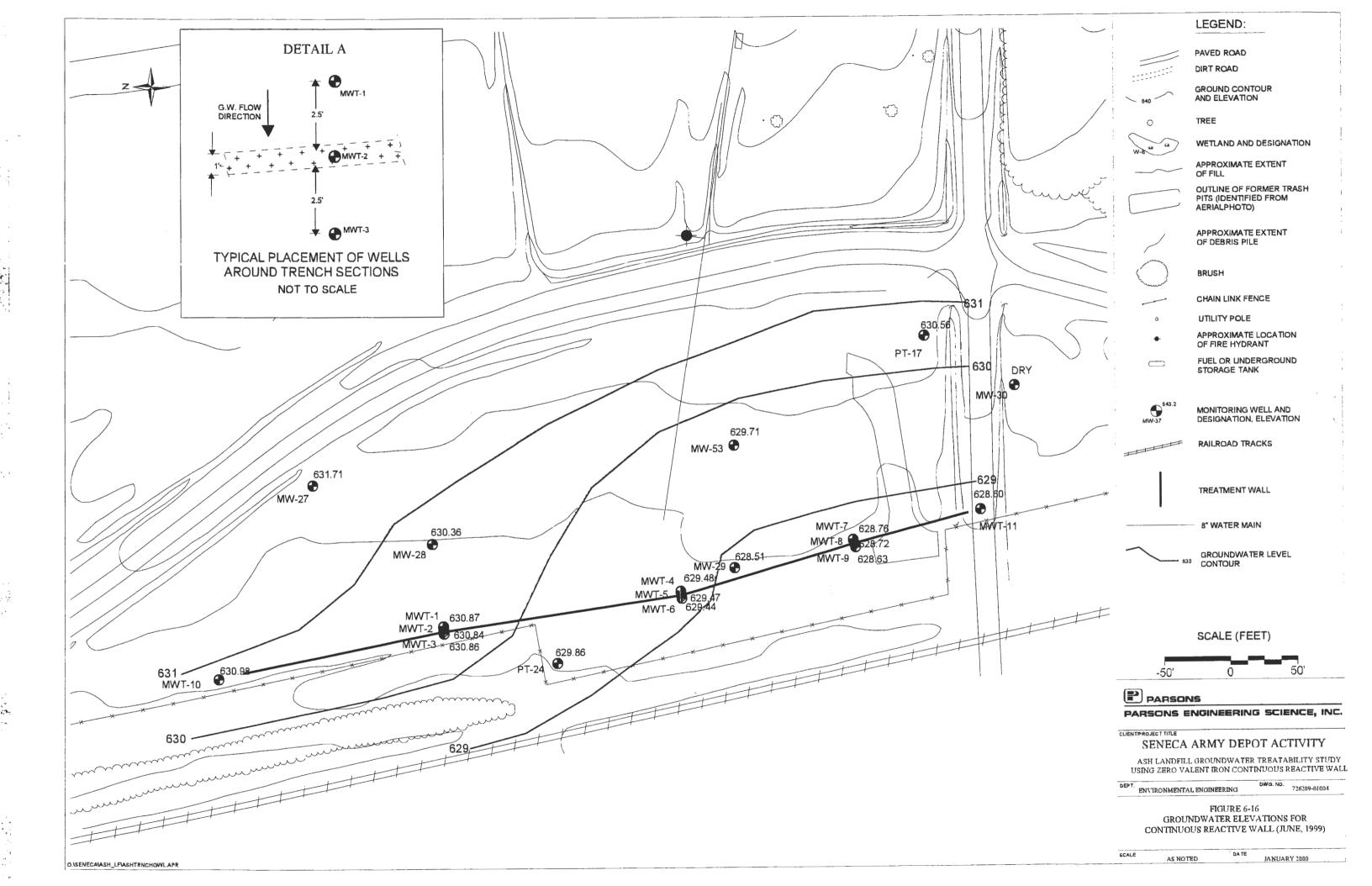


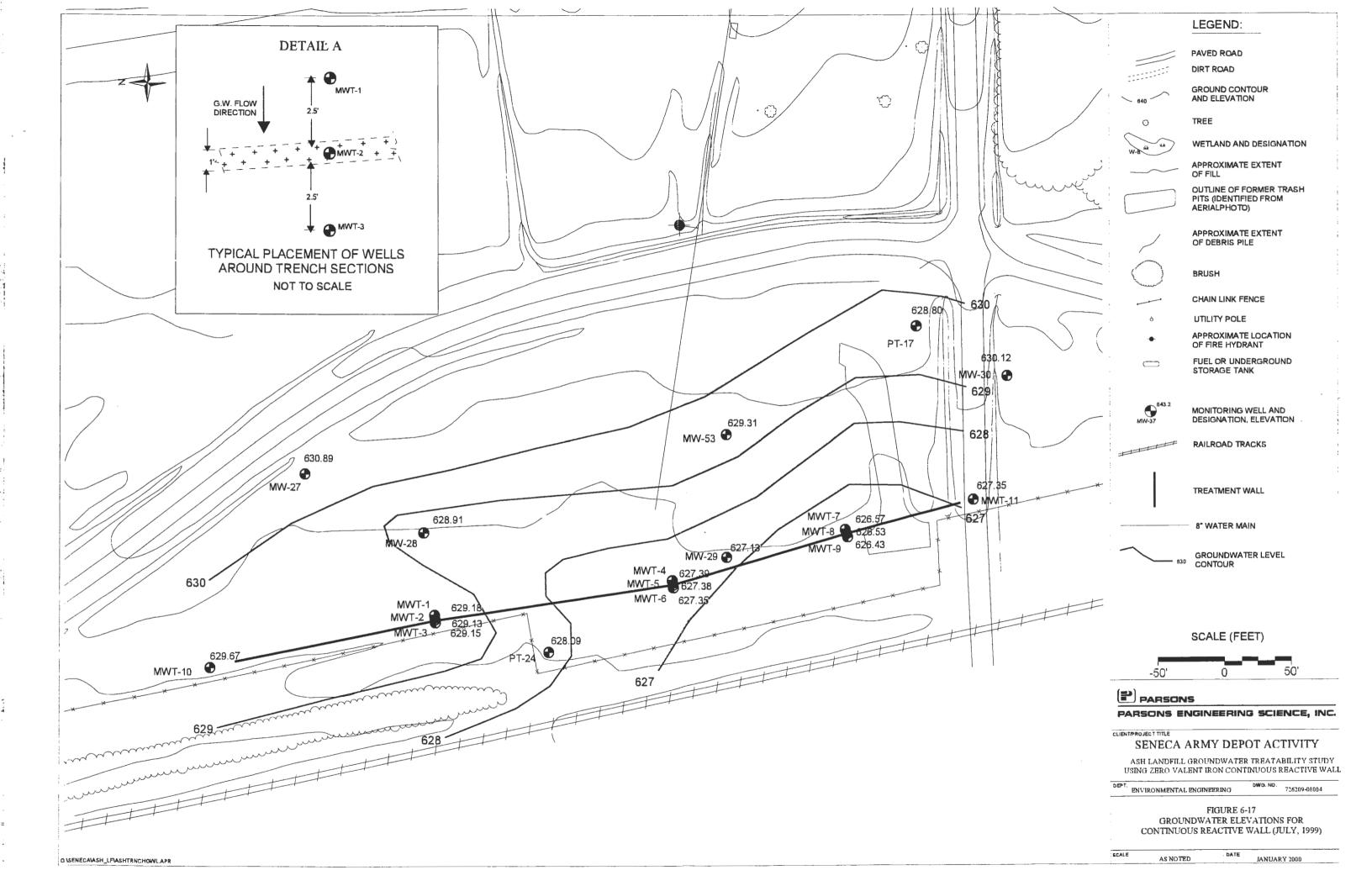

and the second state of the se And a strength of the second 
-

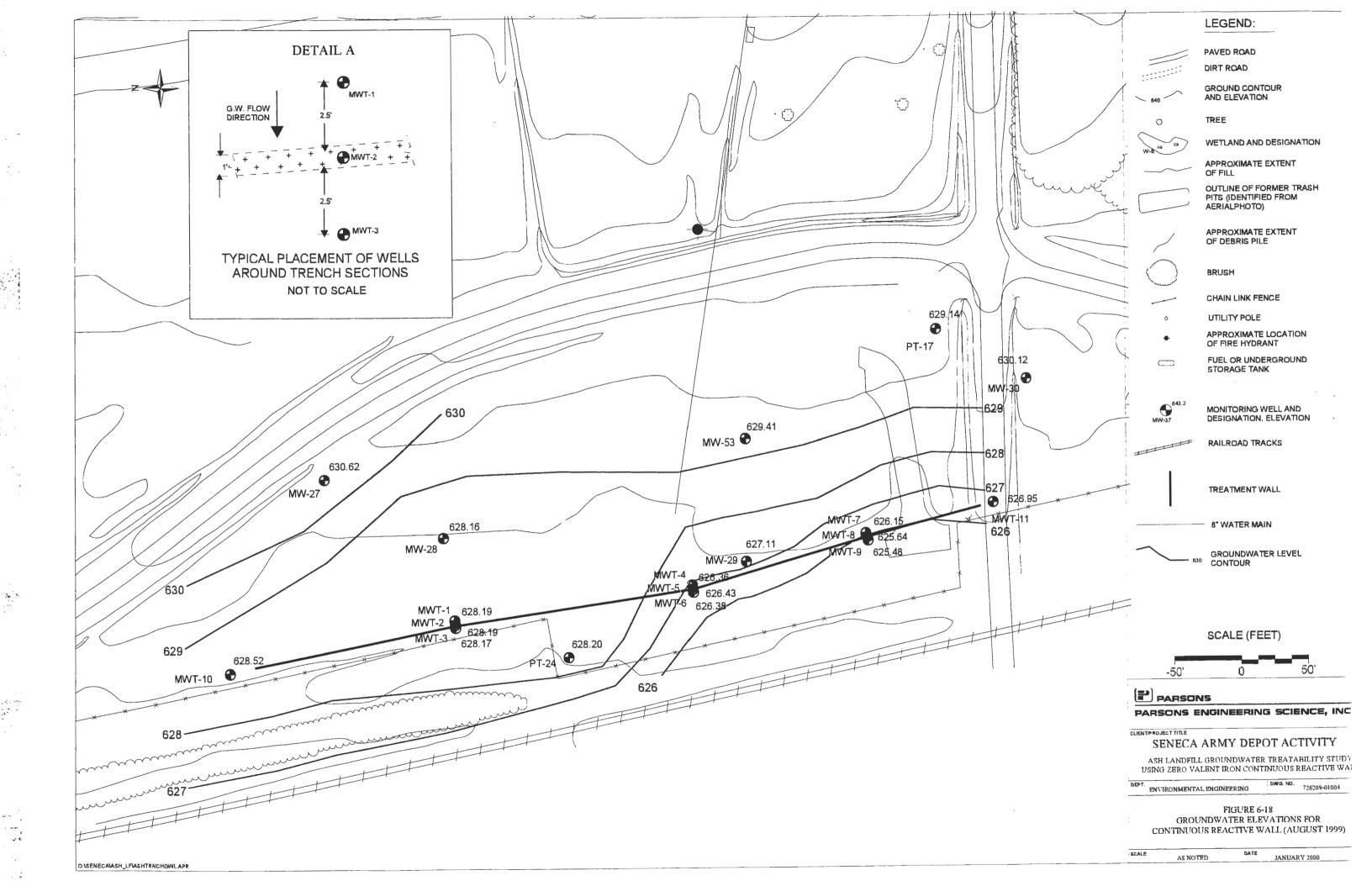


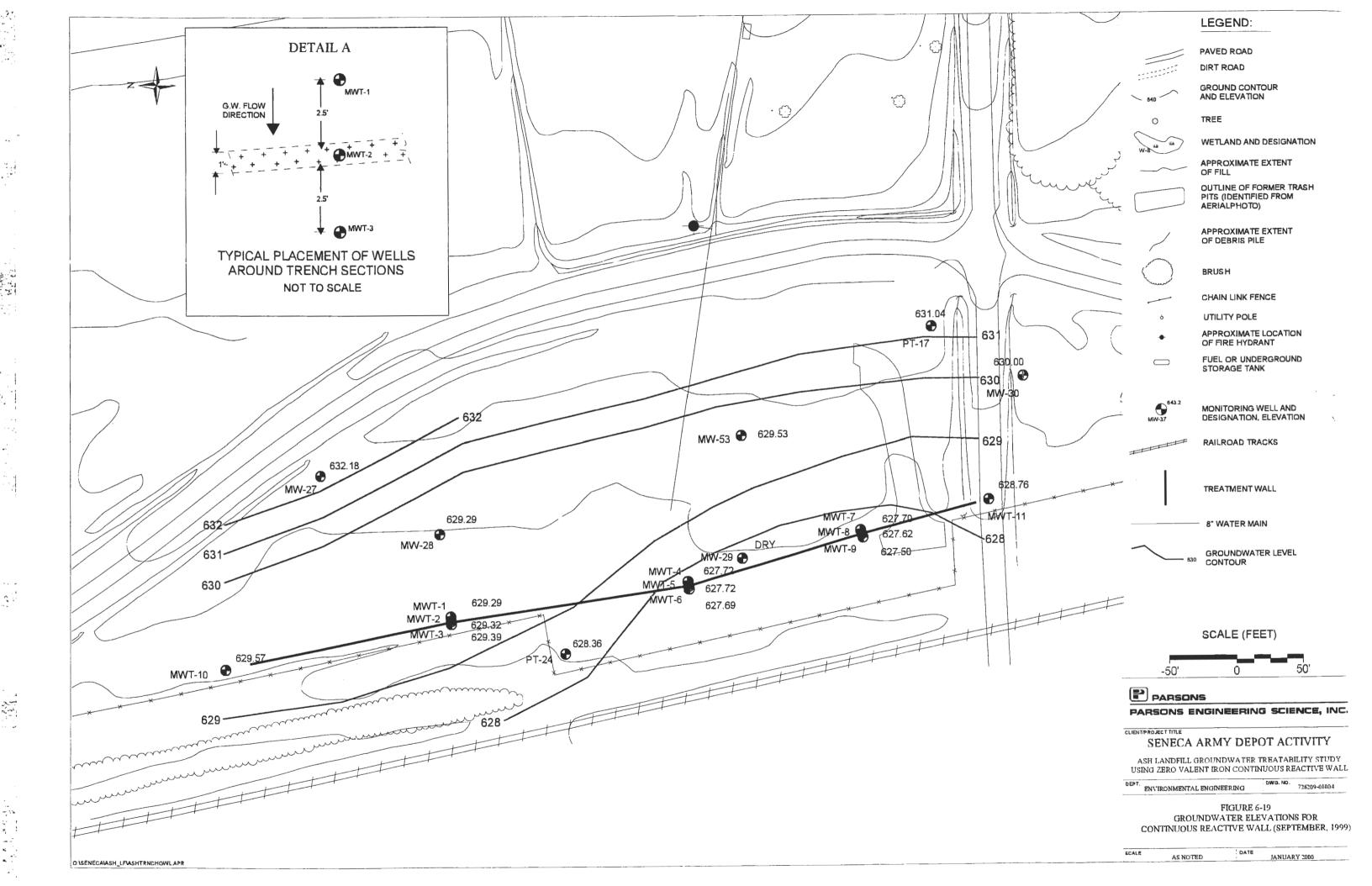

Δ.

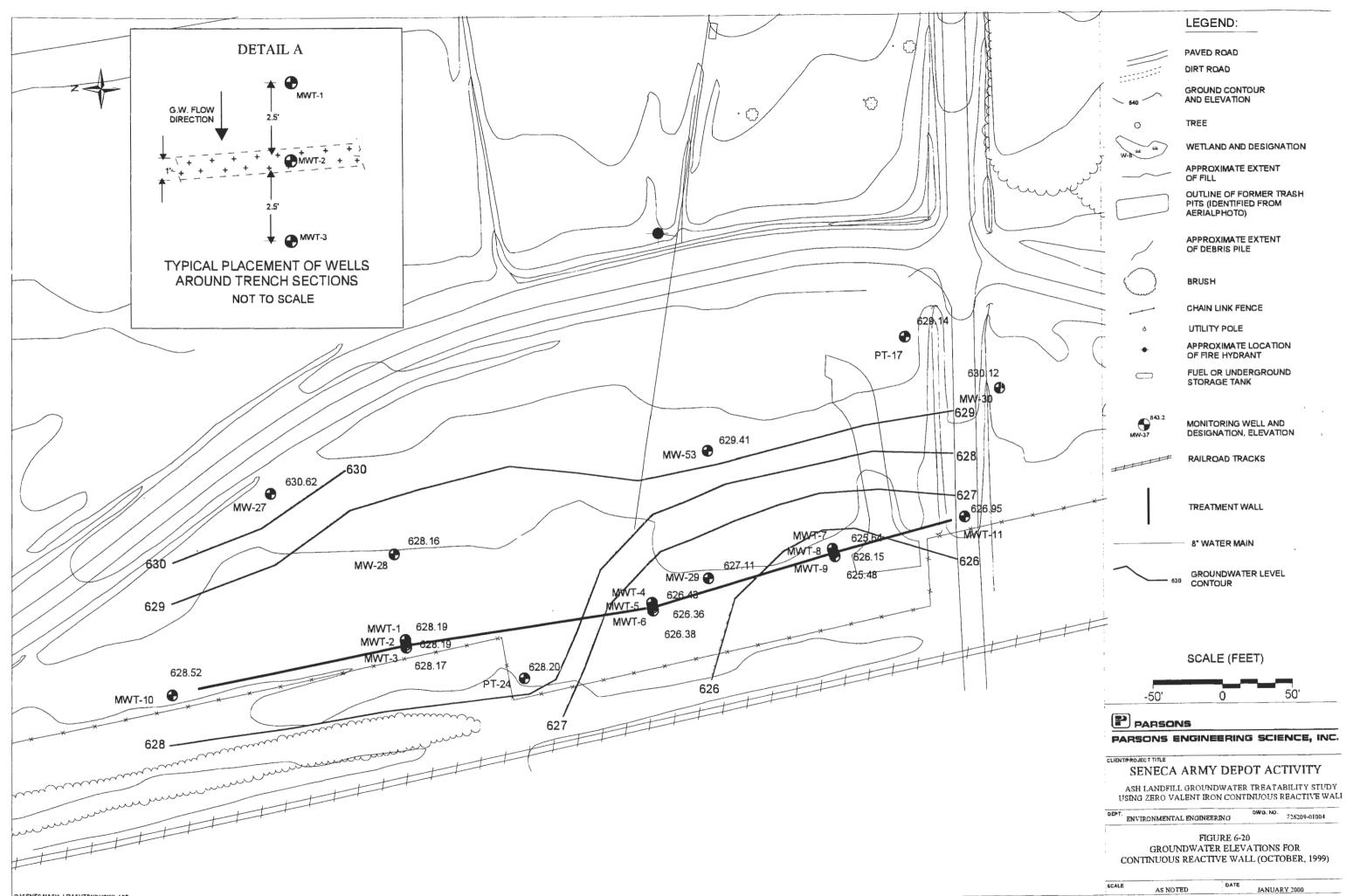

Figure 6-13 Trichloroethene and Cis-1,2-Dichloroethene Results for April 1999-January 2000, Reactive Iron Wall Ash Landfill Feasibility Memorandum Seneca Army Depot Romulus, NY





U=monitoring wells 2.5 ft upgradient of reactive wall, W=monitoring wells within reactive wall D=monitoring wells 2.5 ft


p:\pit\projects\seneca\irontrnc\draftmemo\final\FIG6-13a.xls\Sheet2



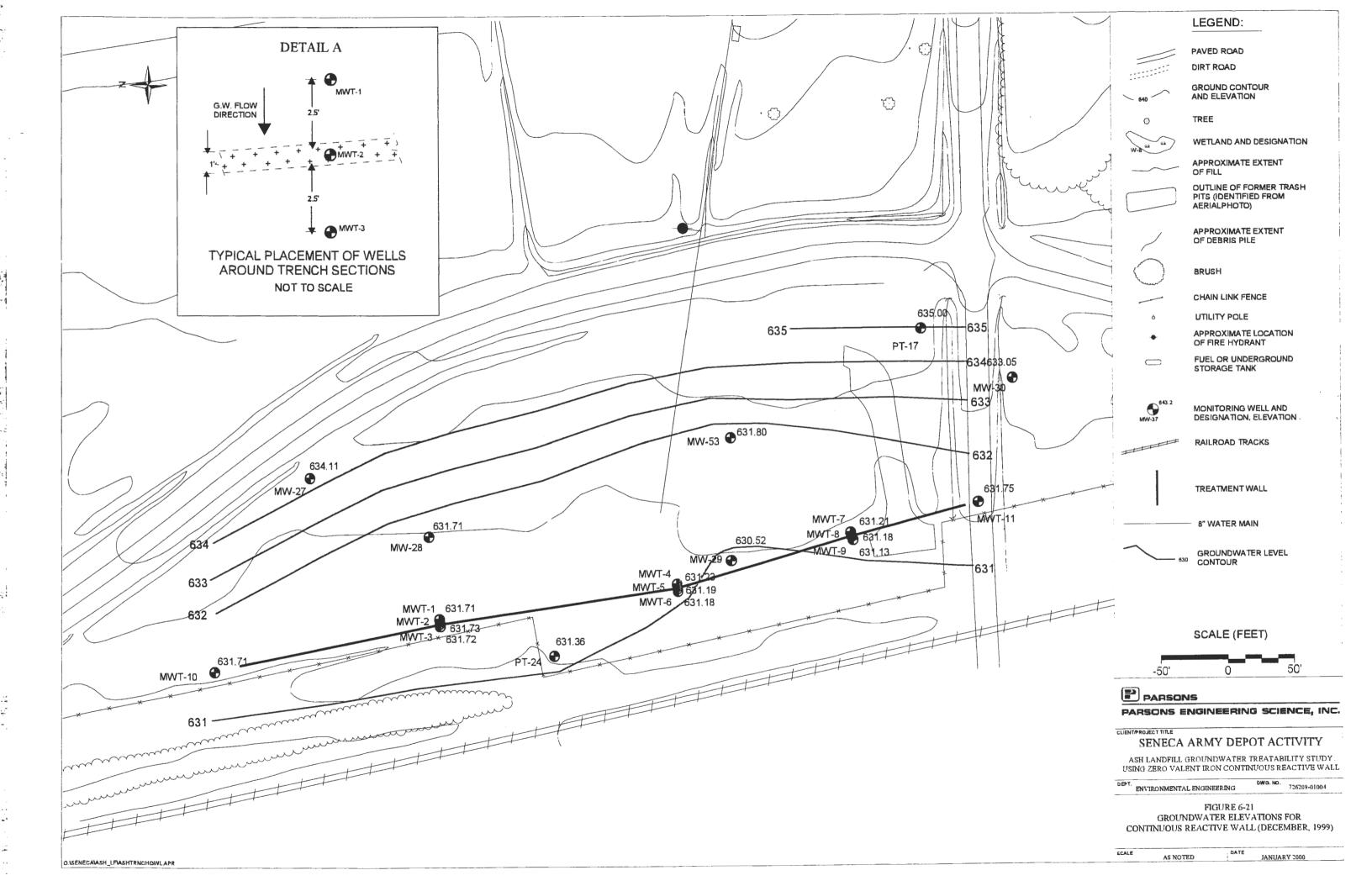


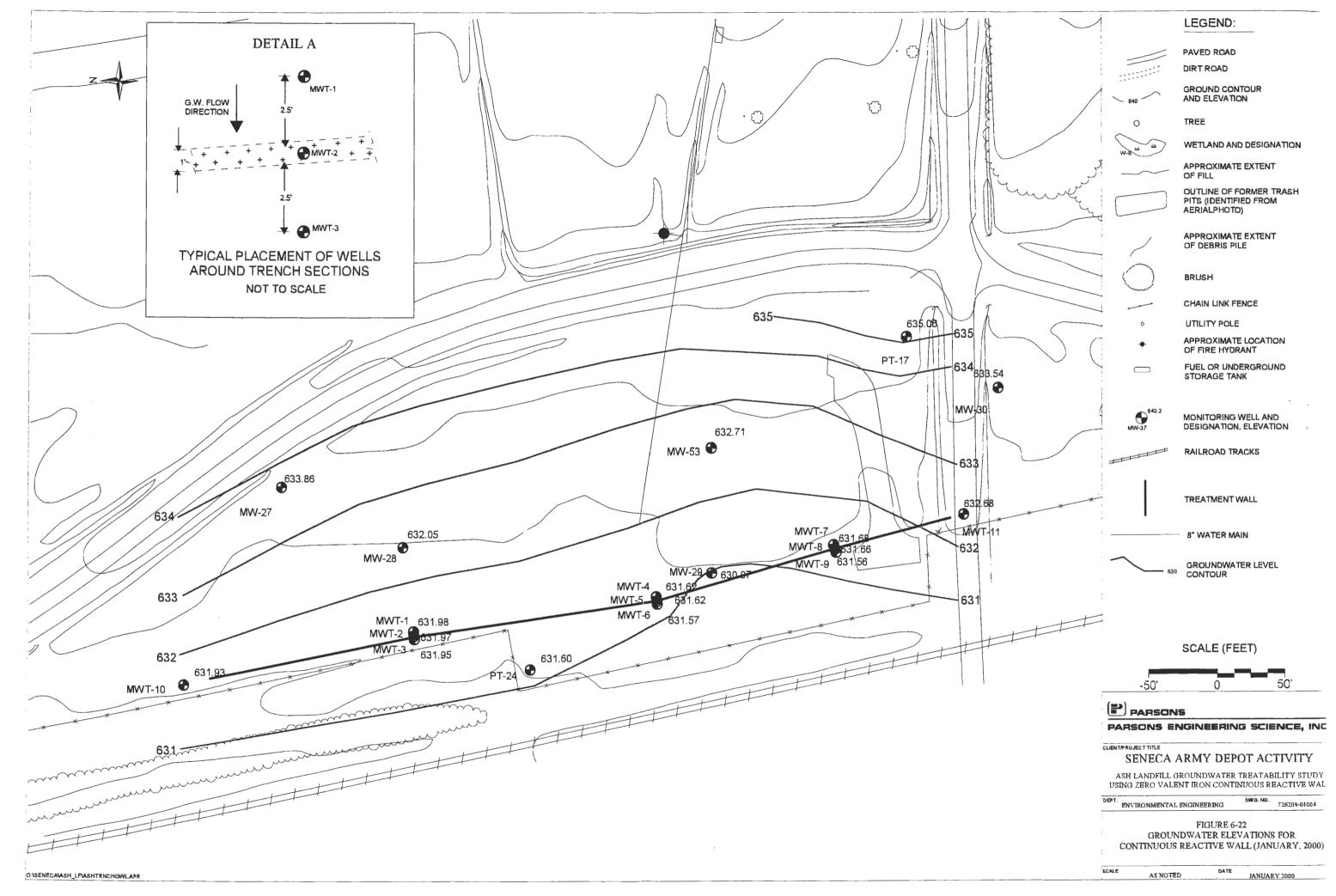








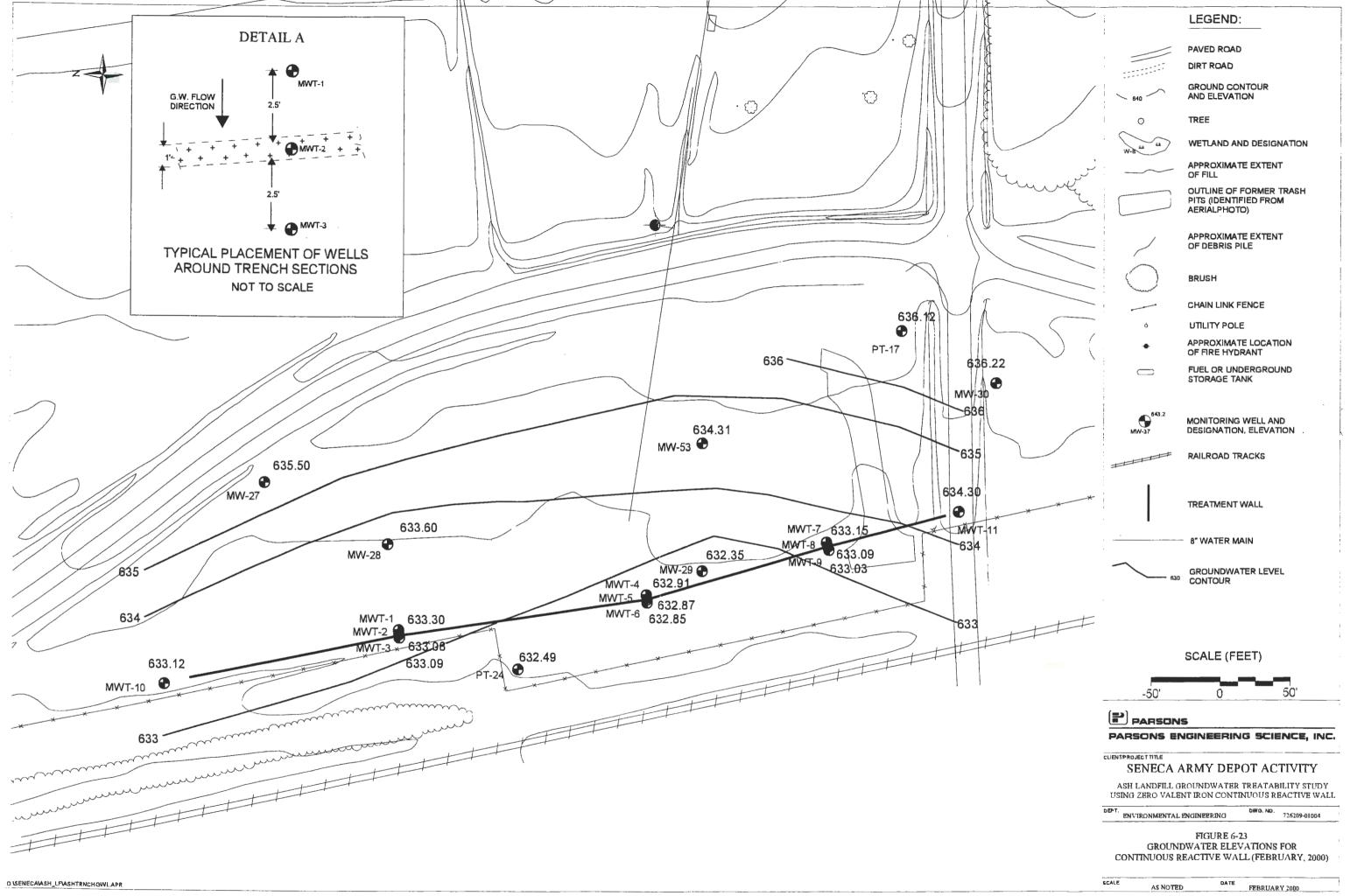


22

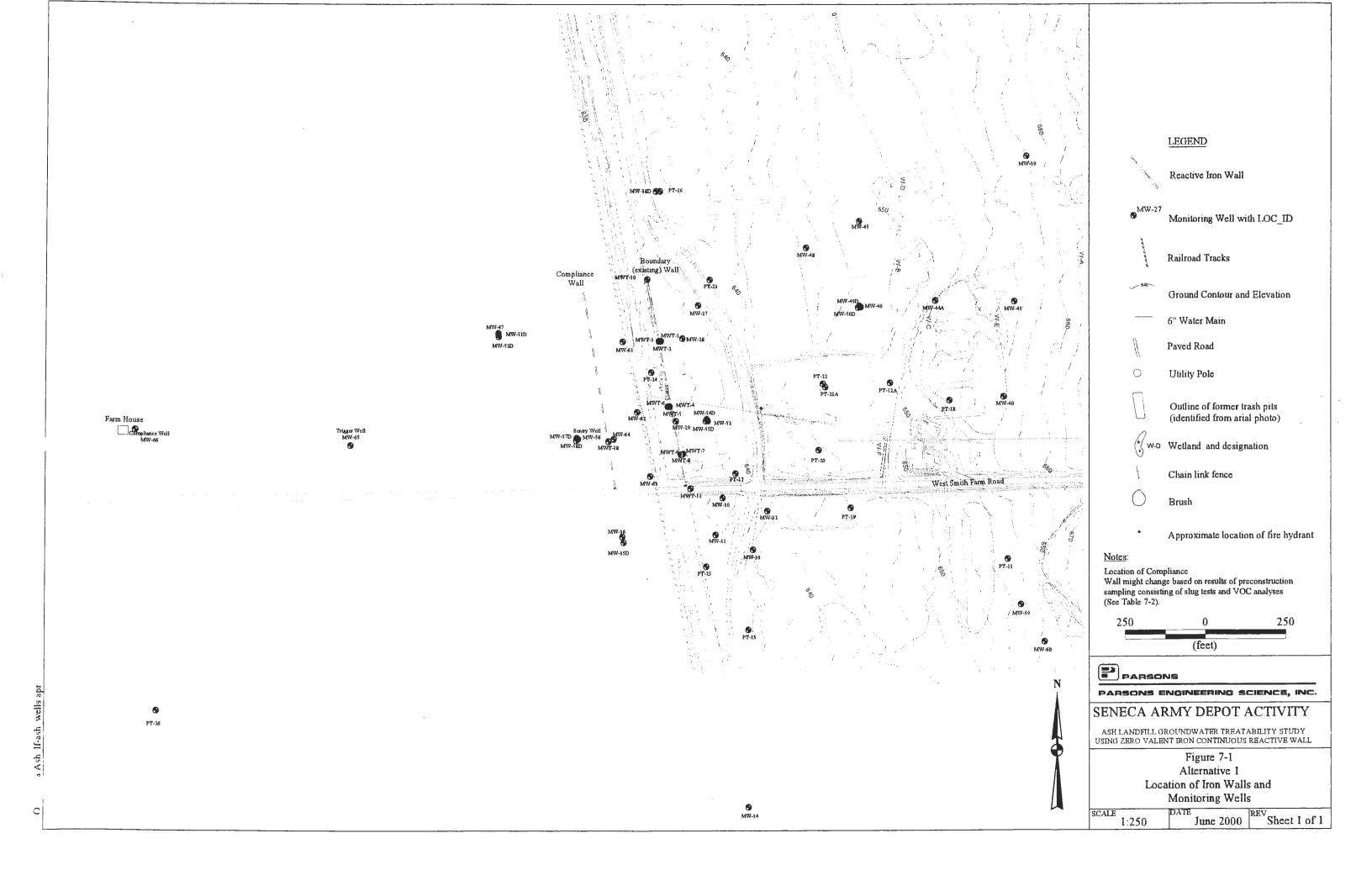

--

.

1.4.1. ٠.

· ... ·





•. .

•, •

, **\***•2







## Appendix A

Design and Installation of Boundary (Existing) Continuous Reactive Wall

## Design of Boundary (Existing) Continuous Reactive Wall

- Table A-1 Maximum VOC Concentrations Detected in Monitoring Wells in Vicinity of Continuous Reactive Wall Prior to Installation
- Table A-2 Design of Continuous Reactive Wall for Ash Landfill Quantity of Iron Required in Trench

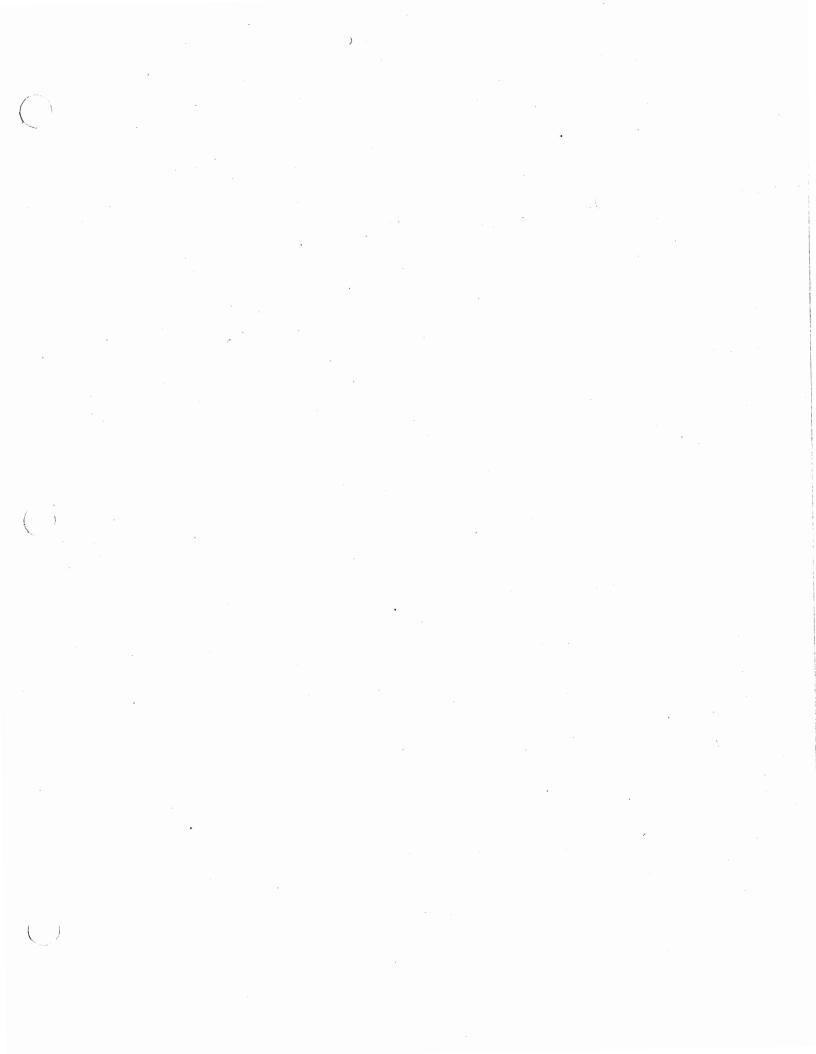
## Installation of Boundary (Existing) Continuous Reactive Iron Wall

- Organic Analysis Results of Sand Fill Material and Topsoil
- Sieve Analysis Results of Sand Fill Material
- Permeability Test Results of Sand/Iron Mixture
- Volatile Organic Analysis Results of Soil Samples for Backfill Material
- Sieve Analysis Results of Iron
- Field Check of Iron/Sand Ratio
- Moisture Content Results of Sand Fill Material

# Table A-1Maximum VOC Concentrations Detected in Monitoring Wellsin the Vicinity of the Continuous Reactive WallPrior to InstallationAsh Landfill Groundwater Treatability StudySeneca Army Depot Activity, Romulus, NY

| ·                       | Well Location and Concentration |        |        |        |        |        |
|-------------------------|---------------------------------|--------|--------|--------|--------|--------|
| Well ID                 | PT-17                           | MW-28  | MW-53  | PT-24  | MW-29  | MW-27  |
| Date of Data Collection | Jul-93                          | Jul-93 | Nov-93 | Jun-97 | Jun-97 | Jun-97 |
| Post Removal Action?    | No                              | No     | No     | Yes    | Yes    | Yes    |
| VOC                     | ug/L                            |        |        |        |        |        |
| Trichloroethene         | 190                             | 35     | 4      | 7      | 5      | ND     |
| 1,2-Dichloroethene      | 43                              | 53     | 51     | 140    | 150    | ND     |
| Vinyl Chloride          | ND                              | ND     | ND     | ND     | ND     | ND     |

## Table A-2


## Design of Continuous Reactive Wall for Ash Landfill Quantity of Iron Required in Trench Seneca Army Depot Activity

| Residence Time | Thickness of 100% Iron | Thickness of 100 % Iron | Volume of Iron         | Volume of Trench | Total Sand | Percentage |
|----------------|------------------------|-------------------------|------------------------|------------------|------------|------------|
| (days) (1)     | at v= 0.2ft/day (2)    | with Safety Factor of 2 | Required for Treatment | (1'x9'x645')     | cu.ft.     | iron       |
|                |                        | -                       | (cu.ft)                | (cu.ft.)         |            |            |
|                |                        |                         | (3)                    |                  |            |            |
| 1.25           | 0.25                   | 0.5                     | 2,774                  | 5,805            | 3,032      | 48%        |

(1) Residence time is based on results from Envirometals (10/29/98).

(2) The velocity of groundwater is approx.0.2 ft/day (60.5 ft/year).

(3)Volume = thickness of 100% iron required\*maximum saturated thickness (est. 8.6')\*length (645')



12/04/98 11:55 FAX 4232209922

DIVERSE-SOLUTION

FROM : DEWIND DEWATERING INC

PHONE NO. : 616 875 7334

Dec. 04 1998 12:11PM P2

w. u z



ENVIRONMENTAL TESTING & CONSULTING, INC.

2924 Walnut Grove Road • Memphis, TN 58111 • (901) 827-2750 • FAX (901) 827-6834

Founded 1972

November 25, 1998

Ms. Becky DeWind DeWind Dewatering 7778 116th Street Holland, MI 49424

Ref: Analytical Testing ETC Order # 9811550 Project Description Seneca Army Depot

The above referenced project has been analyzed per your instructions. The analyses were performed in our laboratory in accordance with Standard Methods 17th/18th Edition; The Solid Waste Manual SW-846; EPA Methods for the Analysis of Water and Wastes and/or 40 CFR part 136.

The results are shown on the attached analysis sheet (s).

Please do not hesitate to contact our office if you have any questions.

Sincerely,

Nathan A. Pera, IV Chief Executive Officer

rt Attachment

DEWIND

### Certifications

| Tennessee      | #TN02027  | Mississippi   |              |  |
|----------------|-----------|---------------|--------------|--|
| Arkansas       |           | Oklahoma      | #9311        |  |
| Alabama        | #40730    | Virginia      | #00106       |  |
| Kentucky       | #90047    | Washington    | #C248        |  |
| North Carolina | #415      | US Army Corps | of Engineers |  |
| South Carolina | #84002002 |               |              |  |

| CHAIN OF | CUSTODY | RECORD |
|----------|---------|--------|
|----------|---------|--------|

Environmental Testing & Consulting, Inc.

2924 Walnut Grove Rd.

EIC

1998 12:22PM P10

8

Dec.

7334

875

616

••

PHONE ND.

Memphis, TN 38111

÷

ETC Work Order : 9811-550

(901)327-2750 FAX (901)327-6334

|               | eny Neme                              |                 | Phone # : 4    | 23-220         | 2-2007       | Fax Results       | $\left  \right\rangle$ |       |        |       | Ă        | nalysi    | s Rei  | quest      | æd   |         |                      |                |     |
|---------------|---------------------------------------|-----------------|----------------|----------------|--------------|-------------------|------------------------|-------|--------|-------|----------|-----------|--------|------------|------|---------|----------------------|----------------|-----|
| D             | EWIND DEWATEL                         | vb              | Fax #: 42      | 3-220          | -9922        | RUSH              |                        |       | (Not   | e spe | icial d  | etect     | ion li | mits       | or m | ethod   | s)                   |                | ,   |
| Projec        | t/She                                 |                 | FID # :        |                |              | lce               |                        |       |        |       |          | 2         |        |            |      |         |                      |                |     |
| _             | ENIECA AILME DERT                     |                 | PO # :         |                |              |                   | <u> </u>               | 2     | Q.     |       | X        | E I       | .0     |            |      |         |                      |                |     |
| Projec        | t #                                   |                 | Matrix         |                |              |                   |                        | 09260 | 82.70  | 50    | No       | ΞQ        | Ĭ      |            |      |         |                      |                |     |
|               |                                       |                 | 1 Wastewale    | r              | 4 Sludge     |                   |                        | 6     | 00     | 29    | μø       | TAL HETOU | 4      | 35         | 1    | 1       |                      |                |     |
| Projec        | t Manager/Contact                     |                 | 2 Aqueous      |                | 5 . Oil/Schw | m                 | 1                      | TOTAL | To T4L | 4     | 5        | 5         | 4      | ICHL (LHL) |      |         |                      |                |     |
|               | DAN GAKLEY                            | <b></b>         | 3 Soil/Sedime  |                | 6 Other      | -                 | 4                      | F     | F      | E     | TotAC    | 10-thc    | 2      | 12         |      | Į 1     |                      |                |     |
| l of<br>cont. | Semple<br>ID/ Number                  | Dopth           | Sample<br>Dete | Sample<br>Time | Matric       | Type<br>Grab/Comp |                        | ř     | F      | Total | F        | þ         |        |            |      |         |                      | Comme          | nts |
| 2             | TOPSOIL                               | 0               | 11/17/98       | <i>ls</i> :∞   | SOIL         | GRAS              |                        | X     | X      | X     | X        | X         | Х      | ×          |      |         |                      |                |     |
| 2             | SAND                                  | 0               | 11/11/58       | 15:15          | SOIL         | GAAB              |                        | X     | X      | x     | x        | x         | ×      | ×          |      |         |                      |                |     |
|               |                                       | +               |                |                |              |                   |                        |       |        |       |          |           |        |            | ┣    |         |                      |                |     |
|               | · · · · · · · · · · · · · · · · · · · |                 |                |                |              | ·                 |                        |       |        |       | -        |           |        |            | ┨──  | ╂──     |                      |                |     |
|               |                                       |                 | <u> </u>       |                |              | ·                 |                        |       |        |       |          |           |        |            | ┨──  | ┢──     |                      |                |     |
|               |                                       |                 |                |                |              |                   |                        |       |        |       |          |           |        |            |      | ╀──     |                      |                |     |
|               |                                       | -               |                |                |              | ļ                 |                        |       |        |       | <b> </b> |           |        |            |      | +       | <u> </u>             |                |     |
|               |                                       | 1               |                |                |              | ,                 | -                      |       |        |       |          |           |        | 1          |      |         |                      |                |     |
|               |                                       |                 |                |                |              |                   |                        |       |        |       |          |           |        |            |      |         |                      |                |     |
|               |                                       |                 |                |                |              |                   |                        |       |        |       |          |           |        |            |      | 1       |                      |                |     |
| Sampl<br>DA   | WIELB. OHALEY                         | Method of Shipn | ายณ            | Blank/Coo      |              | Rømerke           |                        |       |        |       |          |           |        |            |      |         |                      |                | -   |
| RELIN         | SUNSFIEDBY Songhill                   |                 | DATE<br>1/1/98 | TIME<br>16:30  |              |                   |                        |       |        |       |          | DATE      |        | TIME       |      | Service | pie D <del>a</del> i | ivery Group ID | )   |
| RELIN         | QUISHED BY                            | ,               | DATE           | TIME           | RECEIVED     | BY (sign)         |                        |       |        |       |          | DATE      | 5      | TIME       | •    |         |                      |                |     |
| RELIN         | QUISHED BY (John                      |                 | DATE           | TIME           | ECEIVED      | BY LAB prin       | t/sion)                |       | 1      | 2     |          | DATE      |        | TIME       | :    | ]       |                      |                |     |

υ Μ

""

PHOADCISI OPICOLOBIE KLS

NTITUT POPOTION

-<u>1</u>

# ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphils, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

DeWind Dewstering Client Name

Project # FID #

7778 116th Street Holland, MI 49424

#### site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

### ETC Lab ID 9811550-01 Sample ID: Topsoil

Matrix :SOIL Sample Date :11/17/98

| GC/MG Volatile Organics       B260         Acetonic       ND ug/Kg 20.0         Acetonicrile       ND ug/Kg 20.0         Acetonicrile       ND ug/Kg 10.0         Acetonicrile       ND ug/Kg 10.0         Benzere       ND ug/Kg 1.00         Bromochloromethane       ND ug/Kg 1.00         Bromodichloromethane       ND ug/Kg 1.00         Gerbon Disulfide       ND ug/Kg 1.00         Chlorobenzene       ND ug/Kg 1.00         1,2-Dichlorobenzene       ND ug/Kg 1.00 | TEST                        | RESULT | UNITS | DETECTION | DATE<br>EXTRACTED | date<br>Analyzed | By | METHOD |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|-------|-----------|-------------------|------------------|----|--------|
| AccountNDug/Kg20.0AccountrileNDug/Kg20.0AccountrileNDug/Kg20.0AccountrileNDug/Kg1.00BraseneNDug/Kg1.00BromochioromethaneNDug/Kg1.00BromochioromethaneNDug/Kg1.00BromochioromethaneNDug/Kg1.00BromochioromethaneNDug/Kg1.00BromochioromethaneNDug/Kg1.00BromothaneNDug/Kg1.00BromothaneNDug/Kg1.00ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.001,2-DithorobenzeneNDug/Kg1.001,2-DithorobenzeneNDug/Kg1.001,3-Ditho                                                                                                                                                                                                                                                                                                                                                                                                                  | C/M5 Volatile Organics      |        |       |           |                   | /10/00           |    | 82603  |
| AcciolainNDUg/Kg20.0AccylonitrileNDUg/Kg10.0AcrylonitrileNDUg/Kg1.00BromochloromethaneNDUg/Kg1.00BromochloromethaneNDUg/Kg1.00BromochloromethaneNDUg/Kg1.00BromochloromethaneNDUg/Kg1.00BromochromethaneNDUg/Kg1.00BromoformNDUg/Kg1.00BromoformNDUg/Kg1.00BromoformNDUg/Kg1.00BromoformNDUg/Kg1.00c-SutylbenzeneNDUg/Kg1.00carbon DisulfideNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.00ChlorobenzeneNDUg/Kg1.001/2-Dibromo-3-ChloropropaneNDUg/Kg1.001/2-Dibromo-3-ChloropropaneNDUg/Kg1.001/3-DichlorobenzeneNDUg/Kg1.001/3-DichlorobenzeneNDUg/Kg1.001/3-DichlorobenzeneNDUg/Kg1.001/3-DichlorobenzeneNDUg/Kg1.001/3-DichlorobenzeneND                                                                                                                                                                                                                                                                                                                                                                                       | Acetone                     | כמע    |       | 20.0      |                   | 11/19/98         | LS |        |
| AccelonitrileNDug/Kg10.0AcrylonitrileNDug/Kg20.0BenzeneNDug/Kg1.00BromochloromethaneNDug/Kg1.00BromochloromethaneNDug/Kg1.00BromochloromethaneNDug/Kg1.00BromochloromethaneNDug/Kg1.00BromochloromethaneNDug/Kg1.00BromochloromethaneNDug/Kg1.00ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorodibromotethaneNDug/Kg1.00ChlorothaneNDug/Kg1.00ChlorothaneNDug/Kg1.00ChlorothaneNDug/Kg1.00ChlorothaneNDug/Kg1.00ChlorothaneNDug/Kg1.00ChlorothaneNDug/Kg1.00ChlorothaneNDug/Kg1.001, 2-DibromotethaneNDug/Kg1.001, 2-DibromotethaneNDug/Kg1.001, 2-DichloropropropaneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-Dichlorobe                                                                                                                                                                                                                                                                                                                                                                     |                             |        |       |           |                   |                  |    |        |
| AcrylonitzileNDug/Kg20.0BenseneNDug/Kg1.00BromochlereneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromodichleromethaneNDug/Kg1.00BromodichleromethaneNDug/Kg1.00BromoformNDug/Kg1.00BromoformNDug/Kg1.00BromoformNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlerideNDug/Kg1.00ChlorodibromofiethaneNDug/Kg1.00ChlorodthemethaneNDug/Kg1.00ChlorodthemethaneNDug/Kg1.00ChlorodthemethaneNDug/Kg1.00ChlorodthemethaneNDug/Kg1.00ChlorodthemethaneNDug/Kg1.00ChlorodthemethaneNDug/Kg1.00ChlorodthemeNDug/Kg1.001, 2-Dibromo-3-ChloropropaneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                        |                             |        |       |           |                   |                  |    |        |
| BenirersNDug/Kg1.00BromobenzencNDug/Kg1.00BromodileromethaneNDug/Kg1.00BromodichloromethaneNDug/Kg1.00BromodichloromethaneNDug/Kg1.00BromoformNDug/Kg1.00BrothloromethaneNDug/Kg1.00BrothloromethaneNDug/Kg1.00ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TisulfideNDug/Kg1.00ChlorodibromothethaneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.002-ChlorotolueneNDug/Kg1.002-ChlorotolueneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                           |                             |        |       |           |                   |                  |    |        |
| BromochlerenzeNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00BromochleromethaneNDug/Kg1.00ca-ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,4-DichlorobethaneNDug/Kg1.001,4-DichlorobethaneNDug/Kg1.001,4-DichlorobethaneNDug/Kg1.001,2-DichlorobethaneNDug/Kg1.001,1-DichlorobethaneNDug/Kg1.001,2-DichlorobethaneNDug/Kg1.001                                                                                                                                                                                                                                                                                                                                                                     |                             |        |       |           |                   |                  |    |        |
| BromodichloromethaneNDNDNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZNZ <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |        |       |           |                   |                  |    |        |
| Bromodichloromethane         ND         Ug/Kg         1.00           Bromoform         ND         Ug/Kg         1.00           Bromomethane (Methyl Bromide)         ND         Ug/Kg         1.00           Butylbenzene         ND         Ug/Kg         1.00           c-Butylbenzene         ND         Ug/Kg         1.00           carbon Tetrachloride         ND         Ug/Kg         1.00           Carbon Tetrachloride         ND         Ug/Kg         1.00           Chlorobenzene         ND         Ug/Kg         1.00           1,2-Dibromo-3-Chloropropane         ND         Ug/Kg         1.00           1,2-Dichlorobenzene         ND         Ug/Kg         1.00           1,2-Dichloroben     |                             |        |       |           |                   |                  |    |        |
| BromoformNDug/Kg1.00Browomethame (Methyl Bromide)NDug/Kg1.00ButylbenzeneNDug/Kg1.00JestutylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.002-Chlorosthylvinyl EtherNDug/Kg1.002-ChlorostolueneNDug/Kg1.002-ChlorotolueneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichloropenzeneNDug/Kg1.001,1-DichloropenzeneNDug/Kg1.001,2-DichloropenzeneNDug/Kg1.001,2-DichloropenzeneNDug/Kg1.001,2-DichloropenzeneNDug/Kg1.001,2-DichloropenzeneNDug/Kg <td>Bromodichloromethane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                          | Bromodichloromethane        |        |       |           |                   |                  |    |        |
| Brownesthame (Nethyl Bromide)NDug/Kg1.00ButylbenzeneNDug/Kg1.00dc=ButylbenzeneNDug/Kg1.00tert=ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00ChorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.001,2-bibromoethaneNDug/Kg1.001,2-bibromoethaneNDug/Kg1.001,2-bibromoethaneNDug/Kg1.001,2-bibromoethaneNDug/Kg1.001,2-bibromoethaneNDug/Kg1.001,3-bibromoethaneNDug/Kg1.001,1-biblorobenzeneNDug/Kg1.001,1-biblorobethaneNDug/Kg1.001,2-biblorobethaneNDug/Kg1.001,1-biblorobethaneNDug/Kg1.001,2-biblorobethaneNDug/Kg1.001,2-biblorobethaneNDug/Kg1.001,2-bibloropropaneNDug/Kg1.001,2-bibloropropa                                                                                                                                                                                                                                                                                                                                                                     | Bromoform                   |        |       |           |                   |                  |    |        |
| ButylbenzeneNDug/Kg1.00sc-ButylbenzeneNDug/Kg1.00tart-ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorodthaneNDug/Kg1.00ChlorodthaneNDug/Kg1.00ChlorodthaneNDug/Kg1.00ChlorodthaneNDug/Kg1.00ChlorodthaneNDug/Kg1.00ChlorototueneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg <t< td=""><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                       |                             | ND     |       |           |                   |                  |    |        |
| d-ButylbenzeneNDug/Kg1.00tart-ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorobuseneNDug/Kg1.00ChlorobthaneNDug/Kg1.00ChlorobthaneNDug/Kg1.00ChlorobthaneNDug/Kg1.00ChlorobthaneNDug/Kg1.00ChlorobthaneNDug/Kg1.00ChlorobthaneNDug/Kg1.00ChlorobtolueneNDug/Kg1.001, 2-Dibrono-3-ChloropropaneNDug/Kg1.001, 2-Dibrono-3-ChloropropaneNDug/Kg1.001, 2-Dibrono-3-ChloropropaneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 2-DichlorobenzeneNDug/Kg1.001, 1-DichlorobenzeneNDug/Kg1.001, 1-DichlorobenzeneNDug/Kg1.001, 1-DichloroethaneNDug/Kg1.001, 1-DichloroethaneNDug/Kg1.001, 2-DichloropethaneNDug/Kg1.001, 1-DichloroethaneNDug/Kg1.001, 1-DichloroethaneNDug/Kg1.001, 1-DichloropropaneNDug/Kg1.001, 2-DichloropropaneNDug/Kg1.001, 1-DichloropropaneND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                              |                             |        |       |           |                   |                  |    |        |
| tart-ButylbenzeneNDug/Kg1.00Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.002-ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChlorobethaneNDug/Kg1.00ChloroblueneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,1-DichlorobethaneNDug/Kg1.001,2-DichlorobethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,1-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.001,2-DichloropethaneNDug/Kg1.0                                                                                                                                                                                                                                                                                                                                                   |                             |        |       |           |                   |                  |    |        |
| Carbon DisulfideNDug/Kg1.00Carbon TetrachlorideNDug/Kg1.00ChlorodbarseneNDug/Kg1.00ChlorodthameNDug/Kg1.00Chloroethylvinyl EtherNDug/Kg1.002-Chloroethylvinyl EtherNDug/Kg1.00ChloroformNDug/Kg1.002-Chloroethylvinyl EtherNDug/Kg1.002-ChlorotolueneNDug/Kg1.002-ChlorotolueneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropthaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloropthaneNDug/Kg1.001,2-DichloropthaneNDug/Kg1.001,2-DichloropthaneNDug/Kg1.001,1-DichloropthaneND <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                   |                             | ND     |       |           |                   |                  |    |        |
| Carbon TetrachlorideNDug/Kg1.00ChlorobenzeneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.002-Chloroethylvinyl EtherNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.00ChloroethaneNDug/Kg1.002-ChlorotolueneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                   | Carbon Disulfide            | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| ChlorobenzeneNDug/Kg1.00ChlorodibromottethaneNDug/Kg1.002-ChloroethaneNDug/Kg1.002-Chloroethylvinyl EtherNDug/Kg1.00ChloroethaneNDug/Kg1.002-ChlorotolueneNDug/Kg1.002-ChlorotolueneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1                                                                                                                                                                                                                                                                                                                        | Carbon Tetrachloride        | ND     |       |           |                   |                  |    |        |
| ChlorodibromomisthaneNDug/Kg1.00ChlorosthanaNDug/Kg1.002-Chlorosthylvinyl EtherNDug/Kg1.00Chlorosthylvinyl EtherNDug/Kg1.00ChlorotoluaneNDug/Kg1.002-ChlorotoluaneNDug/Kg1.001.2-Dibromo-3-ChloropropaneNDug/Kg1.001.2-Dibromo-3-ChloropropaneNDug/Kg1.001.2-Dibromo-3-ChloropropaneNDug/Kg1.001.2-DibromoethaneNDug/Kg1.001.3-DichlorobenzeneNDug/Kg1.001.4-DichlorobenzeneNDug/Kg1.001.4-DichlorobenzeneNDug/Kg1.001.4-DichlorobenzeneNDug/Kg1.001.1-DichloroethaneNDug/Kg1.001.2-DichloroethaneNDug/Kg1.001.3-DichloroethaneNDug/Kg1.001.4-DichloroethaneNDug/Kg1.001.2-DichloroethaneNDug/Kg1.001.2-DichloroethaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                    | Chlorobenzene               | ND     |       |           |                   |                  |    |        |
| ChloroëthaneNDug/Kg1.002-ChloroëthaneNDug/Kg20.0ChloroëthaneNDug/Kg1.00ChlorotolueneNDug/Kg1.002-ChlorotolueneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001                                                                                                                                                                                                                                                                                                                        | Chlorodibromontethane       | ND     |       |           |                   |                  |    |        |
| 2-Chloroethylvinyl EtherNDug/Kg20.0ChloroformNDug/Kg1.00ChloromathaneNDug/Kg1.002-ChlorotolueneNDug/Kg1.004-ChlorotolueneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-Dichloropropa                                                                                                                                                                                                                                                                                                                        | Chloroethane                | ND     |       | 1.00      |                   |                  |    |        |
| ChloroformNDug/Kg1.00ChlorotoluaneNDug/Kg1.004-ChlorotoluaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-thaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-Dichloropropane                                                                                                                                                                                                                                                                                                                        | 2-Chloroethylvinyl Ether    | 20     |       | 20.0      |                   |                  |    |        |
| ChlorowsthaneNDug/Kg1.002-ChlorotolueneNDug/Kg1.004-ChlorotolueneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-Dichlorop                                                                                                                                                                                                                                                                                                                        |                             | ND     |       | 1.00      |                   |                  |    |        |
| 2-ChlorotoluaneNDug/Kg1.004-ChlorotoluaneNDug/Kg1.001,2-Dibromo-3-ChloropropaneNDug/Kg1.001,2-DibromoethaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,3-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropeneNDug/Kg1.001,1-Dichloropro                                                                                                                                                                                                                                                                                                                        | Chloromethane               | ND     |       |           |                   |                  |    |        |
| 1,2-Dibrome-3-ChloropropaneNDug/Kg1.001,2-DibromethaneNDug/Kg1.00DibromethaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroptopaneNDug/Kg1.001,2-DichloroptopaneNDug/Kg1.001,3-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopeneNDug/Kg1.001,1-DichloroptopeneNDug/Kg1.001,1-DichloroptopeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                     | 2-Chlorotoluene             | ND     |       | 1.00      |                   |                  |    |        |
| 1,2-DibromoethaneNDug/Kg1.00DibromomethaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropeneNDug/Kg1.001,1-DichloropropeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Chlorotoluene             | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| 1,2-DibromoethaneNDug/Kg1.00DibromomethaneNDug/Kg1.001,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.00DichlorobenzeneNDug/Kg1.001,1-DichlorobenzeneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-Dibromo-3-Chloropropane | ND     | wg/Kg | 1.00      |                   |                  |    |        |
| 1,2-DichlorobenzeneNDug/Kg1.001,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.00DichlorodifluoromethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,3-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dibromoethane           | ND     |       | 1.00      |                   |                  |    |        |
| 1,3-DichlorobenzeneNDug/Kg1.001,4-DichlorobenzeneNDug/Kg1.00DichlorodifluoromethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.00trans-1,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.00cis-1,3-DichloropropaneNDug/Kg1.00trans-1,3-DichloropropaneNDug/Kg1.00trans-1,3-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibromomethane              | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| 1,3-DichlorobenzeneNDNg/Kg1.001,4-DichlorobenzeneNDug/Kg1.00DichlorodifluoromethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichlorobenzene         | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| DichlorodifluoromethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.00cis-1,2-DichloroethaneNDug/Kg1.00trans-1,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.00trans-1,3-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | ND     |       | 1.00      |                   |                  |    |        |
| 1,1-DichloroethaneNDug/Kg1.001,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.00cis-1,2-DichloroethaneNDug/Kg1.00trans-1,2-DichloroethaneNDug/Kg1.001,2-DichloroptopaneNDug/Kg1.001,3-DichloroptopaneNDug/Kg1.001,3-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.001,1-DichloroptopaneNDug/Kg1.00trans-1,3-DichloroptopaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-Dichlorobenzene         | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| 1,2-DichloroethaneNDug/Kg1.001,1-DichloroethaneNDug/Kg1.00cis-1,2-DichloroethaneNDug/Kg1.00trans-1,2-DichloroethaneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.00trans-1,3-DichloropropaneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dichlorodifluoromethane     | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| 1.1-DichloroetheneNDug/Kg1.00cis-1.2-DichloroetheneNDug/Kg1.00trans-1.2-DichloroetheneNDug/Kg1.001.2-DichloropropaneNDug/Kg1.001.3-DichloropropaneNDug/Kg1.002.2-DichloropropaneNDug/Kg1.001.1-DichloropropaneNDug/Kg1.00cis-1.3-DichloropropaneNDug/Kg1.00trans-1.3-DichloropropeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1-Dichloroethane          | ND     | ug/Kg | 1.00      |                   |                  |    |        |
| cis-1,2-DichlorosthemeNDug/Kg1.00trans-1,2-DichlorosthemeNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.002,2-DichloropropaneNDug/Kg1.001,1-DichloropropaneNDug/Kg1.00cis-1,3-DichloropropeneNDug/Kg1.00trans-1,3-DichloropropeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dichloroethane          | ND     | ug/Rg |           |                   | 2                |    |        |
| trans-1,2-DichloroetheneNDug/Kg1.001,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.002,2-DichloropropaneNDug/Kg1.001,1-DichloropropeneNDug/Kg1.00cis-1,3-DichloropropeneNDug/Kg1.00trans-1,3-DichloropropeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | ND     |       | 1,00      |                   |                  |    |        |
| 1,2-DichloropropaneNDug/Kg1.001,3-DichloropropaneNDug/Kg1.002,2-DichloropropaneNDug/Kg1.001,1-DichloropropeneNDug/Kg1.00cis-1,3-DichloropropeneNDug/Kg1.00trans-1,3-DichloropropeneNDug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                           |        |       | 1,00      |                   |                  |    |        |
| 1,3-DichloropropaneND ug/Kg1.002,2-DichloropropaneND ug/Kg1.001,1-DichloropropeneND ug/Kg1.00cis-1,3-DichloropropeneND ug/Kg1.00trans-1,3-DichloropropeneND ug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |        |       |           |                   |                  |    |        |
| 2,2-DichloropropaneND ug/Kg1.001,1-DichloropropeneND ug/Kg1.00cis-1,3-DichloropropeneND ug/Kg1.00trans-1,3-DichloropropeneND ug/Kg1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dichloropropane         |        |       |           |                   |                  |    |        |
| 1,1-Dichloropropene ND ug/Kg 1.00<br>cis-1,3-Dichloropropene ND ug/Kg 1.00<br>trans-1,3-Dichloropropene ND ug/Kg 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,3-Dichloropropane         |        |       |           |                   |                  |    |        |
| cis-1,3-Dichloropropene ND ug/Kg 1.00<br>trans-1,3-Dichloropropene ND ug/Kg 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |        |       |           |                   |                  |    |        |
| trans-1,3-Dichloropropene ND ug/Kg 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |        |       |           |                   |                  |    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |        |       |           |                   |                  |    |        |
| ECNYL ACREACE ND UC/KG 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |        |       |           |                   |                  |    |        |
| Ethylbensene ND ug/Kg 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |        |       |           |                   |                  |    |        |

TADADATARY MANAGER

FROM : DEWIND DEWATERING INC

DIVERSE-SOLUTION

KA N D

### ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

PHONE NO. : 616 875 7334

Client Name DeWind Dewatering

Project # FID #

7778 116th Street Rolland, MI 49424

Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

### ETC Lab ID 9811550-01 Sample ID: Topsoll

Matrix :SOIL

Sample Date :11/17/98

| TEST                                                         | REGULT   | <b>UNITS</b> | DITECTION | DATE | DATE<br>ANALYZED | BY  | MHTHOD |
|--------------------------------------------------------------|----------|--------------|-----------|------|------------------|-----|--------|
| GC/MS Volatile Organics                                      |          |              |           |      |                  | -   | 8260B  |
| Hexachlorobutadiene                                          | ND       | ug/Kg        | 1.00      |      | 11/19/98         | L\$ |        |
| 2-Hexadone (MBK)                                             | ND       | ug/Kg        | 5.00      |      |                  |     |        |
| Isopropylbenzene                                             | ND       | ug/Kg        | 1,00      |      |                  |     |        |
| A Technolicale                                               | ND       | ug/Kg        | 1,00      |      |                  |     |        |
| 4-Isopropyltoluene<br>Methylene Chloride                     | ND       | ug/Kg        | 10.0      |      |                  |     |        |
| Nethyl Ethyl Ketone                                          | ND       | ug/Kg        | 20.0      |      |                  |     |        |
| 4-Mothyl-2-pentanone (MIBK)                                  | ND ND    | ug/Kg        | 20.0      |      |                  |     |        |
| Methyl-tertbutyl-Ether                                       | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| Naphthalene                                                  | ND       | ug/Kg        | 1,00      |      |                  |     |        |
| Bropylbenzene                                                | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| - Dropy Inenzene                                             | ND       |              | 1.00      |      |                  |     |        |
| yrene                                                        |          | ug/Kg        | 1.00      |      |                  |     |        |
| 1, 1, 1, 2-Tetrachloroethane<br>1, 1, 2, 2-Tetrachloroethane | ND<br>ND | ug/Kg        | 1.00      |      |                  | •   |        |
| L, L, 2, 2-Tetrachioroethane<br>Tetrachloroethene            | ND       | ug/Kg        | 1.00      |      |                  |     |        |
|                                                              | ND       | ug/Kg        |           |      |                  |     |        |
| Toluene                                                      |          | ug/Kg        | 1.00      |      |                  |     |        |
| 1,2,3-Trichlorobenzene                                       | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| 1, 2, 4-Trichlorobenzene                                     | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| 1,1,1-Trichloroethane                                        | MD       | ug/Kg        | 1.00      |      |                  |     |        |
| 1,1,2-Trichloroethane                                        | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| Trichloroethene                                              | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| Trichlorofluoromethane                                       | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| 1,2,3-Trichloropropane                                       | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| 1,2,4-Trimethylbenzene                                       | ND       | ug/Xg        | 1.00      |      |                  |     |        |
| 1,3,5-Trimethylbenzene                                       | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| Vinyl Acetate                                                | ND       | ug/Kg        | 20.0      |      |                  |     |        |
| Vinyl Chloride                                               | ND       |              | 1.00      |      |                  |     |        |
| Xylenes (Total)                                              | ND       | ug/Kg        | 1.00      |      |                  |     |        |
| Surrogate Standard                                           | 8 Re(    | lovery       | OC Li     | mite |                  |     |        |
| S1 - Dibromofluoromethane                                    | 105      |              | 70        | 134  |                  |     |        |
| S2 - Toluene-d8                                              | 101      |              | 85        | 111  |                  |     |        |
| 83 - 4-Bromofluorobensene                                    | 102      |              | 81        | 117  |                  |     |        |

MANAGER

12/04/30 11.00 PAA 4606603362

NTITUNT - DOPOTION

# ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering

Project # FID #

7778 116th Street Holland, MI 49424

#### Seneca Army Depot Site ID

Date Arrived 11/18/98 ETC Order Number 9811550

## ETC Lab ID 9811550-01 Sample ID: Topsoil

Matrix :SOIL Sample Date :11/17/98

| <b>ES</b> T                    | RESULT   | UNITS          | DETECTION  | DATE<br>Extracted | DATE<br>ANALYZED | B¥ | METHOD |
|--------------------------------|----------|----------------|------------|-------------------|------------------|----|--------|
| C/MS Base/Neutral & Acid       |          |                |            | ÷                 |                  |    | 8270C  |
| Terrabikana                    | ND       | ug/Kg          | 167        | 11/24/98          | 11/24/98         | CB |        |
| Acenaphthene<br>Acenaphthylene |          |                |            |                   |                  |    |        |
| Acenaphinylene                 | ND       | ug/Rg          | 167        |                   |                  | -  |        |
|                                | ND<br>ND | ug/Kg          | 167        |                   |                  |    |        |
| Anthracene                     | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Benzidine                      | ND       | ug/Kg          | 667        |                   |                  |    |        |
| Benzoic Acid                   | ND       | ug/Kg          | 1670       |                   |                  | ,  |        |
| Benzo (a) anthracene           | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Benzo (b) fluorenthene         | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Benzo (k) fluoranthene         | ND       | ug/Kg          | 167        |                   |                  |    |        |
| nzo(g,h,i) perylene            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| nzo(a) pyrene                  | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Benzyl Alcohol                 | ND       | ug/Rg          | 167        |                   |                  |    |        |
| Bis(2-chloroethyl)ether        | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Bis (2-chlorosthoxy) methane   | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Bis (2-chloroisopropyl) ether  | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Bis(2-cthylhexyl) phthalate    | УÚ       | ug/Kg          | 167        |                   |                  |    |        |
| 4-Bromophenyl phenyl ether     | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Butyl benzyl phthalate         | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Carbazole                      | ND       | ug/Kg          | 333        |                   |                  |    |        |
| 4-Chloroaniline                | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 4-Chloro-3-methylphenol        | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 2-Chloronaphthalene            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 2-Chlorophenol                 | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 4-Chlorophenyl phenyl ether    | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Chrysene                       | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Dibenzo(a, h) anthracene       | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Dibenzofuran                   | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Di-n-butyl phthalate           | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,2-Dichlorobenzene            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,3-Dichlorobenzene            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,4-Dichlorobenzene            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 3,3'-Dichlorobenzidine         | ND       |                |            |                   |                  |    |        |
| 2,4-Dichlorophenol             | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Diethyl phthalate              | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 2,4-Dimethylphenol             | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Dimothyl phthalate             | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 4,6-Dinitro-2-methylphenol     | ND       | ug/Kg<br>ug/Kg | 167        |                   |                  |    |        |
| 2,4-Dinitrophenol              | ND       | ug/Kg          | 333        |                   |                  |    |        |
| 2,4-Dinitrotoluene             | · ND     |                | 670        |                   |                  |    |        |
| 2,6-Dinitrotoluene             | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Di-n-octyl phthalate           | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,2-Diphanylhydrazine          |          | ug/Kg<br>ug/Kg | 167<br>167 |                   |                  |    |        |
|                                | 210      |                | 167        |                   |                  |    |        |

MANAGER

FROM : DEWIND DEWATERING INC

PHONE NO. : 616 875 7334

DIVERSE-SOLUTION

¥2.]U/

### ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering

Project # FID #

7778 116th Street Holland, MI 49424

Seneca Army Depot

#### site ID

Date Arrived 11/18/98 ETC Order Number 9811550

### BTC Lab ID 9811550-01 Sample ID: Topsoil

Matrix :SOIL

Sample Date :11/17/98

| Test                          | RESULT     | UNITS | DETECTION | date<br>Extracted | date<br>Analyzed | BY | METHOD |
|-------------------------------|------------|-------|-----------|-------------------|------------------|----|--------|
| GC/M5 Base/Neutral & Acid     |            |       |           |                   |                  |    | 8270C  |
| Fluorene                      | ND         | ug/Kg | 167       | 11/24/98          | 11/24/98         | CB |        |
| Filolene<br>Hexachlorobenzene | ND         |       | 167       |                   |                  |    |        |
| Hexachlorobutadiene           | ND         |       | 167       |                   |                  |    |        |
| Nexachlorocyclopantadiene     | ND         |       |           |                   |                  |    |        |
| Nexachloroethane              | ND         |       | 167       |                   |                  |    |        |
| Indeno (1, 2, 3-cd) pyrene    | ND         | ug/Kg | 167       |                   |                  |    |        |
| Isophorene                    | ND         |       | 167       |                   |                  |    |        |
|                               |            | ug/Kg | 167       |                   |                  |    |        |
| 2-Methylnaphthalene           | ND         |       | 167       |                   |                  |    |        |
| 2-Methylphenol                | ND         |       | 167       |                   |                  |    |        |
| Methylphenol                  | ND         |       | 167       |                   |                  |    |        |
| Methylphenol                  | ND         |       | 167       |                   |                  |    |        |
| Naphthalene                   | ND         |       | 167       |                   |                  |    |        |
| 2-Nitroaniline                | )<br>ED    | ug/Kg | 167       |                   |                  |    |        |
| 3-Nitroaniline                | ND         |       | 167       |                   |                  |    |        |
| 4-Nitroaniline                | ND         |       | 167       |                   |                  |    |        |
| Nitrobenzena                  | ND         |       | 167       |                   |                  |    |        |
| 2-Nitrophenol                 | ND         | ug/Kg | 167       |                   |                  |    |        |
| 4-Nitrophenol                 | ND         | ug/Kg | 167       |                   |                  |    |        |
| N-Nitrosodimethylemine        | ND         | ug/Kg | 167       |                   |                  |    |        |
| N-Nitrosodiphenylamine        | <b>D</b> X | ug/Rg | 167       |                   |                  |    |        |
| N-Nitroso-di-n-propylamine    | ND         | ug/Kg | 167       |                   |                  |    |        |
| Pentachlorophenol             | ND         | ug/Kg | 333       |                   |                  |    |        |
| Phenanthrene                  | ND         | ug/Kg | 167       |                   |                  |    |        |
| Phenol                        | ND         | ug/Rg | 167       |                   |                  |    |        |
| Pyrene                        | ND         | ug/Kg | 167       |                   |                  |    |        |
| Pyridine                      | ND         | ug/Kg | 167       |                   |                  |    |        |
| 1,2,4-Trichlorobenzene        | ND         |       | 167       |                   |                  |    |        |
| 2,4,5-Trichlorphenol          | ND         | ug/Kg | 167       |                   |                  |    |        |
| 2,4,6-Trichlorophenol         | ND         | ug/Kg | 167       |                   |                  |    |        |
| Surrogate Standard            | & Rec      | OVery | QC Li     | mita              |                  |    |        |
| 61 - Nitrobenzene-d5          | 86         |       | 25        | 110               |                  |    |        |
| 62 - 2-Fluorobiphenyl         | 86         |       | 33        | 114               |                  |    |        |
| 83 - 4-Terphenyl-dl4          | 89         |       | 37        | 115               |                  |    |        |
| S4 - Phenol-d6                | 82         |       | 11        | 125               |                  |    |        |
| S5 - 2,4,6-Tribromophenol     | 95         |       | . 9       | 134               |                  |    |        |
| S6 - 2-Fluorophenol           | 89         |       | 10        |                   |                  |    |        |
|                               | 23         |       | 10        | 119               |                  |    |        |
|                               |            |       |           |                   |                  |    |        |
|                               |            |       |           |                   |                  |    |        |

- July De water water

MD - Not Detected

5

FROM : DEWIND DEWATERING INC.

DIVERSE-SULUTION

PHONE NO. : 616 875 7334

Dec. 04 1998 12:20PM P6

KA U O

# ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

DeWind Dewatering Client Name

Project # FID #

7778 116th Street Holland, MI 49424

Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

## ETC Lab ID 9811550-01 Sample ID: Topsoli

Matrix :SOIL Sample Date :11/17/98

| rist .                    | RESULT | UNITS | DETECTION<br>LIMIT | DATE<br>EXTRACTED | date<br>Analyzed | В¥ | METHOD |
|---------------------------|--------|-------|--------------------|-------------------|------------------|----|--------|
| TCL Pesticides            |        |       |                    | /                 |                  |    | 8081A  |
|                           |        |       |                    | 11/23/98          | 11/24/98         | RG |        |
| Alpha-BHC                 | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| Bata-BHC                  | ND     |       | 2.00               |                   |                  |    |        |
| Dalta-BHC                 | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| Gamma-BHC (Lindone)       | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| Reptachlor                | ND     |       | 2.00               |                   |                  |    |        |
| Aldrin                    | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| Heptachlor Epoxide        | ND     | ug/Kg | 2.00               |                   | ,                |    |        |
| Endosulfan I              | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| Dieldrín                  | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| · · · DDE                 | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| .drin                     | כיא    |       | 2.00               |                   |                  |    |        |
| endosulfan II             | ND     |       | 2.00               |                   |                  |    |        |
| 4,4 -DDD                  | ND     |       | 2.00               |                   |                  |    |        |
| Endosulfan Sulfate        | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| 4,4'-DDT                  | ND     |       | 2.00               |                   |                  |    |        |
| Rndrin Aldehyde           | ND     | ug/Rg | 2,00               |                   |                  |    |        |
| Endrin Ketone             | ND     |       | 2.00               |                   |                  |    |        |
| Methoxychlor              | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| alpha-Chlordane           | ND     |       | 2.00               |                   |                  |    |        |
| gamma-Chlordane           | ND     | ug/Kg | 2.00               |                   |                  |    |        |
| Chlordane - Technical     | ND     | ug/Kg | 25.0               |                   |                  |    |        |
| Toxaphene                 | ND     |       | 35.0               |                   |                  |    |        |
| urrogate Standard         |        |       |                    |                   |                  |    |        |
| S1 - Decachlorobiphenyl   |        | overy | OC Li              |                   |                  |    |        |
|                           | 84     |       | 64                 | 154               |                  |    |        |
| 52 - Tetrachloro-m-xylene | 67     |       | 39                 | 130               |                  |    |        |

DIVERSE-SOLUTION

FROM : DEWIND DEWATERING INC PHONE NO. : 616 875 7334

Dec. 04 1998 12:21PM P8

ក់ពីក្ន

### ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

Client Name Dewind Dewatering

| Proj | ect | # |
|------|-----|---|
| -    | FID |   |

7778 li6th Street Rolland, MI 49424

i. . . .

Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

### ETC Lab ID 9811550-01 Sample ID: Topsoil

Matrix :SOIL Sample Date :11/17/98

| TEST                   | RESULT | UNITS | DETECTION | DATE<br>EXTRACTED | DATE<br>ANALYZED | 37 | METHOD |
|------------------------|--------|-------|-----------|-------------------|------------------|----|--------|
| TCL PCBS               |        |       |           |                   |                  |    | 8082   |
|                        |        |       |           | 11/23/98          | 11/24/98         | RG |        |
| PCB-1016               | ND     | ug/Kg | 35.0      |                   |                  |    |        |
| PCB-1221               | ND     | ug/Rg | 35.0      |                   |                  |    |        |
| PCB-1232               | ND     | ug/Kg | 35.0      |                   |                  |    |        |
| PCB-1242               | ND     | ug/Kg | 35.0      |                   |                  |    |        |
| PCB-1248               | ND     | ug/Kg | 35.0      |                   |                  |    |        |
| PCB-1254               | ND     | ug/Kg | 35.0      |                   |                  |    |        |
| PCB-1260               | ND     | ug/Kg | 35.0      |                   |                  |    |        |
| Surrogate Standard     | t Rec  | OVELY | OC Li     | mits              |                  |    |        |
| - Decachlorobiphenyl   | 82     |       | 17        | 141               |                  |    |        |
| 5 Tetrachloro-m-xylene | 62     |       | 20        | 122               |                  |    |        |

NTACTO

.

FROM : DEWIND DEWATERING INC PHONE NO. : 616 875 7334 Dec. 04 1998 12:35PM P1

NTITUTE PARATAN

W11 + V

## ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 INORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering

TTIAN TTIAN LUA 4404400000

Project #

7778 116th Street Holland, MI 49424

Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

## ETC Lab ID 9811550-01 Sample ID: Topsoil

Matrix :SOIL Sample Date :11/17/98

|           |        |       | DETECTION | TIME     | DATE        |        |
|-----------|--------|-------|-----------|----------|-------------|--------|
| TEST      | RESULT | UNITS | LIMIT     | ANALYZED | ANALYZED BY | METHOD |
| Cyanide   | <1.00  | mg/Kg | 1.00      | 0845     | 11/20/98 GD | 90108  |
| Sliver    | <0.700 | mg/Kg | 0.700     | 1028     | 11/24/98 TD | 6010B  |
| Aluminum  | 8,390  | mg/Kg | 4.00      | 1028     | 11/24/98 TD | 6010B  |
| Arsenic   | <\$.00 | mg/Kg | 5.00      | 1026     | 11/24/98 TD | 6010B  |
| Barium    | 41.6   | mg/Kg | 0.200     | 1028     | 11/24/98 TD | 6010B  |
| Beryllium | 0.332  | mg/Kg | 0.100     | 1028     | 11/24/98 TD | 6010B  |
| Calcium   | 1,590  | mg/Kg | 1.00      | 1028     | 11/24/98 TD | 6010B  |
| Cadmium   | <0.400 | mg/Kg | 0.400     | 1028     | 11/24/98 TD | 6010B  |
| Cralt     | 5.01   | mg/Kg | 0.700     | 1028     | 11/24/98 TD | 6010B  |
| : mium    | 9,85   | mg/Kg | 0.700     | 1028     | 11/24/98 TD | 6010B  |
| Jopper    | 8.09   | mg/Kg | 0.60)     | 1028     | 11/24/98 TD | 6010B  |
| Iron      | 10,700 | mg/Kg | 0.700     | 1026     | 11/24/98 TD | 6010B  |
| Marcury   | 0.042  | mg/Kg | 0.020     | 1306     | 11/19/98 RM | 7471A  |
| Potassium | 972    | mg/Kg | 20.0      | 1028     | 11/24/98 TD | 6010B  |
| Magnesium | 1,790  | mg/Kg | 3.00      | 1028     | 11/24/98 TD | 6010B  |
| Manganese | 397    | mg/Kg | 0.200     | 1028     | 11/24/98 TD | 6010B  |
| Şodium    | 53.5   | mg/Kg | 20.0      | 1028     | 11/24/98 TD | 6010B  |
| Nickel    | 8.32   | mg/Kg | 1.50      | 1028     | 11/24/98 TD | 6010B  |
| Lead      | 15.0   | mg/Kg | 4.50      | 1028     | 11/24/98 TD | 6010B  |
| Antimony  | <3,20  | mg/Kg | 3.20      | 1028     | 11/24/98 TD | 6010B  |
| Selenium  | <7.50  | mg/Kg | 7.50      | 1028     | 11/24/98 TD | 6010B  |
| Thallium  | < 5.00 | mg/Kg | 5.00      | 1028     | 11/24/98 TD | 6010B  |
| Vanadium  | 14.2   | mg/Kg | 0.800     | 1028     | 11/24/98 TD | 6010B  |
| Zinc      | 39.6   | mg/Kg | 1.00      | 1028     | 11/24/98 TD | 6010B  |

### ETC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL Sample Date :11/17/98

| TEST     | RESULT | UNITS | DETECTION<br>LIMIT | time<br>Analyzed | date<br>Analyzed by | METHOD |
|----------|--------|-------|--------------------|------------------|---------------------|--------|
| Cyanide  | <1.00  | mg/Kg | 1.00               | 0845             | 11/20/98 GD         | 9010B  |
| silver   | <0,700 | mg/Kg | 0.700              | 1028             | 11/24/98 TD         | 6010B  |
| Aluminum | 3,120  | mg/Kg | 4.00               | 1028             | 11/24/98 TD         | 6010B  |
| Arsenic  | <5.00  | mg/Kg | 5.00               | 1028             | 11/24/98 TD         | 6010B  |
| Barium   | 14.7   | mg/Kg | 0.200              | 1028             | 11/24/99 TD         | 6010B  |

vic-

TABORATORY MANAGER

DIVERSE-SULUTION

昭エエ

## ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Waluut Grove Road - Memphis, TN 38111 - (901)327-2750 INORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering

Project #

7778 116th Street Holland, MI 49424

Seneca Army Depot Site ID

Date Arrived 11/18/98 ETC Order Number 9811550 ETC Lab ID 9811550-02 Sample [D: Sand

Matrix :SOIL Sample Date :11/17/98

| TEST      | RESULT | UNITS | DETECTION<br>LIMIT | time<br>Analyzed | date<br>Analyzed by | METHOD         |
|-----------|--------|-------|--------------------|------------------|---------------------|----------------|
| Beryllium | 0.154  | mg/Kg | 0.100              | 1028             | 11/24/98 TD         | 6010B          |
| Calcium   | 86,700 | mg/Kg | 1.00               | 1028             | 11/24/98 TD         | 6010B          |
| Cadmium   | <0.40D | mg/Kg | 0.400              | 1028             | 11/24/98 TD         | 6010B          |
| Cobalt    | 2.57   | mg/Kg | 0.700              | 1028             | 11/24/98 TD         | 6010B          |
| Chromium  | 5.88   | ng/Kg | 0.700              | 1028             | 11/24/98 TD         | 6010B          |
| Copper    | 12.3   | mg/Kg | 0,600              | 1029             | 11/24/98 TD         | 601 <b>0</b> B |
| Iron      | 6,980  | mg/Kg | 0.700              | 1028             | 11/24/98 TD         | 6010B          |
| Mercury   | <9.020 | mg/Kg | 0.020              | 1305             | 11/19/96 RM         | 7471A          |
| potassium | 711    | mg/Kg | 20.0               | 1028             | 11/24/98 TD         | 6010B          |
| M mesium  | 35,500 | mg/Kg | 3.00               | 1028             | 11/24/98 TD         | 6010B          |
| Janese    | 311    | mg/Kg | 0.200              | 1028             | 11/24/98 TD         | 6010B          |
| Sođium    | 107    | mg/Kg | 20.0               | 2023             | 11/24/98 TD         | 6010B          |
| Nickel    | 6.63   | mg/Kg | 1.50               | 1028             | 11/24/98 TD         | 6010B          |
| Lead      | 6.66   | mg/Kg | 4.50               | 1028             | 11/24/98 TD         | 6010B          |
| Antimony  | <3.20  | mg/Kg | 3.20               | 1028             | 11/24/98 TD         | 6010B          |
| Selenium  | 8.45   | mg/Kg | 7.50               | 1028             | 11/24/98 TD         | 6010B          |
| Thallium  | <5.00  | mg/Kg | 5.00               | 1028             | 11/24/98 TD         | 6010B          |
| Vanadium  | 6,46   | mg/Kg | 0 800              | 1028             | 11/34/96 TD         | 6010B          |
| Zinc      | 38,3   | mg/Kg | 1.00               | 1028             | 11/24/98 TD         | 6010B          |

THOMATON MANTAGER

DIVERSE-SOFDIION

<u> 또</u> 4 도 조

### ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering

Project # FID #

7778 116th Street Holland, MI 49424

Seneca Army Depot

Site ID

Date Arrived 11/18/98 ETC Order Number 9811550

### ETC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL Sample Date :11/17/98

|                             |          |                | DETECTION | DATE      | DATE     |    |        |
|-----------------------------|----------|----------------|-----------|-----------|----------|----|--------|
| TEST                        | RESULT   | UNITS          | LIMIT     | BATRACTED | ANALYZED | BY | METHOD |
| GC/NS Volatile Organica     |          |                |           |           |          |    | 8260B  |
| 3 coltano                   |          |                | 20.0      |           | 11/19/98 | ls |        |
| Acetone<br>Acrolein         | ND<br>ND | ug/KG          | 20.0      |           |          | ,  |        |
| Acetonitrile                |          | ug/KG<br>ug/KG | 10.0      |           |          |    |        |
|                             | ND<br>ND | ug/KG          | 20.0      |           |          |    |        |
| Acrylonitrile               | ND       | ug/KG          | 1.00      |           |          |    |        |
| Benzene                     |          |                | 1.00      |           |          | ,  |        |
| Bromobenzene                | ND       | ug/RG          |           |           |          |    |        |
| Bromochloromethane          | ND       | ug/KG          | 1.00      |           |          |    |        |
| Bromodichloromethane        | ND       | ug/KG          | 1.00      |           |          |    |        |
| Bronoform                   | ND       | ug/KG          | 1.00      |           |          |    |        |
| momethane (Methyl Bromide)  | ND       | ug/KG          | 1.00      |           |          |    |        |
| . dutylbenzene              | ND       | ug/RG          | 1.00      |           |          |    |        |
| seo-Butylbanzene            | ND       | ug/KG          | 1.00      |           |          |    |        |
| tert-Butylbenzone           | ND       | ug/KG          | 1.00      |           |          |    |        |
| Carbon Disulfide            | ND       | ug/KG          | 1.00      |           |          |    |        |
| Carbon Tetrachloride        | ND       | ug/KG          | 1.00      |           |          |    |        |
| Chlorobenzene               | ND       | ug/KG          | 1,00      |           |          |    |        |
| Chlorodibromomethane        | כדאל     | ug/KG          | 1.00      | •         |          |    |        |
| Chlorosthane                | ND       | ug/KG          | 1.00      |           |          |    |        |
| 2-Chlorcethylvinyl Ether    | ND       | ug/KG          | 20.0      |           |          |    |        |
| Chloroform                  | ND       | ug/KG          | 1.00      |           |          |    |        |
| Chloromsthane               | ND       | ug/RG          | 1.00      |           |          |    |        |
| 2-Chlorotoluene             | ND       | ug/XG          | 1.00      |           |          |    |        |
| 4-Chlorotoluene             | ND       | ug/KG          | 1.00      |           |          |    |        |
| 1,2-Dibromo-3-Chloropropane | ND       | ug/RG          | 1.00      |           |          |    |        |
| 1.2-Dibromoethane           | ND       | ug/KG          | 1.00      |           |          |    | •      |
| Dibromomethane              | ND       | ug/RG          | 1.00      |           |          |    | •      |
| 1.2-Dichlorobenzene         | ND       | ug/KG          | 1.00      |           |          |    |        |
| 1,3-Dichlorobenzene         | ND       | ug/KG          | 1.00      |           |          |    |        |
| 1,4-Dichlorobenzene         | ND       | ug/KG          | 1.00      |           |          |    |        |
| Dichlorodifluoromethane     | ND       | ug/KG          | 1.00      |           |          |    |        |
| 1,1-Dichloroethane          | ND       |                | 1.00      |           |          |    |        |
| 1,2-Dichloroethane          | ND       | ug/KG          | 1.00      |           |          |    |        |
| 1,1-Dichloroethene          | ND       |                | 1.00      |           |          |    |        |
| cis-1,2-Dichloroethene      | ND       | ug/KG          | 1.00      |           |          |    |        |
| trans-1, 2-Dichloroethene   | ND       |                | 1.00      |           |          |    |        |
| 1,2-Dichloropropane         | ND       |                | 1.00      |           |          |    |        |
| 1,3-Dichloropropane         | ND       |                | 1,00      |           |          |    |        |
| 2.2-Dichloropropane         | ND       |                | 1.00      |           |          |    |        |
| 1,1-Dichloropropens         | ND       |                | 1.00      |           |          |    |        |
| cis-1, 3-Dichloropropene    | NE       |                | 1.00      |           |          |    |        |
| trans-1, 3-Dichloropropene  | NU       | ug/KG          | 1.00      |           |          |    |        |
| Ethyl Acetate               | NC       |                | 20.0      |           |          |    |        |
| Ethylbenzene                | NE       | ug/KG          | 1.00      |           |          |    |        |

TAROPATIORY MANAGER

DIVERSE-SULUTION

Dec. 04 1998 12:17PM P1

14/13

# ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Momphile, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering Project # FID #

7778 116th Street Holland, MI 49424

Site ID Seneca Army Dapot

Date Arrived 11/18/98 ETC Order Number . 9811550

### ETC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL Sample Date :11/17/98

| TEST                         | RESULT | UNITS | DETECTION | DATE<br>EXTRACTED | date<br>Analyzed | ву  | <b>KR</b> THOD |
|------------------------------|--------|-------|-----------|-------------------|------------------|-----|----------------|
| GC/MS Volatile Organics      |        |       | · · · ·   |                   |                  |     | \$260B         |
| Hexachlorobutadiene          | хD     | ug/KG | 1.00      |                   | 11/19/98         | r\$ |                |
| 2-Hexanone (MBK)             | ND     | ug/KG | 5.00      |                   |                  |     |                |
| Isopropylbenzene             | ND     | ug/RG | 1.00      |                   |                  |     | •              |
| 4-Isopropyltoluene           | ND     | ug/RG | 1.00      |                   |                  |     |                |
| Methylene Chloride           | ND     | ug/RG | 10.0      |                   |                  |     |                |
| Methyl Ethyl Katona          | ND     | ug/RG | 20.0      |                   |                  |     |                |
| 4-Methyl-2-pentanone (MIBK)  | ND     | ug/KG | 20.0      |                   |                  |     |                |
| Mothyl-tertbutyl-Ether       | ND     | ug/KG | 1.00      |                   |                  |     |                |
| Naphthalene                  | ND     | ug/RG | 1.00      |                   |                  |     |                |
| Propylbenzene                | ND     | ug/RG | 1.00      |                   |                  |     |                |
| yrene                        | ND     | ug/KG | 1.00      |                   |                  |     |                |
| 1,1,1,2-Tetrachloroethane    | ND     | ug/RG | 1,00      |                   |                  |     |                |
| 1, 1, 2, 2-Tetrachloroethane | ND     | ug/KG | 1,00      |                   |                  |     |                |
| Tetrachloroethene            | ND     | ug/KG | 1.00      |                   |                  |     |                |
| Toluene                      | ND     | ug/KG | 1.00      |                   |                  |     |                |
| 1,2,3-Trichlorobenzene       | ND     | ug/RG | 1.00      |                   |                  |     |                |
| 1,2,4-Trichlorobenzene       | ND     | ug/KG | 1.00      |                   |                  |     |                |
| 1,1,1-Trichloroethane        | ND     | ug/KG | 1.00      |                   |                  |     |                |
| 1,1,2-Trichloroethane        | ND     | ug/KG | 1.00      |                   |                  |     |                |
| Trichloroethene              | ND     |       | 1.00      |                   |                  |     |                |
| Trichlorofluoromethane       | ND     | ug/KG | 1,00      |                   |                  |     |                |
| 1,2,3-Trichloropropane       | ND     | ug/KG | 1.00      |                   |                  |     |                |
| 1,2,4-Trimsthylbenzene       | ND     | ug/KG | 1.00      |                   |                  |     |                |
| 1,3,5-Trimethylbenzene       | ND     | ug/KG | 1.00      |                   |                  |     |                |
| Vinyl Acetate                | ND     | ug/KG | 20,0      |                   |                  |     |                |
| Vinyl Chloride               | ND     | ug/RG | 1.00      |                   |                  | •   |                |
| Xylenes (Total)              | ND     | ug/KG | 1.00      |                   |                  |     |                |
| Surrogate Standard           | S Rec  | OVERY | OC Li     | mite              |                  |     |                |
| S1 - Dibromofluoromethane    | 103    |       | 70        | 134               |                  |     |                |
| 82 - Toluene-de              | 101    |       | 85        | 111               |                  |     |                |
| 83 - 4-Bromofluorobenzene    | 105    |       | 61        | 117               |                  |     |                |

MANAGER

ND - Not Detected

FROM : DEWIND DEWATERING INC PHONE NO. : 616 875 7334 14/04/00 11.00 PAA 4404400044

FROM : DEWIND DEWATERING INC

NTIFIOR-DOPOTION

Dec. 04 1998 12:19PM P4

460 x x

## ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

PHONE NO. : 616 875 7334

Client Name DeWind Dewatering

Project # FID #

7778 116th Street Holland, MI 49424

#### Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

## ETC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL Sample Date :11/17/98

| est                           | RESULT   | UNITS          | DETECTION  | DATE<br>EXTRACTED | date<br>Analyzed | BY | METHOD |
|-------------------------------|----------|----------------|------------|-------------------|------------------|----|--------|
| C/MS Base/Neutral & Acid      |          |                |            |                   | 11/01/00         |    | 8270C  |
| Acenaphthene                  | 1        | 11 m           | 167        | 11/24/98          | 11/24/98         | CB |        |
| Acenaphthylene                | ND<br>ND | ug/Kg<br>ug/Kg | 167<br>167 |                   |                  |    |        |
| Aniline                       | ND       |                | 167        |                   |                  |    |        |
| Anthracene                    | ND       |                | 167        |                   |                  |    |        |
| Benzidine                     | ND       |                | 667        |                   |                  |    |        |
| Benzoic Acid                  | ND       |                | 1670       |                   |                  |    |        |
| Benzo (a) anthracene          | ND       |                | 167        |                   |                  |    |        |
| Benzo (b) fluoranthene        | ND       |                | 167        |                   |                  |    |        |
| Bonso(k) fluoranthene         | ND       |                | 167        |                   |                  |    |        |
| Benzo(g, h, i) perylene       | ND       |                | 167        |                   |                  |    |        |
| nzo (a) pyrene                | ND       |                | 167        |                   |                  |    |        |
| Anzyl Alcohol                 | ND       |                | 167        |                   |                  |    |        |
| Bis(2-chloroethyl) ether      | ND       |                |            |                   |                  |    |        |
| Bis (2-chloroethoxy) methane  | ND       |                | 167        |                   |                  |    |        |
| Bis (2-chloroisopropyl) ether | ND       |                | 167        |                   |                  |    |        |
| Bis (2-ethylhexyl) phthalate  | ND       |                | 167        |                   |                  |    |        |
| 4-Bromophenyl phenyl ether    | ND       |                | 167        |                   |                  |    |        |
| Butyl benzyl phthalate        | ND       |                | 167        |                   | •                |    |        |
| Carbazole                     | ND       |                | 167        |                   |                  |    |        |
| 4-Chloroaniline               | ND       | -27,           | 333        |                   |                  |    |        |
| 4-Chloro-3-methylphenol       |          | ug/Kg          | 167        |                   |                  |    |        |
| 2-Chloronaphthalane           | ND       |                | 167        |                   |                  |    |        |
| 2-Chlorophenol                | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 4-Chlorophenyl phenyl ether   | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Chrysene                      | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Dibenzo (a, h) anthracene     | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Dibenzofuran                  | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Di-n-Dutyl phthalate          | ND       | ug/Xg          | 167        |                   |                  |    |        |
| 1,2-Dichlorobenzene           | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,3-Dichlorobenzene           | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,4-Dichlorobenzene           | ND       | ug/Rg          | 167        |                   |                  |    |        |
| 3,3'-Dichlorobenzidine        | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 2,4-Dichlorophenol            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Diethyl phthalate             | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 2,4-Dimethylphenol            | ND<br>ND | ug/Kg          | 167        |                   |                  |    |        |
| Dimethyl phthalate            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 4,6-Dimitro-2-methylphenol    | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 2,4-Dinitrophenol             | ND       | ug/Kg          | 333        |                   |                  |    |        |
| 2,4-Dinitrotoluene            | ND       | ug/Kg          | 670        |                   |                  |    |        |
| 2,6-Dinitrotoluene            | ND       | ug/Kg          | 167        |                   |                  |    |        |
| Di-n-octyl phthalate          | ND       | ug/Kg          | 167        |                   |                  |    |        |
| 1,2-Diphenylhydrazine         | ND       | ug/Kg<br>Ng/Kg | 167<br>167 |                   |                  |    |        |
|                               | 1413     |                | 167        |                   |                  |    |        |

MANAGER VAULT

யா

### ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walant Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

PHONE NO. : 616 875 7334

Client Name DeWind Dewatering

Project # FID #

7778 116th Street Holland, MI 49424

### Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

### ETC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL Sample Date :11/17/98

| Test                             | RESULT | UNITS  | DETECTIO<br>LIMIT | n date<br>Rxtracted | date<br>Analyzed | BY | METHOD    |
|----------------------------------|--------|--------|-------------------|---------------------|------------------|----|-----------|
| GC/MS Base/Neutral & Acid        |        |        |                   |                     |                  |    | 8270C     |
| • -                              |        |        |                   | <b>11/24/9</b> 8    | 11/24/98         | CB | • • • • - |
| Fluorene                         | ND     | ug/Kg  | 167               | •                   |                  |    |           |
| Eexachlorobenzene                | ND     |        | 167               |                     |                  |    |           |
| Hexachlorobutadiene              | ND     |        | 167               |                     |                  |    |           |
| <b>Hexachlorocyclopentadiene</b> | ND     | ug/Kg  | 167               |                     |                  |    |           |
| Hexachloroethane                 | ND     |        | 167               |                     |                  |    |           |
| Indeno (1,2,3-cd) pyrene         | ND     |        | 167               |                     |                  |    |           |
| Isophorone                       | ND     | ug/Kg  | 167               |                     |                  |    |           |
| 2-Methylnaphthalene              | ND     |        | 167               |                     |                  |    |           |
| 2-Methylphenol                   | ND     |        | 167               |                     |                  |    |           |
| '-Methylphenol                   | ND     |        | 167               |                     |                  |    |           |
| Mathylphenol                     | ND     |        | 167               |                     |                  |    |           |
| waphthalene                      | ND     |        | 167               |                     |                  |    |           |
| 2-Nitroaniline                   | ND     |        | 167               |                     |                  |    |           |
| 3-Nitroaniline                   | ND     | ug/Kg  | 167               |                     |                  |    |           |
| 4-Nitroaniline                   | ND     |        | 167               |                     |                  |    |           |
| Nitrobenzene                     | ND     |        | 167               |                     |                  |    |           |
| 2-Nitrophenol                    | · ND   | ug/Kg  | 167               |                     | •                |    |           |
| 4-Nitrophenol                    | ND     |        | 167               |                     |                  |    |           |
| N-Nitrosodimethylamine           | ND     | ug/Kg  |                   |                     |                  |    |           |
| N-Nitrosodiphenylamine           | ND     | ug/Kg  | 167               |                     |                  |    |           |
| N-Nitroso-di-n-propylamine       |        | ug/Kg  | 167               |                     |                  |    |           |
| Fentachlorophenol                | ND     | ug/Kg  | 167               |                     |                  |    |           |
| Phenanthrene                     | ND     | ug/kg  | 333               |                     |                  |    |           |
| Phenol                           | ND     | ug/Kg  | 1 <b>6</b> 7      |                     |                  |    |           |
|                                  | ND     | ug/Kg  | 167               |                     |                  |    |           |
| Pyrene                           | ND     | ug/Kg  | 167               |                     |                  |    |           |
| Pyridine                         | ND     | ug/Kg  | 167               |                     |                  |    |           |
| 1,2,4-Trichlorobenzene           | ND     | ug/Kg  | 167               |                     |                  |    |           |
| 2,4,5-Trichlorphenol             | ND     | ug/Kg  | 167               |                     |                  |    |           |
| 2,4,6-Trichlorophenol            | ND     | ug/Kg  | 167               |                     |                  |    |           |
| Surrogate Standard               | % Rec  | lovery | 00.1              | Gimits              |                  |    |           |
| S1 - Nitrobenzene-d5             | 29     |        | 25                | 110                 |                  |    |           |
| S2 - 2-Fluorobiphenvl            | 11     |        | 23                | 110                 |                  |    |           |

|                      |          | <u> </u> |     |
|----------------------|----------|----------|-----|
| S1 - Nitrobenzene-d5 |          | 25       | 110 |
| S2 - 2-Fluorobiphenv | 1 33     | 33       |     |
| 83 - 4-Terphenyl-d14 |          |          | 114 |
| 84 - Phenol-d6       |          | 37       | 115 |
|                      | 25       | 11       | 125 |
| S5 - 2,4,6-Tribromop | henol 32 |          | 134 |
| S6 - 2-Fluorophenol  | 29       | , ,      |     |
|                      | 29       | 20       | 119 |
|                      |          |          |     |

MANTACIPD W U

TELOTION TTOO TUR JEACEAGATE

PHONE NO. : 616 875 7334

PTITUT POPOTION

<u>чч</u> т о

## ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walant Grove Road - Memphils, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

DeWind Dewatering Client Name

Project # FID #

7778 116th Street Holland, MI 49424

Seneca Army Depot Site ID

Date Arrived 11/18/98 ETC Order Number 9811550

### BTC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL Sample Date :11/17/98

| CRGT                      | risult | UNITS          | DETECTION<br>LIMIT | DATE<br>EXTRACTED | da <b>te</b><br>Analyzed | BY | METROL |
|---------------------------|--------|----------------|--------------------|-------------------|--------------------------|----|--------|
| ICL Pesticides            |        |                |                    |                   | 5                        |    | 8081A  |
|                           | ND     |                | 2.00               | 11/23/98          | 11/24/98                 | RC |        |
| Alpha-BHC<br>Beta-BHC     |        | ug/Kg          |                    |                   |                          |    |        |
| Delta-BHC                 |        | ug/Kg          | 2.00               |                   |                          |    |        |
|                           |        | ug/Kg          | 2.00               |                   |                          |    |        |
| Gamma-BHC (Lindane)       | . ND   | ug/Kg<br>ug/Kg | 2.00               |                   |                          |    |        |
| Reptachlor                |        |                |                    |                   |                          |    |        |
| Aldrin                    | ND     | ug/Kg          | 2.00               |                   |                          |    |        |
| Heptachlor Spoxide        | ND     |                | 2.00               |                   |                          |    |        |
| Endoeulfan I              | ND     | ug/Kg          | 2.00               |                   |                          |    |        |
| Dieldrin                  | ND     | ug/Kg          | 2.00               |                   |                          |    |        |
|                           | ND     | ug/Kg          | 2.00               |                   |                          |    |        |
| drin                      | ND     |                | 2.00               |                   |                          |    |        |
| andosulfan II             | ND     |                | 2.00               |                   |                          |    |        |
| 4,4'-DDD                  | ND     |                | 2.00               |                   |                          | •  |        |
| Endosulfan Sulfate        | ND     |                | 2.00               |                   |                          |    |        |
| 4,4'-DDT                  | ND     | ug/Kg          | 2.00               |                   |                          |    |        |
| Endrin Aldehyde           | ND     |                | 2.00               |                   |                          |    |        |
| Endrin Ketone             | ND     |                | 2.00               |                   |                          |    |        |
| Methoxychlor              | ND     |                | 3,00               |                   |                          |    |        |
| alpha-Chlordane           | ND     |                | 2,00               |                   |                          |    |        |
| ganma-Chlordane           | ND     |                | 2.00               |                   |                          |    |        |
| Chlordane - Technical     | ND     |                | 25.0               |                   |                          |    |        |
| Toxaphene                 | ND     | ug/Kg          | 35.0               |                   |                          |    |        |
| Burrogate Standard        | % Rec  | OVELY          | OC Li              | mits              |                          |    |        |
| S1 - Decachlorobiphenyl   | 87     |                | 64                 | 154               |                          |    |        |
| S2 - Tetrachloro-m-xylene | 65     |                | 39                 | 130               |                          |    |        |

MANAGER  $\nabla \nabla \nabla$ 

PHONE NO. : 616 875 7334

NITTURE POPOLION

ч<u>е</u>л т і

### ENVIRONMENTAL TESTING & CONSULTING, INC. 2924 Walnut Grove Road - Memphis, TN 38111 - (901)327-2750 ORGANIC ANALYSIS DATA SHEET

Client Name DeWind Dewatering

THIOTION TTOOL THE INCLUSION

Project # FID #

7778 116th Street Bolland, MI 49424

### Site ID Seneca Army Depot

Date Arrived 11/18/98 ETC Order Number 9811550

### ETC Lab ID 9811550-02 Sample ID: Sand

Matrix :SOIL

Sample Date :11/17/98

| TRST                   | result | UNITS | DETECTION<br>LIMIT | DATE     | date<br>Analyzed | BY | METHO |
|------------------------|--------|-------|--------------------|----------|------------------|----|-------|
| TCL PCBs               |        |       |                    |          |                  |    | 8082  |
|                        |        |       | ,                  | 11/23/98 | 11/24/98         | RG |       |
| PCB-1016               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| PCB-1221               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| PCB-1232               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| PCB-1242               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| PCB-1248               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| PCB-1254               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| PCB-1260               | ND     | ug/Kg | 35.0               |          |                  |    |       |
| Surrogate Standard     | ¥ Rec  | overy | OC Li              | mits     |                  |    |       |
| ? - Decachlorobiphenyl | 87     |       | 17                 | 141      |                  |    |       |
| Tetrachloro-m-xylene   | 62     |       | 20                 | 122      |                  |    |       |

MANAGER MANAGER

1 7-22

### NORTHEAST Technical Services, Inc.

-----

t

| y 28, 1998                |
|---------------------------|
| port no. 201.435<br>ge 10 |
|                           |

· ,

### SIEVE ANALYSIS

| Sieve Size                                | Sample, Percent Passing | Specification | 10/28 |
|-------------------------------------------|-------------------------|---------------|-------|
| 3/8"                                      | 100                     | 100           | 100   |
| #4                                        | 100                     | 95-100        | 100   |
| #B                                        | 88.0                    | 80-100        | 85.5  |
| #16                                       | 69.8                    | 50-85         | 53,2  |
| #30                                       | 36.4                    | 25-60         | 29.6  |
| #50                                       | 10.4                    | 10-30         | 12,5  |
| #100                                      | 3.3                     | 2-10          | 51.   |
| # 200                                     |                         |               | 1.4   |
| Fineness Modulus                          | 2.92                    | 2.3 - 3,1     | 17    |
| <ul> <li>Specific Gravity (ssd</li> </ul> |                         |               |       |
| Absorption, Percent:                      | 1.57                    |               |       |
| Unit Weight (ASTM C29                     | ): 105.5 lb/cf          |               |       |

### DELETERIOUS SUBSTANCES

| Item                                             | Sample                | ASTM C-33<br>Specification |  |  |
|--------------------------------------------------|-----------------------|----------------------------|--|--|
| Material finer than #200<br>sieve (ASTM C-117)   | 1.71%                 | 5.0% Max.***               |  |  |
| Clay lumps and friable<br>particles (ASTM C-142) | 0.20%                 | 3.0% таж.                  |  |  |
| Coal and Lignite (ASTM C-123)                    | 0.0%                  | 1.0% max.****              |  |  |
| Organic impurities (ASTM C-40)                   | Lighter than standard | Lighter than standard      |  |  |

\*\*\* - Concrete subject to abrasion is 3% maximum.
\*\*\*\* - When the surface appearance of concrete is of importance
 - 0.5% maximum.

**~**...

• .....

TT/ TO/ 00

· ....

· .

....

· · · · · · · · · ·

÷

 $\dot{}$ 

 GED ENVIRONMENTAL ASSOC.

### -LING HEAD PERMEABILITY TESTING

| PROJECT NAM              | Æ            | : Seneca Army Depot                                                                                                                                    | PROJECT NUMBER             | : 98-607                            |
|--------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|
| CLIENT                   |              | : Dewind Dewatering Inc.                                                                                                                               | DATE                       | : November 25, 1998                 |
|                          | <del>.</del> |                                                                                                                                                        |                            |                                     |
|                          |              | SAMPLE LOCATIO                                                                                                                                         | IN AND CONDITIONS          |                                     |
| Sample Id.               | :            | Composite of Concrete Sand (52% by                                                                                                                     | volume) & Cast Iron Ager   | egate Size ETI 8/50 (48% by volume) |
| Remaided                 | ;            | Yes                                                                                                                                                    |                            | •                                   |
|                          |              |                                                                                                                                                        |                            |                                     |
| Note                     | :            | Unit weight determinations were made<br>method. The composite sample was also<br>ASTM C29 is attached with this report.<br>iron aggregate was 123 pcf. | remolded following the sho | weling method procedures. A copy of |
|                          |              | INITIAL SPECIM                                                                                                                                         | EN PROPERTIES              |                                     |
| Length (cm.):            | 11.66        | Volume (ft <sup>1</sup> ):                                                                                                                             | 333 Wet Densit             | y (PCF): <u>96.6</u>                |
| Diameter (cm.)           | 10.16        | Weight (lbs): <u>3.2</u>                                                                                                                               | 2 Dry Density              | (PCF):                              |
| Area (ft <sup>3</sup> ): | 0.0873       | Moisture (%):                                                                                                                                          | 1                          |                                     |
|                          |              |                                                                                                                                                        |                            |                                     |
|                          |              | PERMEABILITY                                                                                                                                           | CALCULATIONS               |                                     |
|                          |              |                                                                                                                                                        |                            |                                     |
|                          |              |                                                                                                                                                        |                            |                                     |

k = Hydraulic Conductivity, (cm/sec)

a = Cross-sectional area of burette, (cm<sup>2</sup>)

 $\Lambda$  = Cross-sectional area of specimen, (cm<sup>2</sup>)

 $h^{i}$  = Hydraulic head across sample at beginning of test, (cm)

 $h^3 =$  Hydraulic head across sample at end of test, (cm)

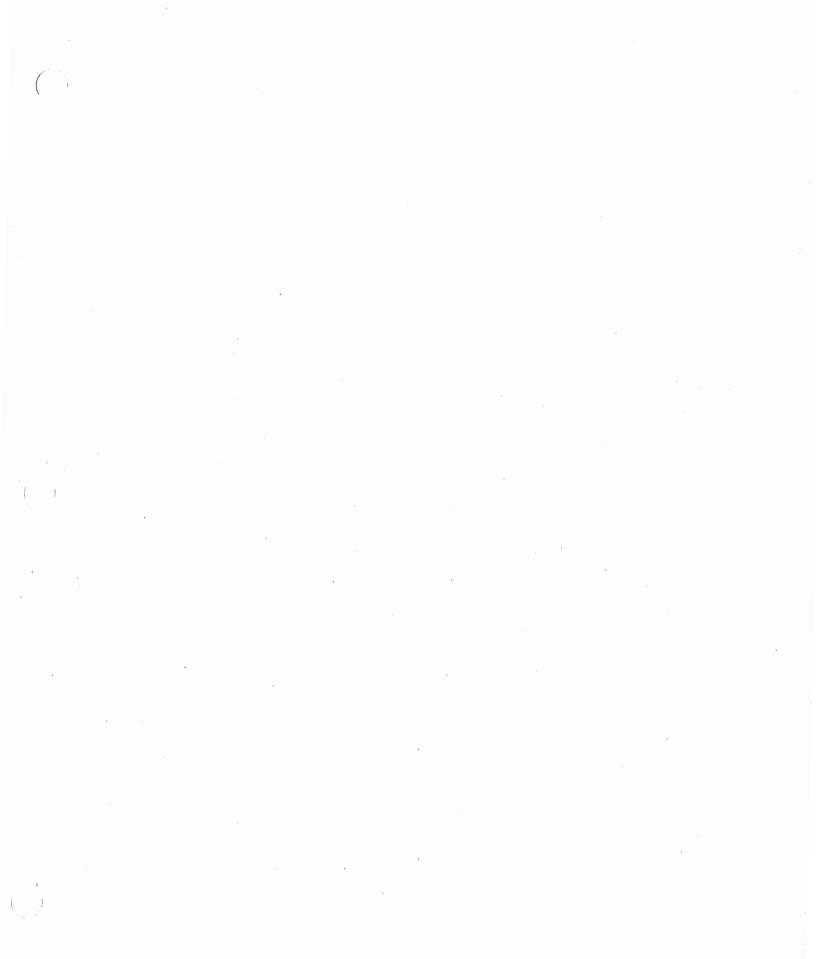
L = Length of specimen, (cm)

t = Elasped time of test, (scc)

In= Logarithm to base

 $k = \underline{aL} * \ln \underline{h^1} \\ At \qquad h^2$ 

 $k = (0.3167)(11.66) + \ln 96.5$ (81.07)(6) 36.6


k = 3.69 \* 0.9695 486.42

k = 0.0076 \* 0.9695

### $k = 7.4 \times 10^{-3} \text{ cm/sec}$

= 7.4 × 10 CM/SEC GA





DEC-11-98 FRI 15:31 IIS ENVIKUNIAL LAB

.

| • | 1A<br>VOLATILE ORGANICS ANALYSIS DATA SHEET                                                                                                                  | EPA SAMPLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Lab Name: SEVERN TRENT LABORATORIES Contract: 98035                                                                                                          | IHZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Lab Code: INCHVT Case No.: 98035 SAS No.: S                                                                                                                  | DG No.: 71813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Matrix: (soil/water) SOIL Lab Sample                                                                                                                         | ID: <b>37378</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Sample wt/vol: 3.0 (g/mL) G Lab File IE                                                                                                                      | : 0373788DV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Level: (low/med) LOW Date Receiv                                                                                                                             | red: 12/11/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | <pre>% Moisture: not dec. 11 Date Analyz</pre>                                                                                                               | ed: 12/11/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | GC Column: DB-624 ID: 0.53 (mm) Dilution Fa                                                                                                                  | actor: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Soil Extract Volume:(uL) Soil Alique                                                                                                                         | ot Volume:(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | CAS NO. COMPOUND (ug/L or ug/Kg) (                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 74-87-3Chloromethane         74-83-9Bromomethane         75-01-4Vinyl Chloride         75-00-3Chloroethane         75-09-2Methylene Chloride         67-64-1 | 19       U         19 <t< td=""></t<> |

FORM I VOA

.

OLM03.0

| IN 21 00 102 0                                                                                                                                                                                                                                                                             | J.OT III  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |         |           |                                              |      |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------------------------------------|------|-----|
| ·                                                                                                                                                                                                                                                                                          | VOLATILE  | 1A<br>ORGANICS ANALYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is data sh                                                                                                                                                                                      | EET     |           | epa sa                                       | MPLE | NO. |
|                                                                                                                                                                                                                                                                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |         | AS        | H2                                           |      |     |
|                                                                                                                                                                                                                                                                                            |           | NT LABORATORIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |         |           |                                              |      | 1   |
|                                                                                                                                                                                                                                                                                            |           | Case No.: 98035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |         |           |                                              |      |     |
| Matrix: (so                                                                                                                                                                                                                                                                                | il/water) | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 | Lab Sam | ple ID:   | 374267                                       | 7    |     |
| Sample wt/v                                                                                                                                                                                                                                                                                | ol:       | 5.0 (g/mL) G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 | Lab Fil | e ID:     | 037426                                       | 57V  |     |
| Level: (1                                                                                                                                                                                                                                                                                  | ow/med)   | LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 | Date Re | ceived:   | 12/15/                                       | /98  |     |
| <pre>% Moisture:</pre>                                                                                                                                                                                                                                                                     | not dec.  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                 | Date An | alyzed:   | 12/21/                                       | /98  |     |
| GC Column:                                                                                                                                                                                                                                                                                 | DB-624    | ID: 0.53 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                 | Dilutio | n Factor  | : 1.0                                        |      |     |
| Soil Extrac                                                                                                                                                                                                                                                                                | t Volume: | (uL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 | Soil Al | iquot Va  | olume:                                       |      | (   |
|                                                                                                                                                                                                                                                                                            | ,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                 |         | UNITS:    |                                              |      |     |
| CAS                                                                                                                                                                                                                                                                                        | NO.       | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ug/L                                                                                                                                                                                           | or ug/k | (g) UG/KC |                                              | Q    |     |
| $\begin{array}{c} 74-8\\ 75-0\\ 75-0\\ 75-0\\ 75-1\\ 75-3\\ 75-3\\ 540-6\\ 75-3\\ 540-6\\ 75-3\\ 75-3\\ 75-3\\ 75-3\\ 75-3\\ 75-2\\ 78-6\\ 1006\\ 79-6\\ 1006\\ 79-6\\ 1006\\ 79-6\\ 1006\\ 79-6\\ 1006\\ 79-6\\ 1006\\ 79-6\\ 1006\\ 79-6\\ 1006\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$ | 3 - 9     | Chloromethane<br>Bromomethane<br>Vinyl Chlorid<br>Chloroethane<br>Methylene Chl<br>Acetone<br>Carbon Disulf<br>1,1-Dichloroe<br>1,2-Dichloroe<br>Chloroform<br>1,2-Dichloroe<br>Chloroform<br>1,2-Dichloroe<br>Carbon Tetrac<br>Bromodichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Cis-1,3-Dichloroe<br>Chlorobenzen<br>Chlorobenzen<br>Styrene<br>Xylene (tot | le<br>oride<br>ide<br>ethene<br>ethene<br>ethene<br>thene (to<br>ethane<br>chloride<br>oroethane<br>oroethane<br>oroethane<br>oroethane<br>chloropropen<br>entanone<br>thene<br>achloroeth<br>e | e       |           | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 |      |     |

S,

01103.0

0090

| 1E<br>VOLATILE ORGANICS ANALYSIS D<br>TENTATIVELY IDENTIFIED C | · · · · · · · · · · · · · · · · · · · |
|----------------------------------------------------------------|---------------------------------------|
| Lab Name: SEVERN TRENT LABORATORIES Con                        | ASH2                                  |
| Lab Code: INCHVT Case No.: 98035 SA                            | S No.: SDG No.: 71878                 |
| Matrix: (soil/water) SOIL                                      | Lab Sample ID: 374267                 |
| Sample wt/vol: 5.0 (g/mL) G                                    | Lab File ID: 0374267V                 |
| Level: (low/med) LOW                                           | Date Received: 12/15/98               |
| % Moisture: not dec. 12                                        | Date Analyzed: 12/21/98               |
| GC Column: DB-624 ID: 0.53 (nm)                                | Dilution Factor: 1.0                  |
| Soil Extract Volume:(uL)                                       | Soil Aliquot Volume:(uL)              |

Number TICs found: 1

THERE IN OUTLON OUTLAND

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER COMPOUND NAME RT EST. CONC. Q ----==== 1. UNKNOWN SILOXANE DERIVATIVE 14.37 15 J . 2. з. 4. 5.\_\_ 6 7.\_ 8.\_ 9. \_\_\_ 10. 11. 12. 13. 14. 15. 16.\_ 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

FORM I VOA-TIC

OLM03.0

and the second



### Peerless Metal Powders & Abrasive

 124 South Military • Detroit, Michigan 48209

 (313) 841-5400
 Fax (313) 841-0240

### FAX TRANSMITTAL

We are transmitting a total of \_\_\_\_\_\_ pages including this cover sheet. Please contact sender if you do not receive all of the pages.

PLEASE DELIVER THE FOLLOWING PAGES TO: NAME COMPANY PHONE #  $\mathcal{O}$ FAX # DATE 12 - 9 FROM

### **REMARKS:**

an a the state of 
....

,

. ... .

•

| Source Company Name                        |              |     | Engine<br>Army De |          |          |                 | Sand (    | Grams |            |                |       |   |
|--------------------------------------------|--------------|-----|-------------------|----------|----------|-----------------|-----------|-------|------------|----------------|-------|---|
| Source City                                | Sand %       |     |                   |          |          |                 |           |       |            |                |       |   |
| Date Shipment Rec'd                        | Oil-NoneAlot |     |                   |          |          |                 |           |       |            |                |       |   |
| Sample Rec'd<br>Date of Test               | 11/30/       | 98  | 12/2/98           | <u> </u> |          | -50             | Plastic V |       | ide in any | / <b>e</b> ive |       |   |
| Lab Report By                              | Joe G        |     |                   |          |          | <b>L</b>        |           |       |            |                |       |   |
| Salesmen                                   |              |     |                   |          |          | To b            | sent to   | wheel |            |                |       |   |
| P. 0. # 726209-0000006<br>(5 Minute Rotap) | Relea        |     |                   |          | LATIVE   | (               |           |       |            |                |       |   |
|                                            | Load #       | 1   |                   |          | Load     | #5 <sup>·</sup> |           |       | Load       | #9             |       |   |
| Sieve Size                                 | Grams        | *   | Grams             | %        | Grams    | %               | Grams     | %     | Grams      | %              | Grams | % |
| 4<br>(Spec 0 )                             |              | 100 |                   | 100      |          | 100             |           |       |            |                |       |   |
| 8<br>(Spec 95 - 100)                       |              | 98  |                   | 98       | •        | 99              |           |       |            |                |       |   |
| 16<br>(Spec 75 - 90)                       |              | 89  |                   | 87       |          | 80              |           |       |            |                |       |   |
| 30<br>(Spec 30 - 50)                       |              | 39  |                   | 46.      | 5        | 32              |           |       |            |                |       |   |
| 50<br>(Spec 2 - 10)                        |              | 5   |                   | 6        |          | 4               |           |       |            |                |       |   |
| 100<br>(Spec 0 - 5)                        |              | 1.  | 5                 | 1.       | 5        | 1.              | 5         |       |            | ·              |       |   |
|                                            | <b></b>      |     |                   |          |          |                 |           |       |            |                |       |   |
|                                            |              |     |                   |          | ·<br>· · |                 |           |       |            |                |       |   |
|                                            |              |     | · ·               |          |          |                 |           |       |            |                |       |   |
|                                            |              |     |                   |          |          |                 |           |       |            |                |       |   |
|                                            |              |     |                   |          |          |                 |           |       |            |                |       |   |

.....

•

Mix. Volume

X = not sampled - = do not know Truck #

Sampler: E. Schacht\_\_\_\_

Density of Iron: Density of Sand:

|             | Date     | Time | Load No. | Sample ID<br>Truck | Description<br>(bags of iron, qty of sand) | Mixing Time<br>minutes                | Wt. of Iron<br>g                      | Total Wt. | Vol. of Iron | Total Volume                          | % Iron<br>by Volume |
|-------------|----------|------|----------|--------------------|--------------------------------------------|---------------------------------------|---------------------------------------|-----------|--------------|---------------------------------------|---------------------|
| MC-plant    | 12-10-98 |      | 17       | 81.                | 5 bago /                                   | 10 min                                | 1%8C                                  | 1.78 C    | 1340         | 3.08-C                                | 57% 6%              |
|             | 12-11-98 |      | 2        | X                  | 5                                          |                                       |                                       |           | -            |                                       |                     |
|             |          |      | 3        | X                  |                                            | -                                     |                                       |           | -            |                                       |                     |
|             |          |      | 4        | X                  |                                            |                                       |                                       |           | ~            |                                       |                     |
|             |          |      | 5        | 117                |                                            |                                       |                                       |           | 1314 C       | 21/4 C                                | 78%                 |
|             |          |      | 6        | 81                 |                                            |                                       |                                       |           | 1.C          | 2 C                                   | 50%                 |
|             |          |      | 7        | 91                 |                                            |                                       |                                       |           | 14C          | 20                                    | 63%                 |
|             |          |      | 8        | 116                |                                            |                                       |                                       |           | 148C         | 20                                    | 56%                 |
|             |          |      | 9        | 127                |                                            | 10 min.                               |                                       |           | 10           | 134 C                                 | 57%                 |
|             |          |      | 10       | X                  | *                                          |                                       |                                       |           |              |                                       |                     |
| •           | 12-11-98 |      | H        | -01-               |                                            |                                       |                                       |           | +Cup         |                                       | 58%                 |
| mc-P-cool   | e        |      | 12       | 91                 |                                            |                                       |                                       |           | 1/32         | 20                                    | 67%                 |
|             |          |      | 13       | #6                 | 5 bags/                                    |                                       |                                       |           | 11/4C        | 1.75 C                                | 71%                 |
| Mc-plant    |          |      | 14       | 127                |                                            |                                       |                                       |           | 1/30         | 20                                    | 67%                 |
| •           |          |      | 15       | ]Э                 |                                            |                                       |                                       |           | 14C          | 20                                    | 63%                 |
|             |          |      | 16-      | -81                |                                            |                                       |                                       |           | 100-         | No Cope                               | - 58%<br>75%        |
|             |          |      | 17       | 91                 |                                            |                                       |                                       |           | 142C         | 20                                    | 15%0                |
|             | ·        |      | 18       | X                  |                                            |                                       |                                       |           | -            |                                       |                     |
|             |          |      | 19       | X                  |                                            |                                       |                                       |           |              | · · · · · · · · · · · · · · · · · · · |                     |
| MC-P. Wolfe | ·        |      | 20       | X                  | ¥                                          | · · · · · · · · · · · · · · · · · · · |                                       |           | 1            |                                       |                     |
|             |          |      | 11       | 81                 |                                            |                                       |                                       |           | 10           | 178C                                  | 53%                 |
|             | ·        |      | 16       | 81                 | 5 bags/                                    |                                       |                                       |           | 10           | 1314 C                                | 57%                 |
| MC-plant    | 12-10-98 |      | 1        | 127                |                                            |                                       | · · · · · · · · · · · · · · · · · · · |           | 13/4C        | 3,08 C                                | 57%                 |
| •           |          |      | 2        | 17                 |                                            |                                       | <b> </b>                              |           | 142C         | 220                                   | 69%0                |
|             |          |      | 3        | 116                |                                            |                                       |                                       |           | 1/80         | 20                                    | 67%0                |
|             |          |      | 4        | 108                |                                            |                                       |                                       |           | 142C         | 20                                    | 75%                 |
|             |          |      | 5        | 127                |                                            |                                       |                                       |           | 1314C        | 20                                    | 88%                 |
|             |          |      | 6        |                    |                                            | · · · · · · · · · · · · · · · · · · · |                                       |           | 142C         | 2 C                                   | 75%                 |
|             |          |      | 7        | -                  |                                            |                                       |                                       |           | 1/3C         | 20                                    | 678                 |
| m C- Pwolfe | ·        |      | 8        | 127                |                                            |                                       |                                       |           | /13C         | 20                                    | 67%                 |
|             |          |      | 9        | -                  |                                            |                                       |                                       |           | 113C         | 20                                    | 67%                 |
|             |          |      | 10       | -                  |                                            |                                       |                                       |           | 14C          | 20                                    | 63%                 |

PAGE @1004 3∕4

12/14/98 MON 09:55 FAX 607 869 1903 DEC-08-98 14:57 FROM:PARSONS ENG.

SCI.

PARSONS OB TRAILER ID:7014012043

· ( \_\_\_\_\_) 3 (\_\_\_\_)



ecember 11, 1998

### L-98219

### Laboratory Testing Seneca Army Depot Ash Landfill Treatability Study

### NATURAL MOISTURE CONTENT ASTM D2216

Lab I.D. #

11628

Sample

### Sand Truck #127 Load # 8 12/10/98 14:45

### Moisture Content as a Percent of Dry Weight

5.4



December 15, 1998

### L-98219

Laboratory Testing Seneca Army Depot Ash Landfill Treatability Study

### NATURAL MOISTURE CONTENT ASTM D2216

Lab I.D. #

11629

### Sample

Truck #91 Load 12 Moisture Content as a Percent of Dry Weight

4.5

11630

Truck #85 Load 20

4.9

98219.WPS

### Appendix B

### Well Diagrams, Slug Test Results, Hydraulic Conductivity Results, and Selected Boring Logs

- Monitoring well completion reports for MWT-1 through MWT-11, March 1999
- Hydraulic Conductivity results of aquifer wells installed for groundwater treatability study, May 1999
- Rising head slug test results of aquifer wells installed for groundwater treatability study, May 1999
- Hydraulic Conductivity Results for Till/Weathered Shale from Remedial Investigation
- Selected boring logs of 1987 and before

Sheet 1 of 1

TOTAL DEPTH: 7.41 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 5.15 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 995064,36707 ASSOCIATED AREA/UNIT: Ash Landfill 739698.41709 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/31/99 **GROUND SURFACE ELEVATION: 634.9** WELL INSTALLATION COMPLETED 3/31/99 . ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ff) WELL DETAILS MACRO DEPTH (ft) DEPTH (ft) WELI WELL CONSTRUCTION DETAILS DETAILS -2.34 TOC 637.24 PROTECTIVE COVER GROUT 0 634.9 GS 0 Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 1.0 633.9 1 1 TBS Length (ft): 633.24 SEAL TSP 1.66 RISER 2 Type: Bentonite pellets Diameter (ID) (in): 2" 632.48 Length (ft): 0.8 2.42 TSC Type: SCH. 40-PVC 3 Length (ft): 4.76 SANDPACK Type: SCREEN Length (ft): 5.9 4 Diameter (ID) (in): 2" Type: Wire Wrapped PVC SURFACE SEAL 5 V Length (ft): 5.0 Slot Size (in): 0.010 Type: Size: 6 7 627.49 BSG 7.4 WELL DEVELOPMENT DATA 627.489 BOD 8 7.411 WATER LEVELS Date: 04/10/2099 Depth, TOC Method: Date Time 9 Duration: Development 4/10/99 5.15 Rate: 10 Total Volume Removed (gals): 18.5 11 Temperature Conductivity Turbidity pН 12 (degrees F) (micromhos/cm) (NTUs) 1.39 7.25 53.2 685 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 тос TOP OF WELL RISER GROUND SURFACE ĠS TOP BENTONITE SEAL TOP OF SANDPACK TOP OF SCREEN TBS SEAL ORGANIC SILT 16 TSP TSC BOTTOM OF SCREEN BSC GROUT BACKFILL POINT OF WELL BOTTOM OF DRILL HOLE 17 POW BOD in INCHES SANDPACK SILT 18 FEFT ft INSIDE DIAMETER ID GALLONS gals IRON SAND SHALE 19 šсн SCHEDULE NA NOT APPLICABLE NOTES: UNITED STATES ARMY COMPLETION REPORT MWT-1 2 CORPS OF ENGINEERS PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. **Romulus**, New York

Sheet 1 of 1

TOTAL DEPTH: 7 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 995064,10703 ASSOCIATED AREA/UNIT: Ash Landfill 739694.79697 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/30/99 **GROUND SURFACE ELEVATION: 634.8** WELL INSTALLATION COMPLETED 3/30/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon õ WELL DETAILS MACRO SYMBOL DEPTH (ft) ELEVATI( (ft) DEPTI (ff) WELL WELL CONSTRUCTION DETAILS DETAILS -2 39 тос 637.19 PROTECTIVE COVER GROUT 634.8 0 0 GS Diameter (ID) (in): 4" Type: 634.2 Length (ft): 0.60 0.6 TBS Type: Riser 633.8 Length (ft): TSP SEAL RISER 632,8 2 Type: Fine Sand/Bentonite TSC 2 Diameter (ID) (in): 1" Length (ft): 0.4 Type: SCH, 40-PVC 3 Length (ft): 4.39 SANDPACK Type: SCREEN 4 Length (ft): 6.0 Diameter (ID) (in): 1" Type: Wire Wrapped PVC Length (ft): 5.0 SURFACE SEAL 5 Type: Slot Size (in): 0.010 Size: 6 627.9 7 BSC 6.9 627.8 POW WELL DEVELOPMENT DATA 8 WATER LEVELS Date: Method: Depth. TOC  $\bigtriangledown$ Date Time 9 Duration: Development Rate: 10 Total Volume Removed (gals): 11 pН Temperature Conductivity Turbidity 12 (degrees F) (micromhos/cm) (NTUs) 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 TOP OF WELL RISER TOC GROUND SURFACE GS TBS TOP BENTONITE SEAL \*\*\* TOP OF SANDPACK SEAL ORGANIC SILT 16 TSP TSC BOTTOM OF SCREEN POINT OF WELL BOTTOM OF DRILL HOLE BSC 88 GROUT BACKFILL 17 POW BOD INCHES in SILT SANDPACK 18 FEET ft INSIDE DIAMETER ID GALLONS gals SCH IRON SAND SHALE 19 SCHEDULE NA NOT APPLICABLE NOTES: COMPLETION REPORT UNITED STATES ARMY **CORPS OF ENGINEERS** MWT-2 PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. **Romulus**, New York

TOTAL DEPTH: 7.5 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 5.16 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 995063,787000 ASSOCIATED AREA/UNIT: Ash Landfill 739692.44690 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/31/99 **GROUND SURFACE ELEVATION: 634.8** WELL INSTALLATION COMPLETED 3/31/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ft) WELL DETAILS MACRO SYMBOL DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS -2.51 TOC 637 31 **PROTECTIVE COVER** GROUT Ω 634.8 0 GS Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 1.0 633.8 Length (ft): TBS 1 633.2 SEAL TSP 1.6 RISER Type: Bentonite Pellets 2 632 55 Diameter (ID) (in): 2" TSC 2.25 Length (ft): 0.6 Type: SCH. 40-PVC ٦ Length (ft): 4.76 SANDPACK Type: SCREEN Length (ft): 5.9 Diameter (ID) (in): 2" Type: Wire Wrapped PVC Length (ft): 5.0 5 SURFACE SEAL Slot Size (in): 0.010 Type: Size: 6 627.55 7.25 BSC WELL DEVELOPMENT DATA 627.3 7.5 POW я WATER LEVELS Date: 04/10/2099 Depth, TOC Method: <u>Date</u> 9 Time Duration: Development 4/10/99 5.16 Rate: 10 **Total Volume** Removed (gais): 5.0 11 Turbidity Temperature pН Conductivity 12 (degrees F) (micromhos/cm) (NTUs) 8,0 47.7 416 1.2 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 TOC TOP OF WELL RISER GS GROUND SURFACE TBS TOP BENTONITE SEAL  $\otimes$ SEAL ORGANIC SILT 16 TOP OF SANDPACK TSP TOP OF SCREEN TSC BOTTOM OF SCREEN POINT OF WELL BOTTOM OF DRILL HOLE BSC BACKFILL GROUT 17 POW BOD INCHES in SANDPACK SILT 18 FEET ft ID INSIDE DIAMETER gals GALLONS IRON SAND SHALE 19 SCHEDULE SCH NOT APPLICABLE NA NOTES: COMPLETION REPORT UNITED STATES ARMY PARSONS

PARSONS ENGINEERING SCIENCE, INC.

CORPS OF ENGINEERS Seneca Army Depot Romulus, New York

MWT-3

Sheet 1 of 1

TOTAL DEPTH: 10 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 6.92 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY ASSOCIATED AREA/UNIT: Ash Landfill PROJECT NO.: 726209-01001 WELL INSTALLATION STARTED: 3/30/99 WELL INSTALLATION COMPLETED 3/30/99 BORING LOCATION: 994865,74647 739726.14867 COORDINATE SYSTEM: NAD-83 **GROUND SURFACE ELEVATION: 635.4** ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ft) WELL DETAILS MACRO DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS -2.28 TOC 637 68 PROTECTIVE COVER GROUT 0 635.4 0 GS Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 3.0 1 Length (ft): SEAL RISER Type: Bentonite Pellets 2 Diameter (ID) (in): 2" Length (ft): 1.0 Type: SCH. 40-PVC 632.4 3 Length (ft): 7.03 TBS 3 SANDPACK Type: SCREEN 631.4 4 Length (ft): 6.0 4 TSP Diameter (ID) (in): 2" Type: Wire Wrapped PVC Length (ft): 5.0 630.65 4.75 TSC SURFACE SEAL 5 Slot Size (in): Type: Size: 6 7 WELL DEVELOPMENT DATA 8 WATER LEVELS Date: 04/02/2099 Depth, TOC Method: Time Date 9 Duration: Development 4/2/99 6.92 625.65 Rate: BSC 9.75 10 **Total Volume** 625.4 10 POW Removed (gals): 12.0 11 pН Conductivity Temperature Turbidity 12 (degrees F) (micromhos/cm) (NTUs) 48.7 7.5 670 12.7 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 TOP OF WELL RISER GROUND SURFACE TOP BENTONITE SEAL TOC GS TBS  $\otimes$ TOP OF SANDPACK SEAL ORGANIC SILT 16 TSP TSC BSC BOTTOM OF SCREEN 17 GROUT BACKFILL POINT OF WELL BOTTOM OF DRILL HOLE POW BOD INCHES in SANDPACK SILT 18 FEET ft ID INSIDE DIAMETER °.° gals GALLONS IRON SAND SHALE 19 SCH SCHEDULE NOT APPLICABLE NA NOTES: COMPLETION REPORT UNITED STATES ARMY P CORPS OF ENGINEERS MWT-4 PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. Romulus, New York

Sheet 1 of 1

TOTAL DEPTH: 10.5 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 994865,03642 ASSOCIATED AREA/UNIT: Ash Landfill 739722.60856 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/30/99 **GROUND SURFACE ELEVATION: 635,5** WELL INSTALLATION COMPLETED 3/30/99 **ELEVATION DATUM: NAVD 88** DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ft) WELL DETAILS MACRO DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS .2 22 тос 637.72 PROTECTIVE COVER GROUT 0 635.5 GS 0 Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 0.60 634.5 1 TSP Length (ft): SEAL RISER 2 Type: Fine Sand/Bentonite Diameter (ID) (in): 1" Length (ft): 0.4 Type: SCH. 40-PVC 3 Length (ft): 7.72 SANDPACK Type: SCREEN 4 Length (ft): 9.5 Diameter (ID) (in): 1" Type: Wire Wrapped PVC Length (ft): 5.0 SURFACE SEAL 5 630 Slot Size (in): 0.010 Type: 5.5 TSC Size: 6 7 WELL DEVELOPMENT DATA 8 WATER LEVELS Date: Method: Depth, TOC Date Time 9 Duration: Development Rate: 10 **Total Volume** 625 Removed (gals): BSC 10.6 624,99 11 POW 10.51 pН Temperature Conductivity Turbidity 12 (degrees F) (micromhos/cm) (NTUs) 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 TOP OF WELL RISER TOC GROUND SURFACE GS TBS TOP BENTONITE SEAL TOP OF SANDPACK TOP OF SCREEN BOTTOM OF SCREEN SEAL ORGANIC SILT 16 TSP TSC BSC 88 POINT OF WELL BOTTOM OF DRILL HOLE GROUT BACKFILL 17 POW BOD INCHES in SILT SANDPACK 18 ft FEET INSIDE DIAMETER ID GALLONS gals SCH IRON SAND SHALE 19 SCHEDULE NA NOT APPLICABLE NOTES: COMPLETION REPORT UNITED STATES ARMY CORPS OF ENGINEERS MWT-5 -PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. **Romulus**, New York

TOTAL DEPTH: 10.33 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 6.25 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 994864.87640 ASSOCIATED AREA/UNIT: Ash Landfill 739720.29849 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/31/99 **GROUND SURFACE ELEVATION: 635.5** WELL INSTALLATION COMPLETED 3/31/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ft) MACRO SYMBOL DEPTH (ft) DEPTH (ft) DETAIL WELL WELL CONSTRUCTION DETAILS DETAILS -2.09 тос 637.59 PROTECTIVE COVER GROUT 0 635.5 GS 0 Diameter (ID) (in); 4" Type: Type: Riser Length (ft): 3.0 1 Length (ft): SEAL RISER Type: Bentonite Pellets 2 Diameter (ID) (in): 2" Length (ft): 1.0 Type: SCH 40-PVC 632,5 3 Length (ft): 6.97 TBS 3 SANDPACK Type: SCREEN 631.5 ۵ Length (ft): 6.33 TSP 4 Diameter (ID) (in): 2" Type: Wire Wrapped PVC Length (ft): 5.0 630.62 SURFACE SEAL 5 4 88 TSC Slot Size (in): 0.010 Type: Size: 6 V 7 WELL DEVELOPMENT DATA 8 WATER LEVELS Date: 04/02/2099 Depth, TOC Method: Date Time 9 Duration: Development 4/2/99 6.25 Rate: 625.62 10 9.88 BSC Total Volume 625.17 Removed (gals): 11:0 10.3 POW 11 pН Temperature Conductivity Turbidity 12 (degrees F) (micromhos/cm) (NTUs) 369 10.8 8.3 49.9 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 тос TOP OF WELL RISER GROUND SURFACE GS TOP BENTONITE SEAL TOP OF SANDPACK TBS SEAL ORGANIC SILT 16 TSP TOP OF SCREEN TSC BOTTOM OF SCREEN POINT OF WELL BOTTOM OF DRILL HOLE INCHES BSC GROUT BACKFILL 17 POW BOD in SANDPACK SILT 18 FEFT ft INSIDE DIAMETER **ID** gals SCH GALLONS •••• IRON SAND SHALE 19 SCHEDULE NOT APPLICABLE NA NOTES: UNITED STATES ARMY **COMPLETION REPORT** P **CORPS OF ENGINEERS** MWT-6 PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. **Romulus**, New York

Sheet 1 of 1

TOTAL DEPTH: 11,98 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 6.70 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 994721.01625 ASSOCIATED AREA/UNIT: Ash Landfill 739767.31049 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/30/99 **GROUND SURFACE ELEVATION: 636.4** WELL INSTALLATION COMPLETED 3/30/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon LEVATION (ft) WELL DETAILS MACRO SYMBOL DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS Щ -1.94 тос 638.34 **PROTECTIVE COVER** GROUT 0 636.4 GS 0 Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 0.95 635.45 1 TBS 0.95 Length (ft): 635.2 1.2/ TSP SEAL 634.98 RISER Type: Bentonite Pellets 2 1.42 TSC Diameter (ID) (in): 2" Length (ft): 0.25 Type: SCH. 40-PVC 3 Length (ft): 3.36 SANDPACK Type; SCREEN 4 Length (ft): 10.5 Diameter (ID) (in): 2" Type: Wire Wrapped PVC SURFACE SEAL 5 Length (ft): 10.0 Slot Size (in): 0.010 Type: Size: 6 7 WELL DEVELOPMENT DATA 8 WATER LEVELS Date: 04/01/2099 Depth, TOC Method: Date Time 9 Duration: Development 4/1/99 6.70 Rate: . 10 Total Volume Removed (gals): 8.0 11 624.98 11.42 BSC pН Temperature Conductivity Turbidity 624.42 12 11.98 POW (degrees F) (micromhos/cm) (NTUs) 773 10.3 7.28 51.6 13 LEGEND 14 WELL DETAILS LITHOLOGY .15 тос TOP OF WELL RISER GROUND SURFACE GS TOP BENTONITE SEAL TOP OF SANDPACK TBS 16 SEAL ORGANIC SILT TSP TOP OF SCREEN TSC BOTTOM OF SCREEN POINT OF WELL BOTTOM OF DRILL HOLE INCHES BSC 20 GROUT BACKFILL 17 POW BOD in SANDPACK SILT 18 FEET ft İD INSIDE DIAMETER GALLONS gals IRON SAND SHALE 19 SCHEDULE **ŠCH** NOT APPLICABLE ·NA NOTES: UNITED STATES ARMY COMPLETION REPORT 2 MWT-7 CORPS OF ENGINEERS PARSONS Seneca Army Depot **Romulus**, New York

PARSONS ENGINEERING SCIENCE, INC.

TOTAL DEPTH: 10.8 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 994719,91621 ASSOCIATED AREA/UNIT: Ash Landfill 739763.92039 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/30/99 **GROUND SURFACE ELEVATION: 636.2** WELL INSTALLATION COMPLETED 3/30/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon LEVATION (ft) WELL DETAILS MACRO DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS Щ тос 638.40 ·2.20 PROTECTIVE COVER GROUT 636.2 0 0 GS Diameter (ID) (in): 4" Type: 635.8 0.4 TBS Length (ft): Type: Riser 635.4 0.8 TSP Length (ft): 635,39 SEAL 0.81 TSC RISER Type: Fine Sand/Bentonite 2 Diameter (ID) (in): 1" Length (ft): 0.4 Type: SCH. 40-PVC 3 Length (ft): 3.0 SANDPACK Type: SCREEN 4 Length (ft): 10.0 Diameter (ID) (in): 1" Type: Wire Wrapped PVC SURFACE SEAL 5 Length (ft): 10.0 Slot Size (in): 0.010 Type: Size 6 7 WELL DEVELOPMENT DATA 8 WATER LEVELS Date: Depth, TOC Method: Date Time g Duration: Development Rate: 10 Total Volume Removed (gals): 625.4 11 10,6 BSC 625.39 BOD 10.8 pН Temperature Conductivity Turbidity 12 (degrees F) (micromhos/cm) (NTUs) 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 TOC TOP OF WELL RISER GROUND SURFACE TOP BENTONITE SEAL TOP OF SANDPACK TOP OF SCREEN GS TBS ORGANIC SILT SEAL 16 TSP TSC BOTTOM OF SCREEN BSC 88 BACKFILL GROUT 17 POINT OF WELL BOTTOM OF DRILL HOLE POW BOD INCHES in SILT SANDPACK 18 FEET ft iD INSIDE DIAMETER gals GALLONS IRON SAND SHALE 19 SCH SCHEDULE NOT APPLICABLE NA NOTES: COMPLETION REPORT UNITED STATES ARMY ₽ CORPS OF ENGINEERS MWT-8 PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. **Romulus**, New York

TOTAL DEPTH: 12 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 6.60 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 994718.99618 ASSOCIATED AREA/UNIT: Ash Landfill 739761.48032 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/30/99 GROUND SURFACE ELEVATION: 636.0 WELL INSTALLATION COMPLETED 3/30/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ft) WELL DETAILS MACRO SYMBOL DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS -2.08 TOC 638.08 PROTECTIVE COVER GROUT 0 636 0 GS Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 1.0 635 1 1 TBS Length (ft): 634.5 SEAL TSP 1.5, RISER 634.25 2 Type: Bentonite Pellets 1.75 TSC Diameter (ID) (in): 2" Length (ft): 0.5 Type: SCH. 40-PVC 3 Length (ft): 3.83 SANDPACK Type: SCREEN 4 Length (ft): 10.5 Diameter (ID) (in): 2" Type: Wire Wrapped PVC SURFACE SEAL 5 Length (ft): 10.0 Slot Size (in): 0.010 Type: Size: 6 7 WELL DEVELOPMENT DATA 8 WATER LEVELS Date: 04/02/2099 Method: Depth, TOC Date Time 9  $\nabla$ Duration: Development 4/2/99 6,60 Rate: 10 **Total Volume** Removed (gais): 16 11 624 25 Temperature Conductivity Turbidity pН 11.7 BSC 12 (degrees F) (micromhos/cm) (NTUs) 624 12 POW 8.1 49.6 364 22.5 13 LEGEND 14 WELL DETAILS LITHOLOGY 15 TOP OF WELL RISER TOC GROUND SURFACE GS TOP BENTONITE SEAL TOP OF SANDPACK TOP OF SCREEN TBS ORGANIC SILT 16 SEAL TSP TSC BOTTOM OF SCREEN BSC GROUT BACKFILL 17 POINT OF WELL POW BOTTOM OF DRILL HOLE BOD in INCHES SANDPACK SILT 18 ft FFFT INSIDE DIAMETER ÎD. GALLONS \$ gals IRON SAND SHALE 19 šсн SCHEDULE NA NOT APPLICABLE NOTES: UNITED STATES ARMY COMPLETION REPORT P MWT-9 CORPS OF ENGINEERS PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. **Romulus**, New York

۱

Sheet 1 of 1

TOTAL DEPTH: 7.08 PROJECT: Ash Landfill Reactive Wall DEPTH TO WATER: 3,91 PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY BORING LOCATION: 995252,63746 ASSOCIATED AREA/UNIT: Ash Landfill 739655.66506 PROJECT NO.: 726209-01001 COORDINATE SYSTEM: NAD-83 WELL INSTALLATION STARTED: 3/30/99 GROUND SURFACE ELEVATION: 634.2 WELL INSTALLATION COMPLETED 3/30/99 ELEVATION DATUM: NAVD 88 DRILLING CONTRACTOR: Maxim INSPECTOR: EDS DRILLING METHOD: HSA CHECKED BY: SAMPLING METHOD: 2" Split Spoon ELEVATION (ft) WELL DETAILS MACRO SYMBOL DEPTH (ft) DEPTH (ft) WELL WELL CONSTRUCTION DETAILS DETAILS TOC 636.07 -1.87 PROTECTIVE COVER GROUT 0 634.2 0 GS Diameter (ID) (in): 4" Type: Type: Riser Length (ft): 1.0 633.2 1 TBS Length (ft): 1 632.7 SEAL. 1.5 TSP 632.4 RISER Type: Bentonite Pellets 2 1.8 TSC Diameter (ID) (in): 2" Length (ft): 0.5 Type: SCH. 40-PVC 3 Length (ft): 3.67 SANDPACK Type: V SCREEN 4 Length (ft): 5.6 Diameter (ID) (in): 2" Type: Wire Wrapped PVC SURFACE SEAL 5 Length (ft): 5.0 Slot Size (in): 0.010 Type: Size: 6 627.4 6.8 BSC 7 627.12 7.08 POW WELL DEVELOPMENT DATA 8 WATER LEVELS Date: 04/10/2099 Method: Date Time Depth, TOC 9  $\nabla$ Duration: Development 4/10/99 3.91 Rate: 10 **Total Volume** Removed (gals): 21 11 pН Conductivity Turbidity Temperature 12 (NTUs) (degrees F) (micromhos/cm) 7,49 48.2 327 4.1 13 LEGEND 14 WELL DETAILS LITHOLOGY TOC TOP OF WELL RISER GS GROUND SURFACE TBS TOP BENTONITE SEAL 15 SEAL ORGANIC SILT 16 TOP OF SANDPACK TSP TSC TOP OF SCREEN BSC BOTTOM OF SCREEN 88 BACKFILL GROUT 17 BOTTOM OF DRILL HOLE BOD in INCHES SANDPACK SILT 18 ft FEET INSIDE DIAMETER GALLONS ID gals SCH IRON SAND SHALE 19 SCHEDULE NOT APPLICABLE ŇA NOTES: UNITED STATES ARMY COMPLETION REPORT **MWT-10** CORPS OF ENGINEERS PARSONS Seneca Army Depot PARSONS ENGINEERING SCIENCE, INC. Romulus, New York

Sheet 1 of 1

739791.29163

TOTAL DEPTH: 10.25 DEPTH TO WATER: 5,95 BORING LOCATION: 994615,11603 COORDINATE SYSTEM: NAD-83 GROUND SURFACE ELEVATION: 636.2 ELEVATION DATUM: NAVD 88 INSPECTOR: EDS CHECKED BY:

PROJECT: Ash Landfill Reactive Wall PROJECT LOCATION: Seneca Army Depot Activity, Romulus, NY ASSOCIATED AREA/UNIT: Ash Landfill PROJECT NO.: 726209-01001 WELL INSTALLATION STARTED: 3/31/99 WELL INSTALLATION COMPLETED 3/31/99 DRILLING CONTRACTOR: Maxim DRILLING METHOD: HSA DRILLING METHOD: HSA SAMPLING METHOD: 2" Split Spoon

| DEPTH<br>(ft)                                        | MACRO<br>SYMBOL | WELL<br>DETAILS    | DEPTH<br>(ft)                    | WELL                                  | ELEVATION<br>(ft)                                  | WELL CONSTRUCTION DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------|-----------------|--------------------|----------------------------------|---------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 -<br>1 -<br>2 -<br>3 -<br>4 -<br>5 -<br>6 -<br>7 - |                 |                    | 0.0<br>0<br>0.3<br>2<br>3.5<br>5 | TOC<br>GS<br>TOC<br>TBS<br>TSP<br>TSC | 636.2<br>636.2<br>635.9<br>634.2<br>632.7<br>631.2 | PROTECTIVE COVER       GROUT         Diameter (ID) (in): 4"       Type:         Type: Riser       Length (ft): 2.0         Length (ft):       SEAL         RISER       Type: Bentonite Pellets         Diameter (ID) (in): 2"       Length (ft): 1.5         Type: SCH. 40-PVC       Length (ft): 1.5         Length (ft): 4.7       SANDPACK         SCREEN       Type:         Diameter (ID) (in): 2"       Type: Ure Wrapped PVC         Length (ft): 5.0       SURFACE SEAL         Slot Size (in): 0.010       Type: ROAD BOX         Size:       Size:                       |
| 8 -<br>9 -<br>10 -<br>11 -<br>12 -                   |                 |                    | <u>10</u><br>10.25               | BSC-<br>POW                           | 626.2<br>625.95                                    | WELL DEVELOPMENT DATA       Date: 04/10/2099       Method:     Date     Time     Depth, TOC       Duration:     Development 4/10/99     5.95     ✓       Rate:     Total Volume       Removed (gals): 21.8     Conductivity     Turbidity       pH     Temperature     Conductivity     Turbidity       7.19     49.6     608     20                                                                                                                                                                                                                                               |
| 13 <sup></sup><br>14 <sup></sup>                     |                 |                    |                                  |                                       |                                                    | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15<br>16<br>17<br>18<br>19                           |                 |                    |                                  |                                       |                                                    | WELL DETAILS       LITHOLOGY         TOC       TOP OF WELL RISER       GROUND SURFACE         TBS       TOP OF SURFACE       SEAL       ORGANIC SILT         TSP       TOP OF SANDPACK       SEAL       ORGANIC SILT         TSC       TOP OF SCREEN       SEAL       BACKFILL         BSC       BOTTOM OF SCREEN       SEAL       BACKFILL         BOD       BOTTOM OF DRILL HOLE       SANDPACK       SILT         IN       INCHES       SANDPACK       SILT         ID       INSIDE DIAMETER       IRON SAND       SHALE         SCH       SCHEDULE       IRON SAND       SHALE |
| 2                                                    |                 | sons<br>5 Engineei | RING                             | SCIEN                                 | JCE, I                                             | UNITED STATES ARMY<br>CORPS OF ENGINEERS<br>Seneca Army Depot<br>Completion Report<br>Completion Report<br>Completion Report<br>MWT-11                                                                                                                                                                                                                                                                                                                                                                                                                                             |

( )1 ()

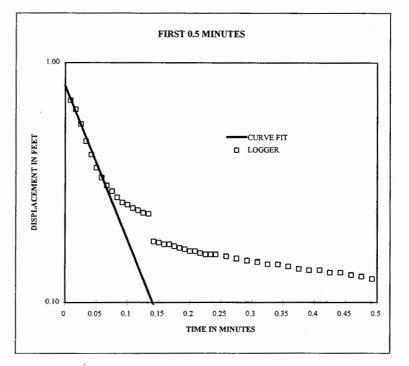
## Seneca Army Depot Activity Ash Lanfill - Groundwater Treatability Study Using Zero Valent Iron Reactive Wall HYDRAULIC CONDUCTIVITY RESULTS, MAY 1999

| Monitoring Well Number | Hydraulic Conductivity, ft/days |
|------------------------|---------------------------------|
| MWT-10                 | 55                              |
| MWT-1                  | . 34                            |
| MWT-3                  | 28                              |
| MWT-4                  | 4                               |
| MWT-6                  | 9                               |
| MWT-7                  | 4                               |
| MWT-9                  | 7                               |
| MWT-11                 | 0.4                             |

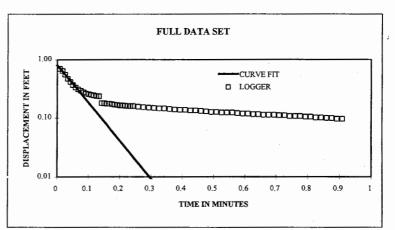
p:\pit\projects\seneca\irontrnc\gwdata\slug.xls

### Project: ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL

Project No.: 726209-01002


Well No.: MWT-1

Test Date: 5/8/1999


#### Formation Tested:

Rising (R) or Falling (F) Head Test: R Hydraulic conductivity 1.19E-02 cm/sec 2.35E-02 ft/min 33.80 ft/day

| Casing stickup                                | 1.86  | feet    |   |
|-----------------------------------------------|-------|---------|---|
| Static water level (from top of casing)       | 5.18  | feet    |   |
| Depth to bottom of screen (from ground level) | 7.42  | feet    |   |
| Boring diameter                               | 8.00  | inches  |   |
| Casing diameter                               | 2.00  | inches  |   |
| Screen diameter                               | 2.00  | inches  |   |
| Screen length                                 | 5.00  | feet    |   |
| Depth to "impermeable boundary"               | 7.67  | feet    |   |
| Estimated ratio of Kh/Kv                      | 1     |         |   |
| Porosity of filter pack                       | 0.3   |         |   |
| ∆H at time zero (Y₀)                          | 0.80  | foot    |   |
| $\Delta H$ at time t (Y <sub>t</sub> )        |       |         |   |
|                                               | 0.100 | feet    |   |
| Time                                          | 0.14  | minutes | , |
|                                               |       |         |   |



|       | E      | Bouwer-Rice Param | eters   |              |
|-------|--------|-------------------|---------|--------------|
| feet  | cm     |                   | cm      | 1            |
| 3.32  | 101.19 | SW                |         |              |
| 4.1   | 124.97 | н                 | 12.30   | L/Rw         |
| 2.42  | 73.76  | Ts                | 0.94    | H/D          |
| 0.333 | 10.16  | Rw                | 1.87    | A            |
| 0.083 | 2.54   | Rc                | 0.26    | В            |
| 0.167 | 5.08   | DS                | 1.20    | с            |
| 4.10  | 124.97 | L                 | -0.29   | Ln[(D-H)/Rw] |
| 4.35  | 132.59 | D                 | -0.29   | Ln[(D-H)/Rw] |
| 0.8   | 24.38  | Yo                | 1.71    | equation (8) |
| 0.1   | 3.05   | Y <sub>t</sub>    | 1.87    | equation (9) |
|       | 8.40   | t (seconds)       | 1.87    | Ln(Re/Rw)    |
|       | 1.00   | М                 | 1.2E-02 | equation (5) |
|       | 0.30   | n                 |         |              |



**P**]

Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

MWT-1.xls, 3/10/2000

## Project: ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL

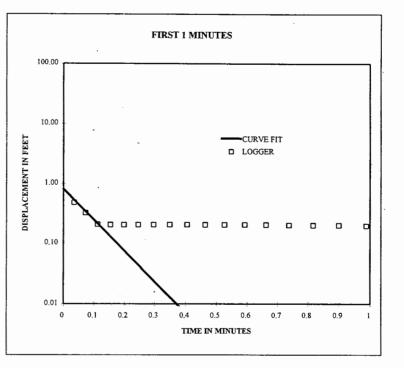
9.97E-03 cm/sec

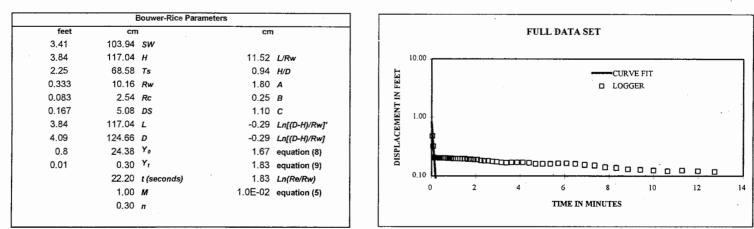
Project No.: 726209-01002

Well No.: MWT-3

Test Date: 5/8/1999

#### Formation Tested:


Rising (R) or Falling (F) Head Test:


Hydraulic conductivity

|                                               | 1.96E-02 | ft/min  |
|-----------------------------------------------|----------|---------|
|                                               | 28.27    | ft/day  |
|                                               |          |         |
| Casing stickup                                | 1.86     | feet    |
| Static water level (from top of casing)       | 5.27     | feet    |
| Depth to bottom of screen (from ground level) | 7.25     | feet    |
| Boring diameter                               | 8.00     | inches  |
| Casing diameter                               | 2.00     | inches  |
| Screen diameter                               | 2.00     | inches  |
| Screen length                                 | 5.00     | feet    |
| Depth to "impermeable boundary"               | 7.50     | feet    |
| Estimated ratio of Kh/Kv                      | 1        |         |
| Porosity of filter pack                       | 0.3      |         |
| ∆H at ṫime zero (Y₀)                          | 0.80     | feet    |
| $\Delta H$ at time t (Y <sub>t</sub> )        | 0.010    |         |
|                                               | 0.010    | leet    |
| Time                                          | 0.37     | minutes |
|                                               |          |         |

ć

R

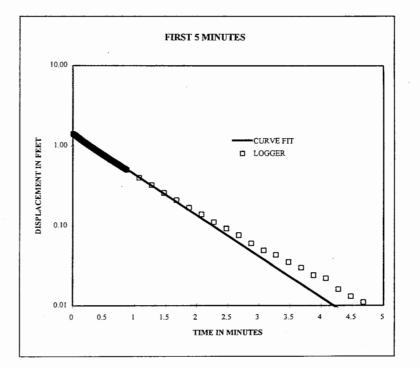




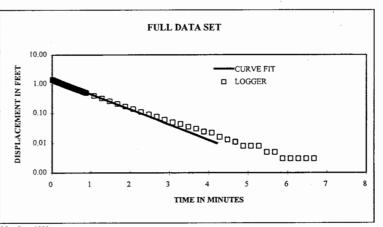
Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

## Project: ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL


Project No.: 726209-01002

| Well | No.: | MWT-4 |
|------|------|-------|
|      |      |       |


Test Date: 5/8/1999

#### Formation Tested:

| Rising (R) or Falling (F) Head Test:                                                                                                                                                                                                                                                                                                                                          | R                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydraulic conductivity                                                                                                                                                                                                                                                                                                                                                        | 1.36E-03 cm/sec<br>2.68E-03 ft/min<br>3.85 ft/day                                                                                                                 |
| Casing stickup<br>Static water level (from top of casing)<br>Depth to bottom of screen (from ground level)<br>Boring diameter<br>Casing diameter<br>Screen diameter<br>Screen length<br>Depth to "impermeable boundary"<br>Estimated ratio of Kh/Kv<br>Porosity of filter pack<br>$\Delta H$ at time zero (Y <sub>0</sub> )<br>$\Delta H$ at time t (Y <sub>1</sub> )<br>Time | 1.86 feet<br>5.81 feet<br>9.75 feet<br>8.00 inches<br>2.00 inches<br>2.00 inches<br>5.00 feet<br>10.00 feet<br>1<br>0.3<br>1.45 feet<br>0.010 feet<br>4.2 minutes |



| Bouwer-Rice Parameters |        |             |         |               |  |
|------------------------|--------|-------------|---------|---------------|--|
| feet                   | cm     |             | ст      |               |  |
| 3.95                   | 120.40 | SW          |         |               |  |
| 5.8                    | 176.78 | H           | 60.00   | L/Rw          |  |
| 4.75                   | 144.78 | Ts          | 0.96    | H/D           |  |
| 0.083                  | 2.54   | Rw          | 3.30    | А             |  |
| 0.083                  | 2.54   | Rc          | 0.50    | В             |  |
| 0.167                  | 5.08   | DS          | 2.90    | с             |  |
| 5.00                   | 152.40 | L           | 1.10    | Ln[(D-H)/Rw]' |  |
| 6.05                   | 184.40 | D           | 1.10    | Ln[(D-H)/Rw]  |  |
| 1.45                   | 44.20  | Yo          | 3.09    | equation (8)  |  |
| 0.01                   | 0.30   | Yt          | 3.25    | equation (9)  |  |
|                        | 252.00 | t (seconds) | 3.25    | Ln(Re/Rw)     |  |
|                        | 1.00   |             | 1.4E-03 | equation (5)  |  |
|                        | 0.30   | п           |         |               |  |





Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely

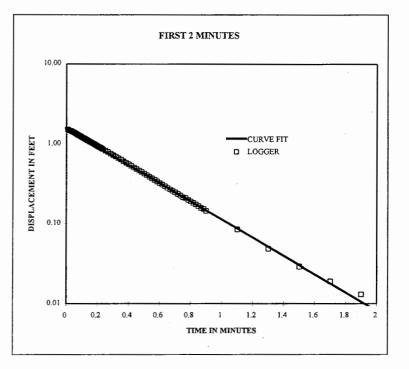
or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

#### SENECA ARMY DEPOT Client:

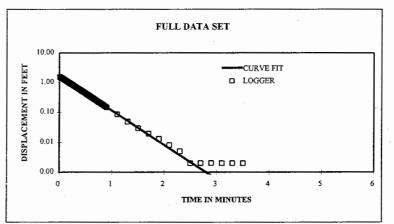
#### ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL Project:

726209-01002 Project No.:

MWT-6 Well No .:


5/8/1999 Test Date:

### Formation Tested:


Rising (R) or Falling (F) Head Test:

| Hydraulic conductivity                        | 3.03E-03<br>5.96E-03<br>8.58 |        |  |
|-----------------------------------------------|------------------------------|--------|--|
| Casing stickup                                | 1.86                         | feet   |  |
| Static water level (from top of casing)       | 5.81                         | feet   |  |
| Depth to bottom of screen (from ground level) | 9.88                         | feet   |  |
| Boring diameter                               | 8.00                         | inches |  |
| Casing diameter                               | 2.00                         | inches |  |
| Screen diameter                               | 2.00                         | inches |  |
| Screen length                                 | 5.00                         | feet   |  |
| Depth to "impermeable boundary"               | 10.33                        | feet   |  |
| Estimated ratio of Kh/Kv                      | 1                            |        |  |
| Porosity of filter pack                       | 0.3                          |        |  |
| $\Delta H$ at time zero (Y <sub>0</sub> )     | 1.55                         | feet   |  |
| ∆H at time t (Y <sub>t</sub> )                | 0.010                        | feet   |  |

R



|       | E      | Bouwer-Rice Param | eters   |              |
|-------|--------|-------------------|---------|--------------|
| feet  | cm     | 1                 | cm      | 1            |
| 3.95  | 120.40 | SW                |         |              |
| 5.93  | 180.75 | н                 | 60.00   | L/Rw         |
| 4.88  | 148.74 | Ts                | 0.93    | H/D          |
| 0.083 | 2.54   | Rw                | 3.30    | А            |
| 0.083 | 2.54   | Rc                | 0.50    | В            |
| 0.167 | 5.08   | DS                | 2.90    | с            |
| 5.00  | 152.40 | L                 | 1.69    | Ln[(D-H)/Rw] |
| 6.38  | 194.46 | D                 | 1.69    | Ln[(D-H)/Rw] |
| 1.55  | 47.24  | Yo                | 3.06    | equation (8) |
| 0.01  | 0.30   | Υ <sub>t</sub>    | 3.27    | equation (9) |
|       | 115.20 | t (seconds)       | 3.27    | Ln(Re/Rw)    |
| 1.00  |        | M                 | 3.0E-03 | equation (5) |
|       | 0,30   | n                 |         |              |



2

Time

Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

0.010 feet

1.92 minutes

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

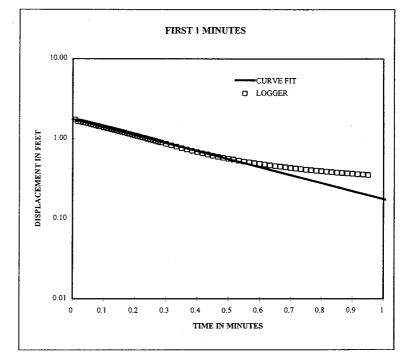
MWT-6.xls, 3/10/2000

#### SENECA ARMY DEPOT Client:

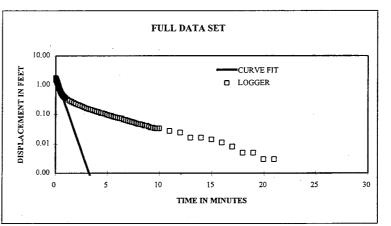
#### ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL Project:

Project No.: 726209-01002

| Well No.: | MWT-7 |
|-----------|-------|
|-----------|-------|


5/8/1999 Test Date:

#### Formation Tested:


Rising (R) or Falling (F) Head Test:

| Hydraulic conductivity                        | 1.35E-03<br>2.66E-03<br>3.83 |         |
|-----------------------------------------------|------------------------------|---------|
| Casing stickup                                | 1.86                         | feet    |
| Static water level (from top of casing)       | 6.54                         | feet    |
| Depth to bottom of screen (from ground level) | 11.42                        | feet    |
| Boring diameter                               | 8.00                         | inches  |
| Casing diameter                               | 2.00                         | inches  |
| Screen diameter                               | 2.00                         | inches  |
| Screen length                                 | 10.00                        | feet    |
| Depth to "impermeable boundary"               | 11.67                        | feet    |
| Estimated ratio of Kh/Kv                      | 1                            |         |
| Porosity of filter pack                       | 0.3                          |         |
| $\Delta H$ at time zero (Y <sub>0</sub> )     | 1.75                         | feet    |
| $\Delta H$ at time t (Y <sub>t</sub> )        | 0.010                        | feet    |
| Time                                          | 2.25                         | minutes |

R



|       | E      | Bouwer-Rice Param | eters   |               |
|-------|--------|-------------------|---------|---------------|
| feet  | cm     | l                 | cm      | I             |
| 4.68  | 142.65 | SW                |         |               |
| 6.74  | 205.44 | н                 | 20.22   | L/Rw          |
| 1.42  | 43.28  | Ts                | 0.96    | H/D           |
| 0.333 | 10.16  | Rw                | 2.20    | А             |
| 0.083 | 2.54   | Rc                | 0.30    | В             |
| 0.167 | 5.08   | DS                | 1.60    | С             |
| 6.74  | 205.44 | L                 | -0.29   | Ln[(D-H)/Rw]' |
| 6.99  | 213.06 | D                 | -0.29   | Ln[(D-H)/Rw]  |
| 1.75  | 53.34  | Y <sub>0</sub>    | 2.13    | equation (8)  |
| 0.01  | 0.30   | Yt                | 2.25    | equation (9)  |
|       | 135.00 | t (seconds)       | 2.25    | Ln(Re/Rw)     |
|       | 1.00   | М                 | 1.4E-03 | equation (5)  |
|       | 0.30   | п                 |         |               |



Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely

or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

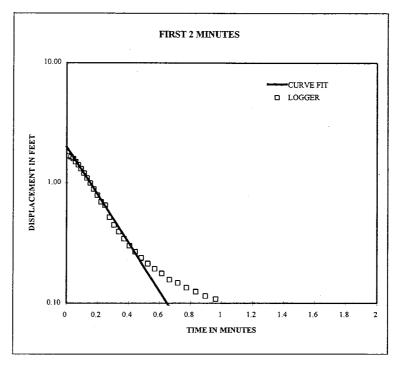
## Project: ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL

Project No.: 726209-01002

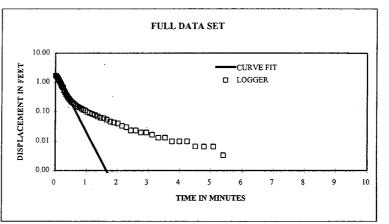
Well No.: MWT-9

Test Date: 5/8/1999

### Formation Tested:


Rising (R) or Falling (F) Head Test:

| nyuraulic c | onductivity |
|-------------|-------------|
|-------------|-------------|


|                                               | 7.39  | ft/day  |
|-----------------------------------------------|-------|---------|
| Casing stickup                                | 1.86  | feet    |
| Static water level (from top of casing)       | 6.38  | feet    |
| Depth to bottom of screen (from ground level) | 11.75 | feet    |
| Boring diameter                               | 8.00  | inches  |
| Casing diameter                               | 2.00  | inches  |
| Screen diameter                               | 2.00  | inches  |
| Screen length                                 | 10.00 | feet    |
| Depth to "impermeable boundary"               | 12.00 | feet    |
| Estimated ratio of Kh/Kv                      | 1     |         |
| Porosity of filter pack                       | 0.3   |         |
| $\Delta H$ at time zero (Y <sub>0</sub> )     | 2.00  | feet    |
| $\Delta H$ at time t (Y <sub>t</sub> )        | 0.100 | feet    |
| Time                                          | 0.65  | minutes |

R

2.61E-03 cm/sec 5.13E-03 ft/min



|       | 1      | Bouwer-Rice Param | eters   |              |
|-------|--------|-------------------|---------|--------------|
| feet  | cm     | 1                 | cm      | 1            |
| 4.52  | 137.77 | SW                |         |              |
| 7.23  | 220.37 | н                 | 21.69   | L/Rw         |
| 1.75  | 53.34  | Ts                | 0.97    | H/D          |
| 0.333 | 10.16  | Rw                | 2.20    | А            |
| 0.083 | 2.54   | Rc                | 0.30    | В            |
| 0.167 | 5.08   | DS                | 1.60    | с            |
| 7.23  | 220.37 | L.                | -0.29   | Ln[(D-H)/Rw] |
| 7.48  | 227.99 | D                 | -0.29   | Ln[(D-H)/Rw] |
| 2     | 60.96  | Ya                | 2.20    | equation (8) |
| 0.1   | 3.05   | Yt                | 2.32    | equation (9) |
|       | 39.00  | t (seconds)       | 2.32    | Ln(Re/Rw)    |
|       | 1.00   | м                 | 2.6E-03 | equation (5) |
|       | 0.30   | п                 |         |              |



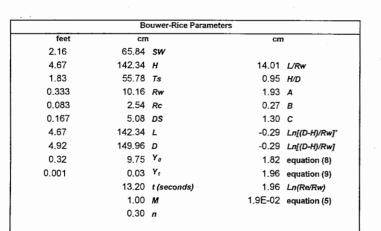
**P** 

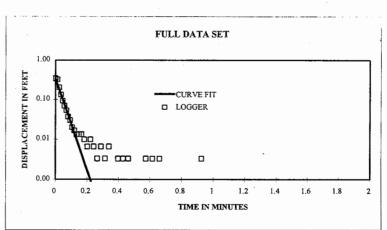
Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely

or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

MWT-9.xls, 3/10/2000


SENECA ARMY DEPOT Client:


726209-01002

Project No.:

#### ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL Project:

**MWT-10** Well No .: FIRST 0.5 MINUTES 5/8/1999 Test Date: 1.00 Formation Tested: Rising (R) or Falling (F) Head Test: R Hydraulic conductivity 1.94E-02 cm/sec 3.83E-02 ft/min 55.10 ft/day DISPLACEMENT IN FEET 0.10 Casing stickup 1.86 feet Static water level (from top of casing) 4.02 feet Depth to bottom of screen (from ground level) 6.83 feet Boring diameter 8.00 inches **O** Casing diameter 2.00 inches 0.01 Screen diameter 2.00 inches Screen length 5.00 feet Depth to "impermeable boundary" 7.08 feet Estimated ratio of Kh/Kv 1 Porosity of filter pack 0.3 ∆H at time zero (Y₀) 0.32 feet 0.00 0.05 0 0.1 0.15 0.2 0.25 ∆H at time t (Yt) 0.001 feet TIME IN MINUTES Time 0.22 minutes





CURVE FIT

0.35

0.45

0.5

0.4

LOGGER

0.3

Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely

or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

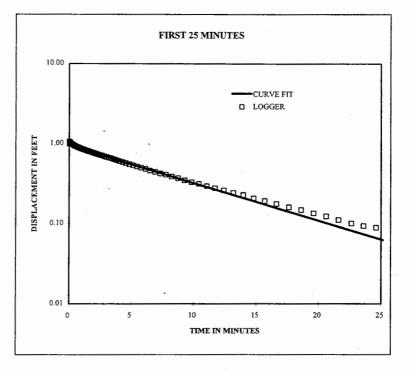
### Project: ASH LANDFILL GW TREATABILITY STUDY USING ZERO VALENT IRON WALL

Project No.: 726209-01002

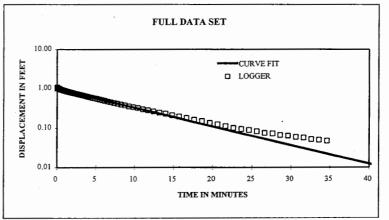
Well No.: MWT-11

Test Date: 5/8/1999

#### Formation Tested:


Rising (R) or Falling (F) Head Test: R

Hydraulic conductivity

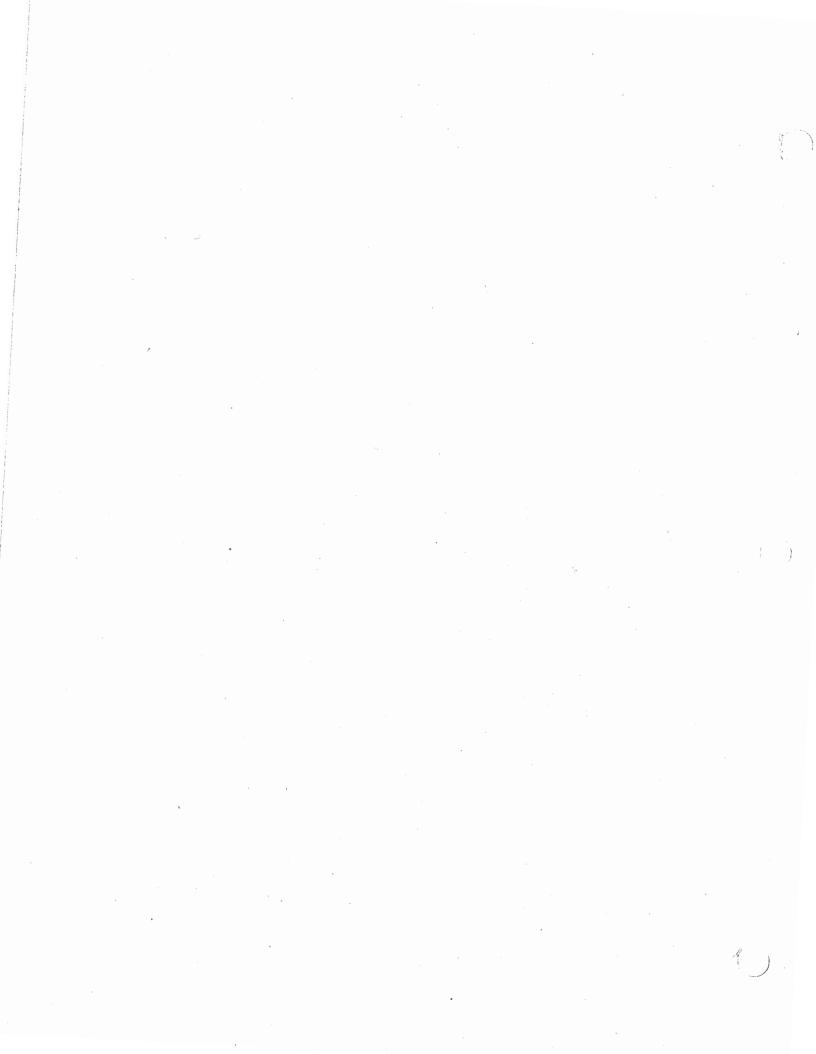

| 2.69E-04 | ft/min |
|----------|--------|
| 0.39     | ft/day |

1.37E-04 cm/sec

| ·                                             |       |         |
|-----------------------------------------------|-------|---------|
| Casing stickup                                | 1.86  | feet    |
| Static water level (from top of casing)       | 2.26  | feet    |
| Depth to bottom of screen (from ground level) | 10.00 | feet    |
| Boring diameter                               | 8.00  | inches  |
| Casing diameter                               | 2.00  | inches  |
| Screen diameter                               | 2.00  | inches  |
| Screen length                                 | 5.00  | feet    |
| Depth to "impermeable boundary"               | 10.25 | feet    |
| Estimated ratio of Kh/Kv                      | 1     |         |
| Porosity of filter pack                       | 0.3   |         |
| $\Delta H$ at time zero (Y <sub>0</sub> )     | 0.95  | feet    |
| ∆H at time t (Y <sub>t</sub> )                | 0.010 | feet    |
| Time                                          | 42    | minutes |



|       | E       | Bouwer-Rice Param | eters   |               |
|-------|---------|-------------------|---------|---------------|
| feet  | cm      | I                 | cm      | 1             |
| 0.4   | 12.19   | SW                |         |               |
| 9.6   | 292.61  | н                 | 60.00   | L/Rw          |
| 5     | 152.40  | Ts                | 0.97    | H/D           |
| 0.083 | 2.54    | Rw                | 3.30    | А             |
| 0.083 | 2.54    | Rc                | 0.50    | В             |
| 0.167 | 5.08    | DS                | 2.90    | с             |
| 5.00  | 152.40  | L                 | 1.10    | Ln[(D-H)/Rw]' |
| 9.85  | 300.23  | D                 | 1.10    | Ln[(D-H)/Rw]  |
| 0.95  | 28,96   | Y,                | 3.38    | equation (8)  |
| 0.01  | 0.30    | Yt                | 3.57    | equation (9)  |
|       | 2520.00 | t (seconds)       | 3.57    | Ln(Re/Rw)     |
|       | 1.00    | М                 | 1.4E-04 | equation (5)  |
|       | 0.30    | n                 |         |               |




2

Bouwer, Herman. 1989. "The Bouwer and Rice Slug Test - An Update". Ground Water vol. 27, no. 3, May-June 1989.

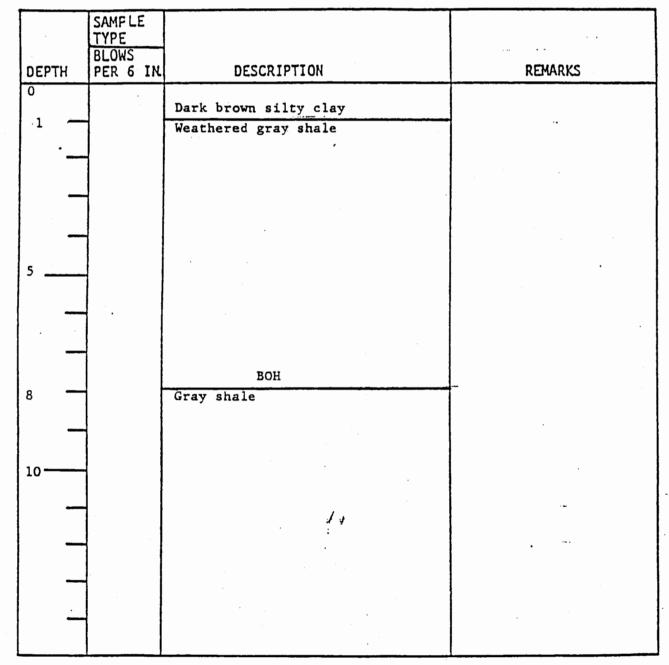
Bouwer, H. and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells". Water Resources Research. vol 12, no. 3, June 1976.

MWT-11.xls, 3/10/2000



## Hydraulic Conductivity Results for Till/Weathered Shale from Remedial Investigation Seneca Army Depot Activity Romulus, NY

| Monitoring Well Designation | Hydraulic Conductivity |        |  |
|-----------------------------|------------------------|--------|--|
|                             | cm/sec                 | ft/day |  |
| PT-12                       | 3.09E-05               | 0.1    |  |
| PT-23                       | 7.80E-04               | 2.2    |  |
| MW-34                       | 1.85E-04               | 0.5    |  |
| MW-36                       | 5.26E-04               | 1.5    |  |
| MW-37                       | 7.07E-04               | 2.0    |  |
| MW-40                       | 3.87E-05               | 0.1    |  |
|                             | Average:               | 1      |  |


Average:

p:\pit\projects\seneca\irontrnc\draftmemo\hydcondRI.xls

•

DRILLING LOG (The proponent of this form is HSHB-ES)

| PROJECT Seneca Army Depot         | DATE      | 14 November 1989<br>D. Kestner, S. Curran |  |
|-----------------------------------|-----------|-------------------------------------------|--|
| LOCATION                          |           |                                           |  |
| 110.5 feet from MW-28             |           |                                           |  |
| DRILL RIG Mobile B-80 with 6-inch | BORE HOLE | <u>MW- 27</u>                             |  |



AEHA Form 130, 1-Nev 82

68

. . .

5

Replaces HSHB Form 78, I Jun 80, which will be used.

# DRILLING LOG (The proponent of this form is HSHD-ES)

| PROJECT Seneca Army Depot |                         | DATE      | 14 November 1989      |  |
|---------------------------|-------------------------|-----------|-----------------------|--|
|                           |                         |           | D. Kestner, S. Curran |  |
| 110.5 feet                | from MW-27              |           |                       |  |
| DRILL RIG                 | Mobile B-80 with 6-inch | BORE HOLE |                       |  |

|   |       | SAMF LE           |                       |                                                                                                                 |
|---|-------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|
|   |       | BLOWS             |                       |                                                                                                                 |
|   | DEPTH | BLOWS<br>PER 6 IN | DESCRIPTION           | REMARKS                                                                                                         |
|   | 0     |                   | Dark brown silty clay |                                                                                                                 |
|   | ± _   |                   | Weathered gray shale  |                                                                                                                 |
|   |       |                   | • /                   | •                                                                                                               |
|   | -     |                   |                       |                                                                                                                 |
|   | . –   | -                 |                       |                                                                                                                 |
|   | 5     | -                 |                       |                                                                                                                 |
|   |       |                   |                       |                                                                                                                 |
|   |       |                   |                       |                                                                                                                 |
|   |       |                   | ВОН                   |                                                                                                                 |
|   | 8     |                   | gray shale            |                                                                                                                 |
|   | 10    |                   |                       |                                                                                                                 |
|   | 10    |                   |                       |                                                                                                                 |
|   |       |                   |                       | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
|   |       | -                 | • •                   |                                                                                                                 |
|   | -     | -                 |                       |                                                                                                                 |
|   | ÷     |                   |                       |                                                                                                                 |
| I |       | 1                 |                       |                                                                                                                 |

AEHA Form 130, 1-Nev 82

Replaces HSHB Form 78, I Jun 80, which will be used.

# DRILLING LOG (The proponent of this form is HSHD-ES)

| PROJECT | Seneca Army Depot            | DATE              | 14 November 1989 |  |
|---------|------------------------------|-------------------|------------------|--|
|         | 167 feet from PT-24 58' feet |                   |                  |  |
| from fe | ence                         | ••••••••••••••••• |                  |  |
|         | Mobile B-80 with 6-inch      | BODE HOLE         | MW- 29           |  |

hollow stem auger

| SAMP LE<br>TYPE |                       |         |
|-----------------|-----------------------|---------|
| DEPTH PER 6 IN  | DESCRIPTION           | REMARKS |
| 0               | Dark brown silty clay |         |
| 1               | Weathered gray shale  | · · ·   |
|                 | weathered gray shale  |         |
|                 |                       |         |
|                 |                       |         |
|                 |                       |         |
|                 |                       |         |
| 5               |                       |         |
|                 |                       |         |
| ·               |                       |         |
|                 |                       |         |
|                 |                       |         |
|                 | вон                   |         |
| 9 -             | Gray shale            |         |
| 10 '            |                       |         |
|                 |                       |         |
|                 |                       |         |
|                 |                       |         |
|                 |                       |         |
| <u>.</u>        |                       |         |
|                 |                       |         |

AEHA Form 130, 1-Nev 82

| part<br>wolf  | att<br>Tinc TEST B                           |                   | FISHER ROAD<br>EAST SYRACUSE, N | I.Y. 13057     |
|---------------|----------------------------------------------|-------------------|---------------------------------|----------------|
| PROJECT       | Ground Water Monitoring                      | y Well            | HOLE NO. PT-1                   | 7              |
| LOCATION      | Seneca Army Depot<br>Romulus, New York       | •                 | SURF. EL.                       |                |
| DATE STARTED  | 9/24/87 DATE COMPLE                          | TED 9/24/87       | JOB NO. 87188                   | 3              |
|               |                                              |                   | GROUND WATER D                  | EPTH           |
|               | NS TO DRIVE SAMPLER 12" W/140                | # HAMMER FALLING  | WHILE DRILLING                  | 5.0'           |
|               | M D-1586, STANDARD PENETRATIC                |                   | BEFORE CASING                   |                |
|               | •                                            | # HAMMER FALLING  | REMOVED                         | 3.0'           |
|               | NS TO DRIVE CASING 12" W/<br>% CORE RECOVERY | # HAMINER FALLING | AFTER CASING<br>REMOVED         | 3.0'In<br>Well |
| CASING TYPE - | HOLLOW STEM AUCER                            |                   | SHEET 1 OF 1                    |                |

| DEPTH     | SAMPLE<br>DEPTH | SAMPLE<br>NUMBER | с | SAMPLE<br>DRIVE<br>RECORD<br>PER 6" | N  | DESCRIPTION OF MATERIAL              | STRATA<br>CHANGE<br>DEPTH |
|-----------|-----------------|------------------|---|-------------------------------------|----|--------------------------------------|---------------------------|
|           | 0.0'-           | 1                | : | 2/3                                 |    | TOPSOIL                              | 1.5'                      |
|           | 2.0'            |                  |   | 3/4                                 | 6  | Brown moist medium stiff SILT, fine  | 1.5                       |
|           | 2.0'-           | 2                | ļ | : 3/6                               |    |                                      |                           |
|           | 4.0'            |                  |   | 7/15                                | 13 | GRAVEL                               | 3.5'                      |
| 5.0<br>WL | 4.01-           | 3                |   | 4/6                                 |    | Gray moist very stiff SILT and SHALE |                           |
| 1 W L     | 6.0'            |                  |   | 16/50-                              |    | GRAVEL                               | 5.0'                      |
|           | 6.0'-           | 4                |   | .3'                                 |    | Gray wet hard silty weathered SHALE  |                           |
|           | 6.4             |                  |   | 50.4                                |    |                                      |                           |
| 10.0      | 8.0'-           | 5                |   | 504'                                |    | Augered to 11.0'                     |                           |
|           | 8.4'            |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    | Bottom of Boring                     | 11.0'                     |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    | Note: Installed 2" PVC screen 9.0"   | 1                         |
|           |                 |                  |   |                                     |    | to 4.0', 2" PVC riser to sur-        |                           |
|           |                 |                  |   |                                     |    | face with locking cover.             |                           |
|           |                 |                  | ļ |                                     |    |                                      |                           |
|           |                 |                  | ļ |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  | ļ |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
|           |                 |                  | ļ |                                     |    |                                      |                           |
|           |                 |                  |   |                                     |    |                                      |                           |
| 1         |                 | I                | 1 |                                     | 1  |                                      |                           |

3

## DRILLING LOG (The proponent of this form is HSHB-ES)

| PROJECT                                | – DATE –  | 18 Oct 87           |
|----------------------------------------|-----------|---------------------|
| LOCATION <u>Corner of fence offset</u> |           | William P. Smithson |
| DRILL RIG Acker AD-II                  | BORE HOLE | Well PT-24          |

| DEPTH  | SAMPLE<br>TYPE<br>BLOWS<br>PER 6 IN | DESCRIPTION                      | REMARKS                               |
|--------|-------------------------------------|----------------------------------|---------------------------------------|
| (feet) |                                     | Brown silty gravely clay and ash | · · · · · · · · · · · · · · · · · · · |
|        | 3                                   |                                  | •                                     |
| 3 —    | Shelby                              | Ash, weathered shale             |                                       |
| 4.75   | Tubes                               | <br>                             |                                       |
| 5.5 —  |                                     | Hard shale                       | Oil slick on mud                      |
|        |                                     |                                  |                                       |
|        |                                     |                                  |                                       |
| 10     |                                     |                                  |                                       |
|        |                                     | вон                              |                                       |
|        |                                     |                                  |                                       |
|        |                                     |                                  |                                       |
|        |                                     |                                  | •                                     |

1-11 -- 1-0 1 You 22

## Appendix C Analytical Results

• Bold & Shade Summary Sheets for Round 1, 2, 3, and 4 groundwater sampling (April 1999 to January 2000) Treatability Study for Zero Valent Iron Continuous Reactive Wall at the Ash Landfill

#### Seneca Army Depot Activity Ash Landfill Groundwater Remediation Round 1 Groundwater Sampling

|                                                       |              |            |             | • • •              |                 |              |                   | ASH LANDFILL<br>MWT-1<br>GROUND WATER |         | ASH LANDFILL<br>MWT-10<br>GROUND WATER |          | ASH LANDFILL<br>MWT-11<br>GROUND WATER |       | ASH LANDFILL<br>MWT-2<br>GROUND WATER |        | ASH LANDFILL<br>MWT-3<br>GROUND WATER |         | ASH LANDFILL<br>MWT-4<br>GROUND WATER |              | ASH LANDFILL<br>MWT-5<br>GROUND WATER |           |
|-------------------------------------------------------|--------------|------------|-------------|--------------------|-----------------|--------------|-------------------|---------------------------------------|---------|----------------------------------------|----------|----------------------------------------|-------|---------------------------------------|--------|---------------------------------------|---------|---------------------------------------|--------------|---------------------------------------|-----------|
|                                                       | <u> </u>     | 1.1        |             |                    | -               |              |                   | 8                                     |         | 7                                      |          | 8                                      | ľ     | 11.3                                  |        | 8                                     |         | 10                                    |              | 11.1                                  | 4         |
|                                                       |              |            |             | ± 1 1              |                 |              |                   | 8<br>04/26/1999                       | ł       | 7<br>04/26/1999                        |          | 8<br>04/26/1999                        | . [ . | 11.3                                  | Ĵ      | 8                                     |         | 10                                    |              | 11.1                                  | ļ]        |
|                                                       |              |            | FREQUENC    | NYSDEC<br>CLASS GA | NUMBER<br>ABOVE | NUMBER<br>OF | NUMBER            | ASH TRENCH<br>TR2002                  |         | ASH TRENCH<br>TR2001                   |          | ASH TRENCH<br>TR2000                   |       | 04/28/1999<br>ASH TRENCH<br>TR2008    |        | 04/27/1999<br>ASH TRENCH<br>TR2007    |         | 04/26/1999<br>ASH TRENCH<br>TR2004    |              | 04/28/1999<br>ASH TRENCH<br>TR2009    |           |
| Volatile Organic Compounds                            | [            | MAXIMU     | DETECTION   | STANDARD           | TAGM            | DETECTS      | ANALYSES          | SA                                    |         | SA                                     | l        | SA                                     | . [.  | SA                                    |        | SA                                    |         | SA                                    |              | SA                                    | [         |
| 1,1,1-Trichloroethane                                 | UGIL         | 0          | 0%          | - 5                | ö               | ō            | 12                | . N                                   | ΰ       | N                                      | U.       | <u>N</u>                               | i tr  | N                                     | Ū      | <u>N</u><br>2                         | U U     | N<br>3                                | Ū            | <u>N</u>                              | U         |
| 1,1,2,2-Tetrachloroethane                             | UGA          | 0          | 0%          | 5                  | ò               | 0            | 12                | 4                                     | Ŭ       | 1                                      | Ŭ        | 1 U                                    |       |                                       | Ū      | 2                                     | U       |                                       | Ŭ            |                                       | U         |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane           | UG/L<br>UG/L | 0          | 0%          | 5                  | 0               | 0<br>TO      | 12                | 4                                     | U       |                                        | Ů.       | 1 U                                    |       | 1                                     | υ      | 2                                     | U       |                                       | U            | 1                                     | U         |
| 1,1-Dichloroethene                                    | UG/L         | i iii      | 0%          | 5                  | Ö               | D D          | 12                | 4.                                    | Ū       |                                        | U        | 1 U                                    | τι.   | 1                                     | UU     | 2                                     | UU      |                                       | U            | 1                                     | U<br>U    |
| 1,2,4-Trichlorobenzene                                | UG/L         | Ō          | 0%          | 5                  | 0               | Ō            | 12                | 4                                     | Ŭ       | 1                                      | U        | 1 0                                    |       | 1                                     | U      | 2                                     | Ū       |                                       | υ            | 1                                     | Ū         |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dibromoethane      | UG/L<br>UG/L |            | 0%          |                    | . D             | 0            | 12                | -4 -1                                 | U       | 1                                      | U        | 1 <u> </u>                             |       | 1                                     | U      | 2                                     | U       |                                       | U            | 1                                     | U         |
| 1,2-Dichlorobenzene                                   | UG/L         | 0          | 0%          | 4.7                | Ö               | 0            | 12<br>12          | 4                                     | Ü       | ·····                                  | UU       |                                        |       | 1                                     | UU     | 2                                     | UU      |                                       | U            | 1                                     | UU        |
| 1.2-Dichloroethane                                    | UG/L         | 0          | 0%          | 5                  | 0               | 0            | 12                | 4                                     | U       | 1                                      | Ü        | 1 U                                    | j†    | 1                                     | υ      | 2                                     | U       | 3                                     | υ            | 1                                     | U         |
| 1,2-Dichloropropane<br>1,3-Dichlorobenzene            | UG/L<br>UG/L | 0          | 0%          | 5                  | 0               | 0            | 12<br>12          | 4                                     | U       | 1                                      | Ŭ        | 1 U<br>1 U                             |       | 1                                     | UU     | 2                                     | U<br>U  |                                       | U            | 1                                     | U         |
| 1,4-Dichlorobenzene                                   | UG/L         | t          | 0%          | 4.7                | 0               | 0            | 12 - 12           | 4                                     | U       |                                        | Ü        | 1 U                                    |       | 1                                     | U      | 2                                     | UU      |                                       | U<br>U       | 1                                     | UU        |
| Acetone                                               | UG/L         | 16         | 42%         |                    | 0               | 5            | 12                | 20                                    | U       | 5                                      | U        | 5 Ū                                    | 1     | 6                                     |        | 8                                     | U       | 14                                    | U            | 7                                     |           |
| Benzene<br>Bromochloromethane                         | UG/L<br>UG/L | 0.9        | 50%<br>0%   | 1                  | 0               | 6            | 12<br>12          | 4                                     | U       | 0.7                                    | J        | 1 U                                    |       | 0.7                                   | J      | 0.4                                   | J       |                                       | U            | 0.9                                   | J         |
| Bromodichloromethane                                  | UG/L         | 0          | 0%          |                    | ō               | ō            | 12                |                                       | Ū       | ······                                 | U        |                                        |       |                                       | U      | 2                                     | U       |                                       | UU           | 1                                     | U<br>U    |
| Bromoform                                             | UG/L         | 0          | 0%          |                    | 0               | 0            | 12                | 4                                     | U       | 1                                      | U        | 1 U                                    |       | 1                                     | υ      | 2                                     | U       | 3                                     | Ū            | 1                                     | U         |
| Carbon disulfide<br>Carbon tetrachloride              | UG/L<br>UG/L | 1          | 8%          | 5                  | 0               | 1            | - 12              | 4                                     | U       |                                        | U        | 1 U                                    |       | 1                                     | υ      | 2                                     | UU      |                                       | UU           | 1                                     | U         |
| Chlorobenzene                                         | UGAL         | 0          | 0%          | 5                  | 0               | ō            | 12                |                                       | Ŭ       | + ··· ··· + ··· +                      | Ū        | 1 0                                    |       |                                       | U      | 2                                     | U       |                                       | <del>U</del> | 1                                     | U<br>U    |
| Chlorodibromomethane                                  | UG/L         | 0          | 0%          | ·                  | 0               | 0            | 12 .              | 4                                     | U       | 1                                      | U        | 1 U                                    |       | 1                                     | υ      | 2                                     | U       |                                       | U            | 1                                     | U         |
| Chloroethane<br>Chloroform                            | UG/L<br>UG/L | 0          | 0%          | 5                  | 0               | 0            | 12                | 4                                     | UJ<br>U |                                        | UJ       |                                        |       | 1                                     | U<br>U | 2                                     | UJ<br>U |                                       | UJ           | 1                                     | U<br>U    |
| Cis-1,2-Dichloroethene                                | UG/L         | 73         | 83%         | 5                  | 7               | 10           | 12                | 1. 199 5.73 1 (ALM)                   |         | 6                                      | 0        | 1 0                                    |       | ,<br>27 - 1 - 4                       | U      | 27                                    | U       | 3                                     | 0            | 0.7                                   | J         |
| Cis-1,3-Dichloropropene                               | UG/L         | 0          | 0%          | 5                  | 0               | 0            | 12                | 4                                     | U       | 1                                      | U        | 1U                                     |       | 1                                     | U      | 2                                     | υ       | 3                                     | U            | 1                                     | U         |
| Ethyl benzene · · · · · · · · · · · · · · · · · ·     | UG/L         | 0          | 0%          | 5                  | 0               | 0            | 12<br>12          | 4                                     | UU      |                                        | U        | 1 U<br>1 U                             |       | 1                                     | U<br>U | 2                                     | U<br>U  | 3                                     | U<br>U       | 1                                     | UU        |
| Methyl butyl ketone                                   | UG/L         | 0          | 0%          |                    | ō               | 0            | 12                | 20                                    | Ū       |                                        | Ū        | 5 U                                    |       | 5                                     | U      | 8                                     | U       | 14                                    | U            | 5                                     | U         |
| Methyl chloride                                       | UG/L<br>UG/L | 0          | 0%          | 5<br>50            | 0               | 0            | 12                | 4                                     | μJ      | 1                                      | UJ       | 1 U.                                   |       | 1 5                                   | U      | 2                                     | UJ      |                                       | UJ           | 1                                     | U         |
| Methyl ethyl ketone<br>Methyl isobutyl ketone         | UG/L         | 0          | 0%          | 50                 | 0               | 0            | 12<br>12          | 20<br>20                              | U<br>U  | 5                                      | U        | 5 U<br>5 U                             |       | 5                                     | U<br>U | 8                                     | UU      | 14                                    | U<br>U       | 5                                     | UU        |
| Methylene chloride                                    | UG/L         | 0          | 0%          | 5                  | ō               | 0            | 12                | 8                                     | Ū       | 2                                      | Ŭ        | 2 U                                    |       | 2                                     | Ŭ      | 3                                     | Ŭ       |                                       | Ŭ            | 2                                     | 1 U       |
| Styrene<br>Tetrachloroethene                          | UG/L<br>UG/L | 0          | 0%          | 5                  | 0               | 0            | 12                | 4                                     | U       |                                        | U        | 1 U                                    |       | 1                                     | U      | 2                                     | Ű       |                                       | U            | 1                                     | U         |
| Toluene                                               | UG/L         | 0.7        | 17%         | 5                  | 0               | 2            | 12<br>12          | 4                                     | U<br>U  | 1                                      | <u>U</u> | 1 U<br>1 U                             |       | 0.7                                   | U      | 2                                     | U<br>U  |                                       | U            | 0.3                                   | U<br>J    |
| Total Xylenes                                         | UG/L         | 0          | 0%          | 5                  | 0               | 0            | 12                | 4                                     | U       | <u>i</u>                               | Ŭ        | 1 U                                    | ī     | 1                                     | U      | 2                                     | ·U      | 3                                     | υ            | 1                                     | U         |
| Trans-1,2-Dichloroethene<br>Trans-1,3-Dichloropropene | UG/L<br>UG/L | 0          | 0%          | 5                  | 0               | 0            | 12<br>12          | 4                                     | U<br>U  | 1                                      | U        | 1 U                                    |       | 1                                     | U      | 2                                     | U       |                                       | U            | 1                                     | U         |
| Trichloroethene                                       | UG/L         | 430        | 50%         | 5                  | 3               | 6            |                   | 4<br>23                               |         |                                        | UU       | 1 U<br>1 U                             |       | <u>1</u>                              | U      | 2                                     | J       | 3                                     | U<br>J       | 1                                     | UU        |
| Vinyi chloride                                        | UG/L         | 0          | 0%          | 2                  | 0               | 0            | 12<br>12          | 4                                     | U       | 1                                      | U        | 1 U                                    |       | 1                                     | U      |                                       | υ       |                                       | U            | 1                                     | Ū         |
| Metals                                                |              |            |             |                    |                 |              | · · · · · · · · · |                                       |         |                                        |          |                                        | -+-   |                                       |        |                                       |         |                                       |              |                                       |           |
| Calcium                                               | UG/L         | 264000     | 100%        |                    | Ō               | 12           | 12                | 122000                                | • • •   | 49900                                  |          | 102000                                 |       | 264000                                |        | 58000                                 |         | 118000                                |              | 177000                                | <u>  </u> |
| Iron                                                  | UG/L         | 548000     | 100%        | 300                | 9               | 12           | 12                | 403                                   | J       | 13100                                  | J        | 54.6 J                                 |       | 523000                                | J      | 3600                                  | L       | 983                                   | J            | 548000                                | J         |
| Magnesium<br>Manganese                                | UG/L<br>UG/L | 74400 6260 | 100%        | 300                |                 | 12           | 12                | 13800                                 | - 1     | 10600<br>191                           |          | 12800                                  |       | 60800<br>6268                         |        | 13000<br>611                          |         | 14300<br>37.1                         |              | 74400<br>\$018                        |           |
| Potassium                                             | UG/L         | 15100      | 100%        | 300                | 0               | 12           | 12                | 1460                                  | J       | 1520                                   | Ĵ        | 5600                                   | -100  | 15100                                 |        | 1900                                  | J       | 1860                                  | J            | 14200                                 |           |
|                                                       |              |            |             |                    |                 |              |                   |                                       |         |                                        |          |                                        | - 20  | Tue-                                  |        | AND SUPPO                             |         |                                       |              |                                       |           |
| Other Analytes<br>Methane                             | UG/L         | 20         | 75%         |                    | 0               | 9            | 12                | 1.2                                   | U       | 4.5                                    |          | 4.1                                    | _#    | 20                                    |        | 7.1                                   |         | 1.2                                   | U            | 14                                    |           |
| Ethane                                                | UG/L         | 14         | 58%         |                    | 0               | 7            | 12                | 2.1                                   | U       | 6,8                                    |          | 2.1 U                                  | t     | 8.3                                   |        | 7.1                                   |         | 2.1                                   | U            | 14 12                                 |           |
| Ethene                                                | UG/L         | 12         | 50%         |                    | 0               | 6            | 12                | 2.5                                   | Ū       | 2.5                                    | U        | 2.5 U                                  |       | 8.8                                   |        | 9.3                                   |         | 2.5                                   | Ū            | 8.7                                   |           |
| Sulfate<br>Nitrate                                    | MG/L<br>MG/L | 113<br>0.4 | 100%<br>33% | 10                 | 0               | 12           | 12                | 91.1<br>0.3                           |         | 51.7<br><0.2                           |          | <u>49.7</u><br>0.3                     | -     | 82<br><0.2                            |        | 84.2<br><0.2                          |         | 106<br>0.3                            |              | 107                                   |           |
| Chloride                                              | MG/L<br>MG/L | 25.2       | 100%        | 10                 | 0               | 4            | 12                | 15.2                                  |         | 11.5                                   |          | 11.5                                   | +-    | -<0.2                                 |        | <0.2<br>15.6                          |         | 0.3                                   |              | <0.2                                  |           |
| TDS                                                   | MG/L         | 441        | 100%        |                    | 0               | 12           | 12                | 438                                   |         | 206                                    |          | 366                                    | T     | 269                                   |        | 252                                   |         | 441                                   |              | 219                                   |           |
| pH<br>Alkalinity                                      | 1101         | 9.74       | 100%        |                    | 0               | 12           | 12                | 7.19                                  |         | 7.54                                   |          | 7.26                                   | 1     | 7.83                                  |        | 7.41                                  |         | 7.16                                  |              | 9.14                                  |           |
| Phosphate                                             | MG/L<br>MG/L | 378        | 100%        |                    | 0               | 12           | 12<br>12          | 266                                   |         | 113<br>0.03                            |          | 280                                    | +     | 378                                   |        | 107<br>0.04                           |         | 238<br>0.04                           | _            | 378<br>0.06                           | H         |
| involudie                                             | MOL          | 0.44       | 10070       |                    |                 | 12           | 14                | 0.01                                  | _       | 0.03                                   |          | 0.01                                   | -     | 0.99                                  |        | 0.04                                  | _       | 0,04                                  |              | 0.00                                  | <u> </u>  |

#### Seneca Army Depot Activity Ash Landfill Groundwater Remediation Round 1 Groundwater Sampling

.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | 1    | 1               | 1         |                                       |          |            | !        |                                         |          |                                         |      |            |      | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|-----------------|-----------|---------------------------------------|----------|------------|----------|-----------------------------------------|----------|-----------------------------------------|------|------------|------|----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin         Martin<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |      | 1               |           |                                       |          |            |          |                                         | 1        | ASHTANDER                               |      | ASHLANDELL |      | ASH LANDER     |       | ASHLANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t I          |
| Number         FRAME         Number         Number </th <th></th> <th>1</th> <th>-</th> <th></th> <th>1 1</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 1    | -               |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 1          |
| HE         PRECISE AL         NUMBER         NUMBER         NUMBER         NUMBER         AUMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         | - ·      |                                         | 1    |            | ļ.,  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Horizona         Prescuence         NUMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Horizon         Processor         MUDIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |      |                 | 1         |                                       | 1        |            | l .      | 10,5                                    |          | 10.5                                    |      | 11.5       |      | 11.58          |       | 12.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |
| Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathematic         Mathema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | · ·  |                 |           |                                       |          |            |          |                                         | 1        | 10.5                                    |      | 11.5       | ŧ.   | 11.58          |       | 12.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| PRECUENC         MADEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | ļ    | 1               |           |                                       |          |            |          |                                         | 1        |                                         |      |            | ÷ •  |                |       | 04/27/1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Market         Off         CLGS 0A         Particity         Off         CLGS 0A         Particity         Pression         Pressio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            | -    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            |
| WANN DECTOR         ETADLO         DATAL         DETCR         AAVYES         U         RA         BA         BA         RA         RA         SA           13.13         DetCON         0         0         12         1         U         1         U         22         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | i    |                 | FREQUENC  |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
| MAXIMU         DETECTION         FLAMINO         DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | 1    | 1               | OF        | CLASS GA                              | ABOVE    | OF         | OF       | TR2011                                  |          | TR2005                                  | 1    | TR2003     |      | TR2010         |       | TR2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission         Visite Transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e a la selación de la companya de la companya de la companya de la companya de la companya de la companya de la |      | MANYINALL       |           |                                       | TAGM     | DETECTS    | ANALYSES | DU                                      |          | SA                                      |      | ŚA         | 1    | SA             |       | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and a second a second second                                                                                    |      | NIA ALIVIO      | DELECTION | STANDARD                              | 17.0M    | DEILOIO    | 10000    |                                         |          |                                         |      |            |      |                | · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volatile Organic Compounds                                                                                      |      | 1               |           |                                       |          |            | 1        | IN IN                                   | ÷ •      |                                         |      |            |      |                |       | second of the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 11         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1,1-Trichloroethane                                                                                           | UG/L |                 | 0%        | 5                                     | 0        | 0          |          | 1                                       |          | 1                                       |      |            |      | 1              |       | a h a . hereafter and and a set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3       11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | UGA  | 0               | 0%        | 5                                     | 0        | 0          | 12       | 1                                       | U        | 1                                       | U    |            |      | 1              |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      |                 | 0%        |                                       | 0        | C          | 12       | 1 1                                     | U        | 1                                       | Ū    | 22         | Ū    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      |                 |           |                                       |          | ě          |          |                                         |          |                                         |      |            | 1 ir |                |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ū            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      | 0               |           |                                       |          | -          |          |                                         | <u> </u> |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Conservation         USA         0         0         1         U         1         U         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1-Dichloroethene                                                                                              | UG/L | 0               | 0%        | 5                                     | 0        |            |          | 1                                       |          | 1 1                                     |      |            |      | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124-Trichlorobenzene                                                                                            | UG/L | 1 Ó             | 0%        | 5                                     | 0        | 0          | 12       | 1                                       | U        | 1                                       | U    | 22         | U    | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      | 0               | 0%        | -                                     | 0        | 0          | 12       | 1                                       | ίυ       | 1                                       | U    | 22         | U    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      | 1 0             |           |                                       |          | n          |          | 1                                       | ů.       | 1                                       | ί    |            | Ū    | 1              | ΓU I  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      |                 |           | 15                                    |          |            |          | + · ·                                   |          |                                         |      | 22         |      | +              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ū            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      | 0               |           |                                       |          |            |          | 1                                       |          |                                         |      |            |      | +              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t-ŭ          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichloroethane                                                                                              |      |                 |           | 5                                     | 0        |            |          | 1                                       |          | 11                                      |      |            |      |                |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2-Dichloropropane                                                                                             | UGA  | 0               | 0%        | 5                                     | 0        | 0          | 12       | 1                                       |          | 1                                       |      |            |      |                |       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           | 5                                     | ō        |            |          | 1                                       | U        | 1                                       | Ü    | 22         | U    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| Action         UGI,         16         270, $n^{-1}$ 0         5         12         6         5         7         100         U         16         111         U         22         U         1         U <th< th=""><th></th><td></td><td></td><td></td><td>47</td><td></td><td></td><td></td><td>1 1 1</td><td></td><td>1</td><td></td><td></td><td>Ū</td><td>1</td><td></td><td>2</td><td>U</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      |                 |           | 47                                    |          |            |          | 1 1 1                                   |          | 1                                       |      |            | Ū    | 1              |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| Action         UGL         16         50         1/2         6/7         J         57         J         52         U         V         U         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         | 1        | ·····                                   | ۲×.  |            |      |                |       | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Ŭ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acetone                                                                                                         |      |                 |           | 1                                     |          |            |          |                                         | ÷ .      |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzene                                                                                                         | UG/L | 0.9             | 50%       | 1                                     | 0        |            |          | 0.7                                     |          | 0.7                                     | 1    |            |      | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |      |                 |           |                                       | 0        | 0          | 12       | 1                                       | U        | 1                                       | Ú    | 22         | Ū    | 1              |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           |                                       | ö        | 0          |          | 1                                       | 1 11     | 1                                       | U I  | 22         | U    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           |                                       | -        | -          |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ũ            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           |                                       |          | U          |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon disulfide                                                                                                | UG/L | 1               | 8%        |                                       | 0        | 1          |          | 1 1                                     |          | 11                                      |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c} 0 \model of the transment of the transment of the transment of the transment of the transment of the transment of the transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment of transment$ |                                                                                                                 | UG/L | 0               | 0%        | 5                                     | Ō        | Ó          | 12       | 1                                       | U        | 1                                       | U    | 22         |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           | 5                                     | ñ        | <u>`</u> 0 |          | 1 1                                     | ίü       | 1                                       | Ū    | 22         | ίŪ   | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| Characterization         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I         U         I <thu< th="">         I         U</thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |      | +               |           | · · · · · · · · · · · · · · · · · · · |          |            |          | 1 · · · · · · · · · · · · · · · · · · · | tră.     | 1                                       |      |            |      |                |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chloroethane                                                                                                    | UG/L | 0               | 0%        | 5                                     | 0        |            | 12       | 1                                       |          | 1 1                                     |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chloroform                                                                                                      | UG/L | 0               | 0%        | 7                                     | 0        | 0          | 12       | 1                                       | U        | 1                                       | U    | 22         |      | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           | 5                                     | 7        | 10         | 12       | 3                                       | †* -     | 3                                       |      | 28         | ٦Ţ   | 1              | Ű     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |
| Case J-2-Laboration propertie         Use L         0         1         U         22         U         1         U         1         U         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |      | 1.13            |           |                                       | <u>.</u> |            |          |                                         | t m      |                                         | Ti . |            |      | 1              | 11    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cis-1,3-Dichloropropene                                                                                         |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ū            |
| Meany Loop         Uot         To         U         TO         U         S         U         TO         TO         TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethyl benzene                                                                                                   | UG/L |                 | 0%        | 5                                     |          |            |          | 1                                       |          | 1                                       |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Mathy deph dense         UGR, 0         0         0%         5         0         0         12         1         U         1         U         22         U         1         U         2         U         110         U         5         U         111         U         3         0         111         U         2         U         110         U         5         U         111         U         2         U         111         U         2         U         110         2         100         2         100         10         2         100         2         100         100         2         100         100         2         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl bromide                                                                                                  | UG/L | 0               | 0%        |                                       | 0        | 0          | 12       | 1                                       |          | 1                                       |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Mathy deph dense         UGR, 0         0         0%         5         0         0         12         1         U         1         U         22         U         1         U         2         U         110         U         5         U         111         U         3         0         111         U         2         U         110         U         5         U         111         U         2         U         111         U         2         U         110         2         100         2         100         10         2         100         2         100         100         2         100         100         2         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | UG/L | 0               | 0%        |                                       | Ö        | 0          | 12       | 5                                       | U        | 5                                       | U    | 110        | U    | 5              |       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           |                                       | ä        |            |          | 1                                       | l ir     | 1                                       | ĨI.  | 22         | UJ   | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UU           |
| March Rein         Osci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         |          | 5                                       |      |            |      |                | 11    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U            |
| Methylene (bloch         UGL         0         0?         5         0         0         1         2         0         1         1         0         2         0         1         1         0         2         0         1         1         0         2         0         1         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         0         1         0         2         1         0         1         0         2         1         0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methyl ethyl ketone                                                                                             |      | <u> </u>        |           | 50                                    |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Mathylene chones         UGAL         0         0%         0         0         12         1         U         22         U         1         U </th <th>Methyl isobutyl ketone</th> <th>UG/L</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl isobutyl ketone                                                                                          | UG/L |                 |           |                                       |          |            |          |                                         |          | 5                                       |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Syrene         Uon,         0         0%         5         0         0         12         1         U         1         U         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methylene chloride                                                                                              | UG/L | 0               | 0%        | 5                                     | 0        | 0          | 12       | 2                                       | U        | 2                                       |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |                 |           |                                       | 0        | Ö          |          | 1 1                                     | U        | 1                                       | U    | 22         | U    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      |                 |           | 5                                     |          |            | 12       | 1                                       |          | 1                                       |      |            | U    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| Ioucne         UGL         UGL         UGL         UGL         UGL         UGL         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         U         Z         Z         U         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |      |                 |           |                                       |          |            | 12 -     |                                         |          | + · · · · · · · · · · · · · · · · · · · |      |            |      |                |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U            |
| Intername         User         John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |      |                 |           |                                       |          |            |          | +                                       |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ū            |
| Itans-1_2-Diditoceline       Uor_L       0       0       0       12       1       0       12       1       0       22       1       1       0       22       1       1       0       22       1       1       0       22       1       1       0       22       1       1       0       22       1       1       0       22       1       1       0       22       1       1       0       22       1       1       0       23       1       0       1       0       1       0       22       0       1       0       2       0       1       0       1       0       22       0       1       0       2       0       1       0       1       0       22       0       1       0       2       0       1       0       1       0       1       0       2       0       1       0       1       0       1       0       2       1       0       1       0       2       1       0       1       1       0       2       1       0       1       1       0       2       1 <th1< th="">       0       1       <th1< th="" th<=""><th>Total Xylenes</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Xylenes                                                                                                   |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Trans-1,3-Dichloropropene         UGR.         0         70         70         70         70         70         71         0         71         0         72         1         0         71         0         72         1         0         71         0         72         1         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         71         0         72         0         71         0         72         0         71         0         72         0         71         0         72         0         71         0         72         0         71         0         72         0         71         10         71         10         71         10         71         10         71         10         71         10         71         10         71         71         71         71         71         71         71         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trans-1,2-Dichloroethene                                                                                        | UG/L | 0               | 0%        | 5                                     |          | 0          | 12       | 1                                       |          | 1                                       |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Trichloroethene         UGA         430         55%         5         3         6         12         1         U         439         1         U         433           Vinyd chloride         UGA         0         0%         2         0         0         12         1         U         1         U         22         U         1         U         22         U         1         U         2         U         1         U         22         U         1         U         2         12         U         2         1         U         2         1         0         2         1         1         1         U         343         3520         1         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520         3520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |      | 0               | 0%        | 5                                     | 0        | 0          | 12       | 1                                       | U        | 1                                       | U    | 22         | U    | 1              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U            |
| Ving chloride         UGA         0         0%         2         0         0         12         1         U         1         U         22         U         1         U         2         U         1         U         22         U         1         U         2         U         1         U         22         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         U         1         U         2         1         1         1         U         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |      | 430             |           | 1                                     |          | 6          |          | 1 · · · ·                               | U        | 1                                       | U    | 430.       |      | 1 1            | υ     | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4            |
| Wind conce         Using         U         Using         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |      |                 |           |                                       |          |            |          | 1                                       |          | 1                                       |      |            | Ū    | 1              | U     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ū            |
| Calcium         UGAL         284000         100%         0         12         12         14         44000         48800         12200         40200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vinyl chloride                                                                                                  | UGIL | +               |           |                                       |          |            | .'*      |                                         | 1.       |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
| Calcium         UGAL         284000         100%         0         12         12         14         44000         48800         12200         40200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |      |                 | 1         |                                       |          |            |          |                                         |          | · · · · · · · · · · ·                   | +    |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>+-</u>    |
| Calcium         UGAL         284000         100%         0         12         12         14         44000         48800         12200         40200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200         39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metals                                                                                                          | [    |                 |           |                                       |          |            |          |                                         | 1.       |                                         |      |            | ļ    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Iron         UG/L         548000         100%         300         9         12         12         12         392         J         244         J         228         J         27400         J         S880         J         J         S880         J         J         S880         J         J         S880 <thj< th="">         J         &lt;</thj<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | UGA  | 264000          | 100%      | [ · · · · ·                           | D        | 12         | 12       | 44000                                   |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
| Magnesum         UG/L         74400         100%         300         5         12         12         12         4970         J         4920         J         14300         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         9830         930         930         930         930         930         930         930         930         930         930         930         930         930         930         930         930         930         930         930 </th <th></th> <th></th> <th></th> <th></th> <th>300</th> <th></th> <th></th> <th>12</th> <th>-392</th> <th>Ĵ</th> <th>244</th> <th>J</th> <th>228</th> <th>J</th> <th>37360</th> <th>J</th> <th>1010</th> <th>J</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |      |                 |           | 300                                   |          |            | 12       | -392                                    | Ĵ        | 244                                     | J    | 228        | J    | 37360          | J     | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J            |
| Marganese         UG/L         7440         100%         300         5         12         12         169         170         22.5         416         446           Marganese         UG/L         15100         100%         300         5         12         12         103         170         22.5         416         446           Potassium         UG/L         15100         100%         300         5         12         12         13         12         103         2030         J         6250         1600         J           Other Analytes <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>9520</th> <th>1</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       | 9520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |
| Marganese         Odic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         | 1        |                                         | - ·  |            | +    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>}-</u> •∣ |
| Potassium         UGL         15100         100%         0         12         12         2080         J         1910         J         2030         J         6520         1600         J           Other Analytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manganese                                                                                                       |      |                 |           | 300                                   |          |            |          |                                         | Į        |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
| Other Analytes         O         9         12         9.4         12         U         3.6         13         6.9           Ethane         UGA,         14         55%         0         7         12         13         2.1         U         2.6         13         6.9           Ethane         UGA,         14         55%         0         7         12         13         2.1         U         2.1         U         13         14           Ethane         UGA,         12         55%         0         6         12         8.7         2.5         U         2.1         U         13         14         12           Sulfate         MGA,         113         100%         0         12         12         108         113         74.2         61.6         47.2           Nitrate         MGA,         0.4         33%         10         0         4         12         20.2         00.2         0.4         <0.2         20.2         CD.2         CD.0         40.2         20.2         CD.2         CD.0         4.3         14.5         17.4         17.4         17.4         17.4         17.4         17.4         17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | UG/L | 15100           | 100%      |                                       | 0        | 12         | 12       | 2080                                    | J        | 1910                                    | J    | 2030       | 1 1  | 6250           |       | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-1          |
| Methane         UGA.         20         75%         0         9         12         9,4         1.2         U         3.5         13         6.9           Ethane         UGA.         14         58%         0         7         12         13         2.1         U         13         14           Ethane         UGA.         12         55%         0         6         12         8.7         2.5         U         2.1         U         13         14           Ethane         UGA.         12         55%         0         6         12         8.7         2.5         U         8         12           Sulfate         MGA.         113         100%         0         12         12         0.8         113         74.2         61.6         47.2           Nitrate         MGA.         0.4         33%         10         0         4         12         0.2         0.2         0.4         -0.2         -0.2           Choide         MGA.         25.2         100%         0         12         12         24.6         25.2         8.7         7.6         8.3           TDS         MGA.         441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | 1    | + • • • • • • • |           |                                       |          |            |          |                                         | 1        |                                         |      |            |      | Provide States |       | the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £            |
| Methane         UGA.         20         75%         0         9         12         9,4         1.2         U         3.5         13         6.9           Ethane         UGA.         14         58%         0         7         12         13         2.1         U         13         14           Ethane         UGA.         12         55%         0         6         12         8.7         2.5         U         2.1         U         13         14           Ethane         UGA.         12         55%         0         6         12         8.7         2.5         U         8         12           Sulfate         MGA.         113         100%         0         12         12         0.8         113         74.2         61.6         47.2           Nitrate         MGA.         0.4         33%         10         0         4         12         0.2         0.2         0.4         -0.2         -0.2           Choide         MGA.         25.2         100%         0         12         12         24.6         25.2         8.7         7.6         8.3           TDS         MGA.         441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |      | +               |           |                                       |          |            |          |                                         | 1        |                                         | 1    |            | - 1  |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5            |
| Methane         UorL         20         15%         0         7         12         13         14           Ethane         UG/L         14         55%         0         7         12         13         2.1         U         13         14           Ethane         UG/L         12         55%         0         6         12         8.7         2.5         U         2.5         U         8         12           Sulfate         MG/L         113         100%         0         6         12         8.7         2.5         U         2.5         U         8         12           Sulfate         MG/L         113         100%         0         12         12         108         113         74.2         61.5         47.2           Sulfate         MG/L         0.4         0.4         0.2         -0.2         0.2         0.4         -0.2         -0.2         -0.2         0.4         -0.2         -0.2         -0.2         -0.2         -0.4         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |      |                 |           |                                       |          |            | 10       |                                         |          | 12                                      | 11   | 26         |      | 13             |       | 6 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r            |
| Chinade         Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methane                                                                                                         |      |                 |           |                                       |          |            |          |                                         | £        |                                         |      |            | 1    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |
| Ethene         UG/L         12         50%         0         6         12         8.7         2.5         U         2.5         U         8         12           Sulfate         MG/L         113         100%         0         12         12         108         113         74.2         61.5         47.2           Sulfate         MG/L         0.4         0.4         0.2         0.2         0.4         c0.2         -0.2         -0.4         c0.2         -0.2         -0.2         -0.4         c0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ethane                                                                                                          | UGAL | 14              | 58%       |                                       | 0        | 7          |          |                                         | L        |                                         |      | 2.1        |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + - 1        |
| Entering         Osfic         12         100%         0         12         12         108         113         74.2         61.5         47.2           Nitrate         MG/L         113         100%         0         12         12         108         113         74.2         61.5         47.2           Nitrate         MG/L         0.4         33%         10         0         4         12         -0.2         -0.2         0.4         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2         -0.2 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>0</th> <th></th> <th></th> <th>8.7</th> <th>1</th> <th>2.5</th> <th>U</th> <th>2.5</th> <th>U</th> <th>8</th> <th></th> <th>12</th> <th>1</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |      |                 |           |                                       | 0        |            |          | 8.7                                     | 1        | 2.5                                     | U    | 2.5        | U    | 8              |       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            |
| Suitate         More that         113         100%         0         12         12         0.2         0.2         0.4         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |      |                 |           |                                       |          | 12         | 12       |                                         |          |                                         |      |            | r    | 61.6           |       | 47.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [····]       |
| Nitrate         MiGL         0.4         35%         10         0         4         12         0.2         5.7         7.6         8.3           Choicide         MGL         25.2         10%         0         12         12         24.6         25.2         8.7         7.6         8.3           TDS         MGL         441         100%         0         12         12         219         219         433         145         174           pH         9.74         100%         0         12         12         23         22         304         378         97           Atsinity         MGL         378         100%         0         12         12         23         22         304         378         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         | + -      |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t= I         |
| Chilonde         Mig/L         2.52         100%         0         12         12         219         219         433         145         174           TDS         MG/L         441         100%         0         12         12         219         219         433         145         174           pH         9.74         100%         0         12         12         8.81         8.72         7.17         9.74         7.84           Alkalinity         MG/L         378         100%         0         12         12         23         22         304         378         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nitrate                                                                                                         |      |                 |           | 10                                    |          |            |          |                                         | ÷        |                                         |      |            | +    |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| TDS         MG/L         441         100%         0         12         12         219         433         145         174           pH         9.74         100%         0         12         12         8.81         8.72         7.17         9.74         7.84           Alkalinity         MG/L         378         100%         0         12         12         23         22         304         378         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloride                                                                                                        | MG/L | 25.2            | 100%      |                                       | 0        | 12         |          |                                         | 1        |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| DS         Holic         441         100%         0         12         12         8.81         8.72         7.17         9.74         7.84           pH         9.74         100%         0         12         12         23         22         304         378         97           Alkalinity         MG/L         378         100%         0         12         12         23         22         304         378         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |      |                 |           |                                       | 0        |            | 12       | 219                                     |          | 219                                     |      | 433        |      | 145            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| pri 3,74 100% 0 12 12 23 22 304 378 97<br>Alkalinity MG/L 378 100% 0 12 12 23 22 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | WOIL |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      | 9.74           |       | 7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |
| Arkanniy MG/L 378 100/8 0 12 12 0.05 0.02 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Phosphate MG/L 0.44 100% 0 12 12 0.05 0.05 0.02 0.26 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alkalinity                                                                                                      |      |                 |           |                                       |          |            |          |                                         |          |                                         |      |            |      |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phosphate                                                                                                       | MG/L | 0.44            | 100%      |                                       | 0        | 12         | 12       | 0.05                                    | 1        | 0.05                                    |      | 0.02       |      | 0.26           |       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |

.

.

#### Seneca Army Depot Activity Ash Landfill Groundwater Remediation Round 2 Groundwater Sampling

| · · · · · · · ·                                     |              |                |             |                    |               |          |                 | ASH LANDFILL<br>MWT-1 |        | ASH LANDFILL<br>MWT-10 |        | ASH LANDFILL<br>MWT-11  |            | ASH LANDFILL<br>MWT-2 | +              | ASH LANDFILL<br>MWT-3 |        | ASH LANDFILL<br>MWT-4 |                  |
|-----------------------------------------------------|--------------|----------------|-------------|--------------------|---------------|----------|-----------------|-----------------------|--------|------------------------|--------|-------------------------|------------|-----------------------|----------------|-----------------------|--------|-----------------------|------------------|
|                                                     | ļ            |                |             |                    |               |          |                 | GROUND WATER          |        | GROUND WATER           |        | GROUND WATER            | ļ          | GROUND WATER          |                | GROUND WATER          |        | GROUND WATER          |                  |
| · · · · · · ·                                       | ·            |                | •••••••     |                    |               |          |                 | 8.1<br>8.1            |        | 77                     |        | 9.5<br>9.5              |            | 8                     | +              | 8                     |        | 10                    | ł ·              |
|                                                     |              |                |             |                    |               |          |                 | 06/29/1999            |        | 06/29/1999             | 1      | 06/29/1999              |            | 06/29/1999            | t -            | 06/29/1999            |        | 06/29/1999            | -                |
|                                                     |              |                | FREQUENCY   | NYSDEC<br>CLASS GA | ABOVE         | NUMBER   | NUMBER<br>OF    | ASH TRENCH<br>TR2023  |        | ASH TRENCH<br>TR2020   |        | ASH TRENCH<br>TR2029    | -          | ASH TRENCH<br>TR2021  | ļ              | ASH TRENCH<br>TR2022  |        | ASH TRENCH<br>TR2025  |                  |
|                                                     | UNIT         | MAXIMUM        | DETECTION   |                    | TAGM          | DETECTS  | ANALYSES        | SA                    |        | SA                     |        | SA                      | -          | SA                    | 1              | SA                    |        | SA                    |                  |
| Volatile Organic Compounds<br>1.1.1-Trichloroethane | UGAL         | - 0            | 0%          |                    | Ō             | ò        | 11              | . N<br>2              | IJ     | N                      | ω      | N                       | ŪJ         | N                     | ŰĴ             | N<br>1                | ົບັນ   | N                     |                  |
| 1,1,2,2-Tetrachloroethane                           | UG/L         | ŏ              | 0%          | 5                  | ō             | Ö        | 11              | 2                     | υ      | 1                      | Ü      | + · · · · · · · · · · · | U          | 1                     | 100            | 1                     | - UJ   | 4                     | U<br>U           |
| 1,1,2-Trichloroethane                               | UG/L         | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | U      | 1                      | U      | 1                       | U          | 1                     | U              | 1                     | U      | 4                     | U                |
| 1,1-Dichloroethane                                  | UG/L<br>UG/L | 0.7            | 9%<br>0%    | 5                  | 0             | 0        | 11              | 2                     | Ŭ      | 1                      | UU     | 1                       | U          | 1                     | UU             | 1                     | U<br>U | 4                     | บ<br>บ           |
| 1,2,4-Trichlorobenzene                              | UG/L         | 0              | 0%          | 5                  | Õ             | 0        | 11              | 2                     | Ū      | 1 . <u>1</u>           | U      | 1                       | U          | 1                     | Ū              | 1                     | U      | 4                     | U                |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dibromoethane    | UG/L<br>UG/L | 0              | 0%          |                    | 0             | 0        | 11<br>11        | 2                     | Ŭ      | 1                      | UU     | 1                       | UU         | 1                     | U<br>U         | 1                     | UU     | 4                     | U<br>U           |
| 1,2-Dichlorobenzene                                 | UG/L         | 0              | 0%          | 4.7                | <u>o</u>      | ō        | 11              | 2                     | Ū      |                        | U      | 1                       | Ū          | 1                     | U              | 1                     | -0     | 4                     | U                |
| 1,2-Dichloroethane                                  | UG/L         | 0              | 0%          | 5                  | Ō             | 0        | 11              | 2                     | ι<br>U | 1                      | UJ     | 11                      | UJ         | 1                     | UJ             | 1                     | UJ     | 4                     | UJ               |
| 1,2-Dichloropropane<br>1,3-Dichlorobenzene          | UG/L<br>UG/L | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | Ŭ      | 1 1                    | U<br>U | 1                       | UU         | 1                     | U              | 1                     | U<br>U | 4                     | UU               |
| 1,4-Dichlorobenzene                                 | UG/L         | 0              | 0%          | 4.7                | 0             | 0        | 11              | 2                     | U      | <u>i</u>               | U      | 1                       | U          | 1                     | Ū              | 1                     | U      | 4                     | U                |
| Acetone<br>Benzene                                  | UG/L<br>UG/L | 140            | 91%<br>36%  | 1                  |               | 10       | 11              | 4                     | IJ     | 3<br>0,9               | J      | 5                       | UU         | 5<br>0.6              | J              | 3                     | J      | 14                    | J                |
| Bromochloromethane                                  | UG/L         | 0.9            | 0%          |                    | Ō             | 0        | 11              | 2                     | Ū      | 1                      | U      | 1                       | U U        | 1                     | - <del>-</del> | 1                     | U      | 4                     | U                |
| Bromodichloromethane                                | UG/L<br>UG/L | 0              | 0%          |                    | 0             | 0        | . 11            | 2                     | Ŭ      | 1                      | U      | 1                       | U          | 1                     | U              | 1                     | U      | 4                     | U                |
| Bromoform<br>Carbon disulfide                       | UG/L<br>UG/L | 0              | 0%<br>0%    |                    | 0<br>0        | 0        | 11<br>11        | . 2                   | U<br>U | 1                      | UU     | 1                       | . <u>U</u> | 1                     | UU             | 1                     | U<br>U | 4                     | UU               |
| Carbon tetrachloride                                | UG/L         | 0              | 0%          | 5                  | 0             | Ō        | 11              | 2                     | U      | 1                      | U      | 1                       | U          | 1                     | Ű              | 1                     | υ      | 4                     | U                |
| Chlorobenzene<br>Chlorodibromomethane               | UG/L<br>UG/L | 0              | 0%          | 5                  | 0             | 0        | 11<br>11        | 2                     | U<br>U | 1                      | UU     | 1                       | U          | 1                     | U<br>U         | 11                    | ບ<br>ນ | 4                     | U                |
| Chloroethane                                        | UG/L         | 0              | 0%          | 5                  | Ō             | 0        |                 | 2                     | U      | 1 1                    | Ŭ      | 1                       | U          | 1                     | U              | 1                     | υ      | 4                     | U                |
| Chloroform                                          | UG/L         | 0              | 0%          | 7                  | 0             | 0        | 11              | 2                     | U      | 1                      | U      | 1                       | U          | 1                     | U              | 1                     | U      | 4                     | U                |
| Cis-1,2-Dichloroethene<br>Cis-1,3-Dichloropropene   | UG/L<br>UG/L | 150            | 91%<br>0%   | 5                  | 9             | 10<br>0  | <u>11</u><br>11 | 3 <b>2</b><br>2       | Ū      | 0.7                    | J<br>U | 1                       | UU         | <b>6</b> 1            | U              | <b>10</b><br>1        | U      | <b>82</b><br>4        | U                |
| Ethyl benzene                                       | UG/L         | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | Ü      | 1                      | U      | 1                       | υ          | 1                     | U              | 1                     | U      | 4                     | U                |
| Methyl bromide<br>Methyl butyl ketone               | UG/L<br>UG/L | 0              | 0%          |                    | 0             | 0        | 11<br>11        | 2                     | Ŭ      | <u>1</u><br>5          | UU     | 1 5                     | U<br>UJ    | 1 5                   | U<br>UJ        | 1 5                   | UJ     | 4                     | UJ               |
| Methyl chloride                                     | UG/L         | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | UJ     | 1                      | 03     | 1                       | UJ         | 1                     | UJ             | 1                     | UJ     | 4                     | IJ               |
| Methyl ethyl ketone                                 | UG/L<br>UG/L | 14<br>0        | 27%<br>0%   | 50                 |               | 3        | 11              | 8                     | U      | 14                     | U      | 5                       | UU         | 7                     | U              | 5                     | U      | 21                    | UU               |
| Methyl isobutyl ketone<br>Methylene chloride        | UG/L         | 0              | 0%          | 5                  | 0             | 0        | 11              | 3                     | Ü      | 5                      | U      | 2                       | UU         | 2                     | U<br>U         | 5                     | U<br>U | 21<br>8               | U<br>U           |
| Styrene                                             | UG/L         | 0              | 0%          |                    | 0             | Ū        | 11              | 2                     | Ū      | 1                      | U      | 1                       | U          | <u>1</u>              | U              | 1                     | U      | 4                     | U                |
| Tetrachloroethene<br>Toluene                        | UG/L<br>UG/L | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | Ŭ      | 1                      | UU     | 1                       | U<br>U     | 1                     | UU             | 1                     | UU     | 4                     | UU               |
| Total Xylenes                                       | UG/L         | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | Ü      | 1                      | υ      | 1                       | U          | 1                     | U              | 1                     | U      | 4                     | U                |
| Trans-1,2-Dichloroethene                            | UGAL         | 0              | 0%          | 5                  | 0             | 0        | 11              | 2                     | Ũ      | 1                      | Ū      | 1                       | U          | 1                     | U              | 1                     | U      | 4                     | U                |
| Trans-1,3-Dichloropropene<br>Trichloroethene        | UG/L<br>UG/L | 0<br>530       | 0%          | 5                  | 0<br>3<br>0   | 0<br>5   | 11              | 2<br>8                | U      | 1                      | UUU    | 1                       | UU         | 1                     | <u>U</u><br>U  | 0.8                   | U<br>J | 4                     | <u>U</u><br>J    |
| Vinyl chloride                                      | UG/L         | 1              | 27%         | 2                  | Ō             | 3        | 11              | 2                     | U      | 1                      | Ū      | 1                       | Ū          | 1                     | Ŭ              | 1                     | Ū      | 4                     | U                |
| Metals                                              |              |                |             |                    |               |          |                 |                       |        |                        |        |                         |            |                       |                |                       |        |                       |                  |
| Calcium                                             | UG/L         | 158000         | 100%        |                    | ō             | 11       | 11              | 120000                |        | 22700                  |        | 107000                  |            | 16300                 |                | 47700                 |        | 158000                |                  |
| Iron                                                | UG/L         | 14100<br>18300 | 100%        | 300                | <u>6</u><br>0 | 11       | 11              | 133                   |        | 1620                   |        | 553                     |            | 14100                 |                | 3190                  |        | 21<br>18300           | J                |
| Magnesium<br>Manganese                              | UG/L<br>UG/L | 18300          | 100%        | 300                | - 02          | 11       | <u>11</u><br>11 | 13000<br>31           |        | 6500<br>44.6           |        | 16500<br>115            |            | 6080<br>165           |                | 6820<br>467           |        | 5.2                   | - <del>-</del> - |
| Potassium                                           | UG/L         | 12300          | 100%        |                    | ō             | 11       | 11              | 1590                  | J      | 1290                   | L      | 12300                   |            | 1580                  | J              | 2750                  | J      | 1880                  | J                |
| Other Analyses                                      |              |                |             |                    |               |          |                 |                       |        |                        |        |                         |            |                       |                |                       |        |                       |                  |
| Methane                                             | UG/L         | 310            | 90%         |                    | 0             | 9        | 10              | 14                    |        | 63                     |        | 5.4                     |            | 310                   |                | 180                   |        | 1.2                   | U                |
| Ethane                                              | UGAL         | 18             | 70%         |                    | 0             | 7        | 10              | 2.1                   | U.     | 10                     |        | 2.1                     | U          | 12                    |                | 9.5                   |        | 2.1<br>2.5            | UU               |
| Ethene<br>Sulfate                                   | UG/L<br>MG/L | 20             | 50%<br>100% |                    | 0             | 5<br>11  | 10<br>11        | 2.5                   | U      | 2.5                    | U      | 2.5<br>60.5             | U          | 10<br>5.8             |                | 2.5<br>31.9           | U      | 2.5                   | <u> </u>         |
| Nitrate                                             | MG/L         | 0.6            | 18%         |                    | 0             | 2        | 11              | <0.2                  |        | <0.2                   |        | <0.2                    |            | <0.2                  |                | <0.2                  |        | 0.3                   |                  |
| Chloride<br>TDS                                     | MG/L<br>MG/L | 31.7<br>577    | 100%        |                    | 0             | 11<br>11 | 11              | 12.7<br>392           | J      | 8 113                  | - J    | 13.8<br>405             | J          | <u>11.1</u><br>85     | J              | 12.8<br>223           | J      | 31.7<br>577           | J                |
| pH                                                  | MG/L         | 9.5            | 100%        |                    | 0             | 11       | 11              | 7.19                  |        | 8.43                   | 3      | 7.36                    |            | 9.1                   | 3              | 7.68                  | 5      | 7.14                  | -                |
| Alkalinity                                          | MG/L         | 288            | 100%        |                    | 0             | 11       | 11              | 264                   |        | 65                     |        | 280                     |            | 48                    |                | 140                   |        | 240                   |                  |
| Phosphate                                           | MG/L         | 0.17           | 73%         |                    | 0             | 8        | 11              | <0.01                 |        | 0.02                   |        | 0.03                    |            | 0.17                  |                | 0.11                  |        | <0.01                 |                  |

#### Seneca Army Depot Activity Ash Landfill Groundwater Remediation Round 2 Groundwater Sampling

|                                                     |              |                    |           |               |        |         |          | ASH LANDFILL<br>MWT-5 |                          | ASH LANDFILL<br>MWT-6                 |                | ASH LANDFILL     |                  | ASH LANDFILL<br>MWT-8 | ļ        | ASH LANDFILL<br>MWT-9 |               |
|-----------------------------------------------------|--------------|--------------------|-----------|---------------|--------|---------|----------|-----------------------|--------------------------|---------------------------------------|----------------|------------------|------------------|-----------------------|----------|-----------------------|---------------|
|                                                     |              |                    |           |               |        |         |          | GROUND WATER          | ĺ                        | GROUND WATER                          |                | GROUND WATER     |                  | GROUND WATER          |          | GROUND WATER          |               |
|                                                     |              |                    |           |               |        |         |          | 10                    |                          | 10                                    |                | 10               |                  | 10                    | <u> </u> | 12                    | 1             |
| ·                                                   |              |                    | • ·       |               |        |         | -        | 10<br>06/29/1999      | -                        | 10<br>06/29/1999                      |                | 10<br>06/29/1999 | ÷ .              | 10<br>06/29/1999      |          | 12<br>06/29/1999      | ł             |
|                                                     |              |                    | FREQUENCY | NYSDEC        | NUMBER | NUMBER  | NUMBER   | ASH TRENCH            |                          | ASH TRENCH                            |                | ASH TRENCH       |                  | ASH TRENCH            | ÷        | ASH TRENCH            | ł             |
|                                                     |              |                    | ÖF        | CLASS GA      | ABOVE  | OF      | OF       | TR2024                | [                        | TR2028                                |                | TR2026           |                  | TR2030                | İ        | TR2027                | 1             |
|                                                     | UNIT         | MAXIMUM            | DETECTION | STANDARD      | TAGM   | DETECTS | ANALYSES | SA                    |                          | SA                                    |                | SA               | ļ                | SA                    |          | SA                    |               |
| Volatile Organic Compounds<br>1,1,1-Trichloroethane | UG/L         | o                  | 0%        | 5             | Ó      | 0.      | 11       | N<br>1                | ບມ                       | N                                     | UJ             | N<br>31          |                  | <u>N</u>              | ŪJ       | N<br>B                | l iu:         |
| 1,1,2,2-Tetrachloroethane                           | UG/L         | 0                  | 0%        | 5             | ŏ      | ō       | 11       | 1                     | υ                        | 1 1                                   | U              | 31               | 100              | 2                     | 03       | 8                     | Ū             |
| 1,1,2-Trichloroethane                               | UG/L         | 0                  | 0%        |               | 0      | Ó       | 11       | 1                     | Û                        | 1                                     | U              | 31               | Ū                | 2                     | U        | 8                     | Ù             |
| 1,1-Dichloroethane                                  | UG/L         | 0.7                | 9%        | 5             | 0      | 1       | 11       | 0.7                   | J                        | 1                                     | Ü              | 31               | U                | 2                     | U        | 8                     | Ú             |
| 1,1-Dichloroethene<br>1,2,4-Trichlorobenzene        | UG/L<br>UG/L | 0                  | 0%<br>0%  | 5             | 0<br>Ö | 0<br>Ö  | 11<br>11 | 1                     | U                        | 1                                     | U<br>U         | 31<br>31         | U                | 2                     | U<br>U   | 8                     | U.            |
| 1,2-Dibromo-3-chloropropane                         | UG/L         | 0                  | 0%        |               | ō      | õ       | 11       | 1                     | υ                        | } · · •                               | ŭ              | 31               | τŬ               | 2                     | υ        | 8                     |               |
| 1,2-Dibromoethane                                   | UG/L         | 0                  | 0%        |               | Ō      | Ō       | 11       | 1                     | Ū                        | 1                                     | U              | 31               | Ū                | 2                     | Ū        | 8                     | U             |
| 1,2-Dichlorobenzene                                 | UG/L         | 0                  | 0%        | 4.7           | 0      | 0       | 11       | 1                     | U                        | 1                                     | ΰ              | 31               | U                | 2                     | U        | 8                     | Ū             |
| 1,2-Dichloroethane<br>1,2-Dichloropropane           | UG/L<br>UG/L | 0                  | 0%<br>0%  | 5             | 0      | 0       | . 11     |                       | <u>U</u> J<br><u>U</u> J | _ <u>1</u>                            | ŬĴ             | 31<br>31         | UJ               | 2                     | UJ       | 8                     | UJ<br>U       |
| 1,3-Dichlorobenzene                                 | UG/L         | Ō                  | 0%        | 5<br>5        | , 0    | 0       | 11       |                       | U                        | <u> </u> +                            | <del>0</del> - | 31               | U                | 2                     | 0        | 8                     | U             |
| 1,4-Dichlorobenzene                                 | UG/L         | Ö                  | 0%        | 4.7           | Ō      | 0       | 11       | 1                     | Ũ                        | 1                                     | Ŭ              | 31               | Ū                | 2                     | Ŭ        | 8                     | UJ            |
| Acetone                                             | UG/L         | 140                | 91%       | -             | 0      | 10      | 11       | 3                     | J                        | 3                                     | J              | 140              | J                | 4                     | J        | 24                    | J             |
| Benzene<br>Bromochloromethane                       | UG/L<br>UG/L | 0.9                | 36%<br>0% | Ĩ             | ō      | 4       | 11<br>11 | 0.8                   | Ĵ                        | 0.7                                   | J              | 31<br>31         | UUU              | 2                     | UU       | 8                     | Ŭ             |
| Bromodichloromethane                                | UG/L         | . <u>0</u>         | 0%        |               | 0      | 0       | 11       | 1                     | U                        |                                       | บั             | 31               | Ü                | 2                     | U        | 8                     | - Ŭ           |
| Bromoform                                           | UG/L         | 0                  | 0%        |               | 0      | 0       | 11       | 1                     | Ū                        | 1                                     | Ū              | 31               | Ū                | 2                     | U        | 8                     | U             |
| Carbon disulfide                                    | UG/L         | 0                  | 0%        |               | Ò      | 0       | 11       | 1                     | U                        |                                       | U              | 31               | Ű                | 2                     | U        | 8                     | Ü             |
| Carbon tetrachloride<br>Chlorobenzene               | UG/L<br>UG/L | 0                  | 0%<br>0%  | 5             | 0<br>Ó | 0       | 11<br>11 |                       | U<br>U                   | · · · · · · · · · · · · · · · · · · · | U              | 31<br>31         | UU               | 2                     | UUU      | 8                     | U             |
| Chlorodibromomethane                                | UG/L UG/L    | 0                  | 0%        | 5             | 0      | 0       | 11       |                       | Ŭ                        | · · · · · · · · · · · · · · · · · · · | U<br>U         | 31               | บ<br>บ           | 2                     | 0        | 8                     | <u>U</u><br>U |
| Chloroethane                                        | UG/L         | 0                  | 0%        | <u>5</u><br>7 | 0      | ō       | 11       | 1                     | ប័                       | i                                     | Ŭ              | 31               | ŭ                | 2                     | Ŭ        | 8                     | Ŭ             |
| Chloroform                                          | UG/L         | 0                  | 0%        | 7             | 0      | 0       | 11       | 1                     | U                        | 1                                     | υ              | 31               | υ                | 2                     | U        | 8                     | U             |
| Cis-1,2-Dichloroethene                              | UG/L         | 150                | 91%       | 5<br>5<br>5   | 9      | 10      | 11       | 20                    | υ                        | 17                                    |                | 32               |                  | 42                    |          | 150                   | - บ           |
| Cis-1,3-Dichloropropene<br>Ethyl benzene            | UG/L<br>UG/L | 0                  | 0%        | · · · 5       | 0      | 0       | 11       | 1                     | U<br>11                  | 1                                     | U              | 31<br>31         | UU               | 2                     | UU       | 8                     | -0-           |
| Methyl bromide                                      | UG/L         | ō                  | 0%        | ·             | ő      | 0       | 11       | 1                     | ΞŬ                       | ····+                                 | Ŭ              | 31               | Ŭ                | 2                     | - Ū      | 8                     | U             |
| Methyl butyl ketone                                 | UG/L         | 0                  | 0%        |               | Ō      | 0       | 11       | 5                     | ŰĴ                       |                                       | ŬĴ             | 160              | υJ               | 8                     | UJ       | 42                    | UJ            |
| Methyl chloride                                     | UG/L         | 0                  | 0%        | 5<br>50       | 0      | Ō       | . 11     | 1 5                   | <u>U</u> J               | 1 5                                   | UJ             | 31               | UJ               | 2                     | UJ       | 8                     | UJ            |
| Methyl ethyl ketone<br>Methyl isobutyl ketone       | UG/L<br>UG/L |                    | 27%<br>0% |               | 0      | 3       | 11<br>11 | 5                     | U                        | 5                                     | U<br>Ü         | 160<br>160       | <u>บ</u><br>บ    | 8                     | UU       | 42 42                 | U             |
| Methylene chloride                                  | UG/L         | 14<br>0<br>0       | 0%        | 5             | ō      | - ŏ     | - ii     | 2                     | ີບ                       | 2                                     | ΰ              | 63               | Ū                |                       |          | 17                    | Ū             |
| Styrene                                             | UG/L         | 0                  | 0%        |               | Ō      | 0       | 11       | 1                     | υ                        | 1                                     | U              | 31               | U                | 2                     | U        | 8                     | U             |
| Tetrachloroethene                                   | UG/L         | 0                  | 0%        | 5             | 0      | 0       |          | 1                     | <u> </u>                 | 1                                     | υ              | 31               | U                | 2                     | U        | 8                     | U             |
| Toluene<br>Total Xylenes                            | UG/L<br>UG/L | 0                  | 0%        | 5<br>5<br>5   | Ö      | 0       | 11<br>11 |                       | UU                       | 1                                     | U              | 31<br>31         | U<br>U           | 2                     | U        | 8                     | - 5-          |
| Trans-1,2-Dichloroethene                            | UG/L         | 0                  | 0%        | 5             | 0      | Ö       | 11       | 1                     | υ                        | 1                                     | Ŭ              | 31               | U                | 2                     | υ        | 8                     | Ų             |
| Trans-1,3-Dichloropropene                           | UG/L         | 0                  | 0%        | 5             | Ō      | 0       | 11       | 1                     | ບ                        | 1                                     | υ              | 31               | U                | 2                     | U        | 8                     | U             |
| Trichloroethene                                     | UGAL         | 530                | 45%       | 5<br>2        | 3      | 5       | 11       | . 1                   | U                        | 1                                     | U<br>J         | 530              |                  | 2                     | U        | 5 <b>1</b>            | - ប           |
| Vinyl chloride                                      | UG/L         | 1                  | 27%       | . <b>ć</b>    |        | 3       | 11       |                       |                          | <u>U.1</u>                            | 1              | 31               | U                | + ···                 |          | ō                     | ↓             |
| Metals                                              |              | <u> </u>           |           |               |        |         | ·        |                       |                          | · · · ·· ·                            |                |                  |                  |                       |          |                       |               |
| Calcium                                             | UG/L         | 158000             | 100%      |               | Ō      | 11      | 11       | 30500                 |                          | 39700                                 |                | 153000           |                  | 23900                 |          | 87200                 |               |
| Iron                                                | UG/L<br>UG/L | 14100<br>18300     | 100%      | 300           | 6      | 11      | 11       | 207<br>15200          |                          | 145<br>6270                           |                | 58.2<br>17700    | J                | 1(190)<br>16300       |          | 7800<br>17000         |               |
| Magnesium<br>Manganese                              | UG/L         | 1280               | 100%      | 300           | 2      | 11      | 11       | 49.8                  |                          | 240                                   |                | 17700            |                  | 97.9                  |          | 17000                 |               |
| Potassium                                           | UG/L         | 12300              | 100%      |               | ō      | 11      | 11       | 1410                  | J                        | 1780                                  | J              | 1820             | - <del>.</del> . | 1430                  | J        | 1870                  | J             |
|                                                     |              | _                  |           |               |        |         |          |                       |                          |                                       |                |                  |                  |                       |          |                       |               |
| Other Analyses                                      | 1108         | 310                | 90%       |               | õ      | 9       | 10       |                       |                          |                                       |                | 5.8              |                  | 6.2                   |          | 18                    |               |
| Methane<br>Ethane                                   | UG/L<br>UG/L | 310<br>18          | 90%       |               | 0      |         | 10       | 41<br>13              |                          |                                       |                | 5.8<br>11        |                  | <u>6.2</u><br>18      |          | <u> 18</u><br>13      |               |
| Ethene                                              | UG/L         | 20                 | 50%       | +             | ō      | 7       | 10       | 16                    |                          |                                       |                | 18               |                  | 20                    |          | 16                    |               |
| Sulfate                                             | MG/L         | 163                | 100%      |               | 0      | 11      | 11       | 95.1                  |                          | 86.2                                  | 7.1            | 124              |                  | 88.6                  |          | 103                   |               |
| Nitrate                                             | MG/L         | 0.6                | 18%       |               | 0      | 2       | 11       | <0.2                  |                          | <0.2                                  | [              | 0.6              |                  | <0.2                  |          | <0.2                  |               |
| Chloride<br>TDS                                     | MG/L<br>MG/L | <u>31.7</u><br>577 | 100%      |               | 0      | 11      | 11       | 31.3<br>233           | J                        | 29.9<br>201                           | <u> </u>       | 12.5<br>531      | J                | <u>14.6</u><br>194    |          | 13.9<br>351           |               |
| pH                                                  |              | 9.5                | 100%      |               | 0      | 11      | 11       | 9.5                   |                          | 8.6                                   |                | 7.06             | <u> </u>         | 9.22                  |          | 7.34                  |               |
| Alkalinity                                          | MG/L         | 288                | 100%      |               | 0      | 11      | 11       | 13                    |                          | 25                                    |                | 288              |                  | 46                    |          | 184                   |               |
| Phosphate                                           | MG/L         | 0.17               | 73%       |               | 0      | 8       | 11       | 0.03                  |                          | 0.03                                  |                | <.01             |                  | 0.02                  |          | 0.02                  |               |

#### Seneca Army Depot Activity Ash Landfill Treatibility Study Groundwater Analysis - Round 3

|                                              | 1    | 1      |           |          | 1                                     | Γ            |          | ASH LANDFILL                          |                  | ASH LANDFILL                           |                | ASH LANDFILL                            | 1                | ASH LANDFILL | 1                                                                                                                                            | ASH LANDFILL |            | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                            | ASH LANDFILL |          |
|----------------------------------------------|------|--------|-----------|----------|---------------------------------------|--------------|----------|---------------------------------------|------------------|----------------------------------------|----------------|-----------------------------------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
|                                              | 1    |        | I         | Π        |                                       |              | 1        | MWT-1                                 |                  | MWT-11                                 |                | MWT-10                                  | t · · · ·        | MWT-2        | · · ·                                                                                                                                        | MWT-3        | t          | MWT-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·····                                                                                                                                        | MWT-4        |          |
|                                              | 1    | [      | ľ         | Ι.       |                                       |              |          | GROUND WATER                          |                  | GROUND WATER                           | 1              | GROUND WATER                            | t                | GROUND WATER | 1 · · ·                                                                                                                                      | GROUND WATER | t · - ·    | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              | GROUND WATER |          |
|                                              | 1.   |        |           | E        | 1.                                    |              | 1        | 9                                     |                  | 0                                      |                | 8                                       | 1                | 8.5          | <b>•</b>                                                                                                                                     | 9.1          | 1          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              | 11           |          |
|                                              |      |        | 1         |          | 1                                     | [            |          | 9                                     |                  | 0                                      |                | 8                                       | [ · .            | 8.5          |                                                                                                                                              | 9.1          | 1          | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                            | 11           |          |
|                                              |      |        |           |          |                                       | ļ            | 1        | 09/28/1999                            |                  | 09/29/1999                             |                | 09/28/1999                              | Ι                | 09/28/1999   |                                                                                                                                              | 09/29/1999   | 1          | 09/29/1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              | 09/29/1999   |          |
|                                              | 4    |        |           |          | · · · · · · · · · · · · · · · · · · · |              |          | ASH TRENCH                            |                  | ASH TRENCH                             |                | ASH TRENCH                              |                  | ASH TRENCH   |                                                                                                                                              | ASH TRENCH   | Ι          | ASH TRENCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Γ                                                                                                                                            | ASH TRENCH   |          |
|                                              | 1.0  |        | FREQUENCY |          | NUMBER                                | NUMBER       | NUMBER   | TR2040                                |                  | TR2050                                 |                | TR2049                                  |                  | TR2041       | [                                                                                                                                            | TR2042       | I          | TR2051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                                                                                                            | TR2043       |          |
| and the second second                        |      |        | OF        | CLASS GA | ABOVE                                 | OF           | OF       | SA                                    |                  | SA                                     |                | SA                                      |                  | SA           | [                                                                                                                                            | SA           |            | DU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ι                                                                                                                                            | SA           | L        |
|                                              |      | MAXIMU | DETECTION | STANDARD | TAGM                                  | DETECTS      | ANALYSES | N                                     |                  | N N                                    |                | N                                       |                  | N            |                                                                                                                                              | N            | [          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [                                                                                                                                            | N            |          |
| Volatile Organic Compounds                   |      |        |           | · .      |                                       |              |          |                                       |                  |                                        |                |                                         |                  |              |                                                                                                                                              |              | [          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                            |              |          |
| 1,1,1-Trichloroethane                        | UGAL | 0      | 0%        | 5        | 0                                     | 0            | 14       | 1                                     | Ŭ                |                                        | U              |                                         | U                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | UUU      |
| 1,1,2,2-Tetrachloroethane                    | UGAL | 0      | 0%        | 5        | 0                                     | 0            | 14       | !                                     | U                | 1                                      | U              | 1                                       | U                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            |          |
| 1,1,2-Trichloroethane                        | UG/L | 5      | 14%       | +        | 0                                     | 2            | 14       | . 1                                   | U                | 1                                      | U              | 1                                       | U                | 1            | υ                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,1-Dichloroethane                           | UG/L | 0.5    | 14%       | 5        | 0                                     | 2            | 14       | ·                                     | U                | 1                                      | U<br>U         | <u>1</u>                                | U                | 1            | υ                                                                                                                                            | 1            | υ          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                     | 3            | U        |
| 1,1-Dichloroethene<br>1,2,4-Trichlorobenzene | UGIL | 5      | 0%        | 5        | 0                                     | 0            | 14       |                                       | UUU              | 1 1                                    |                | 1                                       | U                | 1            | υ                                                                                                                                            | 1            | υ          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,2-Dibromo-3-chloropropane                  | UG/L | 0      | 0%        |          | 0                                     | <del>2</del> | 14       | · · · · · · · · · · · · · · · · · · · | - <u>u</u> .     | •••••••••••••••••••••••••••••••••••••• | . U<br>ŭ       | - · · · · · · · · · · · · · · · · · · · | U                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,2-Dibromoethane                            | UG/L | 5      | 14%       |          |                                       | 2            | 14       | · · .                                 | Ŭ                | +                                      | U              | · · · · · · · · · · · · · · · · · · ·   | U                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,2-Dichlorobenzene                          | UG/L | 0      | 0%        | 4.7      | 0                                     | 0            |          |                                       | ŭ                |                                        | ū              | · ····································  | U                |              | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,2-Dichloroethane                           | UG/L | 5      | 14%       | 4.7      | 0                                     | 2            | 14       | · · · · · · · · · · · ·               | U                |                                        | U U            | · · · · · · · · · · · · · · · · · · ·   | U                |              | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,2-Dichloropropane                          | UG/L | 5      | 14%       | 5        | 0                                     | 2            | 14       | · · · · · · · ·                       | Ŭ                |                                        | U<br>U         | · · · · · · · · · · · · · · · · · · ·   | U                | +            | U                                                                                                                                            | 1            | <u> </u>   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,3-Dichlorobenzene                          | UG/L | 0      | 0%        | 5        | 0                                     | - 2          | 14       |                                       | <u>.</u>         |                                        |                |                                         | U                |              | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| 1,4-Dichlorobenzene                          | UG/L | 4      | 14%       | 4.7      | 0                                     | 2            | 14       |                                       | Ü                |                                        |                |                                         | <u>U</u>         | 1            | U.                                                                                                                                           | 1            | . <u>U</u> | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| Acetone                                      | UG/L | 2      | 7%        | 4./      | 0                                     |              |          |                                       | <u>U</u>         |                                        |                | 1                                       | U                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U.                                                                                                                                           | 3            | U        |
| Benzene                                      | UG/L | 5      | 50%       | 1        | 2                                     | 7            | 14       |                                       | UJ<br>U          |                                        | UJ<br>U        | 15                                      | UJ               | 6            | UJ.                                                                                                                                          | 5            | UJ         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UJ                                                                                                                                           | 14           | R        |
| Bromochloromethane                           | UG/L | 0      | 0%        |          |                                       | <u>/</u>     | 14       |                                       | ü                |                                        | <u>U</u>       |                                         | 1                | 0.8          | J                                                                                                                                            | 1            | <u> </u>   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| Bromodichloromethane                         | UG/L | 0      | 0%        |          | o                                     | 0            | 14       | - · · ·                               | ū.               |                                        | U U            | 1                                       | U                |              | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | <u> </u> |
| Bromoform                                    | UG/L | 4      | 14%       |          | 0                                     | 2            | 14       | - · · ·                               |                  | · · · · · · · · · · · ·                |                |                                         | <u> </u>         |              | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| Carbon disulfide                             | UG/L | 0      | 0%        |          | 0                                     |              | 14       |                                       | Ť                | · · · · · · · · · · · · · · · · · · ·  | - <del>U</del> | 1                                       | UU               |              |                                                                                                                                              |              | UU         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U<br>U                                                                                                                                       | 3            | U        |
| Carbon tetrachloride                         | UG/L | 4      | 14%       | 5        | 0                                     | 2            | 14       | <u>-</u>                              | Ū.               |                                        | U              |                                         | U U              |              | <u> </u>                                                                                                                                     | 1 1          | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UU                                                                                                                                           | 3            | UU       |
| Chlorobenzene                                | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       | 1                                     | - <del>U</del>   |                                        |                |                                         | U U              |              | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | 1            | U -        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>-</u>                                                                                                                                     | 3            | U        |
| Chlorodibromomethane                         | UG/L | 0      | 0%        | +        | 0                                     | 0            | 14       | ···                                   | ŭ                |                                        | - U            |                                         | U                | 1            | 0                                                                                                                                            | 1            | U U        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U U                                                                                                                                          | 3            | UU       |
| Chloroethane                                 | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       |                                       | Ű.               |                                        | UJ             |                                         |                  | 1            | - W                                                                                                                                          | 1            |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - UJ                                                                                                                                         | 3            | UJ UJ    |
| Chloroform                                   | UGAL | 0      | 0%        | 7        | 0                                     | 0            | 14       |                                       | ü                | +                                      | U              |                                         | U                | 1            | 03                                                                                                                                           | 1            | 03         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U<br>U   |
| Cis-1,2-Dichloroethene                       | UG/L | 40     | 86%       | 5        | 9                                     | 12           | 14       | 6                                     | <u> </u>         | 1                                      | U              | 1                                       | 1-0-             | 0.6          | J                                                                                                                                            | 2            | 0          | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | ĻŬ                                                                                                                                           | 40           |          |
| Cis-1,3-Dichloropropene                      | UG/L | 5      | 14%       | 5        | 0                                     | 2            | 14       | 1                                     | U                |                                        | - U            | 1                                       | U                | 1            | U U                                                                                                                                          | 1            | U          | 3 <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U                                                                                                                                            | 3            |          |
| Ethyl benzene                                | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       |                                       | - <del>Ŭ</del> - |                                        | U              |                                         | - <del>-</del> - | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | U        |
| Methyl bromide                               | UG/L | 0      | 0%        |          | 0                                     | 0            | 14       |                                       | Ū                | i                                      | Ū              | 1                                       | UJ               |              | - uj                                                                                                                                         | 1            | τώ         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | 3            | UJ UJ    |
| Methyl butyl ketone                          | UGAL | 0      | 0%        |          | 0                                     | 0            | 14       | 5                                     | Ū                | 5                                      | - 00           | 5                                       | U                | 5            | U                                                                                                                                            | 5            | U          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                            | 14           | U U      |
| Methyl chloride                              | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       |                                       | Ū                | 1                                      | IJ             | 1                                       | UJ UJ            | 1            | Ŭ                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UJ                                                                                                                                           | 3            | UJ UJ    |
| Methyl ethyl ketone                          | UG/L | 0      | 0%        | 50       | 0                                     | 0            | 14       | 5                                     | บับ              | 5                                      | - UJ           | 6                                       | UJ               | 5            | UJ                                                                                                                                           | 5            | - UJ       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                           | 14           | UJ       |
| Methyl isobutyl ketone                       | UG/L | 0      | 0%        |          | 0                                     | 0            | 14       | 5                                     | Ū                | 5                                      | - U            | 5                                       | U                | 5            | U                                                                                                                                            | 5            | U          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                           | 14           | U        |
| Methylene chloride                           | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       | 2                                     | U                | 2                                      | Ū              | 2                                       | U                | 2            | U                                                                                                                                            | 2            | U          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | υ                                                                                                                                            | 6            | Ŭ        |
| Styrene                                      | UG/L | 0      | 0%        |          | D                                     | 0            | 14       | 1                                     | U                | 1                                      | Ū              | 1                                       | t- <del>U</del>  | 1            | U                                                                                                                                            | 1            | Ŭ          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | υ                                                                                                                                            | 3            | Ŭ        |
| Tetrachloroethene                            | UG/L | 5      | 14%       | 5        | 0                                     | 2            | 14       | 1 1                                   | U                | 1                                      | υ              | 1                                       | Ŭ                | 1            | U                                                                                                                                            | 1            | Ŭ          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | Ū.       |
| Toluene                                      | UGAL | 0.3    | 14%       | 5        | 0                                     | 2            | 14       | 1                                     | υ                | 1                                      | U              | 0.3                                     | J                | 0.2          | J                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                                                                                                                                            | 3            | Ŭ        |
| Total Xylenes                                | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       | 1                                     | Ū                | 1                                      | U              | 1                                       | tū               | 1            | Ū                                                                                                                                            | 1            | Ŭ          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | Ŭ        |
| Trans-1,2-Dichloroethene                     | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       | 1                                     | Ū                | 1                                      | U              | 1                                       | Ŭ                | 1            | Ū                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ū                                                                                                                                            | 3            | υ        |
| Trans-1,3-Dichloropropene                    | UG/L | 0      | 0%        | 5        | 0                                     | 0            | 14       | 1                                     | Ū                | 1                                      | U              | 1                                       | Ŭ                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                                                                                                                                            | 3            | Ū        |
| Trichloroethene                              | UG/L | 480    | 29%       | 5        | 2                                     | 4            | 14       | 2                                     | U                | 1                                      | Ū              | 1                                       | U                | 1            | υ                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | Ŭ        |
| Vinyl chloride                               | UG/L | 4      | 14%       | 2        | 2                                     | 2            | 14       | 1                                     | Ū                | 1                                      | Ū              | 1                                       | Ŭ                | 1            | U                                                                                                                                            | 1            | U          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                            | 3            | Ŭ        |
|                                              |      |        |           |          |                                       |              |          |                                       |                  |                                        |                |                                         |                  |              |                                                                                                                                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |              |          |
| Metals                                       |      | 1      |           |          |                                       |              |          |                                       |                  |                                        |                |                                         |                  |              |                                                                                                                                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |              |          |
| Calcium                                      | UGIL | 158000 | 100%      |          | 0                                     | 12           | 12       | 117000                                | J                | 149000                                 | - <u>J</u>     | 7610                                    | J                | 20000        | J                                                                                                                                            | 146000       | J          | 90100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                                                                                                                            | 90100        | J        |
| Iron                                         | UG/L | 68500  | 100%      | 300      | 9                                     | 12           |          | 906                                   | J                | 4700                                   | J              | 1170                                    | J                | 1420         |                                                                                                                                              | 68500        |            | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              | 92.6         | J        |
| Magnesium                                    | UG/L | 25500  | 100%      |          | D                                     | 12           |          | 12500                                 |                  | 24900                                  |                | 1490                                    | J                | 9260         |                                                                                                                                              | 25500        |            | 9610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 9810         |          |
| Manganese                                    | UG/L | 1780   | 100%      | 300      | 3                                     | 12           | 12       | 21.4                                  |                  | 312                                    |                | 17.7                                    |                  | 54.6         |                                                                                                                                              | 1780         |            | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 19.4         |          |
| Potassium                                    | UG/L | 19900  | 100%      |          | 0                                     | 12           | 12       | 1960                                  | J                | 17100                                  |                | 1200                                    | J                | 3180         | J                                                                                                                                            | 19900        |            | 1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 1750         | J        |
|                                              |      | 1      |           |          | L                                     |              |          |                                       |                  |                                        |                |                                         |                  |              |                                                                                                                                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |              |          |
| Other Analyses                               |      |        |           |          |                                       |              |          |                                       |                  |                                        |                |                                         |                  |              |                                                                                                                                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |              |          |
| Methane                                      | UG/L | 2300   | 100%      |          | 0                                     | 12           | 12<br>12 | 110                                   |                  | 2.1                                    |                | 2300                                    |                  | 200          |                                                                                                                                              | 72           |            | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              | 140          |          |
| Ethane                                       | UGAL | 7.4    | 33%       |          | 0                                     | 4            | 12       | 21                                    | Ű                | 2.1                                    | U              | 2.1                                     |                  | 2.1          | Ü                                                                                                                                            | 2.1          | Ŭ          | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                            | 21           | U        |
| Ethene                                       | UG/L | 15     | 25%       |          | 0                                     | 3            | 12       | 2.5                                   | U                | 2.5                                    | Ų              | 2.5                                     | υ                | 2.5          | υ                                                                                                                                            | 2.5          | U          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                            | 2.5          | U        |
| Sulfate                                      | MG/L | 111    | 100%      |          | 0                                     | 12           | 12       | 46.3                                  |                  | 98                                     |                | 0.4                                     |                  | 58.7         |                                                                                                                                              | 78.4         |            | 61.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 54.2         |          |
| Nitrate                                      | MG/L | 0.4    | 42%       | 10       | 0                                     | 5            | 12       | 0.2                                   |                  | <0.2                                   |                | <0.2                                    |                  | 0.3          |                                                                                                                                              | <0.2         |            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              | 0.2          |          |
| Chloride                                     | MG/L | 26     | 100%      |          | 0                                     | 12           | 12       | 10,9                                  |                  | 14.5                                   |                | 8.4                                     |                  | 11.2         |                                                                                                                                              | 11.9         |            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              | 25.3         |          |
| TDS                                          | MG/L | 547    | 100%      |          | 0                                     | 12           | 12       | 332                                   |                  | 547                                    |                | 38                                      |                  | 121          |                                                                                                                                              | 321          |            | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              | 268          |          |
| pH                                           |      | 9.7    | 100%      |          | 0                                     | 12           | 12       | 7.27                                  |                  | 7.03                                   |                | 9.7                                     |                  | 9.15         |                                                                                                                                              | 7.5          |            | 7.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 7.5          |          |
| Alkalinity                                   | MG/L | 426    | 100%      |          | 0                                     | 12           | 12       | 254                                   |                  | 426                                    |                | 26                                      |                  | 34           |                                                                                                                                              | 168          |            | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              | 136          |          |
| Phosphate                                    | MG/L | 13     | 92%       |          | 0                                     | 11           | 12       | 0,06                                  |                  | 13                                     |                | 0.05                                    |                  | 0.09         |                                                                                                                                              | 0.05         |            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              | 0.01         |          |
| Ferrous Iron                                 | MG/L | 2.55   | 100%      |          | 0                                     | 4            | 4        |                                       |                  | 2.55                                   |                |                                         |                  |              |                                                                                                                                              |              |            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |              |          |
|                                              | nM/L | >50    |           |          |                                       |              |          |                                       |                  |                                        |                |                                         |                  |              |                                                                                                                                              | 12.9         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |              |          |

#### Seneca Army Depot Activity Ash Landfill Treatibility Study Groundwater Analysis - Round 3

.

| · · · ·                                               |              | -             |              |                     |                 |                |                       | ASH LANDFILL<br>MWT-4<br>GROUND WATER |          | ASH LANDFILL<br>MWT-4<br>GROUND WATEF | 2              | ASH LANDFILL<br>MWT-5<br>GROUND WATER |               | ASH LANDFILL<br>MWT-6<br>GROUND WATER |               | ASH LANDFILL<br>MWT-7<br>GROUND WATER |               | ASH LANDFILL<br>MWT-8<br>GROUND WATER |               | ASH LANDFILL<br>MWT-9<br>GROUND WATER |             |
|-------------------------------------------------------|--------------|---------------|--------------|---------------------|-----------------|----------------|-----------------------|---------------------------------------|----------|---------------------------------------|----------------|---------------------------------------|---------------|---------------------------------------|---------------|---------------------------------------|---------------|---------------------------------------|---------------|---------------------------------------|-------------|
|                                                       |              | ł             |              |                     |                 |                |                       | 11<br>11                              |          | 11<br>11                              |                | 11<br>11                              |               | 11.7<br>11.7                          | L.            | 12.6<br>12.6                          |               | 11.8<br>11.8                          |               | 13.5<br>13.5                          |             |
|                                                       |              |               |              | . ]                 |                 |                |                       | 09/29/1999<br>ASH TRENCH              |          | 09/29/1999<br>ASH TRENCH              |                | 09/28/1999<br>ASH TRENCH              |               | 09/29/1999<br>ASH TRENCH              |               | 09/28/1999<br>ASH TRENCH              |               | 09/28/1999<br>ASH TRENCH              |               | 09/29/1999<br>ASH TRENCH              |             |
|                                                       |              | ļ             | FREQUENCY    | NYSDEC<br>CLASS GA  | NUMBER<br>ABOVE | NUMBER         | NUMBER<br>OF          | TR2043MS<br>SA                        |          | TR2043MSD<br>SA                       |                | TR2044<br>SA                          | ļ             | TR2045<br>SA                          |               | TR2046<br>SA                          |               | TR2047<br>SA                          |               | TR2048<br>SA                          |             |
|                                                       | 1            | MAXIMU        | DETECTION    | STANDARD            | TAGM            | DETECTS        | ANALYSES              | N                                     |          | N                                     |                | N                                     | ł             | N N                                   |               | N N                                   | -             | N N                                   |               | N                                     |             |
| Volatile Organic Compounds                            | UGIL         | 0             | 0%           | - 5                 | . 0             | . 0            | 14                    | 1                                     | υ        | 1                                     | υ              | 1                                     | U.            |                                       |               | 40                                    | Ū             | ·····                                 | U             | · · · · · ·                           | U           |
| 1,1,2,2-Tetrachloroethane                             | UG/L         | ō             | 0%           | 5                   | 0               | 0              | 14                    | 1                                     | Ŭ        | 1                                     | U              | 1                                     | U             | i                                     | Ű             | 40                                    | Ū             | <u>i</u>                              | Ū             | 4                                     | 1 0         |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane           | UG/L<br>UG/L | 5             | 14%<br>14%   | 5                   | . <u>0</u>      | 2              | 14<br>14              | 5                                     | Ū.       | 4                                     | ι              | 0.5                                   | . U           | 0.4                                   | U             | 40<br>40                              | UU            | 1                                     | U<br>U        | 4                                     | Ū           |
| 1,1-Dichloroethene                                    | UG/L         | 0             | 0%           | 5                   | 0               | 0              | 14                    | 1                                     | Ŭ        | 1                                     | Ū              | 1                                     | Ū             | 1                                     | U             | 40                                    | U             | 1                                     | U             | 4                                     | U           |
| 1.2,4-Trichlorobenzene<br>1,2-Dibromo-3-chloropropane | UG/L<br>UG/L | 5             | 14%<br>0%    | 5                   | 0               | 2              | 14<br>14              | 5                                     | Ū        | 5                                     | U              | 1                                     | <u>U</u> .    | 1                                     | <u>U</u><br>U | 40<br>40                              | <u>u</u><br>U | 1                                     | <u>U</u>      | 4                                     | - U         |
| 1.2-Dibromoethane                                     | UG/L<br>UG/L | 0<br>5<br>0   | 14%          |                     | 0               | 2              | 14                    | 5                                     |          | 5                                     | 1              | 1                                     | U             | 1                                     | U             | 40                                    | U             | 1                                     | U             | 4                                     | U           |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane             | UG/L<br>UG/L | 5             | 0%<br>14%    | 4.7<br>5            | 0               | 2              | 14<br>14              | 5                                     | <u> </u> | 5                                     | , Ų            | 1                                     |               | 1                                     | <u>U</u><br>U | 40<br>40                              | UU            | 1                                     | <u>ป</u><br>บ | 4 4                                   | UUU         |
| 1,2-Dichloropropane<br>1,3-Dichlorobenzene            | UG/L<br>UG/L | 5             | 14%<br>0%    | 5<br>5              | 0               | 2              | 14<br>14              | 5                                     |          |                                       | 1 ii           | <u>1</u>                              | U             |                                       | U             | 40                                    | U<br>U        | 1,1                                   | U<br>U        | 4                                     | U           |
| 1,4-Dichlorobenzene                                   | UG/L         | <u>0</u><br>4 | 14%          | . <u>5</u><br>. 4.7 | 0               | 2              | 14                    | · · · · · · · · · · · · · · · · · · · | U.       | 4                                     |                |                                       | U             | 1                                     | U<br>U        | 40<br>40                              | υ             | 1                                     | U             | 4                                     | U<br>U      |
| Acetone<br>Benzene                                    | UG/L<br>UG/L | 2             | 7%<br>50%    | 1                   | 0<br>2          | 1              | 14<br>14              | 2<br>5                                | J        | 5<br>5                                | Ĵ Ų.           | 6<br>0.6                              | ίΰ<br>L       | 5                                     | UJ<br>L       | 200<br>40                             | RU            | 5<br>0.3                              | UJ<br>J       | 20                                    | R           |
| Bromochloromethane                                    | UG/L         | 0             | 0%           |                     | 0               | ó –            | 14                    | <b>9</b><br>1                         | Ū        | 1                                     | ] ມີ           | 1                                     | Ū             | 1                                     | U             | 40                                    | U             | 1                                     | U             | 4                                     |             |
| Bromodichloromethane<br>Bromoform                     | UG/L<br>UG/L | 0<br>4        | 0%<br>14%    |                     | 0               | 0              | 14<br>14              | 1                                     | U,       | 1                                     | Ú              | 1                                     | Ŭ             | 1                                     | U<br>U        | 40<br>40                              | U<br>U        | 1                                     | U<br>U        | 4                                     | U<br>U<br>U |
| Carbon disulfide                                      | UG/L         | 0             | 0%           |                     | 0               | Ö              | 14                    | 1                                     | Ū        | . 1                                   | U              | 1                                     | U             | 1                                     | υ             | 40                                    | U             | 1                                     | U             | 4                                     | Ū           |
| Carbon tetrachloride<br>Chlorobenzene                 | UG/L         | 4             | 14%<br>0%    | 5                   | 0               | 2              | <u>14</u><br>14       | 4                                     | Ū-       | 4                                     | i i            | 1                                     | UU            | 1                                     | U<br>U        | 40<br>40                              | U<br>U        | 1                                     | U<br>U        | 4                                     | U<br>U      |
| Chlorodibromomethane                                  | UG/L         | 0             | 0%           |                     | 0               | D              | 14                    | i                                     | U        | 1 1                                   | Ū              | 1                                     | ΰ             | 1                                     | U             | 40                                    | U             | 1                                     | U             | 4                                     | Ū           |
| Chloroethane                                          | UG/L<br>UG/L | 0             | 0%<br>0%     | 5                   | 0               | 0<br>0         | 14<br>14              |                                       | Ŭ<br>U   |                                       | ΪÜ             | · · · -   · · ·                       | ບມ<br>ບ       | 1                                     | ω<br>U        | 40<br>40                              | UJ<br>U       | 1 1                                   | UJ<br>U       | 4                                     | UJ<br>U     |
| Cis-1,2-Dichloroethene                                | UG/L         | 40            | 86%          | 5                   | 9               | 12             | 14                    | 14                                    |          | <b>1</b> 4                            |                | 5                                     |               | 9400000 <b>0</b> 1000000              |               | 25                                    | J             | 7                                     |               | 38                                    |             |
| Cis-1,3-Dichloropropene                               | UG/L<br>UG/L | 5             | 14%<br>0%    | 5                   | 0               | 2              | 14<br>14              | 5                                     | U        | . 4                                   | Ū              |                                       | U<br>U        | 1                                     | UU            | 40<br>40                              | <u>U</u><br>U | 1                                     | UU            | 4                                     | UU          |
| Methyl bromide                                        | UG/L<br>UG/L | 0             | 0%           |                     | 0               | 0              | 14                    | 1                                     | U        | 1                                     | Ū              | 1 5                                   | UJ<br>U       | 1                                     | UJ<br>U       | 40<br>200                             | UJ<br>U       | 1 5                                   | UJ<br>U       | 4 20                                  | U<br>U      |
| Methyl butyl ketone<br>Methyl chloride                | UG/L         | 0             | 0%           | 5                   | 0               | 0<br>0         | 14                    | 5                                     | U<br>U   | 5                                     | Ü              | 1                                     | υ             | 5                                     | ŪJ            | 40                                    | ŪJ            | 1                                     | U             | 4                                     | UJ          |
| Methyl ethyl ketone<br>Methyl isobutul ketone         | UG/L<br>UG/L | 0             | 0%<br>0%     | 50                  | D<br>D          | 0              | 14<br>14              | 5                                     | U<br>U   | 5                                     |                | 5                                     | UJ<br>U       | 5                                     | UJ<br>U       | 200<br>200                            | <u>UJ</u>     | 9                                     | UJ<br>U       | 20<br>20                              | UJ<br>U     |
| Methyl isobutyl ketone<br>Methylene chloride          | UG/L         | 0             | 0%           | 5                   | 0               | 0              | 14                    | 2                                     | U        | 2                                     | Ū.             | 2                                     | Ũ             | 2                                     | U             | BO                                    | U             | 2                                     | U             | 8                                     | Ū           |
| Styrene<br>Tetrachloroethene                          | UG/L<br>UG/L | 0<br>5        | 0%<br>14%    | 5                   | D<br>0          | 2              | 14<br>14              | 1                                     | U        | 1                                     | Ū              | 1                                     | U             | 1                                     | U             | 40<br>40                              | <u>U</u>      | 1                                     | UU            | 4                                     | U           |
| Toluene                                               | UG/L         | 0.3           | 14%          | 5                   | 0               | 2              | 14                    | 1                                     | U        | 1                                     | Ū.             | 1                                     | Ū             | 1                                     | U             | 40                                    | Ų             | 1                                     | U             | 4                                     | Ŭ           |
| Total Xylenes<br>Trans-1,2-Dichloroethene             | UG/L<br>UG/L | 0             | 0%<br>0%     | 5                   | 0               | 0              | 14                    | 1 .                                   | <u>U</u> |                                       | <u>U</u>       | 1                                     | <u>U</u><br>U | 1                                     | U<br>U        | 40<br>40                              | U<br>U        | 1                                     | <u>บ</u><br>บ | 4                                     | U           |
| Trans-1.3-Dichloropropene                             | UG/L         | 0             | 0%           | 5                   | D               | ō              | 14                    | <u>1</u>                              | υ        | 1                                     | Ū              | 1                                     | U             | 1                                     | U             | 40                                    | Ŭ             | 1                                     | Ū             | 4                                     | Ū           |
| Trichloroethene<br>Vinyl chloride                     | UG/L<br>UG/L | 480<br>4      | 29%<br>14%   | 2                   | 2               | - 4 -          | 14                    | 5                                     |          | 5                                     | 1              | 1                                     | <u>U</u><br>U | - 1                                   | U<br>U        | 480<br>40                             | υ             | 1                                     | U<br>U        | 56<br>4                               | U           |
|                                                       |              |               |              |                     |                 |                | <sup>-</sup> <b>-</b> |                                       |          |                                       | ļ              |                                       |               |                                       |               |                                       |               |                                       |               |                                       | ļ           |
| Metals<br>Calcium                                     | UG/L         | 158000        | 100%         | +                   |                 | 12             | 12                    |                                       | ·        |                                       | ĥ              | 11900                                 | J             | 37100                                 | J             | 158000                                | - <u>-</u> -  | 13500                                 | J             | 46700                                 | L·          |
| Iron                                                  | UG/L         | 68500         | 100%         | 300                 | 9               | 12<br>12       | 12                    |                                       |          | · - · · · · · · ·                     |                | 565                                   |               | 1150                                  | J             | 109<br>17800                          | J             | 6590                                  |               | 889<br>11500                          | Ĵ           |
| Magnesium<br>Manganese                                | UG/L<br>UG/L | 25500<br>1780 | 100%<br>100% | 300                 | 0<br>3          | 12<br>12       | 12<br>12              | ••• ·                                 |          |                                       |                | 6090<br>32.2                          |               | 4990<br>91.6                          | J             | 17800<br>28.2                         |               | 12600<br>120                          |               | 538                                   | <u>  </u>   |
| Potassium                                             | UG/L         | 19900         | 100%         |                     | 0               | 12             | 12                    |                                       |          | ······                                | · ·            | 1760                                  | J             | 2480                                  | J             | 2180                                  | J             | 2020                                  | J             | 2870                                  | J           |
| Other Analyses                                        |              |               |              | +                   |                 |                |                       |                                       | +        |                                       | t              |                                       |               |                                       |               |                                       |               |                                       |               |                                       |             |
| Methane<br>Ethane                                     | UG/L<br>UG/L | 2300<br>7.4   | 100%         |                     | 0               | 12<br>4        | 12<br>12              |                                       |          |                                       |                | 750                                   |               | 63<br>2.1                             |               | 1.2                                   | 11            | 74<br>3.1                             |               | 120<br>7.4                            | ÷ · ]       |
| Ethene                                                | UG/L         | 15            | 25%          |                     | 0               | 3              | 12                    |                                       |          | · · · · · ·                           | <u>t</u> . : : | 4.2                                   |               | 2.5                                   | Ū             | 2.5                                   | U             | 8.8                                   |               | 15                                    | E 1         |
| Sulfate<br>Nitrate                                    | MG/L<br>MG/L | 111<br>0.4    | 100%<br>42%  | 10                  | 0               | 12<br>5        | 12<br>12              |                                       |          |                                       |                | 25.9<br><0.2                          |               | 46.5<br><0.2                          |               | <u>111</u><br>0.4                     |               | 48.5<br><0.2                          |               | 44.6<br><0.2                          |             |
| Chloride                                              | MG/L<br>MG/L | 26            | 42%          |                     | 0               | 12             | 12                    |                                       |          |                                       | · · · ·        | 18.1                                  |               | 19.2                                  |               | 14.1                                  |               | 10.9                                  |               | 12.2                                  |             |
| TDS                                                   | MG/L         | 547<br>9.7    | 100%         |                     | 0               | 12<br>12       | 12<br>12              |                                       |          |                                       |                | 84<br>9.56                            |               | 149<br>7.81                           |               | 536<br>7.18                           |               | 120<br>9.4                            |               | 194<br>7,68                           |             |
| pH<br>Alkalinity                                      | MG/L         | 426           | 100%         |                     | 0               | 12             | 12                    |                                       |          |                                       | <u>t</u>       | 34                                    |               | 69                                    |               | 336                                   |               | 50                                    |               | 132                                   |             |
| Phosphate<br>Ferrous Iron                             | MG/L<br>MG/L | 13<br>2.55    | 92%<br>100%  |                     | 0               | <u>11</u><br>4 | 12                    |                                       |          |                                       |                | 0.03                                  |               | 0.05<br>0.13                          |               | <.01                                  |               | 0.04                                  |               | 0.03                                  |             |
| H                                                     | nM/L         | >50           | 100%         |                     |                 |                |                       |                                       |          |                                       |                |                                       |               | 16.7                                  |               |                                       |               |                                       |               | >50                                   |             |

#### Seneca Army Depot Activity Ash Landfill Groundwater Remediation Round 4 Groundwater Sampling

| STUDY ID:<br>LOC ID:<br>SDG:<br>SAMP. DEPTH TOP:<br>SAMP. DEPTH BOT:<br>MATRIX:<br>SAMP. DATE:<br>SAMP_ID:<br>FIELD QC CODE: |              |               | FREQUENCY | Y NYSDEC<br>CLASS GA | NUMBER | NUMBER   | NUMBER   | SA            | ASH TRENCH<br>MVV-T5<br>76497<br>11<br>11<br>WATER<br>04-Jan-00<br>TR2061<br>SA | ASH TRENCH<br>MW-T8<br>76497<br>11.8<br>11.8<br>WATER<br>04-Jan-00<br>TR2062<br>SA | ASH TRENCH<br>MW-T7<br>12.6<br>12.6<br>WATER<br>04-Jan-00<br>TR2063<br>SA | ASH TRENCH<br>MV-T4<br>11<br>11<br>WATER<br>04-Jan-00<br>TR2064<br>SA | ASH TRENCH<br>MV-T10<br>8<br>8<br>WATER<br>05-Jan-00<br>TR2065<br>SA | NONE<br>76497<br>NONE<br>NONE<br>NONE<br>NONE<br>TR2065MS<br>NONE | NONE<br>NONE<br>76497<br>NONE<br>NONE<br>NONE<br>TR2065MSD<br>NONE | ASH TRENCH<br>MW-T11<br>76497<br>8<br>8<br>WATER<br>05-Jan-00<br>TR2066<br>SA | ASH TRENCH<br>MW-T10<br>76497<br>8<br>WATER<br>05-Jan-00<br>TR2067<br>DU |
|------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-----------|----------------------|--------|----------|----------|---------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| PARAMETER                                                                                                                    | UNIT         | MAXIMU        | DETECTION | STANDARD             | TAGM   | DETECTS  | NALYSE   | VALUE Q       | VALUE Q                                                                         | VALUE 0                                                                            | VALUE (                                                                   | Q VALUE                                                               | Q VALUE (                                                            | VALUE 0                                                           | Q VALUE                                                            | Q VALUE (                                                                     | Q VALUE Q                                                                |
| Volatile Organic Compounds                                                                                                   |              |               |           |                      |        |          |          |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    | U 11                                                                          | J 1 U                                                                    |
| 1,1,1-Trichloroethane                                                                                                        | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| 1,1,2,2-Tetrachloroethane                                                                                                    | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | J 1                                                                | 11                                                                            |                                                                          |
| 1,1,2-Trichloroethane                                                                                                        | UG/L         | 4             |           | 5                    | 0      | 2        | 14<br>14 | 2 U<br>2 U    |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | -                                                                  |                                                                               |                                                                          |
| 1.1-Dichloroethane<br>1.1-Dichloroethene                                                                                     | UG/L<br>UG/L | 0             |           | 5                    | 0      | 0        | 14       | 2 0           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| 1,1-Dichlorobenzene                                                                                                          | UG/L<br>UG/L | 5             |           | 5                    | 0      | 2        | 14       | 2 0           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | 5                                                                  | 11                                                                            |                                                                          |
| 1,2,4- i nchiorobenzene<br>1,2-Dibromo-3-chloropropane                                                                       | UG/L<br>UG/L | a<br>0        |           | 3                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | J 1                                                                | U 11                                                                          |                                                                          |
| 1,2-Dibromoethane                                                                                                            | UG/L         | 4             |           |                      | ŏ      | 2        | 14       | 2 0           |                                                                                 | 31                                                                                 | 311                                                                       |                                                                       |                                                                      |                                                                   | 4                                                                  | 11                                                                            | J 1U                                                                     |
| 1,2-Dichlorobenzene                                                                                                          | UG/L         | . 0           |           | 4.7                  | ő      | ō        | 14       | 2 0           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | U 1                                                                | U 11                                                                          | J 1U                                                                     |
| 1,2-Dichloroethane                                                                                                           | UG/L         | . 5           |           | 5                    | ő      | 2        | 14       | 2 0           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | 5                                                                  | 1 1                                                                           | J 1U                                                                     |
| 1,2-Dichloropropane                                                                                                          | UG/L         | 5             |           | 5                    | ō      | 2        | 14       | 2 U           |                                                                                 | 31                                                                                 | J 31 1                                                                    | J. 3                                                                  | ປ 1ເ                                                                 | ) 5                                                               | 5                                                                  | 1 (                                                                           | J 1U                                                                     |
| 1.3-Dichlorobenzene                                                                                                          | UG/L         | a a           |           | 5                    | ō      | ō        | 14       | 2 U           | 1 U                                                                             | 31                                                                                 | J 31 1                                                                    | J 3                                                                   | ປ 1 ເ                                                                | J 11                                                              | U 1                                                                | บ 1เ                                                                          |                                                                          |
| 1.4-Dichlorobenzene                                                                                                          | UG/L         | 5             |           | 4.7                  | 1      | 2        | 14       | 2 U           | 1 U                                                                             | 3 เ                                                                                | J 31 (                                                                    | J 3                                                                   | ປ 1 ເ                                                                | J                                                                 | 4                                                                  | 1 1                                                                           |                                                                          |
| Acetone                                                                                                                      | UG/L         | 2             |           |                      | 0      | 1        | 14       | 9 U.          | J 5U                                                                            | J 17 L                                                                             | JJ 160 I                                                                  | JJ 14                                                                 | ມມ 5 ເ                                                               | JJ 51                                                             | U 5                                                                |                                                                               |                                                                          |
| Benzene                                                                                                                      | UG/L         | 5             |           | 1                    | 2      | 2        | 14       | 2 U           | 1 U                                                                             | 3 L                                                                                | 31 31                                                                     | J 3                                                                   | ປ 1ເ                                                                 | 5                                                                 | The Art 5                                                          |                                                                               | , <b>.</b>                                                               |
| Bromochloromethane                                                                                                           | UG/L         | C             |           |                      | 0      | 0        | 14       | 2 U           | 1 U                                                                             | 3 เ                                                                                | ປ31 (                                                                     |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Bromodichloromethane                                                                                                         | UG/L         | 0             | 0.0%      |                      | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | •                                                                  |                                                                               |                                                                          |
| Bromoform                                                                                                                    | UG/L         | 4             | 14.3%     |                      | 0      | 2        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | 4                                                                  | 11                                                                            |                                                                          |
| Carbon disulfide                                                                                                             | UG/L         | 0             |           |                      | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Carbon tetrachloride                                                                                                         | UG/L         | 4             | 14.3%     | 5                    | 0      | 2        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | 4                                                                  | 10                                                                            |                                                                          |
| Chlorobenzene                                                                                                                | UG/L         | o             |           | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Chlorodibromomethane                                                                                                         | UG/L         | C             |           | _                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Chloroethane                                                                                                                 | UG/L         | o             |           | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | *                                                                  | • •                                                                           |                                                                          |
| Chioroform                                                                                                                   | UG/L         | 0             |           | 7                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    | 31                                                                        |                                                                       | 0,6 .                                                                |                                                                   | -                                                                  |                                                                               |                                                                          |
| Cis-1,2-Dichloroethene                                                                                                       | UG/L         | 72            |           | 5                    | 9      | 13       | 14       | . 23          | 7                                                                               | 55                                                                                 |                                                                           |                                                                       |                                                                      |                                                                   | 4                                                                  | 11                                                                            |                                                                          |
| Cis-1,3-Dichloropropene                                                                                                      | UG/L         | 4             | 14.3%     | 5                    | 0      | 2        | 14<br>14 | 2 U<br>2 U    |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | •                                                                  |                                                                               |                                                                          |
| Ethyl benzene                                                                                                                | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | -                                                                  |                                                                               |                                                                          |
| Methyl bromide                                                                                                               | UG/L         | 0             |           |                      | 0      | 0        | 14       | 2 U<br>9 U    |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | U 5                                                                |                                                                               |                                                                          |
| Methyl butyl ketone                                                                                                          | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | •                                                                  |                                                                               |                                                                          |
| Methyl chloride                                                                                                              | UG/L<br>UG/L | 0             |           | 50                   | 0      | 0        | 14       | 9 U.          |                                                                                 |                                                                                    |                                                                           |                                                                       | ມງ 51                                                                | JJ 51                                                             |                                                                    |                                                                               |                                                                          |
| Methyl ethyl ketone                                                                                                          | UG/L<br>UG/L | 0             |           | 50                   | 0      | ō        | 14       | 9 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               | J 5 U                                                                    |
| Methyl isobutyl ketone<br>Methylene chloride                                                                                 | UG/L         | 0             |           | 5                    | ő      | ō        | 14       | 4 U           | 2 U                                                                             | 71                                                                                 | 5 63                                                                      | J 6                                                                   | J 21                                                                 | J 21                                                              | U 2                                                                | U 21                                                                          | J 2 U                                                                    |
| Styrene                                                                                                                      | UG/L         | 0             |           | e e                  | ō      | 0        | 14       | 2 U           |                                                                                 |                                                                                    | 31                                                                        | J 3                                                                   | ป 1เ                                                                 | ו 1                                                               | ປ 1                                                                | U 11                                                                          |                                                                          |
| Tetrachloroethene                                                                                                            | UG/L         | . 5           |           | 5                    | ō      | 2        | 14       | 2 U           | 1 U                                                                             | 3 เ                                                                                | J 31                                                                      | J 31                                                                  | ป 1เ                                                                 | ງ 5                                                               | 5                                                                  | 11                                                                            |                                                                          |
| Toluene                                                                                                                      | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           | 1 U                                                                             | 31                                                                                 | J 31                                                                      | J 31                                                                  | ປ 1 ເ                                                                | ງ 11                                                              |                                                                    |                                                                               |                                                                          |
| Total Xylenes                                                                                                                | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           | 1 U                                                                             | 31                                                                                 | J 31 1                                                                    | J 31                                                                  | ປ 10                                                                 |                                                                   | •                                                                  |                                                                               | · · ·                                                                    |
| Trans-1,2-Dichloroethene                                                                                                     | UG/L         | 0             |           | 5                    | 0      | 0        | 14       | 2 U           | · 1U                                                                            | 31                                                                                 | J 31 1                                                                    | J 3 1                                                                 | ປ 1 ປ                                                                |                                                                   |                                                                    |                                                                               |                                                                          |
| Trans-1,3-Dichloropropene                                                                                                    | UG/L         | 0             | 0.0%      | 5                    | 0      | 0        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   | -                                                                  |                                                                               |                                                                          |
| Trichloroethene                                                                                                              | UG/L         | 480           | 42.9%     | 5                    | 3      | 6        | 14       | 2 U           |                                                                                 |                                                                                    |                                                                           | 3                                                                     |                                                                      |                                                                   | 4                                                                  | 10                                                                            |                                                                          |
| Vinyl chloride                                                                                                               | UG/L         | 4             | 14.3%     | 2                    | 2      | 2        | 14       | 2 U           | 1 U                                                                             | 3 (                                                                                | 31                                                                        | ا 3 ا                                                                 | J 10                                                                 | J                                                                 |                                                                    | 1 (                                                                           | ) 1U                                                                     |
|                                                                                                                              |              |               |           |                      |        |          |          |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Metals                                                                                                                       |              |               |           |                      |        |          |          |               |                                                                                 |                                                                                    | 120000                                                                    | 144000                                                                | 23800                                                                |                                                                   |                                                                    | 131000                                                                        | 23400                                                                    |
| Calcium                                                                                                                      | UG/L         | 144000        |           |                      | 0      | 12       | 14       | 34300         | 32700                                                                           | 8070                                                                               | 130000<br>127                                                             |                                                                       |                                                                      |                                                                   |                                                                    | 119 J                                                                         |                                                                          |
| Iron                                                                                                                         | UG/L         | 7060          |           | 300                  | 7      | 12       | 14       | 3480 J        | J 205                                                                           |                                                                                    | 15100                                                                     | 17200                                                                 | 11400                                                                |                                                                   |                                                                    | 16300                                                                         | 11200                                                                    |
| Magnesium                                                                                                                    | UGAL         | 20400         |           |                      | 0      | 12       | 14       | 16200         | 20400<br>74.5                                                                   | 11200                                                                              | 15100                                                                     | 1/200                                                                 |                                                                      |                                                                   |                                                                    | 84.3                                                                          | 128                                                                      |
| Manganese                                                                                                                    | UG/L         | 682           |           | 300                  | 1      | 12       | 14       | 97.6<br>980 J | 74.5<br>1460 J                                                                  | 1230 J                                                                             | 1140                                                                      |                                                                       |                                                                      |                                                                   |                                                                    | 3020 J                                                                        |                                                                          |
| Potassium                                                                                                                    | UG/L         | 3020<br>20100 |           |                      | 0      | 12<br>12 | 14<br>14 | 8830          | 20100                                                                           | 14500                                                                              | 17100                                                                     | 19500                                                                 | 7650                                                                 |                                                                   |                                                                    | 17600                                                                         | 7580                                                                     |
| Sodium                                                                                                                       | UG/L         | 20100         | 65,7%     |                      | 0      | 12       |          | 0000          | 20100                                                                           |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Other Analytes                                                                                                               |              |               |           |                      |        |          |          |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Chloride                                                                                                                     | MG/L         | 36.9          | 100.0%    |                      | 0      | 12       | 12       | 16.2          | 36.9                                                                            | 7.6                                                                                | 10.                                                                       | 29.7                                                                  | 8.7                                                                  |                                                                   |                                                                    | 11.6                                                                          | 8.7                                                                      |
| Sulfate                                                                                                                      | MG/L         | 141           | 100.0%    |                      | õ      | 12       | 12       | 91,9          | 121.                                                                            | 14.3                                                                               | 84.8                                                                      | 141.                                                                  | 40.3                                                                 |                                                                   |                                                                    | 65.9                                                                          | 37.9                                                                     |
| Nitrate as N                                                                                                                 | MG/L         | 0.6           |           | 10                   | õ      | 5        | 12       | 0.2 U         |                                                                                 |                                                                                    |                                                                           | .6                                                                    | 0.2 (                                                                | 1                                                                 |                                                                    | .5                                                                            | 0.2 U                                                                    |
| Total Dissolved Solids                                                                                                       | MG/L         | 551           | 100.0%    |                      | ō      | 12       | 12       | 231. J        | 286. J                                                                          | 113. J                                                                             | 506.                                                                      | 551.                                                                  | J 151.                                                               |                                                                   |                                                                    | 481.                                                                          | 141.                                                                     |
| oH                                                                                                                           |              | 9.55          |           |                      | õ      | 12       | 12       | 8.07          | 9.35                                                                            | 9,55                                                                               | 7.12                                                                      | 7.15                                                                  | 8.40                                                                 |                                                                   |                                                                    | 7.11                                                                          | 8,49                                                                     |
| Alkalinity as CaCO3                                                                                                          | MG/L         | 332           |           |                      | ō      | 12       | 12       | 47            | 12                                                                              | 72                                                                                 | 308                                                                       | 260                                                                   | 62                                                                   |                                                                   |                                                                    | 332                                                                           | 61                                                                       |
| Phosphate                                                                                                                    | MG/L         | 0.09          |           |                      | ŏ      | 11       | 12       | 0.020         | 0.030                                                                           | 0.030                                                                              | 0.010                                                                     | 0.01 0                                                                | J 0.040                                                              |                                                                   |                                                                    | 0.020                                                                         | 0.040                                                                    |
| Methane                                                                                                                      | UG/L         | 4432.6        |           |                      | õ      | 3        | 3        |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Ethane                                                                                                                       | UG/L         | 12.59         | 100.0%    |                      | õ      | 3        | 3        |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Ethene                                                                                                                       | UG/L         | 10.41         | 100.0%    |                      | ō      | 3        | 3        |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| B                                                                                                                            | nM/L         | 50            | 100.0%    |                      | ō      | 3        | 3        |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |
| Ferrous Iron                                                                                                                 | MG/L         | 2.43          |           |                      | õ      | 9        | 11       | 1.47          | 0.13                                                                            | 0.03                                                                               | 0.02                                                                      | 0                                                                     | 1.74                                                                 |                                                                   |                                                                    |                                                                               | 1.69                                                                     |
| , choda iron                                                                                                                 | MOL          | 2.45          | 0.1070    |                      | -      |          |          |               |                                                                                 |                                                                                    |                                                                           |                                                                       |                                                                      |                                                                   |                                                                    |                                                                               |                                                                          |

•

#### Seneca Army Depot Activity Ash Landfill Groundwater Remediation Round 4 Groundwater Sampling

| STUDY ID:                                             |              |               |                  |          |        |          |          | ASH TRENCH     | ASH TRENCH                          | ASH TRENCH      | ASH TRENCH     |
|-------------------------------------------------------|--------------|---------------|------------------|----------|--------|----------|----------|----------------|-------------------------------------|-----------------|----------------|
| LOC ID:                                               |              |               |                  |          |        |          |          | MW-T1          | MW-T3                               | MW-T6           | MW-T9          |
| SDG:                                                  |              |               |                  |          |        |          |          | 76497          | 76497                               | 76497           | 76497          |
| SAMP. DEPTH TOP:                                      |              |               |                  |          |        |          |          | 9              | 8                                   | 10              | 10             |
| SAMP. DEPTH BOT:                                      |              |               |                  |          |        |          |          | 9<br>WATER     | 8<br>WATER                          | 10<br>WATER     | 10<br>WATER    |
| MATRIX:                                               |              |               |                  |          |        |          |          | 05-Jan-00      | 05-Jan-00                           | 05-Jan-00       | 05-Jan-00      |
| SAMP. DATE:<br>SAMP_ID:                               |              |               | FREQUENCY        | NYSDEC   | NUMBER | NUMBER   | NUMBER   |                | TR2069                              | TR2070          | TR2071         |
| FIELD QC CODE:                                        |              |               | OF               | CLASS GA | ABOVE  | OF       | OF       | SA             | SA                                  | SA              | SA             |
| PARAMETER                                             | UNIT         | MAXIMU        | DETECTION        |          | TAGM   | DETECTS  | NALYSE   | VALUE Q        | VALUE Q                             | VALUE Q         | VALUE Q        |
| Volatile Organic Compounds                            |              |               |                  |          |        |          |          |                |                                     |                 |                |
| 1,1,1-Trichloroethane                                 | UG/L         | 0             | 0.0%             | 5        | 0      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| 1,1,2,2-Tetrachloroethane                             | UG/L         | 0             | 0.0%             | 5        | 0      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U<br>3 U     |
| 1,1,2-Trichloroethane                                 | UGA          | 4             | 14.3%            | -        | 0      | 2        | 14<br>14 | 4 U<br>4 11    | 3 U<br>3 U                          | 10              | 3 U            |
| 1.1-Dichloroethane<br>1.1-Dichloroethene              | UG/L<br>UG/L | 0             | 0.0% ·<br>0.0%   | 5<br>5   | 0      | 0        | 14       | 40             | 3 U                                 | 1 U             | 30             |
| 1,2,4-Trichlorobenzene                                | UG/L         | 5             | 14.3%            | 5        | Ď      | 2        | 14       | 4 0            | 3 U                                 | 1 U             | 3 U            |
| 1,2-Dibromo-3-chloropropane                           | UGAL         | õ             | 0.0%             | •        | õ      | ō        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| 1,2-Dibromoethane                                     | UGA.         | 4             | 14.3%            |          | ō      | 2        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| 1,2-Dichlorobenzene                                   | UG/L         | 0             | 0.0%             | 4.7      | 0      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| 1,2-Dichloroethane                                    | UG/L         | 5             | 14.3%            | 5        | 0      | 2        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| 1,2-Dichloropropane                                   | UG/L         | 5             | 14.3%            | 5        | 0      | 2        | 14       | 4 U            | 3 U                                 | 10              | 30             |
| 1,3-Dichlorobenzene                                   | UG/L         | 0             | 0.0%             | 5        | 0      | 0.       | 14       | 4 U<br>4 U     | 3 U<br>3 U                          | 1 U<br>1 U      | 3 U<br>3 U     |
| 1,4-Dichlorobenzene                                   | UGA.         | 5             | 14.3%            | 4.7      | 1      | 2        | 14<br>14 | 4 U<br>22 UJ   |                                     |                 | 14 UJ          |
| Acetone                                               | UGAL         | 25            | 7.1%<br>14.3%    | 1        | 0<br>2 | 2        | 14       | · 4 U          | 3 U                                 | 1 U             | 3 U            |
| Benzene<br>Bromochloromethane                         | UGAL         | . 0           | 0.0%             |          | 0      | 0        | 14       | 4 U            | 30                                  | 1 U             | . 30           |
| Bromodichloromethane                                  | UGAL         | ő             | 0.0%             |          | õ      | õ        | 14       | 4 U            | 3 U                                 | 1 U             | 3 Ū            |
| Bromoform                                             | UGAL         | 4             | 14.3%            |          | ō      | 2        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Carbon disulfide                                      | UG/L         | 0             | 0.0%             |          | Ó      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Carbon tetrachloride                                  | UG/L         | 4             | 14.3%            | 5        | 0      | 2        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Chlorobenzene                                         | UG/L         | 0             | 0.0%             | 5        | 0      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Chlorodibromomethane                                  | UG/L         | 0             | 0.0%             |          | 0      | 0.       | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Chloroethane                                          | UGIL         | C             | 0.0%             | 5        | 0      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Chloroform                                            | UGA.         | 0             | 0.0%             | 7        | 0      | 0        | 14<br>14 | 4 U            | 3 U<br>                             | 1 U<br>10       | 3 U<br>44      |
| Cis-1,2-Dichloroethene                                | UG/L         | 72            | 92.9%            | 5<br>5   | 9      | 13<br>2  | 14       | 72<br>4 U      | 48<br>3 U                           | 10<br>1 U       | 44<br>3 U      |
| Cis-1,3-Dichloropropene                               | UG/L         | 4             | 14.3%<br>0.0%    | 5        | 0      | 0        | 14       | 4 U            | 30                                  | 1 U             | 3 U            |
| Ethyl benzene<br>Methyl bromide                       | UG/L<br>UG/L | 0             | 0.0%             | 5        | ő      | 0        | 14       | 4 U            | 3 ป                                 | 1 U             | 3 U            |
| Methyl butyl ketone                                   | UGA          | 0             | 0.0%             |          | ő      | õ        | 14       | 22 UJ          |                                     |                 |                |
| Methyl chloride                                       | UGAL         | ő             | 0.0%             | 5        | ō      | ō        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Methyl ethyl ketone                                   | UGA          | 0             | 0.0%             | 50       | 0      | 0        | 14       | 22 UJ          | 14 UJ                               | 5 U.            |                |
| Methyl isobutyl ketone                                | UG/L         | 0             | 0.0%             |          | 0      | 0        | 14       | 22 U           | 14 U                                | 5 U             | 14 U           |
| Methylene chloride                                    | UG/L         | 0             | 0.0%             | 5        | 0      | 0        | 14       | 9 U            | 6 U                                 | 2 U             | 6 U            |
| Styrene                                               | UG/L         | 0             | 0.0%             |          | 0      | 0        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Tetrachloroethene                                     | UG/L         | 5             | 14.3%            | 5        | 0      | 2        | 14       | 4 U<br>4 U     | 3 U<br>3 U                          | 1 U<br>1 Ư      | 3 U<br>3 U     |
| Toluene                                               | UG/L         | 0             | 0.0%             | 5<br>5   | 0      | 0        | 14<br>14 | 4 U<br>4 U     | 3 U<br>3 U                          | 10              | 3 U<br>3 U     |
| Total Xylenes                                         | UG/L         | 0             | 0.0%<br>0.0%     | 5        | 0      | 0        | 14       | 4 U            | 30                                  | 1 U             | 3 U            |
| Trans-1,2-Dichloroethene<br>Trans-1,3-Dichloropropene | UG/L<br>UG/L | 0             | 0.0%             | 5        | ō      | ő        | 14       | 4 U            | 3 U                                 | 1 U             | 3 U            |
| Trichloroethene                                       | UGAL         | 480           | 42.9%            | 5        | 3      | 6        | 14       | 18             | 2 J                                 | 1 U             | 32             |
| Vinyl chloride                                        | UG/L         | 4             | 14.3%            | 2        | 2      | 2        | 14       | 4 U            | 3 ป                                 | 1 Մ             | 3 U            |
| ·                                                     |              |               |                  |          |        |          |          |                |                                     |                 |                |
| Metals                                                |              |               |                  |          |        |          |          |                |                                     |                 |                |
| Calcium                                               | UG/L         | 144000        | 85.7%            |          | 0      | 12       | 14       | 133000         | 73300                               | 52800           | 25800          |
| Iron                                                  | UG/L         | 7060          | 85.7%            | 300      | 7      | 12       | 14       | 129 J<br>15200 | 2700 J<br>16700                     | 99.3 J<br>13400 | 1240 J<br>5880 |
| Magnesium                                             | UGA,         | 20400         | 85.7%            |          | 0      | 12       | 14<br>14 | 15200<br>3.7 J | much freenables inspectors/Merchany | 13400 267       | 226            |
| Manganese                                             | UG/L         | 682           | 85.7%<br>85.7%   | 300      | 1      | 12<br>12 | 14       | 3.7 J<br>932 J | 682<br>1120 J                       | 1580 J          | 1720 J         |
| Potassium                                             | UG/L         | 3020<br>20100 | 85.7%            |          | 0      | 12       | 14       | 9260           | 9250                                | 19900           | 17100          |
| Sodium                                                | UG/L         | 20100         | 00.776           |          | v      |          | 14       | 0200           | 0200                                |                 |                |
| Other Analytes                                        |              |               |                  |          |        |          |          |                |                                     |                 |                |
| Chloride                                              | MG/L         | 36,9          | 100.0%           |          | 0      | 12       | 12       | 16.7           | 17.1                                | 34.6            | 8.9            |
| Sulfate                                               | MG/L         | 141           | 100.0%           |          | 0      | 12       | 12       | 106.           | 106.                                | 139.            | 16.5           |
| Nitrate as N                                          | MG/L         | 0,6           | 41.7%            | 10       | 0      | 5        | 12       | .3             | 0.2 U                               | .2              | 0.2 U          |
| Total Dissolved Solids                                | MG/L         | 551           | 100.0%           |          | 0      | 12       | 12       | 500.           | 334.                                | 314.            | 162.           |
| pH                                                    |              | 9,55          | 100.0%           |          | 0      | 12       | 12       | 7,27           | 7.53                                | 8.08            | 7.90           |
| Alkalinity as CaCO3                                   | MG/L         | 332           | 100_0%           |          | 0      | 12       | 12       | 271            | 132                                 | 41              | 88             |
| Phosphate                                             | MG/L         | 0.09          | 91.7%            |          | 0      | 11       | 12       | 0,020          | 0.020                               | 0.040<br>4432.6 | 0.090          |
| Methane                                               | UG/L         | 4432.5        | 100.0%           |          | 0      | 3        | 3        |                | 2567.8                              | 4432,6          | 4374           |
| Ethane                                                | UG/L         | 12.59         | 100.0%<br>100.0% |          | 0 ·    | 3        | 3<br>3   |                | 2.32                                | 3.28            | 10.41          |
| Ethene .<br>H                                         | UG/L<br>nM/L | 10.41<br>50   | 100.0%           |          | 0      | 3        | 3        |                | >50                                 | >50             | >50            |
| H<br>Ferrous Iron                                     | MG/L         | 2,43          | 81.8%            |          | 0      | 9        | 11       | 0              | 2.43                                | 0.18            | 0.16           |
| renous non                                            | MG/L         | 2.43          | 01.078           |          |        | 3        |          | v              |                                     | ••              |                |

## Appendix D Correspondence with ETI

- Memorandum of October 15, 1998
- Memorandum of October 29, 1998
- Memorandum of December 18, 1998
- Memorandum of March 2, 2000
- Article on Diffusion Samplers sent on March 6, 2000
- Memorandum of March 20, 2000
- Memorandum of March 24, 2000
- Memorandum of April 20, 2000
- Memorandum of May 20, 2000

| enviro <b>metal</b><br>technologies<br>inc. | 42 Arrow Road<br>Guelph, Ontario<br>Canada N1K 1S6<br>Tel (519) 824-0432<br>Fax (519) 763-2378 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|
| To:                                         | Jackie Travers                                                                                 |
|                                             | clo Parsons Engineering Science                                                                |
| Fax:                                        | 781-401-2043                                                                                   |
| Date:                                       | 10/15/98                                                                                       |
| From:<br>Email:                             | Denise Burgess, Remediation Engineering Ext. 233<br>dburgess@beak.com                          |
| Re:                                         | 31317.10                                                                                       |

 $1 \text{ of } \underline{3}$ 

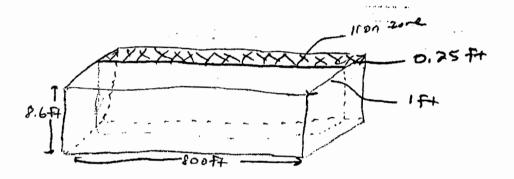
Jackie,

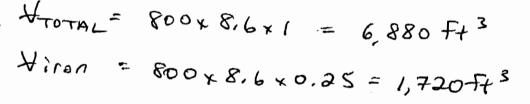
Pages:

Further to our conversation l'de attached iron volume calculations for a continuous wall scenario.

I've looked at the NYSDOT 703-07 Concrete sand grain size distribution you supplied us and it is very similar to sand that we have used at other sites For iron/sand mixes. Therefore this concrete sand is reasonable to use For the iron/sand mix. Any other questions, don't hesitate to call ! Original To Follow: Mail Courier No Denise

This transmission contains information that may contain confidential and/or legally privileged. It is intended for use only by the person to whom it is directed. If you have received this in error, please notify us by telephone immediately. Thank you.


Since Inc.  
by project no. 21317.10 date in [1557]  
adject date disclosed  
Ash Landfill  
Volume of Iron Required for Continuous  
Wall Scenario  


$$V = 60.5$$
 Fy = 0.17 Ft/d  
Residence Time Required = 1.25 days Phane: Denue said  
length of plume = 800 Ft grilled in Rit 7.125.  
Noved Weene  
soft. thickness = 8.6 Ft should be used.  
thickness of iron required = V x residence time  
= 0.17 Ft/d x 0.25 d  
 $= 0.21$  Ft  
Cossume Flow through thickness will be  
0.25 Ft across extrine length of plume.  
 $= 1,720$  Ft<sup>3</sup>

•

|   | inc.    |         |                                    |              |
|---|---------|---------|------------------------------------|--------------|
|   |         | by      | project no.                        | date         |
| đ |         |         | checked by                         | date checked |
|   | must be | a minin | n Isand mix<br>num of<br>n the mix | 20% 4        |

For example, assuming wide trench : a 1 F1





"/. by volume iron = 1720 x100 = 25%

. The minimum 20% by volume iron requirement is satisfied.

. ) ( ) (\_\_) · ·



To:

42 Arrow Hoad Guelph, Ontario Canada N1K 186 Tei (519) 824-0432 Fax (519) 763-2378

Jarkie Travers Engineering Science Parsons clo 781-401-2043 78

Date:

From: Email:

Fax:

Denise Burgess, Remediation Engineering Ext. 233 dburgess@beak.com

317.10

1 of

Re:

----

Pages:

Jackie,

Please Find attached a memo describing all residence time calculations provided to you thus Far. I've also dug up some plan view maps of monitoring well configurations used for continuous iton walls. IF you have any questions, get in touch.

Regards, Denise

### Original To Follow: Mail Courier No

This transmission contains information that may contain confidential and/or legally privileged. It is intended for use only by the person to whom it is directed. If you have received this in error, please notify us by telephone immediately. Thank you.



v

5 V .

,

# enviro**metal** technologies inc.

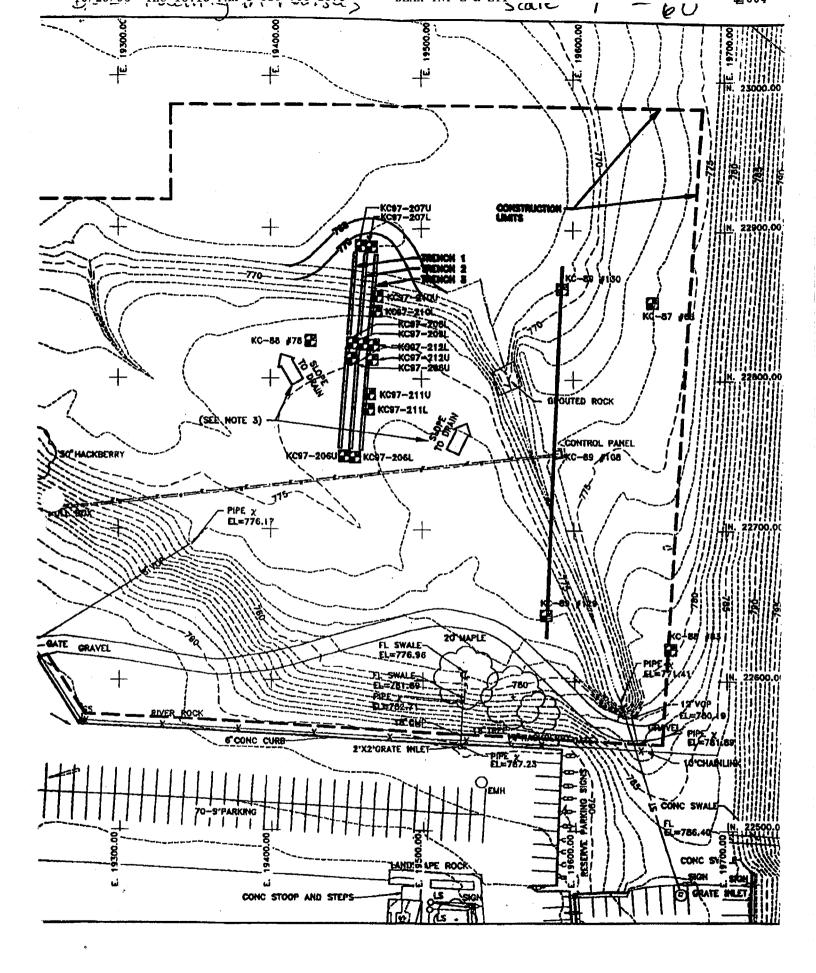
THO TOTTA LINE ' OTO

| То:   | Jackie Travers, Parsons Engineering Science                      |
|-------|------------------------------------------------------------------|
| From: | John Vogan, EnviroMetal Technologies Inc.                        |
|       | Denise Burgess, EnviroMetal Technologies Inc.                    |
| Date: | 29 October 1998                                                  |
| Re:   | Residence Time Calculations for the Ash Landfill Site - 31317.88 |

I have attached residence time calculations for the data sent to us on October 13, 1998 for wells PT-24, MW-29 and MW-27. Also included in the table are residence times calculated previously using data from wells PT17, MW-28 and MW-53.

|              | MCL        | Half | Well Location and Concentration |                 |       |       |       |       |       |  |  |  |
|--------------|------------|------|---------------------------------|-----------------|-------|-------|-------|-------|-------|--|--|--|
| VOC          | VOC (µg/L) |      | PT17                            |                 | MW-28 | MW-53 | PT-24 | MW-29 | MW-27 |  |  |  |
| TCE          | 5          | 3    | 260                             | 190             | 35    | 4     | 7     | 5     | nd    |  |  |  |
| CDCE         | 5          | 6    | 53                              | 17              | 53    | 51    | 140   | 150   | nd    |  |  |  |
| VC           | 2          | 6    | 14                              |                 |       |       |       |       | nd    |  |  |  |
| RT<br>(hrs)  |            |      | 30                              | 25 <sup>.</sup> | 23    | 21    | 29    | 30    |       |  |  |  |
| RT<br>(days) |            |      | 1.25                            | 1.04            | 0.96  | 0.88  | 1.21  | 1.25  |       |  |  |  |

 Table 1:
 Residence Time Requirements, Ash Landfill


42 Arrow Road Guelph, Ontario Canada N1K 1S6 Tel: (519) 824-0432 Fax: (519) 763-2378

- -

#### Memorandum

Based on the above table, a residence time of 1.25 days should ensure that all VOCs be remediated to below maximum contaminant levels. For a continuous wall scenario, a residence time of 1.25 days should be used to determine the volume of iron required. As sent to Parsons on October 15, 1998, the volume of iron required for a continuous wall configuration assuming a flow velocity of 0.17 fl/day, a plume width of 800 ft and a saturated thickness of 8.6 ft would be on the order of 1,700 ft<sup>3</sup>.

\\SKYWALKER\PC\_USERS\DBurgess\projects300\31317\restime.doc

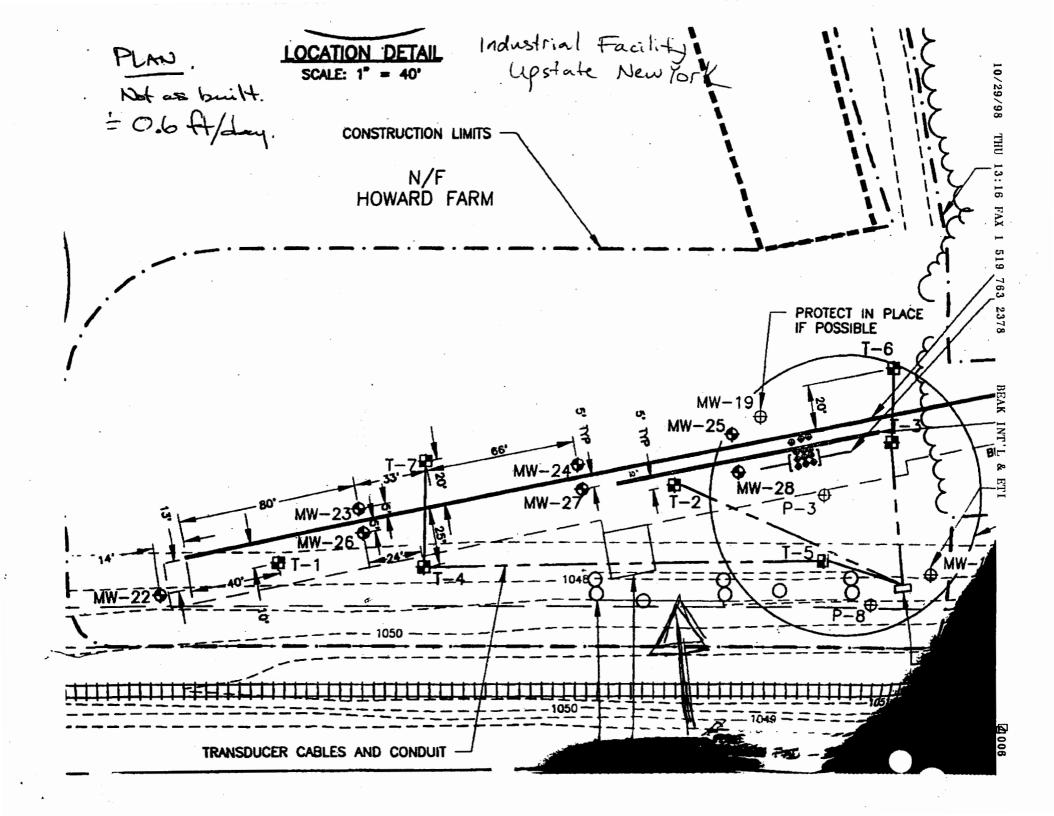


# **SECTION**TWO

1

### 2.1 MONITORING WELL NETWORK

Existing monitoring well KC88-78, and a series of new monitoring wells will be utilized to provide groundwater data necessary to satisfy the monitoring objectives described in Section 1.1. The location of existing well KC88-78, and the new monitoring wells are shown on Figure 1. Monitoring well details are provided on Figure 2.


Upgradient monitoring will be performed utilizing existing well KC88-78, which is a dual completion with wells screened in both the upper (clay) and lower (basal gravel) units. KC88-78 is located relatively close to the center of the plume and will provide adequate data on groundwater conditions in the clay and the basal gravel immediately upgradient of the iron treatment wall system.

Evaluation of whether contamination bypasses the system will be performed utilizing a series of four new monitoring wells (KC97-206U, KC97-206L, KC97-207U, and KC97-207L) to be installed by the contractor following construction of the iron treatment wall system. These monitoring wells will be installed at two locations immediately side gradient of each end of Trench 1 as shown on Figure 1. One well screened in the basal gravel and one well screened in the clay will be installed at each location.

Evaluation of contaminant concentrations between trenches will be performed utilizing a series of three new monitoring wells to be installed by the contractor following construction of the iron treatment wall system. The monitoring wells will be installed at two locations. The first location will be between Trench 1 and Trench 2, directly downgradient of existing monitoring well KC88-78 as shown on Figure 1. Two wells (KC97-208U and KC97-208L) will be installed at this location with one well screened in the basal gravel and one well screened in the clay. The wells will be located as close as possible to the downgradient iron/aquifer interface of Trench 1 so as to provide data representative of groundwater as it exits Trench 1. As the treated groundwater exits each trench and re-enters the aquifer, VOC contaminants sorbed to the aquifer material will tend to desorb into the treated groundwater and make system evaluation difficult. Therefore, monitoring wells must be located where representative samples of treated water can best be collected. The second location will be between Trench 2 and Trench 3, directly downgradient of the wells installed between Trench 1 and Trench 2 as shown on Figure 1. One well (KC97-209L), screened in the basal gravel will be installed at this location. The well will be located as close as possible to the downgradient iron/aquifer interface of Trench 2.

Evaluation of contaminant concentrations downgradient of the iron treatment wall system will be performed utilizing a series of six new monitoring wells installed by the contractor following construction of the iron treatment wall system. The monitoring wells will be installed at three locations immediately downgradient of Trench 3, with one well screened in the basal gravel and one well screened in the clay at each location. Two wells (KC97-212U and KC97-212L), will be located directly downgradient of the wells installed between Trench 2 and Trench 3. Four wells (KC97-210U, KC97-210L, KC97-211U and KC97-211L), will be installed in two location equally spaced from wells KC97-212U and KC97-212L. Refer to Figure 1 for actual locations. The wells will be located as close as possible to the downgradient iron/aquifer interface of Trench 3 so as to provide data representative of groundwater as it exits Trench 3.

- La cara da



( )

|   | enviro <b>metal</b><br>technologies<br>inc. | 745 Bridge Street West, Suite 7<br>Waterloo, Ontario<br>Canada N2V 2G6<br>Tel: (519) 746-2204<br>Fax: (519) 746-2209                                                                   |
|---|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | To:                                         | <u>Eliza Schacht</u>                                                                                                                                                                   |
| - | Fax:                                        | <u>Parsons Eng. Science</u><br>(781) 401-2043                                                                                                                                          |
|   | Date:                                       | 21 December 1998                                                                                                                                                                       |
|   | From:<br>Email:                             | Robert Focht, Remediation Engineer, Ext. 245<br>rfocht@eti.ca                                                                                                                          |
|   | Re:                                         | Schece Army Depot - 3 1317.20                                                                                                                                                          |
|   | Pages:                                      | 1 of                                                                                                                                                                                   |
|   | Eliza -                                     | attached is a summary of the recordings<br>and observations I made during<br>installation of the treatment system<br>it Seneca Army Depot. Please<br>all me if you have any questions. |
|   |                                             | For                                                                                                                                                                                    |

## Original To Follow: Mail Courier No S-

This transmission contains information that may be confidential and/or legally privileged. It is intended for use only by the person to whom it is directed. If you have received this in error, please notify us by telephone immediately. Thank you.

. .



18 December 1998

Eliza Schacht Parsons Engineering Science, Inc. 30 Dan Road Canton, MA 02021

#### Re: Continuous Permeable Reactive Barrier Installation – 31317.20

Dear Ms. Schacht:

A full-scale permeable reactive barrier (PRB) containing granular iron was installed at the Ash Landfill, Seneca Army Depot, Romulus, New York in December 1998. During construction, EnviroMetal Technologies Inc. (ETI) staff was present to provide on-site assistance and document construction activities. This letter provides Parsons Engineering Science, Inc. (Parsons) with ETI's observations and comments on the installation.

The full-scale PRB wall is located approximately 350 ft downgradient of the source area on the Ash Landfill Site. The PRB extends approximately 650 ft north-south adjacent the fence line with the south end starting at the West Smith Farm Road. The PRB consists of a single continuous permeable wall of granular iron and sand.

The fill material used in the PRB consisted of about 48% by volume iron and the balance a local sand. The iron was 8 to 50 US standard mesh size supplied from Peerless Metal Powders and Abrasives of Detroit, Michigan in 3,000 lb superbags. The sand was supplied by DeWitt, a local cement supplier, in cement trucks. DeWitt also used the cement trucks to mix the two materials. A total of 28 trucks, each containing 11,500 lb of sand arrived on site during the 10 and 11 of December 1998. Based on a sand bulk density of 106 lb/ft<sup>3</sup> and an iron bulk density of 150 lb/ft<sup>3</sup>, each truck was loaded at the site with 5 bags of iron to give the 48% by volume required. Using the mass of each material, this is equivalent to about 57% by weight iron. The materials were mixed for 10 minutes then stockpiled on-site for use later in the day in the trench. Two additional trucks contained more sand for a 42% by volume iron

745 Bridge St. W., Suite 7 Waterloo, Ontario Canada N2V 2G6 Tel: (519) 746-2204 Fax: (519) 746-2209

mixture. This 42% by volume material and 1 to 2 truck loads of the 48% by volume material were not used in the trench. Thus, based on these values the total volume of material placed in the trench was about 5,525  $ft^3$ .

The mixture was tested for the right proportions of each material by separating the iron from the mixture with a magnet. The iron was separated two to three times to remove most of the sand particles that were entrapped as the iron was picked up by the magnet. Not surprisingly the iron volume, 50% to 60%, was greater than the sand. This occurs because some sand particles remained in the iron even after three separations and also because of the assumed bulk densities of the two materials. The iron bulk density of 150 lb/ft<sup>3</sup> used in the calculation is the density of "packed" iron, however the "loose" bulk density can be as low as 110 to 125 lb/ft<sup>3</sup>. This means that because the amount of iron added was "loose" material the volume would be greater.

It is our understanding that the moisture content of the sand was 3% to 5%, which is considered appropriate for a stockpiled iron/sand mixture left on ground surface for about 1 day or less. If a sand has too high a moisture content it can cause oxidation of the iron surface, potentially reducing its reactivity. Since the mixture was used the same day as it was mixed, the moisture content should not be an issue since little oxidation should occur. The temperature of the mixture after mixing was measured once by others to be about 110 °F. This increase in temperature over background should have been largely the result of friction during mixing of the granular material. At some sites and in bench-scale tests were 100% iron has dewatered, no noticeable temperature increase has been observed because oxidation of the iron appears to occur over several days rather than several minutes.

Construction was performed by DeWind Dewatering of Holland, Michigan using a one pass continuous trencher. Continuous trenching machines have been used for several years to install horizontal groundwater collection drains and impermeable barriers. These machines allow simultaneous excavation and backfilling without an open trench. Excavation is performed by a cutting chain immediately in front of a trench-box (boot) which extends the width and depth of the finished treatment zone. Both the cutting chain and boot are attached to the trenching machine. As the trencher moves forward, iron is added to the boot creating a continuous treatment zone. Trenchers are available to install treatment zones from 1 to 2 ft in width to depths of 25 ft. The total depth may be extended to about 35 ft by excavating a bench on which to operate the trencher.

Continuous trenching was first used to install a 100% iron PRB in 1996 at a site in North Carolina. About 450 tons of iron was placed in a trench 150 ft long and 24 ft deep in about 4

2

3

envirometal technologies inc.

FROM-ENVIROMETAL TECHNOLOGIES INC

hr. Since then, trenchers have been used for PRBs at sites in South Carolina, Oregon, Louisiana, Vermont and New York.

Seven test pits were excavated using a track-hoe to determine the depth of bedrock along the line of installation. Bedrock along the alignment varied from approximately 6 to 11 ft below ground surface (bgs) (Table 1). To ensure that no groundwater flows beneath the PRB, the PRB was extended several inches into the top of bedrock (shale). Pieces of shale were observed in the excavated material from the trencher along the entire alignment. To prevent groundwater from overflowing the treatment system, the top of the wall was constructed above the expected high water table at about 1 ft bgs. A geotextile material was placed on top of the PRB and fill material added to bring the level of the trench to ground surface.

Due to the dryness of the excavated material and the geology of the aquifer, the trench consistently remained open. This means that although the trencher's box was set to the minimum of 12 inches the trench was slightly larger due to the 14 inch cutting width of the trencher. Based on an average total depth of 8.8 ft bgs (assumed to be on average 0.5 ft below the top of shale), a top depth of 1 ft bgs, and an average width of 1.1 ft, the total volume of the excavation was 5,577 ft<sup>3</sup>, which is close to the volume of material estimated to have been placed in the trench. This suggests that no significant voids were left unfilled at depth and that the dimensions of the trench are as expected. The number of loader buckets of material added for individual sections of trench are given in Table 2. There is more uncertainty in these calculations given that not each bucket full of material was the same. In fact, on day two a different loader was used with a bucket that was bigger than the trencher's hopper. Therefore, to minimize spilling of iron, the bucket was not completely filled with iron. Note that if we assume that on average each bucket was filled to 75% capacity we arrive at the same conclusion as above (i.e. that the trench width is 1.1 ft wide, 7.8 ft in depth and 650 ft long).

About 180 ft of trenching occurred the first day (10 December 1998) before several cutting teeth were broken from the cutting chain due to buried foundation. Foundations were encountered in at least three locations over the first 250 ft of the South end of the PRB. These foundations were excavated using the back-hoe to allow the trenching to proceed. The trenching was completed on the second day. The trench was extended slightly beyond the 645 ft design to empty the hopper on the trencher of iron material.

FROM-ENVIRONETAL TECHNOLOGIES INC

4

envirometal technologies inc.

Please feel free to call if you have any questions on our observations made during the installation.

Sincerely,

EnviroMetal Technologies Inc.

Robert Focht, M.Sc., P.Eng. **Remediation Engineer** 

E:\PROJECTS\31300\31317\31317 PRB Installation Letter.doc

# Table 1: Depth to Shale Along the Alignment Measured in Test Pits

| Distance Along Alignment from the Southern End (ft) | Depth to Shale (ft) <sup>a</sup> |
|-----------------------------------------------------|----------------------------------|
| 0                                                   | 7                                |
| 125                                                 | 11                               |
| 250                                                 | 9.5                              |
| 300                                                 | ġ                                |
| 425                                                 | 7.5                              |
| 525                                                 | 6.5                              |
| 640                                                 | 6                                |
| Weighted Average <sup>b</sup>                       | 8.3                              |

5

a Measurements taken with a tape measure.

b Average weighted depth based on distance between measurements.

| Table 2: Estimated Volume and Amount of Iron/Sand Mixture Installed |  |
|---------------------------------------------------------------------|--|
|---------------------------------------------------------------------|--|

| Distance<br>from   | Estimated<br>Trench          | Number<br>of Loader<br>Buckets of | Size of<br>Loader                       | Potential<br>Volume of<br>Iron/Sand | Percentage of<br>Estimated Trench<br>Volume |                                         |  |  |
|--------------------|------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------------|-----------------------------------------|--|--|
| South End<br>(ft)  | Volume<br>(ft <sup>3</sup> ) | Iron/Sand<br>Installed            | Bucket<br>(ft <sup>3</sup> )            | Installed<br>(ft <sup>3</sup> )     | 100% of<br>Loader<br>Bucket*                | 75% of<br>Loader<br>Bucket <sup>b</sup> |  |  |
| 0-75               | 635                          | 16                                | 67.5                                    | 1,080                               | 170                                         | 128                                     |  |  |
| 75-100             | 256                          | 3                                 | 67.5                                    | 202.5                               | 79                                          | 59                                      |  |  |
| 100-125            | 278                          | 5                                 | 67.5                                    | 337.5                               | 122                                         | 91                                      |  |  |
| 125-150            | 285                          | 6                                 | 67.5                                    | 405                                 | 142                                         | 107                                     |  |  |
| 150-175            | 276                          | 4                                 | 67.5                                    | 270                                 | 98                                          | 73                                      |  |  |
| 175 005            | 528                          | 2                                 | 67.5                                    | 135                                 | 164                                         | 123                                     |  |  |
| 175-225<br>225-325 | 528                          | 9                                 | 81                                      | 729                                 | 104                                         | 125                                     |  |  |
| 225-325            | 962                          | 12                                | 81                                      | 972                                 | 101                                         | 76                                      |  |  |
| 325-350            | 221                          | <b>5</b> ·                        | 81                                      | 405                                 | 183                                         | 137                                     |  |  |
| 350-375            | 213                          | 3                                 | 81                                      | 243                                 | 114                                         | 86                                      |  |  |
| 375-400            | 205                          | 5                                 | 81                                      | 405                                 | 198                                         | 148                                     |  |  |
| 400-425            | 197                          | 3                                 | 81                                      | 243                                 | 124                                         | 93                                      |  |  |
| 425-450            | 189                          | 3                                 | 81                                      | 243                                 | 129                                         | 96                                      |  |  |
| 450-475            | 182                          | 2                                 | 81                                      | 162                                 | 89                                          | 67                                      |  |  |
| 475-500            | 175                          | 3                                 | 81                                      | 243                                 | 139                                         | 104                                     |  |  |
| 500-525            | 168                          | 3                                 | 81                                      | 243                                 | 144                                         | 108                                     |  |  |
| 525-550            | 164                          | 2                                 | 81                                      | 162                                 | 99                                          | 74                                      |  |  |
| 550-575            | 161                          | 3                                 | 81                                      | 243                                 | 151                                         | 114                                     |  |  |
| <b>575-60</b> 0    | 158                          | 2                                 | 81                                      | 162                                 | 103                                         | 77                                      |  |  |
| 600-625            | 155                          | 3                                 | 81                                      | 243                                 | 157                                         | 118                                     |  |  |
| 625-650            | 152                          | 3                                 | 81                                      | 243                                 | 160                                         | 120                                     |  |  |
| Total              | 5,559                        |                                   | • • • • • • • • • • • • • • • • • • • • | 7,371                               |                                             |                                         |  |  |
| Average            |                              |                                   |                                         |                                     | 133                                         | 100                                     |  |  |

a Assumes loader bucket filled to 100% capacity (i.e. either 67.5 or 81 ft<sup>3</sup>) on average.
b Assumes loader bucket filled to 75% capacity (i.e. either 50.6 or 60.8 ft<sup>3</sup>) on average.

03-MAR-00 03:53PM FROM-ENVIROMETAL TECHNOLOGIES INC



envirometal technologies inc.

# Memorandum

| To:   | Anna Fodor, Jacqueline Travers, Parsons Engineering Science, Inc. Fax: 781-401-2575                       |
|-------|-----------------------------------------------------------------------------------------------------------|
| From: | Andrzej Przepiora, John Vogan, EnviroMetal Technologies Inc.                                              |
| Date: | 2 March 2000                                                                                              |
| Re:   | Comments on April 1999 - January 200 Groundwater Monitoring Data,<br>Ash Landfill, Romulus, NY – 31317.77 |

EnviroMetal Technologies Inc. (ETI) has received from Parsons Engineering and Science, Inc. (Parsons) an annual groundwater monitoring results for an in-situ permeable reactive barrier (PRB) treatment system installed at the Ash Landfill in Romulus, NY. The data included monthly groundwater level measurements (April 1999 to January 2000) and quarterly (April 1999, June 1999, September 1999 and January 2000) concentrations of chlorinated volatile organic compounds (CVOCs). Further to our discussion on 22 February 2000, this memorandum provides ETI's comments on the monitoring results and also answers the specific questions addressed by Parsons ES in the memorandum of 11 February 2000.

The iron PRB was installed in December 1999 in a continuous wall configuration. The wall contains a 1-ft thick zone of 50% iron/sand mix with a wall length of 640 ft and 8 to 12 ft in depth. The monitoring well network consists of 3 transects across the treatment system (Figure 1). Each transect is composed of three monitoring wells located 2.5 ft upgradient, inside and 2.5 ft dowgradient of the iron wall.

### 1.0 Groundwater flow through the wall

Table 1 shows the hydraulic head differences between the monitoring wells for the 10-month monitoring period. Water level data indicate that flow through the treatment system is not uniform. It appears that water flows slower in the northern part of the wall than in the southern part. Also, some of the water level measurements in the northern and middle well transects show intermittent reverse hydraulic gradients between the wall and the downgradient wells, suggesting flows into the wall from the downgradient aquifer. Comparing water levels inside the wall, a pronounced gradient from N to S along the wall appears to occur (Table 1).

745 Bridge St. W., Sulte 7 Waterloo, Ontario Canada N2V 2G6 Tel (519) 746-2204 Fax (519) 746-2209

The lateral flow in the wall may be an effect of a high permeability zone located in the vicinity of the southern transect. Figure 2 shows that the magnitude of the lateral gradient in the wall was inversely proportional to the groundwater water level in the middle well (MWT-5). Because the gradient is steepest at times of low water level, this may suggest that the high permeability zone is narrow, near the base of the trench and has limited capacity. This zone may be associated with the foundation remains encountered in the southern part of the trench during wall emplacement. From the 1994 site groundwater table maps, a narrow E-W regional higher conductivity zone along West Smith Farm Rd could be interpreted. The presence of a high permeability zone intersected by the southern part of the wall is also consistent with the high TCE concentrations in this part of the trench (Figure 3).

### 2.0 VOC concentrations

Figure 3 summarizes TCE and cDCE results of four monitoring events from April 1999 to January 2000. The most pronounced feature in the concentration trends along the monitoring well transects is an initial decrease in VOC concentrations in the iron wall, followed by a concentration increase in the downgradient wells. This feature has been commonly observed in the initial stages of iron wall operation at other sites. The cause of the elevated concentrations in the downgradient wells is most likely desorption and/or incomplete flushing in the silty/clayey material. For VOC data interpretation, ETI considered only the results from the wells located upgradient and inside the iron wall.

TCE concentration decreased to below detection limits in all wells located in the wall, which would suggest that the wall is working as designed. However, the trends in cDCE concentration are surprisingly different from those of TCE. In most of the iron wells the cDCE concentration remained above the MCL level of 5  $\mu$ g/L; in two events at the south end the cDCE concentration increased relative to the inflowing concentration values. There may be several reasons (either alone or in combination) why the cDCE concentration is not reduced in the iron wall, including:

1) insufficient residence time;

2) insufficient iron reactivity; and

3) sampling artifacts; and

4) insufficient iron present in the mixture.

These three issues are discussed below.

#### Residence time

In a memorandum of 29 October 1998 ETI specified that a residence time (RT) of 1 to 1.25 days in the reactive zone (100% iron) would be required to degrade the VOCs to below DWQs. For a 50% iron/sand mix, the residence time would need to be doubled to about 2.5

days. In the same memorandum a "safety factor of two" was also suggested, giving the total recommended RT of 5 days.

Table 2 shows the RT calculated based on the detected hydraulic gradients across the wall and an uniform hydraulic conductivity of till material of 1.03 ft/day obtained by Parsons from a field test. All but one calculated RT values exceeded the design value implying that sufficient residence times were provided in the wall (Table 2). However, the velocity calculations may be unreliable because they are based on one uniform hydraulic conductivity value. As discussed in Section 1.0, water level measurements indicate that the conductivity may vary in the aquifer along the wall.

#### Iron reactivity

A bench-scale test using site water and the iron material was not performed for the Ash Landfill PRB. Instead, half-life (HL) values of 3 hrs for TCE and 6 hrs for cDCE from the ETI database were used for the PRB design. Figure 4 shows the typical molar conversion rates in the TCE-cDCE-VC system. Using these conversion rates, the field measured inflowing concentrations and the above half-life values, VOC degradation can be simulated (Figure 5). As seen on Figure 5a, simulated concentrations do not correlate well to the values obtained from the PRB. For example, in June 1999 the cDCE concentrations in the southern wall was 42 µg/L but the TCE was not detected. According to the design simulation (Fig. 5a), TCE concentration would be in the order of 40  $\mu$ g/L when cDCE concentration reached 42  $\mu g/L$ .

In order to fit the field data the cDCE half-life would need to be 5 times higher than the halflife for TCE (Figure 5b). The actual half-lives values of TCE and cDCE can not be discerned without a reliable velocity estimate.

The half-life values for TCE and cDCE can be back calculated from the field data by inputting the field concentrations and residence times to the degradation model. Table 2 shows that the calculated half-life values for cDCE show a large variation and are much higher than the database values (usually less than 0.5 days). These values indicate that the velocity through the wall is likely unreliable.

Increased pH and decreased Eh measured across all transects indicate that iron corrosion takes place inside the wall. Increased levels of hydrocarbons in the PRB wells also indicate that VOCs are being degraded. Based on these measurements and observed TCE degradation we conclude that the iron should be reactive enough to promote the degradation of the 25-75  $\mu$ g/L cDCE observed in the upgradient aquifer.

### Sampling artifacts

Comparing the cDCE trends in the southern transect in September 1999 and January 2000, it appears that the cDCE degradation was higher and thus residence time was longer in

September. However, the water level indicate the opposite: higher gradients and velocity (thus a shorter residence time) in September. The fact that there is no apparent relationship between cDCE concentration trends and the hydraulic gradients (flow velocities) suggests that the elevated cDCE concentrations in the wall may, at least partially, be influenced by sampling artifacts.

There is a possibility that the samples collected inside the wall are not representative of the groundwater fully treated with iron. A monitoring well which is not vertical and shifted toward the upgradient side of the wall, may be screened in the zone much closer to the downgradient side than indicated by the riser location. For example, a 3° deviation from plumbness would account for about 0.7 ft shift laterally at the bottom of a 13 ft well.

Sample results may also be influenced by the complicated flow paths in the wall. In some months, the groundwater levels indicate flow into the trench from the downgradient side in the northern and central part of the trench (Table 1). If this were occurring, the collected sample would not represent water treated by the full iron thickness.

There is also a possibility that the sampled water in the southern part of the wall comes mostly from the high conductivity zone, where the residence time is not adequate. Based on the information from Parsons, the wells were purged before sampling. It is likely that the water recharging the wells after the initial purging comes mostly from the high conductivity zone, making the VOC reading appear higher.

### 3.0 Specific answers to questions addressed by Parsons ES in the memorandum of 11 February 2000

1. Based on Eh and pH values, and small amount of water mounding, is it possible that iron oxide is precipitating in the iron wall, reducing its effectiveness? Is pH adjustment an option to avoid this?

An increase pH and decrease in Eh are the effects of iron corrosion reaction:

$$Fe^{\circ} + 2H_2O \rightarrow Fe^{2+} + H_2 + 2OH^{-}$$

and are commonly observed in the iron systems. In many site waters, this reaction causes the pH to increase to about 9 to 10. As pH increases, iron hydroxide  $(Fe(OH)_2)$  forms to counteract the formation of OH. In addition, bicarbonate  $(HCO_3)$  in solution converts to carbonate  $(CO_3^2)$  to further buffer this pH increase, leading to precipitation of carbonate minerals. Formation of precipitates may cause some loss iron porosity in the long run, but should not have an influence on a system that has been operating for one year only.

The seasonal groundwater level fluctuations in the wall were significant. In fact, in October 1999 more than 60% of the iron mix in the wall was not water saturated. While we expect

4

that iron oxidation in the unsaturated (temporary) zone could cause a reduction in iron effectiveness, we would expect to see this effect reflected in both TCE and cDCE concentrations. A few years ago ETI conducted a qualitative test on iron material abandoned on the ground after a field installation. This material was exposed to the elements for more than a year. Although the iron material was covered with oxides, a laboratory test showed that some reactivity was maintained.

A recent study showed that pH adjustment did not influence the amount of precipitates forming in the iron system (Mackenzie et al., 1999). The pH control (pH range 7.2 - 7.8) was achieved in the study by addition of 15% of iron sulfide to the iron.

2. We have observed a decrease in calcium concentration and alkalinity as water enters the wall. Could calcite be forming within the wall, causing fluctuation in its effectiveness? We don't have strong evidence that there is a loss in wall porosity (no mounding), however, we don't know why wall's effectiveness varies.

As indicated in the previous answer, bicarbonate  $(HCO_3)$  in solution converts to carbonate  $(CO_3^2)$  to further buffer this pH increase:

### $HCO_3^- \rightarrow CO_3^{2*} + H^+$

The carbonate then combines with cations ( $Ca^{2+}$ ,  $Fe^{2+}$ ,  $Mg^{2+}$ , etc.) in solution to form mineral precipitates like calcium carbonate:

$$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_{3(s)}$$

Again, we don't expect the amount of carbonates formed in the system during one year of operation could have had any effect on the system performance. The maximum amount of the formed carbonates can be calculated based on a few assumptions (an iron/sand porosity of 40%, a groundwater velocity of 0.2 ft/day and an iron/sand zone thickness of 1 ft). The rate of porosity loss per pore volume of flow in the field is calculated below using these assumptions, and equated to an annual loss by assuming that the maximum flow rate through the system will be about 73 pore volumes (PV)/year (0.2 ft/day + 1 ft/PV × 365 day/yr). At an assumed field porosity of 0.4, 1 cm<sup>3</sup> of granular iron/sand contains 0.4 mL of water. The maximum (April 1999, MWt2 - MWT-3) measured difference in influent/effluent calcium concentration in the wall was 206 mg/L (5.15 mmol/L). Therefore, about 0.15 mmol/yr (0.0004 L × 5.15 mmol/L/PV × 73 PV/yr) of calcite may precipitate in 1 cm<sup>3</sup> of the iron/sand mix. The calcite precipitation rate needs to be equated to the volume of precipitate generated in 1 cm<sup>3</sup> would be about 0.0055 cm<sup>3</sup>/year (0.15 mmol/yr × 36.9 cm<sup>3</sup>/mol + 1,000 mmol/mol). This volume of precipitate would equate to about 1.4% annual porosity loss.

3. Would you recommend core sampling at this site to better interpret our varying results?

\* Porosity loss calculations have been updated and attached to the " Ond of this Hemorandum.

### FRUM-ENVIRUMEIAL IECHNULUWIES INC

### envirometal technologies inc.

We feel that core sampling would not provide any valuable information for current data interpretation. However, if any cores remain from the wall installation, than a simple magnetic separation test could be undertaken on core samples to confirm the % of iron in the south end meets the design value.

4. We have observed increases in methane concentration in the wall, which is expected. Are you familiar with any sites where methane has been collected for reuse?

We are not familiar with any efforts with methane recovery at iron wall installations. Considering that methane solubility is about 20 mg/L (1 atm., 20° C) and the highest methane concentration detected in the wall was less than 1 mg/L, we are unsure of the economic viability of methane recovery.

5. What are your recommendations for improving the effectiveness of this trench?

Our recommendations are given below.

### 4.0 Summary and Recommendations

Flow through the PRB is not uniform, with a significant flow along the trench from north to south. A high permeability zone may be present in the aquifer and intersected by the southern part of the wall.

TCE is degraded at all well transects to below the target levels. Monitoring results indicate that cDCE was not reduced sufficiently in the wall. It is difficult to pinpoint one reason for the cDCE concentration trends. The residence time in the wall may be insufficient due to the presence of the high permeability zone. Also, there is a possibility that sampling artifacts contribute to the elevated cDCE concentrations inside the wall. As we understand from your comments in our conference call, regardless of the (one or more) reason for exceedance of the cDCE criterion downgradient of the wall, a remedy for these exceedances need to be developed in the near future.

ETI recommends the following steps to further understand the processes undergoing in the wall and provide data for use in addressing the cDCE remaining downgradient of the wall:

- checking the plumbness of the wells in the iron;
- changing the sampling protocol to "diffusion" or "micropurging" sampling (especially in the wall). Selected references are attached. This change in protocol would hopefully allow us to evaluate the effects of sampling artifacts on existing PRB performance; and
- · conducting slug test in the aquifer wells of the monitoring transects, especially at the south end. The resulting hydraulic data will be useful not only in evaluating current

6

7

### envirometal technologies inc.

performance, but also in providing a basis for design of a second downgradient system (i.e. the groundwater velocity needed for design);

### 5.0 References

Mackenzie, P.D., Horney, D.P. and Sivavec, T.M. 1999. Mineral precipitation and porosity loses in granular iron columns. Journal of Hazardous Materials 68:1-17.

| Transect wells            | In - out head difference in the transects |       |       |       |       |       |       |       |                |       |
|---------------------------|-------------------------------------------|-------|-------|-------|-------|-------|-------|-------|----------------|-------|
| Transect webs             | 04-99                                     | 05-99 | 06-99 | 07-99 | 08-99 | 09-99 | 10-99 | 11-99 | 1 <b>2-9</b> 9 | 01-00 |
| Across the wall           |                                           |       |       |       |       |       |       |       |                |       |
| $MWT-1 \rightarrow MWT-3$ | 0.07                                      | -0.17 | 0.01  | 0.03  | 0.03  | -0.10 | 0.02  | na    | -0.1           | 0.03  |
| $MWT-4 \rightarrow MWT-6$ | 0.05                                      | 0.08  | 0.04  | 0.04  | -0.02 | 0.03  | 0.05  | па    | 0.05           | 0.05  |
| MWT-7 $\rightarrow$ MWT-9 | 0.07                                      | 0.92  | 0.13  | 0.14  | 0.67  | 0.2   | 0.16  | па    | 0.08           | 0.12  |
| Into the wall             |                                           |       |       |       |       |       |       |       |                |       |
| MWT-1 $\rightarrow$ MWT-2 | 0.06                                      | -0.03 | 0.03  | 0.05  | 0.00  | -0.03 | 0.00  | na    | -0.02          | 0.01  |
| MWT-4 $\rightarrow$ MWT-5 | 0.05                                      | 0.10  | 0.01  | 10.0  | -0.07 | 0.00  | 0.07  | na    | 0.04           | 0.00  |
| MWT-7 $\rightarrow$ MWT-8 | 0.01                                      | 0.06  | 0.04  | 0.04  | 0.51  | 0.08  | -0.51 | na    | 0.03           | 0.02  |
| Out of the wall           |                                           |       |       |       |       |       |       |       |                |       |
| MWT-2 $\rightarrow$ MWT-3 | 0.01                                      | -0.14 | -0.02 | -0.02 | 0.02  | -0.07 | 0.02  | na    | 0.01           | 0.02  |
| MWT-5 $\rightarrow$ MWT-6 | 0.00                                      | -0.02 | 0.03  | 0.03  | 0.05  | 0.03  | -0.02 | па    | -0.01          | 0.05  |
| MWT-8 $\rightarrow$ MWT-9 | 0.06                                      | 0.98  | 0.09  | 0.10  | 0.16  | 0.12  | 0.67  | na    | 0.05           | 0.10  |
| Along the wall            |                                           |       |       |       |       |       |       |       |                |       |
| $MWT-2 \rightarrow MWT-5$ | 0.02                                      | 0.59  | 0.63  | 1.75  | 1.76  | 1.60  | 1.83  | na    | 0.54           | 0.35  |
| MWT-5 $\rightarrow$ MWT-8 | -0.06                                     | 0.15  | 0.75  | 0.85  | 0.79  | 0.10  | 0.21  | ກa    | 0.01           | -0.08 |
|                           |                                           |       |       |       |       |       |       |       |                |       |

Table1. In - out head difference in the well transects.

000

200

U 3-MAK-UU


|                    |          |          |          | RT based<br>on<br>calculated |        |      |        |       |              |          |
|--------------------|----------|----------|----------|------------------------------|--------|------|--------|-------|--------------|----------|
|                    |          | K        | Velocity | velocity                     | TCE    |      |        | concn | 1            | based on |
|                    | Hydr.    | (ft/day) | (ft/day) | (hrs)                        | (µg/L) |      | (µg/L) |       | the RT (hrs) |          |
| Transect           | Gradient |          |          |                              | Upgrd  | Wall | Upgrd  | Wall  | TCE          | cDCE     |
| Apr-99             |          | -        |          |                              |        |      |        |       |              |          |
| North              | 0.012    | 31       | 2.5      | 10                           | 23     | nd   | 73     | 27    | <7           | 17       |
| Middle             | 0.008    | 6.2      | 0.3      | 73                           | 2      | nd   | 49     | nd    | ND           | <16      |
| South              | 0.012    | 5.6      | 0.4      | 54                           | 430    | nd   | 20     | nd    | <7           | <7       |
| Jun-99             |          |          |          |                              |        |      |        |       |              |          |
| North              | 0.002    | 31       | 0.4      | 58                           | 8      | nd   | 32     | 6     | ND           | 24       |
| Middle             | 0.007    | 6.2      | 0.3      | 84                           | 2      | nd   | 82     | 20    | ND           | 42       |
| South              | 0.022    | 5.6      | 0.8      | 29                           | 530    | nd   | 32     | 42    | <3.5         | 15       |
| Sept. 1999         |          |          |          |                              | 1      |      |        |       |              |          |
| North <sup>a</sup> | -        | 31       | -        |                              | nd     | nd   | 6      | nd    | ND           | ND       |
| Middle             | 0.005    | 6.2      | 0.2      | 115                          | nd     | nd   | 40     | 5     | ND           | 39       |
| South              | 0.033    | 5.6      | 1.2      | 19                           | 480    | nd   | 25     | 7     | <2           | 4        |
| Jan. 2000          |          |          |          |                              |        |      |        |       |              |          |
| North              | 0.005    | 31       | 1.0      | 24                           | 18     | nd   | 72     | 23    | <7           | 14       |
| Middle             | 0.008    | 6.2      | 0.3      | 72                           | nd     | nd   | 58     | 7     | ND           | 23       |
| South              | 0.02     | 5.6      | 0.7      | 31                           | 480    | nd   | 22     | 55    | <4           | 25       |

Table 2. Residence time and half-lives based on the monitoring results

This table has been updated on 3/14/2000 based on Slug test results of May 1999

<sup>a</sup> A reversed gradient was observed in this transect

nd- not detected, ND - not determined

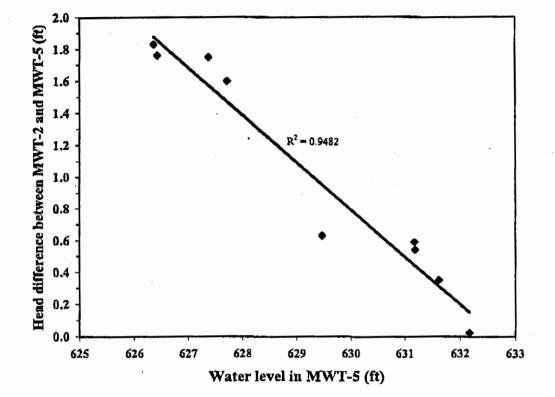


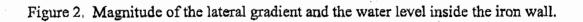
Not to scale

Figure 1. Location of the monitoring wells.

1-602 P.11/15

r-668


. 518-746-2208


03-MAR-00 03:55PM

FRUM-ENVIRUMEIAL LECHNULUGIES INC

#### 518-746-2209

### envirometal technologies inc.





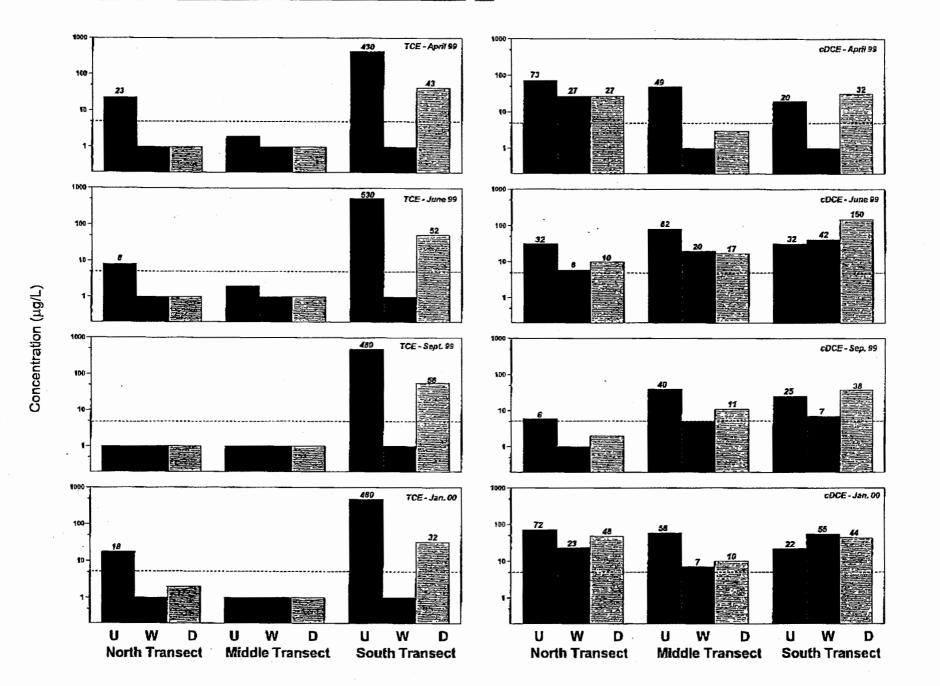



Figure 3. Ash Landfill, iron wall monitoring results.

TRUM-ENVIRUMEIAL IECHNULUMIES INC

8077-94*1-*810

US-MAK-UU US:55MM

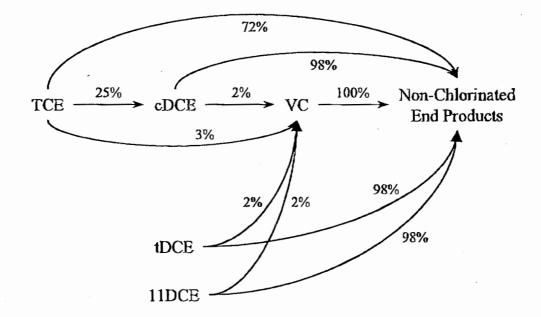
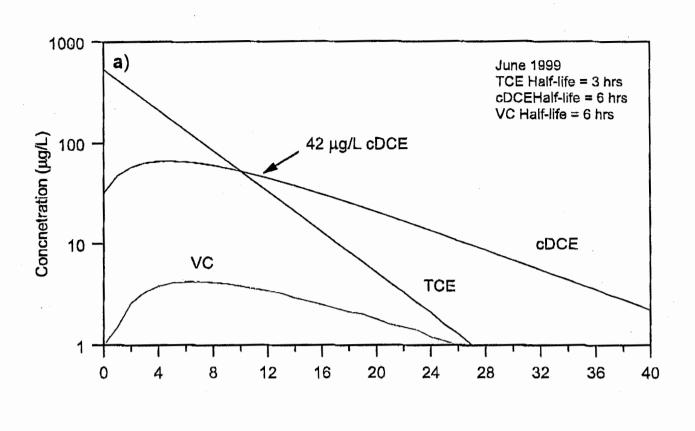
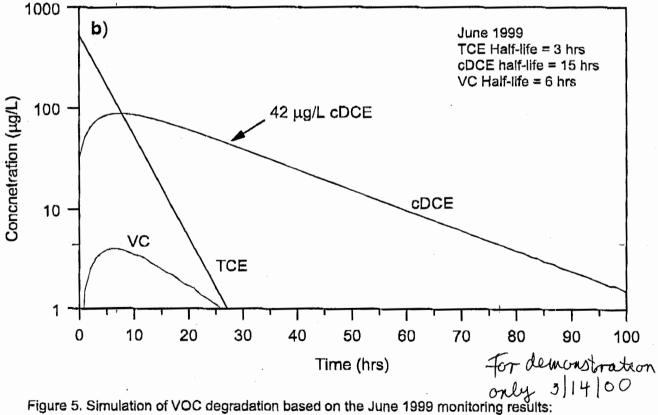





Figure. 4. Typical molar conversion for chlorinated ethenes.





a) typical half lives from database; b) half-life of cDCE incresed 2.5 times.

### **Porosity Loss Calculation Updates**

These updates refer to the note on the bottom of page 5 of ETI's Memorandum of March 2, 2000. Groundwater velocity = 0.73 ft/day - Average of groundwater velocities of Table 6-2.

$$\frac{0.73\frac{ft}{day}}{1\frac{ft}{PV}}x365\frac{day}{year} = 266.5\frac{PV}{yr}$$

The maximum difference between influent and effluent calcium concentration, 144.5mg/L was measured in September 1999 between MWT-7 and -8.

$$\frac{144.5\frac{mg}{L}}{40\frac{mg}{mmol}} = 3.61\frac{mmol}{L}$$

$$\frac{0.0004Lx3.61\frac{mmol}{L}}{PV}x266.5\frac{PV}{yr} = 0.38\frac{mmol}{yr}$$

$$\frac{0.38 \frac{mmol}{yr} \times 36.9 \frac{cm^3}{mol}}{1,000 \frac{mmol}{mol}} = 0.0140 \frac{cm^3}{yr}$$

$$\frac{0.0140 \frac{cm^3}{yr}}{0.4cm^3} \times 100\% = 3.5\%$$

Based on this rate of porosity loss, design life of existing reactive wall is the following:

$$\frac{0.4cm^3 - 0.15cm^3}{0.0140\frac{cm^3}{yr}} = 18\,yr$$

Calculations verified by ETI on 3/27/2000

P:\pit\projects\seneca\irontrnc\draftmemo\porosity.doc

 $\bigcirc$ ( )• • • • • ( )•



### 1-00/ P.0//14 F-0/4

# Diffusion Samplers as an Inexpensive Approach to Monitoring VOCs in Ground Water

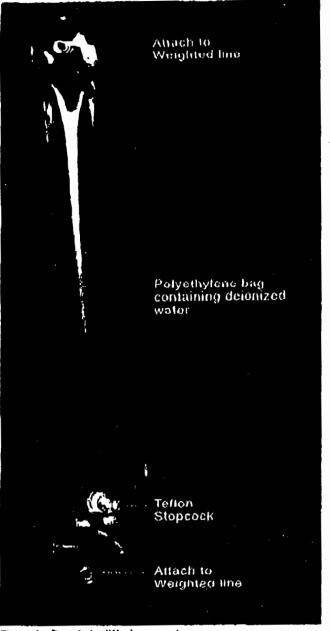
by Don A. Vroblesky and W. Thomas Hyde

KOMMENVIKOMETAL TECHNOLOGIES ING

Abstract iffusion samplers installed in observation welle were lound to be apable of viewing epresentative water samples for chlorinated volatile organic compounds. The samplers com of polyethylono baca containing deionized water and relied on diffusion of chiorinaled, volatile arganic compounds through the polycinylene membrane. The known ability of polysthylene to transmit other volatile compounds, such as benzens and toluone, indicates that the samplers can be 1 (a. 2) Set 1 S used for, a variety of volatile ofganic compounds. In wells ar the study area, the volatile organic compound concentrations in water samples obtained using the samplers upthout print purging were similar to concentrations in water samples obtained from the respective wells using r r • truditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for Pienturing Jarge observation-well networks for volatila Crganic Compounds. 1 .1. 2 Pages 177-184

### Introduction

The typical approach to sampling observation wells for volatile organic compounds (VOCs) involves purging the wells of casing water prior to collecting the water quality sample. Often, the purging removes at least three casing volumes of water, or enough water until selected water quality parameters stabilize. Recent studies, however, suggest that removing three to five easing volunes of water prior to sampling, as suggested by the U.S. Environmontal Protection Agency (EPA) (1986), is sometimes unnecessary and, in some cases, may produce undesirable effects (Gibs and Imbrigotta 1990; Powell and Puls 1993; Kearl et al. 1992; Barcelona ci al. 1994). Moreover, increasing the purge volumes can increase the radius of aquifer influenced by the pumping, resulting in a sample that may represent an integration of difforing water types. Thus, it often is desirable to minimize well purging prior to obtaining representative somples.


Data from recent investigations suggest that the water immediately adjacent to a well screen sometimes can be representative of aquifer water prior to purging. Robin and Gillham (1987) showed that ground water at their site moved through the screened portion of a well with little interaction or mixing with water in the overlying well casing. Powell and Puls (1993) used tracer studies to show that, for three of the four wells they examined, the water in the screened interval exchanged with formation water and did not

#### SUMMER 1997 GWNR = 177

RECEIVED 20-JAN-00 02:35PM

FROM-519 748 8845

TO-ENVIROMETAL TECHNOLO PAGE 10





significantly mix with overlying easing water unless disturbed. In the fourth well, Powell and Puls (1093) found that the easing was constantly replenished with formation water throughout its volume with little or no time available for stagnation of easing water. The studies implied that flow through the woll across the screened interval was often horizontal and laminar and representative of formation water. Kearl et al. (1992) used a downhole colloidal borescope to provide visual support of this hypothesis by showing advection of suspended sediment across the borehole. Thus, in a well with horizontal, laminar flow across the screened interval and little interaction or disturbance of the overlying water col-

#### 178 . SUMMER 1997 GWMR

RECEIVED 20-JAN-00 02:35PM

FROM-519 746 9645

umn, a sampling device in the screened interval potentially could be used to collect a representative sample while minimizing disturbance of the overlying water column in the borchole.

Alternative methods have been developed to obtain representative aquifer samples with minimal disturbance of the horehole water column. One method involves placing packers in the well or horehole to isolate specific intervals that can then be pumped (Olivoros et al. 1988; Kaminsky and Wylie 1995). Micropurging, an additional approach, uses dedicated pumps with intakes placed midway in the screened intervals. By pumping at a rate slow enough to eliminate drawdown in the borchole, representative samples of the aquifer can be obtained while minimizing disturbance of the overlying water column above the screened interval (Barcelona et al. 1994; Shanklin et al. (1995), These methods reduce the amount of nurge water, but do not eliminate it. An approach that has the potential to eliminate purge water is the DMLS passive gamples (Kaplan et al. 1991). The sampler rolies on movement of horehole solutes into proprietary dialysis colls containing distilled water. The colls are vortically separated by flexible seals to provide multilevel information on ground water quality.

The purpose of this paper is to present an inexpensive alternative method to allow routine monitoring of VOCs in ground water at observation wells. The method uses polyethylone bugs as seminermeable membranes to allow diffusion of VOCs from the ground water into the water-filled bags. The study area for this investigation was a gas-turbine manufacturing facility in Orcenville, South Carolina. The ground water beneath the facility was contaminated with chlorinnted VOCs (CVOCs). The dominant constituents of the contamination were tetrachloroethene (PCE). trichlaroethene (TCE), cis 1.2-dichlaroethene (cis 1.2-DCE), trans 1,2-dichloroethene (trans 1,2-DCE), 1,1dichloroethane (1,1-10CA), and vinyl chloride (VC). Contaminated ground water at the facility moves through both a fractured-rock aquifer and an overlying caprolitic zone. Diffusion samplers were tested in two wells open to a fractured-rock aquifor and in three wells scrooned in sapralite. Results obtained using the samplers were compared to results obtained using a submersible electric pump, a bladder pump, and bailer methods.

### Methodology

The diffusion samplers tested in this investigation were polyathylene bags containing doionized water. The ability of polyathylene to transmit CVOCs and aromatic VOCs, such as honzone and toluene, from a water phase to a vapor phase has been demonstrated in previous publications (Vroblesky et al. 1991, 1992, 1994, 1996; Karp 1993). The use of water in the polyethylene bags in this investigation simplifies the analyses by allowing water samples obtained from the diffusion samplers to be analyzed using the some methodology as

TO-ENVIROMETAL TECHNOLO PAGE 11

water samples collected directly from the well using traditional approaches.

In the testing period from October 1995 to January 1996, the diffusion samplers were extremely simple, consisting merely of scalable sandwich bags obtained from the local grocery store. The bags were placed in Teflon® screens and lowered down observation wells by means of strings. In late 1996, we fabricated elongated polyethylene sleeves with a Teflon valve attached to the bottom (Figure 1) and continued the tests. The volume of the polyethylene sleeves can be adjusted depending on the site-specific requirements, but a volume of approximately 300 mL was used during the testing involved in these experiments. With the exception of a test in Well PW-34C in January 1996, the water-filled bags contained no trapped air.

In the seprolite part of the aquifer, the diffusion samplors were placed within the screened interval of the wells (Table 1). In Well PW-34C, open to the fracjurcd-rock part of the aquifor, placement of the diffusion samplers was determined based on geologic and scophysical logs of the walls. Heat-pulse nowmeter data indicated that water was moving vertically upward between fractures in Wall PW-34C in response to pumpage at a nearby contaminated ground water removal well. Approximately 53 gal/min (200 L/min) of water were entering Well PW-34C through a fracture zone at the base of the hole approximately 179 feet (54.5 m) below land surface (bls) and exiting through two fractures at depths of 104.2 and 106 feet (31.8 and 32.3 m) bis (Idler 1994). The diffusion samplers in Well PW-34C were placed in the zone of moving water at a depth of 145 feet (44.2 m) bls.

Well WO-40B also was open to the fractured-rock aquifer. The boring log for well WQ-40B indicated that fractures were present in the borehole at depths of 41.7 and 42.3 feet. The diffusion samplers were suspended in the vicinity of the fractures at a depth of about 42 feet.

The samplers were in place for periods ranging from 11 to 54 days. The correlation between samples recovered from the wellbores and the respective diffusion sampler implies that sufficient time had clapsed to allow equilibration of the diffusion samplers.

Recovery of the diffusion samplers consisted of

519-746-2208

1-607 P.09/14 F-6/4

removing the samplers from the well by means of the attached strings and gently pouring water from the samplers into 40-mL glass sampling vials. The samples were than preserved with three drops of hydrochloric acid and capped with Tefton-lined septs. If aeration of a sample was suspected, or if bubbles were observed in a visi, the sample was discarded and a new sample was collected. The water samples were delivered to a private laboratory on the day of collection for analysis by EPA method 8260 (U.S. EPA 1986).

An additional approach to collecting samples was tested in Well PW-34C. A diffusion sampler containing two 40-inL uncapped glass sampling vials was also in Well PW-34C adjacent to the standard diffusion samplers (containing no sampling vials) during the equilibration period ending in October 1995. Upon recovery of the sampler, the vials were removed from the membrane, preserved with hydrochloric acid, and capped. The approach was intended to reduce volatilization loss from pouring the sample into the vials; however, as will be shown, the concentrations obtained by inclusion of vials within the membranes were lower than those obtained using other methods.

Results obtained using the diffusion samplers were compared to results obtained using a variety of standard water collection techniques. The techniques included sampling without prior purging of casing water using a Well Wizard bladder pump, purging and sampling with a Grundfos submersible pump, purging with a submersible pump and sampling with a bladder pump, sampling without purging using a point source baller in a well where ground water is actively moving in the wellbore, and purging and sampling with bailers.

In August 1996, diffusion samplers were attached to the hottom of a bladder pump and the bladder pump was lowered to the target horizon in Well PW-34C. The pump and diffusion samplers remained undisturbed in the well for 34 days. Sample recovery consisted of first pumping three tubing and pump volumes of water from the well using the bladder pump at approximately 1 gal/min or less (3.785 L/min). Purging of casing water was not necessary because approximately 53 gal/min (200 L/min) of water were moving through the sampled interval. A water sample for VOCs then was collected

|                | Table 1<br>Weil Construction and Sampling Data |                             |                                |                                |                                    |                                |                 |  |
|----------------|------------------------------------------------|-----------------------------|--------------------------------|--------------------------------|------------------------------------|--------------------------------|-----------------|--|
| Well<br>Number | Sampler<br>Installation<br>Date                | Sampler<br>Recovery<br>Date | Cating<br>Diameter<br>(Inches) | Sympler<br>Depth<br>(Feel bis) | Screened<br>Interval<br>(Feet his) | Open<br>Interval<br>(Fect bis) | Aquiler<br>Type |  |
| PW-34C         | 10/6/95                                        | 10/17/95                    | 6                              | 145                            | NA                                 | 37.5-179                       | Fractured Rock  |  |
| PW-34C         | 12/8/95                                        | 1/11/96                     | 6                              | 145                            | NA                                 | 37.5-179                       | Fractured Rock  |  |
| PW-34C         | 8/30/96                                        | 10/3/96                     | 5                              | 145                            | NA                                 | 37.5-179                       | Fractured Rock  |  |
| WO-40B         | 8/30/96                                        | 10/18/96                    | 4                              | 42                             | NA                                 | 38.2-58.9                      | Fractured Rock  |  |
| WQ-67          | 12/8/95                                        | 1/31/96                     | 2                              | 19                             | 13.75-23.95                        | NA                             | Sanrolite       |  |
| WO-74R         | 12/8/95                                        | 1/11/96                     | 2                              | 37.5                           | 29.2-39.2                          | NA                             | Saprolite       |  |
| WQ-87          | 12/1/95                                        | 1/11/96                     | 2                              | 33                             | 28.3-38.3                          | NA                             | Saprolite       |  |

SUMMER 1997 GWMR # 179

RECEIVED 20-JAN-00 02:35PM

FROM-519 746 9845

TO-ENVIRONETAL TECHNOLO PA

PAGE 12

using the bladder pump. Immediately after collecting the bladder pump sample, the bladder pump and attached diffusion samplers were removed from the well, and water samples were recovered from the diffusion samplers.

Results obtained using the diffusion samplers also were compared to results obtained by purging and sampling with a Grundfos submersible pump as well as to sampling with a Well Wizard bladder pump after purging with a submersible pump. Diffusion samplers were placed adjacent to fractures in Well WQ-40B and allowed to equilibrate for 49 days. At the end of the equilibration period, the diffusion samplers were recovared and the water was transferred to sample bottles. After removing the diffusion samplers, a Grundfos submersible pump was lowered into the well and used to purge three casing volumes of water. Water samples for VOCs were then collected using the submersible pump at a pumping rate of less than 1 gal/min (3.785 L/min). The pump was then removed and replaced with a Well Wizard bledder pump. Water semples for VOCs were collected using the bladder pump at a pumping rate of less than 1 gal/min (3.785 1./min).

l'ollowing recovery of the diffusion samplers in January 1996, Wells WQ-67, WQ-74AR, and WQ-87 were purged of three casing volumes of water using a bailer. Well PW-34C was not purged for reasons previously discussed. Water samples from the wells were obtained by lowering a point source bailer to the depth of the diffusion sampler. Upon recovery of the bailer, water samples were collected by slowly filling samplerinsed glass 40-mL vials from a bottom-discharge baller into the bottom of the vials. The vials were allowed to overflow several seconds, and the samples were then preserved with three drops of hydrochloric acid. Sample buttles were capped with Tefton-lined bottle caps. If aeration of a sample was suspected, or if bubbles were observed in a bottle, the sample was discarded, and a new sample was collected (U.S. EPA 1986).

Duplicate samples were collected from a single bailer of water at Well PW-34C during two sampling events: October 1995 and January 1996. Duplicate samples were collected from a single diffusion sampler in January 1996 at all sites.

| Bladder Pump, and Diffusion Sampler: |          |                           |               |                |                         |                      |                   |              |
|--------------------------------------|----------|---------------------------|---------------|----------------|-------------------------|----------------------|-------------------|--------------|
| Well and<br>Sample ID                | Dato     | Sampling,<br>Mothod       | РСЕ<br>(µg/L) | TCE<br>(μg/1.) | 6-1,2-1)CIS<br>(14g/L.) | 1-1,2,-DCR<br>(µg/L) | 1,1-DCA<br>(µg/L) | VC<br>(µg/L) |
| PW-34C1C                             | 10/3/96  | Bladder<br>Pump           | 806           | 1830           | 288                     | ব                    | 8.5               | 41           |
| PW-34C1C<br>(Repl.)                  | 10/3/96  | Bladder<br>Pump           | 749           | 2170           | 310                     | 8.9                  | 8.5               | 4],6         |
| PW-34C 2C                            | 10/3/96  | DS (3 Mil)                | 951           | 2170           | 267                     | <\$                  | 8.5               | 44.1         |
| PW-34C 2C<br>(Ropl.)                 | 10/3/96  | DS (3 Mil)                | 1170          | 2520           | 302                     | <                    | 9                 | 46.5         |
| PW-34C3C                             | 10/3/96  | D6 (4 Mil)                | 896           | 2000           | 252                     | ব                    | 7.4               | 41.8         |
| 1°W-34C 3C<br>(Repl.)                | 10/3/96  | DS (4 Mil)                | 1300          | 2640           | 329                     | ৎ                    | 7.7               | 44.9         |
| WQ-40B ID                            | 10/18/96 | Bladder<br>Puntp          | 129           | 148            | 1730                    | 46.1                 | 77.6              | 311          |
| WQ-40B 1D<br>(Repl.)                 | 10/18/96 | Bladder<br>Pump           | 129           | 148            | 1170                    | <b>4G</b> .G         | 77.9              | 178          |
| WO-408 2D                            | 10/18/96 | Submersible<br>Blectric   | 132           | 146            | 1870                    | 44.2                 | H2.5              | 356          |
| WQ-40B 2D<br>(Repl,)                 | 10/18/96 | Sulvmentible<br>Tsicotric | 131           | 146            | 1850                    | 43.4                 | 83                | 343          |
| WQ-40B 3D                            | 10/18/96 | DS (3 Mil)                | 141           | 159            | 1720                    | 45.3                 | 77.8              | 370          |
| WQ-40B 3D<br>(Ropl.)                 | 10/18/96 | IDS (3 Mil)               | 163           | 151            | 1450                    | 41.3                 | 68.9              | 273          |
| WQ-40B 4D                            | 10/18/96 | DS (4 MII)                | 143           | 163            | 1700                    | 47.9                 | 74.1              | 355          |
| WQ-400 4D<br>(Repi.)                 | 10/18/96 | DS (4 Mil)                | 156           | 145            | 1590                    | 42                   | 66.1              | 290          |

TCE: Trichlorochene

c-1,2-DCE: di 1,2-dichlorosthana

t-1,2-DCB: trans 1,2-dichiloroothene

J-DCA: 2,1-dichiorosihana

VC: Vinyi chilorida

Repl.: replicate

Illadder Pump: Well Wixard bladder pump

Submersible Electric: Grundfos submorsible electric pump

Have micrograms por litor

3 Mil: Thickness of the polyothylene was 3 mil

4 Mil: Thickness of the polyothylene was 4 mil

#### 150 - SUMMER 1997 GWMR

RECEIVED 20-JAN-00 02:35PM FROM-519 746 8645

TO-ENVIROMETAL TECHNOLO PAGE 13

## **Results and Discussion**

Water chemistry results (Tables 2 and 3) showed that the wells used for this investigation contained water with a broad range in concentrations of CVOCs. Well PW-34C was open to a part of the aquifer containing high concentrations of CVOCs (>1000  $\mu$ g/l. of TCE), and Wells WQ-67 and WQ-74R were screened in uncontaminated parts of the aquifer. Well WQ-87 contained midrange concentrations of CVOCs (approximately 350 to 400  $\mu$ g/L of TCE). Well WQ-403 contained midrange concentrations of TCE (approximately 145 to 1.59  $\mu$ g/L), and relatively high concentrations of cis 1,2-DCE (approximately 1450 to 1870  $\mu$ g/L).

In general, the CVOC concentrations in water obtained with the diffusion samplers prior to purging were similar to the CVOC concentrations in water obtained by purging and sampling with a submersible sloctric pump and to these obtained by purging with a submersible electrical pump and sampling with a bladder pump (Figure 2). Average concentrations of detected CVOCs in the diffusion samplers differed from the average concentrations of the respective CVOCs obtained using the submersible electrical pump by only 9.1 percent in water from Well WQ-40B and by 11.5 percent from the average concentrations of the respective CVOCs obtained by sampling with a bladder pump after purging with a submersible pump in Well WQ-40B.

A comparison of the diffusion samplers and a bladder pump yielded similar results at Well PW-34C (Figure 3). The average concentrations of detected CVOCs in water from the diffusion samplers differed by 1).5 percent from the average concentrations of the

| Table 3<br>Comparison of CVOC Concentrations from Ballers and Diffusion Samplers |                                              |                   |               |                |                                                     |                     | lon               |              |
|----------------------------------------------------------------------------------|----------------------------------------------|-------------------|---------------|----------------|-----------------------------------------------------|---------------------|-------------------|--------------|
| Well and<br>Sample ID                                                            | Date                                         | Samplag<br>Melbod | PCR<br>(up/L) | TCE<br>(µg/L)  | C-1,2-DCE<br>(µg/L)                                 | T-1,2-DCB<br>(µg/L) | 1,1-DCA<br>(µg/L) | ۷C<br>(µg/L) |
| PW-34C 1A                                                                        | 10/17/75                                     | Daller            | 2000          | 2500           | . 570                                               | <40                 |                   | 130          |
| PW-34C1A                                                                         |                                              | Baller            | 1800          | 2000           | 480                                                 | <10                 | <40               | 03           |
|                                                                                  |                                              | Delici            | 1000          | are the second | 100                                                 |                     |                   |              |
| (Repl.)<br>PW-34C 2A                                                             | 10/17/95                                     | DS                | 1900          | 2200           | 490                                                 | <40                 | <40               | 97           |
| rw-34C2A                                                                         |                                              | 20                | 2000          | 2200           | 500                                                 | <10                 | <40               | 95           |
|                                                                                  | 10/11/02                                     |                   |               | 2200           | 1144                                                | ~~~                 | ~~~~              | <b>4</b> 3   |
| (Repl.)                                                                          |                                              | DS                | 2000          | 2300           | 490                                                 | <40                 | <40               | -            |
| PW-34C 3A                                                                        | 10/17/95                                     |                   | 710           | 770            | 170                                                 | <40                 |                   | 98<br>~10    |
| PW-34C 3A                                                                        | 10/17/95                                     | Vial Test         | 10            | //0            | 1/0                                                 | CAU                 | <40               | ~10          |
| (RepL)                                                                           |                                              |                   |               |                |                                                     | 40                  |                   | -40          |
| PW-34C3A                                                                         | 10/17/95                                     | Vial Test         | 850           | 940            | 220                                                 | <10                 | <40               | <40          |
| (Repl.)                                                                          |                                              |                   |               |                |                                                     |                     |                   | _            |
| PW-34C1B                                                                         | 1/11/96                                      | Tallor            | 1100          | 2290           | 389                                                 | 4                   | 13.3              | 76           |
| PW-34C 1B                                                                        | 3/11/96                                      | Bailer            | 1830          | 2320           | 409                                                 | 6.1                 | 13.7              | . 79         |
| (Repl.)                                                                          |                                              |                   |               |                |                                                     |                     |                   |              |
| PW-34C 2D                                                                        | 1/11/96                                      | DS with bulblo    | 1510          | 2520           | 421                                                 | 5,1                 | 13.3              | 95           |
| PW-34C 2B                                                                        | 1/11/96                                      | DS with bubble    | 678           | 1240           | 490                                                 | 53                  | 12.1              | 89           |
| (Repl.)                                                                          |                                              | •                 |               |                |                                                     |                     |                   |              |
| PW-34C 3B                                                                        | 1/11/96                                      | DS                | 1260          | 2070           | 299                                                 | 6.4                 | 12.2              | 56           |
| FW-34C 3B                                                                        |                                              | DS                | 1750          | 2230           | 395                                                 | 5                   | 13.1              | 54           |
| (Repl.)                                                                          |                                              |                   |               |                |                                                     | -                   | ••••              |              |
| WO-67 4B                                                                         | 1/11/96                                      | Builer            | ব             | ব              | <১                                                  | <5                  | <1                | <10          |
| WQ-67 5B                                                                         | 1/11/96                                      | DS                | -5            | Ğ              | ð                                                   | 3                   | 3                 | <10          |
| WO-61 5B                                                                         | 1/11/06                                      | DS                | 5             | ৫০০            | ර<br>ර                                              | 5                   | -5                | <10          |
| (Repl.)                                                                          |                                              | ~~~               | •             | -              | •                                                   | -                   | ~                 |              |
| WQ-74R 6                                                                         | 3 1/11/96                                    | Buildr            | <5            | <5             | ර                                                   | <                   | ජ                 | <10          |
| WQ-74R 7E                                                                        |                                              | 105               | র্থ<br>ব      | a<br>5         | చ<br>చ                                              | که                  | ۍ                 | <10          |
| WO.74R 71                                                                        |                                              | DS                | 3             | ح              | ব                                                   | ৎ                   | <5                | <10          |
| (Repl.)                                                                          |                                              |                   |               |                |                                                     |                     |                   |              |
| WQ-87 8B                                                                         | 3/11/96                                      | Ballor            | 212           | 379            | 31                                                  | ~5                  | 4\$               | <10          |
| WQ-87 9B                                                                         | 2/11/96                                      | DS                | 187           | 389            | 34                                                  | <5                  | 00                | <10          |
| WQ-87 9B<br>(Repl.)                                                              | 1/11/96                                      | 205               | 170           | 364            | 34                                                  | 4                   | 4                 | <10          |
| TCB: Trichi                                                                      |                                              |                   |               |                | n manpler method                                    |                     |                   |              |
| 1-1,2-DCB:                                                                       | cls 1,2-dictiorouties<br>trans 1,2-diviction | ne<br>Miliona     |               |                | bio: Diffusion san<br>mple vials wurs a<br>n period |                     |                   |              |

1,1DCA: 1,1-dictioroothano

VC: Viny! chloride

equilibration period

ug/1 = micrograms per liter

SUMMER 1997 GWMR = 181

RECEIVED 20-JAN-00 02:36PM

FROM-519 748 8845

TO-ENVIROMETAL TECHNOLO PA

PAGE 14

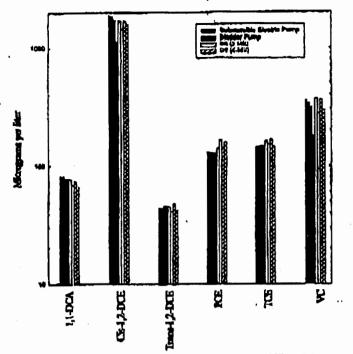
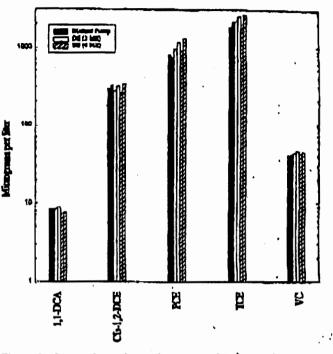



Figure 2. Comparison of samples obtained from 3-Mil and 4-Mil-thick downhole diffusion samplars (DS) to samples obtained by purging and sampling with a submersible pump and to samples obtained by purging with a submersible pump and sampling with a bladder pump in Weil WQ-408, August 1996.

respective CVOCs obtained by sampling with the bladder pump from the same interval without purging. Differences in the concentrations of CVOCs between the 3-Mil-thick and 4-Mil-thick diffusion samplers were relatively minor (Figures 2 and 3).

Bramination of individual CVOCs showed some variations between concentrations obtained with the diffusion samplers and concentrations obtained with the bladder pump. The average PCE concentration (1079 µg/L, standard deviation 163.5 µg/L for four samples) in diffusion samplers from Well PW-34C in October 1996 was approximately 28 percent higher than the average PCE concentration (777.5 µg/L, standard deviation 28.5 µg/L for two samples) obtained using the bladder pump. Likowise, the average TCE concentration (2332.5 µg/L, standard deviation 258.2 µg/L for four samples) in diffusion samplers was approximately 14 percent higher than average TCE concentration (2000 µg/L, standard deviation 170 µg/L. for two samples) obtained using the bladder pump (Table 2). Obtaining a water sample with the bladder pump at 145-toot depth necessitated using a higher pump discharge pressure than needed for shallower wells. Thus, although the pumping rate was less than 1 gallon per minute, the discharge velocity of individual pulses from the bladder pump may have been high enough to allow VOC volatilization during sample collection. The higher concentrations of VOCs in the diffusion samplers relative to the bladder pump implies that, in such a situation, samples obtained using the dif-


#### 182 = SUMMER 1997 GWMR

RECEIVED 20-JAN-00 02:36PM

FROM-519 746 8645

519-(40-2209

1-00/ P.12/14 F-0/4



Pigure 3. Comparison of samples obtained from 3-Mil and 4-Mil-thick downhole diffusion samplers (D3) to samples obtained from an in-place bladder pump with no purging in Well PW-34C, August 1996.

fusion samplers may be more representative than those obtained using a bladder pump.

Similarly. In Well WQ-40B, the average PCE concentration (150.7 µg/L standard deviation 9.1 µg/L for four samples) in water from the diffusion samplers was approximately 14.4 percent higher than the concentration (129  $\mu$ g/L in two samples) obtained using the bladder pump and approximately 12.7 percent higher than the average concentration (131.5 µg/L, standard deviation 0.5 µg/L for two samples) obtained using the submersible pump (Table 2). The average TCE concentration in water from diffusion samplers in Well WQ-40B (154.4 µg/L, standard deviation 8 for four samples) was slightly higher than those obtained with the bladder pump (148 µg/L in two samples) and with the submorsible pump (146 µg/L in two samples). Again, the higher concentrations obtained with the diffusion samplers suggest that this collection approach sometimes may provide more representative concentrations of PCE and TCE than water samples obtained by purging and sampling using bladder pumps or submersible pumps.

Because ground water samples for routine monitoring also are commonly obtained using bailer methods, the diffusion samplers were compared to bailers at wells in both suprolite and fractured-rock wells. A comparison of results obtained in a test of the diffusion samplers in Well PW-34C showed that the concentrations of CVOCs in visits filled from the diffusion samplers closely matched the concentrations in water obtained

TO-ENVIROMETAL TECHNOLO PAGE 15

from a point source bailer (Table 3). Vinyl chloride, PCE, TCE, and cis 1,2-DCE concentrations from the diffusion samplers were within the range of concentrations detected in water from the bailer.

A test of an alternate approach, involving inclusion of two 40-mL uncapped glass sampling vials within the membrane, showed that the detected concentrations of CVOCs in water using this method (labeled "Vial Tust" in Table 3) were substantially lower than those obtained from either the diffusion sampler or from the baller incthods of sample collection. It is possible that the glass vials, though open at one and, slowed down diffusion into the vials sufficiently to cause lower concentrations inside the viels than outside the vials. Thus, incorporation of the 40-mL glass sampling vials into the diffusion ; samplers is not practical.

The diffusion samplers again were tested in Woll PW-34C in January 1996 (Table 3). During this test, a comparison was run to determine the effect of air bubbles in the diffusion samplers. Two diffusion samplers wore installed in the well. One of the sumplors (I'W-34C 3B) contained no trapped air, and the second sampler (PW-34C 2B) contained an air bubble that constituted approximately one-third of the sampler volume. When the samplers were recovered after 34 days, neither sampler contained air hubbles. Because volatile compounds can diffuse out of the polyethylene hags as well as into them (Vroblesky and Robertson 1996), the trapped air apparently diffused out of the sampler. leaving only water. Of the two water samples recovered from the diffusion sampler to which an air bubble had been added. one sample (PW-34C 2B) closely matched the CVOC concentrations in water obtained by using a point source bailer and by using the diffusion samplers with no air bubbles (Table 3). The second sample [PW-34C 2B (Ropl.)] from the diffusion sampler to which an air hubble had been added contained approximately half of the concentrations of PCE and TCH found in the first sample and in water samples from the point source bailor (Table 3). The variability in water collected from the same diffusion sampler implies that the lower concentrations in the second sample were caused by losses during transfer from the diffusion sampler to the sample bottle and not from losses within the diffusion sampler. The data imply that, although the presence of air bubbles in the diffusion samplers should be avoided, their presence apparently has little influence on concentrations of CVOCs after sufficient equilibration time.

The diffusion sampler method also was tested in Well WQ-87, servened in a part of the saprolite aquifer characterized by moderate concentrations of CVOCs (approximately 350 to 400 µg/L of TCE). Again, the concentrations of CVOCs detected in water recovered with the diffusion samplers closely corresponded with concentrations of CVOCs detected in water bailed from the well (Table 3). The average concentration in the diffusion samplers differed from the concentration in water obtained by the bailer by less than 2 percent for 7'CE and by 16 percent for PCE. These data showed that the samplers were capable of collecting a representative sample of mid-range concentrations of CVOCs in ground water.

1-001

1.13/14

1-014

Volatile organic compounds were not detected in water from background Wells WQ-67 and WQ-74R by oither the baller method or the diffusion samplers (Table 3). Thus, materials and deionized water used in the diffusion samplers did not contribute VOCs to the analyses.

### Conclusions

519-(40-2209

Provious investigations have shown that it generally is desirable to minimize well purging and well disturbance prior to collecting representative samples of ground water. Investigations also have shown that ground water in some wells flows through the open interval with little interaction or mixing with water in the overlying well casing. In such wells, the water in the screened interval appears to be representative of the surrounding ground water. This paper presents an inexponsive approach to sample the water for VOCs in the screened interval without disturbing the overlying water column. The method involves placing polyethylone bags that function as diffusion samplers adjacent to the screened or open interval of the borehole. Each diffusion sampler consists of deionized water enclosed by a polycihylene membrane. The membrane allows diffusion of the VOCs from the aquifer water into or back out of the delonized water. In simplest manifestation of the sampler, adequate water samples can be obtained by merely using sealable sandwich bags obtainable from grocery stores as the diffusion samplers.

The samplers were allowed to equilibrate in the borchole for a minimum of 11 days. The samplers were then recovered and transferred to 40-mL glass vials for transport to the laboratory. Laboratory analysis by EPA method \$250 showed that concentrations of CVOCs in water recovered from the diffusion samplers were similar to concentrations of the respective CVOCs obtained by: (1) purging and sampling with a submersible electric pump; (2) purging with a submorsible electric pump and sampling with a bladder pump; (3) sampling with an inplace bladder pump without purging; (4) sampling without purging using a point source builer in a well where ground water is actively moving in the wellbore; and (5) purging and sampling with a bailer. For some constituents, the average concentration was slightly higher in water obtained with the diffusion samplers than in water obtained with a submersible pump and with a bladder pump, implying that the diffusion samplers may provide a more representative sample in some situations. These data demonstrated that the diffusion samplers were capable of recovering a representative water sample for VOCs without the need to purge the wells tested at this site. To ensure transferability of this technique to other siles, an initial test period is recommended during which the diffusion sampler approach is compared to the routine method of sampling a particular well. Comparable results will indicate that the water in the open interval is representative of the formation

#### SUMMER 1897 GWMR = 283

#### RECEIVED 20-JAN-00 02:35PM

FROM-518 748 8645

#### TO-ENVIRONETAL TECHNOLO PAGE 16

water, that the target compounds can efficiently diffuse into the samplers, and that the diffusion-sampler approach can be used to sample the well without the need to purge. In wells where the screen length is large relative to the sampler length, multiple samplers initially may be used to determine optimum sampler depth. The known ability of polyethylene to transmit other VOCs, such as benzene and tolucne, indicate that the diffusion samplers can be used to monitor a variety of VOCs. The low cost associated with the diffusion samplers makes this a potentially viable approach to reducing monitoring costs of large observation well networks where the target compounds are organic compounds capable of diffusing into the samplers.

### Acknowledgments

The authors wish to express their thanks to Dr. Ed Kaplan (Brookhaven National Laboratory), Dr. Nic Korte (Ouk Ridge National Laboratory), and an unidentified third journal reviewer for his or her comments on the manuscript.

### Disclaimer

Although the research described in this report has been funded wholly or in part by the U.S. EPA it has not been subjected to the Agency's peer and administration review and therefore may not necessarily reflect the view of the Agency, and no official endorsement may be inferred. Use of tradenames does not imply endorsement by the U.S. Government.

Editor's Note: The use of brand names in peer-reviewed papers is for identification purposes only and does not constitute endorsement by the authors, their employers, or the Ground Water Publishing Co.

#### **Biographical Sketches**

Don A. Vroblesky is a research geochemist with the U.S. Geological Survey (720 Gracern Rd., Stephenson Center, Columbia SC 29210-7651). He has a Ph.D. (1990) and M.S. degree (1981) from the George Washington University and a B.S. degree (1978) from the University of Maryland. He has been chief of several research projects in the field of consaminant hydrology. He presently is investigating in situ bioremediation of organic contaminants in ground water.

W. Thomas Hyde carned his B.S. degree in environmental seology at the University of Mississippi and is currently an environmental compliance specialist with General Electric Gas Turbine (300 Garlington Rd., P.O. Box 648, Greenville, SC 29602-0648), where he is involved in the management of ground water assessment and remediation.

#### References

Barcelona, M., H.A. Wehrmann, and M.D. Varljen. 1994. Reproducible well-purging procedures and VOC stabilization criteria for ground-water sampling. Ground Water 32, no. 1: 12-22

184 N SUMMER 1997 GWMR

RECEIVED 20-JAN-00 02:35PM

FROM-519 746 9645

- Gibs, J., and T.E. Imbrigotta. 1990. Well-purging criteria for sampling purgeable organic compounds. Ground Water 28, no. 1: 68-78.
- Idler, G.E. 1994. Written communication with author, 10 May. Kaminaky, J.F., and A.H. Wylie. 1995. Vertical contaminant profiling of volatile organics in a doop fractured basalt aquifer. Ground Water Monitoring & Remediation 15, no. 2: 97-103.
- Kaplan, E., S. Banerjee, D. Ronien, M. Margaritz, A. Machlin, M. Sosnow, and E. Koglin. 1991, Multilayer sampling in the water-table rugion of a sandy squifer. Ground Water 29, no. 2: 191-198.
- Karp, K.B. 1993. A diffusive sampler for passive monitoring of underground storage tanks. Ground Water Monitoring & Remediation 13, no. 1: 101-106.
- Kourl, P. N. Korta, and T. Cronk. 1992. Suggested modifications to ground water sampling procedures based on observations from the colloidal boroscope. Ground Water Monitoring Review 12, no. 2: 155-166.
- Oliveros, J.P., D.A. Vroblesky, and M.M. Lorah. 1988. Increasing purging efficiency through the use of inflatable packers. In Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring. and Geophysical Methods. 457-469. by National Water Well Association. Duhin, Ohio: NWWA.
- Powell, R.M., and R.W. Puis. 1993. Passive sampling of ground water monitoring wells without purging: Multilovel well chemistry and tracer disappearance. *Journal Contain*, *Hydrol.* 12, 51-77.
- Robin, M.J.L., and R.W. Gillham. 1987. Field avaluation on well purging procedures. Ground Water Monitoring Review 7, no. 4: 85-93.
- Shanklin, D.E., W.C. Sidle, and M.B. Ferguson. 1995. Micropurge low-flow sampling of uranium-contaminated ground water at the Fernald Environmental Management Project. Ground Water Monitoring & Remediation 15, no. 3: 168-176.
- U.S. EPA, 1986. RCRA Technical Enforcement Guidance Document OSWER-9950.1. Washington, D.C.: U.S. EPA.
- Vroblesky, D.A., M.M. Lorah, and S.P. Trimble, 1991, Mapping zones of contaminated ground-water discharge using creek-bottom-sediment vapor samplers, Abordeen Proving Ground, Maryland, Ground Water 29, no. 1: 7-12.
- Vroblesky, D.A., J.F. Robertson, M. Fernandez, and C.M. Aelion. 1992. The permeable-membrane method of persive soil-ges collection. In Proceedings of the Sixth National Outdoor Action Conference, 3-16. by National Ground Water Association. Dublin. Ohio: NGWA.
  - Vroblesky, D.A., L.C. Rhodes, and J.F. Robertson, 1994. Locating VOC-contaminated fractures by using passive vapor collectors. In Abstracts of the Chapman Conference on Aqueous Phase and Multiphase Transport in Fractured Rock, 21, by the American Geophysical Union, Burlington, Verment: AGU.
  - Vroblesky, D.A., L.C. Rhodes, and J.F. Robertson. 1996. Localing VOC contamination in a fractured-rock aquifer at the ground-water/surface-water interface using passive vapor collectors. Ground Water 34, no. 2: 223-230.
  - Vroblesky, D.A., and J.R. Robertson. 1996. Temporal changes in VOC discharge to surface water from a Inscitured-rock aquifer during well installation and operation. Greenville, South Carolina. Ground Water Monitoring & Remedia-tion 16, no. 3: 196-201.

TO-ENVIROMETAL TECHNOLO PAGE 17

| enviro <b>metal</b> |
|---------------------|
| technologies        |
| inc.                |

745 Bridge St. W., Suite 7 Waterioo, Ontario Canada N2V 2G6 Tel (519) 748-2204 Fax (519) 746-2209

| To:             | Anna Forda                                       |   |
|-----------------|--------------------------------------------------|---|
| Company:        | Persons ES                                       |   |
| Fax:            | 781-401-2575                                     |   |
| Date:           | - Mars 20, 60                                    |   |
| From:<br>Email: | Andrzej Przepiora, Ext. 234<br>aprzepiora@eti.ca |   |
| Re:             | 31317.77                                         | _ |
| Pages:          | 1 of <u>2.</u> 7                                 |   |

Amore:

Attached is a table with He volues for mesers sin her

Absouthed are two popers with ML boosed on field vegettes, one of them from a NY rite. Let me know if this is sufficient.

Andrey Ruga

### Original To Follow: Mail Courier Nox,

This transmission contains information that may contain confidential and/or legally privileged. It is intended for use only by the person to whom it is directed. If you have received this in error, please notify us by telephone immediately. Thank you.

Table 1. Range of TCE and cDCE half-lives obtained from bench-scale column tests (25° C) using site waters with total VOC concentration <1,000 µg/L and low (<1,000 mg/L) TDS levels (ETI Database). The anticipated field half-lives are usually obtained by increasing the lab-derived values by a factor of 2 to 3.

| Iron     | Laboratory TCE Half-life (hrs) |      |      |      |          | Laboratory cDCE Half-life (brs) |      |      |      |          |
|----------|--------------------------------|------|------|------|----------|---------------------------------|------|------|------|----------|
| Туре     | No. tests                      | Mean | Min. | Max. | Std. dev | No. tests                       | Mean | Min. | Max. | Std. dev |
| Peerless | 3                              | 0.28 | 0.18 | 0.37 | 0.1      | 3                               | 1.0  | 0.28 | 2.4  | 1.2      |

1-686



Journal of Hazardous Materials 68 (1999) 97-108



www.elsevier.nl/locate/jhazmat

# Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater

### J.L. Vogan<sup>a,\*</sup>, R.M. Focht<sup>a</sup>, D.K. Clark<sup>b</sup>, S.L. Graham<sup>b</sup>

<sup>a</sup> EnviroMetal Technologies, 745 Bridge Street West, Suite 7, Waterloo, Ontario, Canada N2V 2G56 <sup>b</sup> Stearns and Wheler LLC., 1 Remington Park Drive, Cazenovia, NY 13035, USA

#### Abstract

A pilot-scale permeable reactive barrier (PRB) consisting of granular iron was installed in May 1995 at an industrial facility in New York to evaluate the use of this technology for remediation of chlorinated volatile organic compounds (VOCs) in groundwater. The performance of the barrier was monitored over a 2-year period. Groundwater velocity through the barrier was determined using water level measurements, tracer tests, and in situ velocity measurements. While uncertainty in the measured groundwater velocity hampered interpretation of results, the VOC concentration data from wells in the PRB indicated that VOC degradation rates were similar to those anticipated from laboratory results. Groundwater and core analyses indicated that formation of carbonate precipitates occurred in the upgradient section of the iron zone, however, these precipitates did not appear to adversely affect system performance. There was no indication of microbial fouling of the system over the monitoring period. Based on the observed performance of the pilot, a full-scale iron PRB was installed at the site in December 1997. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Permeable reactive barrier; Volatile organic compound; Groundwater

#### 1. Introduction

Permeable reactive barriers (PRBs) containing granular iron have been installed at several commercial sites in the United States to degrade chlorinated volatile organic

Corresponding author. Tcl.: +1-519-824-0432; fax: +1-519-763-2378; e-mail: sohannesin@beak.com

<sup>0304-3894/99/\$ -</sup> see front matter @ 1999 Elsevier Science B.V. All rights reserved. PII: S0304-3894(99)00033-3

T-685

#### J.L. Vogon et al. / Journal of Hazardous Materials 68 (1999) 97-108

compounds (VOCs) in groundwater [1]. Although the results of laboratory studies conducted to determine reaction mechanisms have been widely disseminated [2,3], much less information has been published on the field-scale application of this technology.

One of the more complete performance records exists for a pilot-scale PRB installed in May 1995 at a former industrial facility in upstate New York. Past release of solvents at the site created a plume of trichloroethene (TCE) and related byproducts in the shallow sand aquifer at the site [4]. The water table at the site is about 1 m below ground level, and the aquifer is bounded by a clay layer at a depth of 4 to 5 m. Following encouraging results from laboratory treatability tests, the decision was made to proceed with a field demonstration.

The pilot-scale system installed at the site consisted of a funnel-and-gate located in an area of the plume containing the highest VOC concentrations. The gate section, 3.7 m long  $\times$  1.8 m wide (Fig. 1), was constructed by driving sealable sheet piling into the underlying aquitard at a depth of about 4.5 m. Native material was excavated and replaced with a center 0.9-m thick section of granular iron flanked by 0.5 m thick layer of pea gravel on both upgradient and downgradient sides. The purpose of the pea gravel

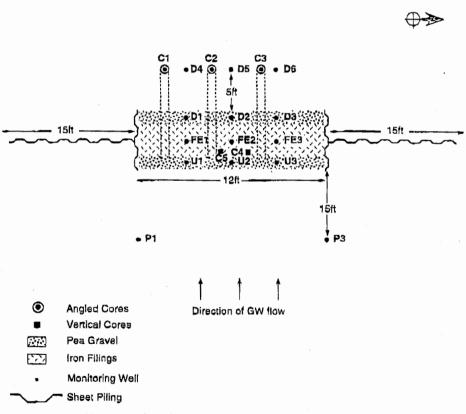



Fig. I. Plan view of monitoring well and coring location, New York.

#### J.L. Vogan et al. / Journal of Hazardous Materials 68 (1999) 97-108

was to minimize the effects of high velocity layers in the aquifer by spreading flow vertically across the reactive zone; and to serve as locations for monitoring well placement. The piling on the long axis of the box was then removed to create a flow through reaction section or gate (Fig. 1). The gate section was flanked by funnels comprised of sealable-joint sheet piling extending 4.6 m laterally on either side, to a depth of 5 m. Modelling completed by Starr and Cherry [5] indicated that this configuration creates a larger upgradient capture zone relative to funnels angled more acutely to the gate. Monitoring wells shown in Fig. 1 were made of 2-in. diameter PVC, and screened across most of the saturated thickness of the iron, pea gravel or aquifer. The installation took about 10 days to complete.

### 2. Performance evaluation methods

#### 2.1. Groundwater sampling

The monitoring wells were sampled monthly from June to December 1995 under auspices of the US EPA SITE Program [6]. Additional samples were collected in June 1997 immediately prior to coring activities. The number of wells sampled and analyses completed on the samples varied depending on the sampling event. Samples were collected using individual disposable teflon bailers for each sampling event and each well [7]. Analyses included the following [8]:

VOCs using Method SW-846 8260A;

- Major anions including chloride (Method MCAWW 325.2), sulfate (Method MCAWW 375.4) and bicarbonate alkalinity (MCAWW 310.1);
- Metals (cations) by Method SW-846 3010/6010A;
- pH, redox potential ( $E_{h}$ ), dissolved oxygen, specific conductance, and temperature using field electrodes.

#### 2.2. Groundwater velocity

Groundwater velocity is a critical parameter in evaluating PRB performance [9]. It enables calculation of field-scale VOC degradation rates and can also be used to estimate the plume capture zone upgradient of the PRB. Three methods of determining groundwater velocity were used during this evaluation:

- hydraulic head measurements;
- conservative tracer tests;
- in-well velocity meters.

### 2.3. Analyses of PRB cores

A drive point/piston sampler was used to obtain angle cores from the PRB in June 1997 [10]. Since laboratory studies had indicated that significant inorganic changes in aqueous chemistry occur near the upgradient interface, efforts were made to collect continuous core samples that passed from the upgradient interface into the iron zone. A

.

1,

T-685

#### J.L. Vogan et al, / Journal of Hazardous Materials 68 (1999) 97-108

complete continuous angle core (Fig. 1) was obtained from the interface, and subdivided into 5 cm sections for analysis. Mineralogical analyses performed on the core samples included total carbonate using acid digestion, and surface mineralogical studies using electron dispersive X-ray (EDX), Raman spectroscopy, and scanning electron microscopy (SEM). Microbial enumerations and total lipid biomass determinations were also completed. Hydraulic conductivity values were calculated from laboratory permeameter tests on a second angled core.

### 3. Results and discussion

#### 3.1. Observed VOC degradation

Consistent trends in VOC concentration were observed throughout the monitoring period. The highest VOC concentrations over the first seven months of operation were observed in the center transect in the October sampling event (Table 1). A graph of TCE concentrations for the three transects of monitoring wells in the seventh month of operation is shown in Fig. 2. While upgradient VOC concentrations showed some variability, concentrations at or near the detection limit were reported at the midpoint of the iron. These declines in concentration of TCE and related compounds were interpreted to reflect the degradation of these VOCs by zero-valent iron, according to the following reaction [11], which considers only the presence of water, zero-valent iron and a chlorinated organic compound R-Cl:

$$3Fe^{0} \rightarrow 2Fe^{2+} + 4e^{-}$$

$$3H_{2}O \rightarrow 3H^{+} + 3OH^{-}$$

$$2H^{+} + 2e^{-} \rightarrow H_{2}$$

$$\frac{R-Cl + H^{+} + 2e^{-} \rightarrow R-H + Cl^{-}}{3Fe^{0} + 3H_{2}O + R-Cl \rightarrow 2Fe^{2+} + 3OH^{-} + H_{2} + R-H + Cl^{-}}$$

Low to non-detectable VOC concentrations were maintained or increased slightly downgradient, likely due to incomplete flushing of the downgradient plume and/or desorption of VOCs from aquifer sediments.

| Well location           | Concentrations along center transect (mg/l) |           |              |           |              |           |  |  |  |
|-------------------------|---------------------------------------------|-----------|--------------|-----------|--------------|-----------|--|--|--|
|                         | TCE                                         |           | CDCE         |           | VC           |           |  |  |  |
|                         | October 1995                                | June 1997 | October 1995 | June 1997 | October 1995 | June 1997 |  |  |  |
| Upgradient pea gravel   | 160                                         | 189       | 450          | 298       | 79           | 53        |  |  |  |
| Midpoint of iron zone   | < 1.0                                       | 2.0       | 2.0          | < 7.8     | < 1.0        | < 0.7     |  |  |  |
| Downgradient pea gravel | 1.5                                         | < 1.7     | 7.5          | 15        | 1.2          | < 0.7     |  |  |  |

Table 1

÷١

3,

J.L. Vogan et al. / Journal of Hazardous Materials 68 (1999) 97-108

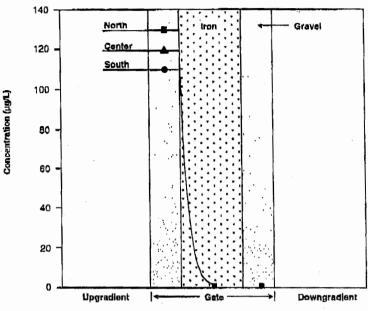
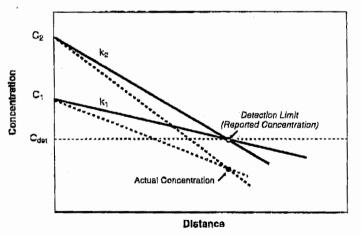




Fig. 2. TCE concentration in the seventh month of operation.

VOC degradation rates, the slope of concentration vs. time curves  $(k_1 \text{ and } k_2 \text{ shown}$  in Fig. 3) are commonly expressed in half-lives; the time required to reduce the concentration by 50%. Concentration vs. distance profiles from the monitoring wells were converted to concentration vs. time profiles using an estimate of groundwater velocity of 0.2 m/day (see Section 3.2) and compared to half-lives predicted from the



#### Fig. 3. Uncertainty in calculated degradation rates.

#### J.L. Vogan et al. / Journal of Hazardous Materials 68 (1999) 97-108

102

laboratory study (Table 2). Note that if a higher velocity is used in the calculation, the half-lives would be shorter.

It should be noted that the half-lives determined from the field data are conservative estimates of the actual half-lives since VOC concentrations of  $1 \mu g/l$  (the detection limit) were used for monitoring well concentrations in the middle of the iron zone. There is no way of knowing the distance at which the detection limit was actually reached (Fig. 3). As shown in Fig. 3, half-lives can also vary according to variations in the influent concentration. This effect is particularly apparent in the calculation of TCE half-lives, which are generally below 3 h at other field installations. In spite of the uncertainty, cDCE and vinyl chloride half-lives compare well with values predicted from laboratory studies.

#### 3.2. System hydraulics

The three methods of determining groundwater velocity at the site produced estimated groundwater flow velocities in the treatment gate from 0.2 to 0.7 m/day (Table 3). These field measurements compared reasonably well with a velocity of 0.34 m/dayand a capture zone of about 7.5 m predicted by a two-dimensional plan view particle tracking model of the system developed during system design. The model was based on groundwater velocities in the aquifer of about 0.2 m/day. The bromide tracer was injected into fully screened wells located in the upgradient pea gravel. To minimize hydraulic disturbance, only 9.5 1 of tracer solution was added to each of the three wells, resulting in small pencil-like plumes emanating from each well. The tracer was detected in each of the wells in the iron zone, but only in one sample. This single detection indicated a groundwater velocity through the gate of about 0.36 to 0.49 m/day. Dilution of the bromide solution upon injection could have reduced the possibility of detection. Furthermore, because of the small dimensions of the tracer plumes, small deviations in groundwater flow direction away from the downgradient monitoring wells would result in intercepting only a small portion of the tracer or possibly missing it all together. Evidence of this has been observed in similar tracer tests [9,12].

Calculations using water table elevations are limited by the accuracy of measurement (small differences in water level elevations over short distances) and the uncertainty in hydraulic parameters (porosity and hydraulic conductivity of the iron). The in-well velocity meter gave velocity magnitudes that were in the range anticipated. Although the

| VOC | Predicted half-life (h)"<br>from laboratory studies | Half-life (h) from<br>monitoring well data |
|-----|-----------------------------------------------------|--------------------------------------------|
| TCE | 0,4 to 1.1                                          | < 4.0                                      |
| DCE | 1.5 to 4.0                                          | 3.0 to 5.0                                 |
| VC  | 2.0 to 6.0                                          | 5.0 to 10.0                                |

 Table 2

 Observed chlorinated volatile organic compound half-lives

"Rates at two velocities adjusted for temperature.

J.L. Vogan et al. / Journal of Hazardous Materials 68 (1999) 97-108

Table 3

5.2

Ś

| ÷, | Cro | undurator | flow w | lociv | artimitar | in the | treatment vale |  |
|----|-----|-----------|--------|-------|-----------|--------|----------------|--|

| Method of measurement                                                                  | Groundwater flow velocity estimate |
|----------------------------------------------------------------------------------------|------------------------------------|
| Groundwater flow model prediction; $\overline{\nu}_{Aguiler} \simeq 0.2 \text{ m/day}$ | 0.3 m/day                          |
| Hydraulic head measurements (June to December 1995)                                    | < 0.2 to 0.4 m/day                 |
| Bromide tracer test (August 1996)                                                      | 0.4 to 0.5 m/day                   |
| Velocity meter (September 1996)                                                        | 0.2 m/day                          |
| Velocity meter; $\bar{v}_{Aquiref} = 0.1$ to 0.2 m/day (June 1997)                     | 0.3 to 0.7 m/day                   |

direction of velocity vectors obtained with the meter were somewhat variable, most showed flow in a westerly direction (through the system).

Laboratory permeameter tests performed on undisturbed angle core samples gave hydraulic conductivity values ranging from  $6 \times 10^{-2}$  to  $10^{-1}$  cm/s. These compare favourably with hydraulic conductivity values of  $5 \times 10^{-2}$  to  $10^{-1}$  cm/s for 'fresh' iron. Though this result is encouraging, the core materials were disturbed and therefore the results may not accurately reflect the in situ effect of precipitation on hydraulic conductivity.

#### 3.3. Inorganic geochemistry

As groundwater moves through granular iron, the pH of the groundwater increases and the  $E_h$  decreases as a consequence of iron corrosion. As the pH increases, bicarbonate (HCO<sub>3</sub><sup>-</sup>) in solution converts to carbonate (CO<sub>3</sub><sup>2-</sup>) to buffer the pH increase:

$$HCO_{2}^{-} \rightarrow CO_{2}^{2^{-}} + H^{+} \tag{1}$$

The carbonate then combines with cations ( $Ca^{2+}$ ,  $Fe^{2+}$ ,  $Mg^{2+}$ , etc.) in solution to form mineral precipitates:

| Ca <sup>2</sup> | + CO2- | $\rightarrow CaCO_{3(s)}$ | ( | 2) | ) |
|-----------------|--------|---------------------------|---|----|---|
|                 |        |                           |   |    |   |

 $\operatorname{Fe}^{2+} + \operatorname{CO}_{3}^{2-} \to \operatorname{Fe}\operatorname{CO}_{3(s)} \tag{3}$ 

$$Mg^{2+} + CO_3^{2-} \rightarrow MgCO_{3(4)}$$
(4)

These reactions were reflected in the aqueous geochemical results throughout the monitoring period (Table 4). Results are shown from wells along the centre transect (Fig. 1). Results were very consistent both laterally across the wall and over time through the monitoring period. Upgradient groundwater was near neutral in pH and slightly aerobic, while at the midpoint of the iron the pH was generally between 9 and 10 and  $E_h$  of less than -300 mV were common. Downgradient of the gate pH increased to background levels while the  $E_h$  of the groundwater remained slightly lower than in the aquifer upgradient of the gate. Declines in aqueous calcium, alkalinity and sulphate were observed throughout the test. Iron concentrations did not increase substantially over background, indicating rapid precipitation of the ferrous iron introduced into solution from corrosion of the iron material.

Results of the carbonate mineral determinations on the core samples are shown in Fig. 4 The maximum carbonate content of about 6%  $CaCO_3$  (6 g/100 g solid), obtained

104

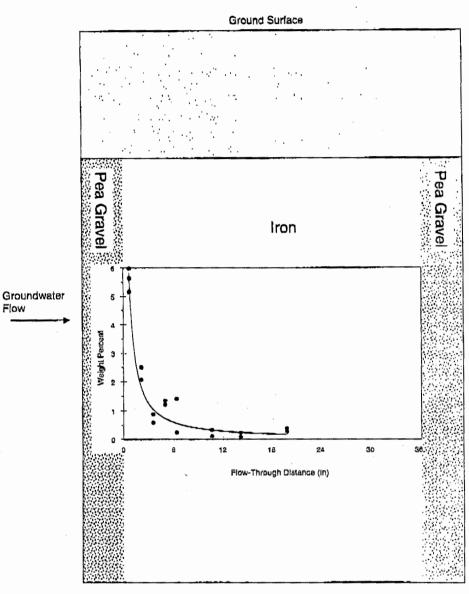
J.L. Vogun et al. / Journal of Hazardous Materials 68 (1999) 97-108

| Chemical parameter     | Monitoring well location |        |       |       |  |  |  |  |
|------------------------|--------------------------|--------|-------|-------|--|--|--|--|
| (unit)                 | U2                       | FE2    | D2    | DS    |  |  |  |  |
| Ca (mg/l)              | 90.6                     | 9,6    | 15.4  | 33.6  |  |  |  |  |
| Fe (mg/1)              | < 0,1                    | 0.158  | < 0.1 | 0.159 |  |  |  |  |
| Mg (mg/l)              | 12.7                     | 7.33   | 4.23  | 5.95  |  |  |  |  |
| Mn (mg/1)              | 0,388                    | 0.0574 | 0.195 | 0.174 |  |  |  |  |
| K (mg/l)               | 1.93                     | 1.86   | 1.02  | < 1.0 |  |  |  |  |
| Na (mg/l)              | 29.4                     | 29.6   | 23.4  | 15,5  |  |  |  |  |
| $HCO_1 (mg/l)$         | 291                      | 47.8   | 56.5  | Na    |  |  |  |  |
| Cl (mg/l)              | 47.4                     | 49.2   | 42.8  | Na    |  |  |  |  |
| SO <sub>4</sub> (mg/l) | 17.2                     | < 5.0  | < 5.0 | Na    |  |  |  |  |
| pH                     | 7.39                     | 9.46   | 8.56  | 7.06  |  |  |  |  |
| $E_{\rm h}~({\rm mV})$ | 261                      | - 459  | - 156 | -16.5 |  |  |  |  |

from the sample nearest the upgradient interface, rapidly declines with distance with values of less than 1% beyond a distance of 15 cm.

The carbonate content present in the core samples and the changes in bicarbonate alkalinity observed in monitoring well samples were used to develop independent estimates of the mass of carbonate deposited in the iron zone over a 2-year period. The latter estimate is dependent on the assumed flow rate of groundwater passing through the treatment zone. At a flow velocity of 0.2 m/day, and a porosity of about 0.5 for the iron, about 76 m<sup>3</sup> (76,000 l) of groundwater passed through a 1 m<sup>2</sup> cross-sectional area of the gate prior to coring. The average decline in calcium concentration between wells in the upgradient iron zone and wells at the midpoint of the iron zone was about 80 mg/l. Using these data, about 15 kg of calcium carbonate would have been deposited in this 1 m<sup>2</sup> × 0.46 m long section of iron. The mass of carbonate estimated from core samples, obtained by approximating the area under the curve shown in Fig. 4, is about 15 kg. The agreement between these two values is remarkable, given the uncertainties involved in calculating each estimate.

Raman spectroscopy, SEM, and to a lesser extent EDX, confirmed the results of carbonate analyses. Examination of samples near the upgradient interface showed significant amounts of calcite and aragonite. Samples from sections of cores further downgradient showed less carbonate precipitates. Several randomly distributed iron oxides and oxyhydroxides were also detected. Calcite and aragonite were the predominant carbonate species observed, with only minor amounts of siderite (FeCO<sub>3</sub>). Green rusts, complex iron hydroxides containing both chloride, sulphate, and carbonate were observed on a few samples. No sulphide precipitates were observed in the core samples.


The precipitates did not appear to significantly affect system performance. Hydraulic conductivity measurements of core samples approached that of 'fresh' iron, and velocity measurements showed no trend upwards or downwards. Removal of VOCs was also consistent over the monitoring period, indicating no significant effects of precipitation on iron reactivity.

 $\langle \cdot \rangle$ 

٢



105



### Fig. 4. Calcium carbonate equivalent, New York.

### 3.4. Microbial activity

Data on microbial biomass and composition was obtained from groundwater samples collected in the iron zone, in upgradient and downgradient pea gravel zones, and in upgradient and downgradient aquifer monitoring wells for a 6-month period following

#### J.L. Vogan et al. / Inurnal of Hazardous Materials 68 (1999) 97-108

construction. The microbial populations in the groundwater samples from upgradient, iron and background zones appeared to be of similar size  $(10^3 \text{ to } 10^4 \text{ cells/g} \text{ dry} \text{ weight})$  and composition. The microbial biomass in the downgradient gravel and aquifer zones were of similar size but different composition explained by the changes in aqueous geochemistry on the downgradient side of the iron zone, including the production of hydrogen gas from the iron that supports the activity of many obligate anaerobic bacteria. The disappearance of sulphate in groundwater samples from the iron zone may indicate the establishment of a sulphate-reducing bacteria in this zone.

Each 5-cm section of the angle core was subjected to microbial analysis. Lipid biomass results from the iron zone core samples were in the order of  $10^6$  cells/g dry weight. Microbial enumerations in both the aerobic and anaerobic cultures developed from the iron zone cores ranged from less than the detection limit to  $10^4$  colony forming units (CFUs)/g wet weight after 28 days of growth [13]. No microbial films were noted on the samples during microscopic examination. The core data supported the lack of microbial growth observed in the groundwater samples from the iron zone.

#### 3.5. Implications of pilot-scale performance to full-scale design

Based on the record of pilot-scale performance, the decision was made to proceed with a PRB for full-scale plume remediation at the site. Field-scale half-lives of 4.8, 5.1 and 9.4 h for TCE, cDCE and VC were used in a first order kinetic model to determine the required residence time in the full-scale PRB, together with assumed influent concentrations from recent sampling events and relevant New York state regulatory criteria. The amount of carbonate precipitate (6%) in the upgradient section was calculated to represent a porosity loss of about 10% over 2 years (i.e. a decrease in porosity from about 0.5 to 0.45). Based on this estimate there did not appear to be any need to include design features to remove carbonate precipitates. Periodic (every few years) scarification of the upgradient interface using augering equipment was considered to be a more practical alternative (if required).

The continuous wall configuration was chosen over a funnel-and-gate configuration because of lower construction costs. A continuous wall also minimized the potential for bypass around or beneath the system compared to a funnel-and-gate. The lower velocity through a unit cross-section of a continuous permeable zone, relative to the higher velocity created by funnelling water through a treatment gate, means that the rate of precipitation at the interface should be less in the continuous zone, leading potentially to a longer service life.

Following design, a 0.3-m thick continuous PRB was installed across the entire plume at the facility in December 1997. The pilot-scale PRB was destroyed during full-scale construction.

#### 4. Conclusions

The 2-year evaluation of this pilot-scale system provides encouraging data with respect to the long term performance of iron PRBs for VOC remediation, particularly in view of the multi-year records from other sites which have produced similar results

107

#### J.L. Vogan et al. / Journal of Hazardous Materials 68 (1999) 97-108

[11,14]. Consistent VOC degradation was observed over the 2-year period. Microbial populations did not increase in the iron zone relative to the aquifer, and while mineral precipitates formed in the iron zone, they did not appear to represent an insurmountable limitation to the technology. One difficulty identified during the evaluation was that of accurately measuring groundwater velocity through a PRB; in-well meters may provide a reasonable means of measurement for minimal cost.

#### Acknowledgements

The authors gratefully acknowledge the help of Greg Friday, Bob Ingleton and other University of Waterloo staff with velocity measurements, core sampling and core analyses.

#### References

٩,

ν۳, ι

- United States Environmental Protection Agency, Permeable reactive subsurface barriers for the interception and remediation of chlorinated hydrocarbon and chromium (VI) plumes in groundwater, 1997, EPA/600/F-97/008.
- [2] R.W. Gillham, In situ Treatment of Groundwater: Metal-Enhanced Degradation of Chlorinated Organic Contaminants, Kluwer Academic Publishers, Printed in the Netherlands, 1996, pp. 249-274.
- [3] T.L. Johnson, M.M. Scherer, P.G. Tratnyek, Kinetics of halogenated organic compound degradation, Iron Met. Environ. Sci. Technol. V 30 (1996) 2634-2640.
- [4] D.K. Clark, T.L. Hineline, J.L. Vogan, S.F. O'Hannesin, In situ treatment of a TCE plutne using a funnel and gate system: a case study, Presented at the NGWA/API 1996 Petroleum Hydrocarbons and Organic Chemicals in Groundwater Prevention, Detection and Remediation Conference, Houston, TX, November 13-15, 1996.
- [5] R.C. Starr, J.A. Cherry, In-situ remediation of contaminated groundwater: the funnel and gate system, Groundwater 32 (3) (1994) 465-476.
- [6] US Environmental Protection Agency, Superfund innovative technology evaluation demonstration program, technology demonstration report, EnviroMetal Technologies, Dechlorination of Volatile Organic Compounds Using an In-situ Reactive Wall, 1998.
- [7] PRC Environmental Management. Inc., 1995, EnviroMetal Technologies Inc., Metal enhanced Abiotic Degradation Technology SITE Program Demonstration Final Quality Assurance Project Plan, Submitted to EPAORD, Cincinnati, OH, May 1995.
- [8] United States Environmental Protection Agency, Superfund innovative technology evaluation demonstration program, quality assurance project plan, EnviroMetal Technologies, Dechlorination of volatile organic compounds using an in-situ reactive wall, 1995.
- [9] R.M. Focht, J.L. Vogan, S.F. O'Hannesin. Hydraulic studies of in situ permeable reactive barriers, Conference proceeding from the 1997 International Containment Technology Conference and Exhibition. St. Petersburg, FL, February 9-12, 1997, pp. 975-981.
- [10] R.C. Starr, R.A. Ingleton, A new method for collecting core samples without a drilling rig, Groundwater Monitoring Review, Winter 1992, 91-95.
- [11] S.F. O'Hannesin, R.W. Gillham, Long-term performance of an in-situ 'iron wall' for remediation of VOCs, Groundwater 36 (1) (1998) 164-170.
- [12] N. Gupta, B.M. Sass, A.R. Gavaskar, J.R. Smichak, T. Fox, F.A. Snyder, D. O'Dwyer, C. Reeter, Hydraulic evaluation of a permeable barrier using tracer tests, downhole velocity measurements, and modelling, Presented at the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. May 18-21, Battelle Press, Columbus, OH, Vol. C1-6, 1998, pp. 157-162.

108

#### J.L. Vogan et al. / Journal of Hazardous Materials 68 (1999) 97-108

- [13] J.L. Vogan, B.J. Butler, M.K. Odziemkowski, G. Friday, R.W. Gillham, Inorganic and biological evaluation of cores from permeable reactive barriers, Presented at the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. May 18-21, Battelle Press, Columbus, OH, Vol. C1-6, 1998, pp. 163-168.
- [14] S.D. Warner, C.L. Yamane, N.T. Bice, F.S. Szerdy, J.L. Vogan, D.W. Major, D.A. Hankins, Technical update: the first commercial subsurface permeable reactive treatment zone composed of granular zero-valent iron, Presented at the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 18-21, Battelle Press, Columbus, OH, Vol. C1-6, 1998, pp. 145-150.

23 10 00 00 23

1215

N. K., 434 . . .

For Presentation at the Air & Waste Management Association's 90th Annual Meeting & Exhibition, June 8-13, 1997, Toronto, Ontario, Canada

### 97-WA83A.05

Ę)

4

# The Results of a Zero Valence Metal Reactive Wall Demonstration at Lowry AFB, Colorado

### William A. Gallant

Versar, Inc., 11990 Grant Street, Suite 500, Northglenn, Colorado 80233

### **Brian Myller**

Dames & Moore, 633 17th Street, Suite 2500, Denver, Colorado 80202

### Abstract

The Air Force Base Conversion Agency (AFBCA), in association with the Air Force Center for <u>BALERED</u> Environmental Excellence (AFCEE), hosted an innovative technology demonstration for implementation at Lowry AFB. Versar, Inc., Dames & Moore Group and EnviroMetal Technologies Inc. designed, <u>BALERED</u> constructed and monitored the treatment cell. The system was constructed in December 1995 and the monitoring results through June 1996 as well as the conclusions of the demonstration will be presented.

A 10-foot wide reactive iron section flanked by 14-foot-long sheet piling wing walls formed the funnel factors and gate system. Total influent concentrations of 1,400  $\mu$ g/L consist of dissolved chlorinated compounds. The highest concentrations (1,000  $\mu$ g/L) are as trichloroethene. The extensive use of monitoring wells gives an accurate picture of the physical and chemical conditions throughout the cell and provides definition of the processes that are causing the degradation of the chlorinated compounds. The parameters being measured in addition to the chlorinated compounds include Eh, pH, akalinity, DO, conductivity, and turbidity. General anions, cations, methane, ethene, and ethane were also analyzed on a periodic schedule in a selected number of wells. Results during the six month period indicate complete degradation of the CAH's within the first several feet of entering the wall. A detailed analysis of the results will be presented.

### Introduction

This report describes the process, design, construction, and performance of a passive in-situ reactive wall installed at Lowry Air Force Base (LAFB) in Denver, Colorado. The purpose of this project is to demonstrate the applicability of iron reactive walls for groundwater remediation at United States Air Force (USAF) facilities. Funding for the project was provided by the Technology Transfer Division of the USAF Center for Environmental Excellence (AFCEE).

### Process

This section presents background information about the reactive-iron treatment process, including previous studies, chemical reactions, and other applications.

## **Previous Studies**

Iron reactive-wall technology relies on the ability of certain metals to degrade certain dissolved chlorinated organic compounds to non-toxic breakdown products. This process was documented in the early 1970s (Sweeny, 1973a) in patents which involved the use of metals to degrade certain pesticides. Researchers in Japan (Senzaki and Kumagi, 1988 and 1989; and Senzaki, 1991) also documented this process when they noted the degradation of tetrachloroethane and trichloroethene (TCE) in aqueous solutions exposed to iron powder. In 1990, researchers at the University of Waterloo (UW) Center for Groundwater Research in Ontario, Canada, observed this process during studies on the uptake of various compounds on various well casing materials (Gillham and O'Hannesin, 1991). These studies showed that concentrations of several chlorinated organic compounds decreased in the presence of mild steel and galvanized metal.

Following these observations, UW initiated research efforts to further evaluate the metal-enhanced degradation process and its capabilities. These research efforts involved a series of batch tests which showed that iron was relatively inexpensive and effective at degrading 14 chlorinated compounds, which include the most prevalent pollutants found in groundwater. This lead to a series of column experiments wherein aqueous solutions of various chlorinated hydrocarbons were pumped through iron grindings. These experiments revealed that the degradation of chlorinated hydrocarbons could be effectively accomplished under dynamic flow conditions (Gillham et. al, 1993).

UW then emplaced iron grindings in a subsurface cell that intercepts and degrades TCE in groundwater (O'Hannesin and Gillham, 1992). The success of this first in situ permeable reactive wall lead to several other successful installations, and, in turn, to this AFCEE demonstration at LAFB. Metal-enhanced degradation technology has also been successfully applied in the form of above-ground treatment canisters.

### **Chemical Reactions**

Several observations noted during this and previous studies provide insight regarding the metalenhanced degradation reaction. These observations are listed below:

- Rates of degradation tend to increase as the degree of halogenation increases.
- Rates of degradation tend to increase as the surface area of iron increases.
- Eh declines significantly during degradation.
- pH generally increases from roughly 7 to about 9.5 during degradation.
- Intermediate breakdown products, which are produced in relatively small proportions, are also degraded.
- Rates of degradation are exponential.
- Bactericides do not significantly affect degradation rates.

These observations suggest that the chemical mechanism is first order, abiotic, and involves reductive dehalogenation, where:

- the iron oxidizes:
- the water dissociates:  $3H_2O \rightarrow 3H^+ + 3OH^-$
- hydrogen gas is produced:  $2H + 2e^- \rightarrow H_2$
- reductive dehalogenation occurs:  $X Cl + H^+ + 2e \rightarrow X H + Cl^-$

Collectively, this gives:

 $2Fe + 3H_0 + X - C1 \rightarrow 2Fe^{2+} + 2OH^- + X - H + C1^-$ 

If dissociation of water is not a part of the degradation, the reaction can be written:

 $2Fe^{0} \rightarrow 2Fe^{2+} + 4e^{-}$ 

 $Fe + X - Cl + H_2O \rightarrow Fe^{2+} + OH^- + X - H + Cl^-$ 

## **Geologic Setting**

The shallow geologic material beneath LAFB consists of a horizontal sequence of sedimentary units. The uppermost stratigraphic unit at LAFB consists of unconsolidated Quaternary alluvial deposits of the Piney Creek Alluvium. The thickness of these deposits ranges from less than 1 foot to over 60 feet (ft) (PES, 1995a). The Piney Creek Alluvium is composed primarily of heterogeneous and generally discontinuous sands, silts, and clays. Along the quarter mile of Westerly Creek downstream from the outfall source area, the land surface is covered with fill material up to 13 ft thick. Sand and gravel units are often present at the base of the Piney Creek Alluvium.

Beneath the Piney Creek Alluvium lies the eroded upper surface of the Denver Formation. The Denver Formation is Late Cretaceous to Paleocene in age and is composed primarily of silty claystone and sandy siltstone with thin discontinuous sand layers.

The Denver Formation is underlain by the Cretaceous Arapahoe Formation. This, and the deeper formations beneath LAFB, are not discussed further because they are too deep to have an effect on, or be effected by, the reactive treatment wall.

## **Outfall Source Area Hydrology**

The saturated thickness within alluvial material varies across the Outfall Source Area. The saturated thickness of the alluvium near Westerly Creek ranges from 2.5 to 16 ft while the saturated thickness in the northern portion of the site ranges from 2 to 8 ft. Water samples obtained at depths of over 10 ft below the inferred bedrock surface indicate that the upper portion of bedrock can also be saturated (PES, 1995b).

## **Outfall Source Area Groundwater Chemistry**

The highest observed detections of TCE occur adjacent to Westerly Creek in the vicinity of the stormdrain outfalls north of 6th Avenue. The highest concentration (107,925  $\mu$ g/L from sample CP-100) was observed immediately downstream of the outfall area in the lower portion of the alluvial aquifer. Samples from several other CPT locations adjacent to Westerly Creek and up to approximately 500 ft downstream (north) of the Outfall Source Area yielded TCE concentrations in excess of 10,000  $\mu$ g/L. These samples were also collected from the lower portion of the alluvial aquifer.

Bench-scale studies were performed to assess the ability of the permeable reactive media to degrade the contamination present in groundwater collected from the Outfall Source Area.

To summarize, the contaminant hydrogeology at the Outfall Source Area at LAFB offered the following conditions suitable for the demonstration:

- groundwater contaminated by halogenated organics
- contamination distributed at shallow depths
- relatively consistent groundwater flow patterns
- groundwater flow velocities sufficient to allow performance monitoring within a reasonable timeframe
- a low-permeability layer (Denver Formation) underlying the alluvial aquifer
- unconsolidated aquifer material (facilitating construction).

### **Residence-Time Calculations**

In order to assess the residence time needed for the reactive wall, the maximum detected TCE concentration (1,260  $\mu$ g/L) was used as the influent concentration. Based on the results of bench-scale tests and other studies, a reactive section consisting of 100 percent iron was determined to provide the maximum rate of VOC degradation, while minimizing the required size and cost of the treatment cell.

The residence times needed to treat the identified constituents to maximum contaminant levels (MCLs) are presented in Table 1.0. The values were calculated using the above influent concentrations and half-lives measured in the bench-scale studies. Measured half-lives were increased by 2 and 3 times (2x and 3x) on Table 1.0 to account for declines in degradation rates due to field effects (mainly lower groundwater temperatures). These factors are based on results from other field tests. Because a half-life for VC could not be reliably determined during the bench-scale studies, a representative half-life for VC based on other studies conducted with groundwater exhibiting similar chemistry is used. Based upon this data and other assumptions a resident time of two days was selected for the design.

### **Reactive Wall Construction**

Construction of the reactive wall began November 16, 1995 and took approximately one month to construct. The reactive wall consisted of a 10-ft reactive wall section flanked by two 14-ft long wing walls.

. . . . . . . . .

....

### Performance-Monitoring System

The performance-monitoring system was designed to provide information regarding the groundwaterflow patterns and velocities, and chemical processes within and around the wall. This information was obtained using a monitoring-well network consisting of 34 wells. The locations of the wells were based on the results from the detailed subsurface characterization, the numerical model, and the residence-time calculations.

## rmance Evaluation

The performance of the reactive wall is evidenced by the distribution of physical and chemical parameters within and around the wall, and by variances in this distribution over time. The physical parameters evaluated include hydraulic conductivity and hydraulic potential. The chemical parameters evaluated include field parameters (pH, Eh, conductivity, temperature, alkalinity, and turbidity), laboratory-analyzed constituents (dissolved ethenes and ethanes, ethene and ethane gas, other organics, cations, and anions) and tracer-related analytes (bromide, potassium, and sodium). These parameters were measured within and around the wall during seven monthly sampling events.

### **Field Parameters**

Field parameter data, as well as all other chemical data, were collected during seven groundwater sampling events completed monthly from December 1995 through June 1996. The concentration-versus-distance graphs show the longitudinal distribution of chemical parameters along various laterally and vertically positioned cross sections within the wall. While individual concentration-versus-distance graphs reveal the distribution of chemical parameters in the longitudinal dimension, comparisons with other concentration-versus-distance graphs are used to assess chemical distributions in the lateral, vertical, and temporal dimensions.

With the exception of alkalinity, the field parameter data were collected within a closed system (YSI 6000®) involving a flow-through cell that contained the various parameter probes. Alkalinity was denoted measured using a Hach® titration kit. The values represent conditions measured after purging the wells.

## Temperature, Oxidation-Reduction Potential, and pH

Figure 1.0 shows the Temperature, ORP, and pH measurements longitudinally through the wall along the center well-row (deep) during March 1996. Note that ORP drops significantly within the first foot of the filter rock and continues to drop within the iron. In contrast, pH rises from roughly 7 to nearly 10 within the iron. Temperature remains relatively consistent within the wall. This distribution is consistent with conditions present at other lateral and vertical locations within the wall.

The increase in pH values and decrease in ORP values with distance in the iron are also consistent with results of the laboratory treatability study and other in-situ reactive-wall installations. The reduction in ORP presumably reflects the oxidation of Fe0 to ferrous iron; the increase in pH values seems to reflect the production of hydroxide.

## Alkalinity and Dissolved Oxygen

Figure 2.0 and center well-row (deep) shows the concentrations of alkalinity and DO measured longitudinally through the wall during April 1996. Total alkalinity decreases rapidly with distance into the wall; this behavior is consistent laterally and vertically within the wall. In contrast to alkalinity, DO concentrations decrease within the wall. This behavior may reflect seasonal influences on the DO concentrations in the groundwater, although the measured variations are very small with respect to the sensitivity of the measuring probe. This behavior is consistent at other lateral and vertical locations within the wall.

Sec. Carlo

## Conductivity and Turbidity

Figure 3.0 shows the electric conductivity and turbidity measurements obtained longitudinally through the wall along the central well-row (shallow and deep) during April 1996. Electric conductivity and turbidity values drop within the wall. The drop in electrical conductivity likely reflects removal of alkalinity, calcium, etc., from solution.

Summary of field parameter results:

- ORP drops significantly with distance into the wall, likely reflecting the oxidation of Fe0 to Fe<sup>+2</sup>
- pH rises with distance into the wall, until approximately 10, likely reflecting the production of OH<sup>-1</sup>
- · Total alkalinity is consumed within the wall
- · Field parameter conditions are relatively consistent in the lateral dimension within the wall
- With the exception of DO, field parameter conditions are relatively consistent temporally within the wall.

### **Dissolved Ethenes**

Figure 4.0 shows the longitudinal distribution of detected ethenes during April 1996 along the center well-row (deep). All four detected ethenes, including TCE, degrade to approximately their respective analytical quantitation limits after traveling less than one foot through the iron. Influent concentrations vary temporally is well. For example, incoming concentrations were over 1,000  $\mu$ g/L in January 1996, but were less than 350  $\mu$ g/L in June 1996. Again, the degradation behavior appears consistent, despite temporal variations in influent concentrations.

## **Dissolved Ethanes**

Figure 5.0 shows the longitudinal distribution of detected ethanes during April 1996 along the center well-row (deep). 1,1,1-trichloroethane (1,1,1-TCA) the most prevalent ethane, is degraded rapidly within the first foot of the iron. Concentrations of 1,1-dichloroethane (1,1-DCA), and 1,2-dichloroethane (1,2-DCA), are reduced more slowly. This probably reflects the tendency for less-chlorinated compounds to degrade slower, and/or the production of breakdown intermediates. this degradation behavior is relatively consistent laterally and vertically.

## **De-chlorinated End Products**

Consistent with the degradation of the ethenes and ethanes would be the production of de-chlorinated end products. Consequently, during the January 1996 sampling event, samples were collected and analyzed for ethene, ethane, and methane. Figure 6.0 shows that these end-products are produced at rates that inversely correlate with the degradation of the chlorinated compounds. Note that methane and a small amount of ethane were present in the upgradient groundwater. This, in addition to the presence of dissolved ethenes and ethanes, may reflect ambient degradation of the source products.

## **Other Chlorinated Compounds**

Of concern with the de-chlorination of ethanes and ethenes is the production of intermediate chlorinated breakdown products that could pose even greater risk to human health or the environment than the

б

· ...

۰.

5 . . .

11.

7

1 1 10 M

source constituents. The degradation of VC to near the quantitation limit within the first foot prior to its complete degradation further into the iron. In all cases VC is degraded to the quantitation limit within the first 2 ft of the wall.

### **Cations and Anions**

Alkalinity, sulfate, and calcium appear to be consumed in the wall, while chloride appears to be produced. Other cations and anions appear to remain relatively unchanged. These conditions are consistent with those measured during the February and April 1996 sample events.

### Assessment

The following three factors assess the performance of the wall:

- groundwater velocity
- VOC degradation rates
- potential porosity losses.

### Groundwater Velocity

The groundwater velocity through the treatment system is the key parameter needed to assess rates of VOC degradation and mineral precipitation. Three independent methods of determining groundwater velocity were used during the course of the project:

- calculation using water elevation data and Darcy's Law
- use of an in-well heat-pulse flow meter
- use of a conservative tracer.

Estimates of groundwater flow velocity ranged from about 0.4 ft/day using in-situ flow meter to 1.4 ft/day (or higher) using the observed water table and estimated hydraulic conductivity values. It is quite likely that the velocity varies at the site in response to both seasonal variations and the water level in Westerly Creek. Given these values, a velocity of about 1 ft/day is used in the following calculations of VOC degradation rates and inorganic precipitation (clogging rates). The implications of this velocity estimate on these calculations is also discussed below.

### **VOC Degradation Rates**

As shown in graphs contained in the report, TCE and related compounds all declined to below regulatory MCLs within about 2 ft of travel distance in the granular iron zone. This decline was consistent throughout the seven-month monitoring period. Concentrations obtained in month seven were used to calculate first-order degradation rates of major VOCs. Concentrations measured in aquifer wells N1, N2, and N3 upgradient of the system were used as influent concentrations in these calculations. Half-lives were calculated using concentration-versus-distance profiles along each of the three parallel lines of wells in the direction of groundwater flow (i.e., the line of wells N1, R1 and R4, the line of wells N2, R2B, R5B, and R8B, and the line of wells N3, R3, R6, and R7). This is considered appropriate given the lateral variation in TCE concentration indicated in the upgradient wells.

Observed concentration-versus-distance profiles were converted to concentration-versus-time profiles using an estimated velocity of 1 ft/day. VOC half-lives were determined by fitting the first-order kinetic equation to the concentration versus time data. These results are shown in Table 2.0.

8

Several of the values listed in Table 2.0 were calculated using only two or three points (concentration values), with the last point being the reported detection limit for that compound. The use of a two-point curve (i.e., a straight line) causes a perfect goodness of fit" or r2 value of 1.0 as shown in the table. The use of detection limits, especially coupled with low initial concentrations, causes an artificially high half-life (low degradation rate) to be calculated. In reality, the concentrations at this point are less than the detection limit (i.e., the compound has degraded past the detection limit). This effect is most pronounced in the rate constants calculated for compounds such as PCE and 1,1,1-TCA, but may also influence the half-lives reported for other compounds. Note that if the velocity was indeed higher than 1.4 ft/day, then degradation rates would also increase (i.e., the sample locations at a given distance would be reached in less time).

Taking this uncertainty into account, half-lives for TCE, the compound present in the highest concentration, are within the range of previous field values at other sites, and are also within the range of half-lives predicted from the bench-scale studies. As noted, a two- to three-time decrease in laboratory half-lives is normally observed due to the effect of lower groundwater temperatures on reaction rates. Using the half-life of 0.45 hours (hrs) measured in the laboratory, a half-life in the field of 0.9 to 1.35 hrs was predicted. Given these uncertainties, the two-point half-life of 2 hrs calculated using influent concentrations from N1 and N2 is similar to the predicted value. TCE half-lives calculated using data from months 5 and 6 (Table 2.0) suggest that TCE degradation rates were reasonably consistent throughout this time period.

The declines in 1,2-DCA concentrations are inconsistent with previous studies. Consequently, the declines may represent sampling/analytical artifacts rather than true degradation.

### **Potential Porosity Loss**

Consistent declines in dissolved calcium, and alkalinity occurred throughout the test period. As shown graphically, most of these declines occurred in the first one foot of reactive material. Potential porosity losses associated with this decline are assessed in this section, using influent geochemical data from well N2, and data from wells R2A and R2B.

Declines in calcium, alkalinity, and increasing pH indicate that calcium carbonate (calcite), iron carbonate (siderite), and iron hydroxide precipitates were occurring in the iron. These precipitates occur in response to increasing pH due to corrosion of iron:

$$Fe^{O} + 2H_2O \rightarrow Fe^{+2} + 2OH^- + H_{2(r)}$$

Bicarbonate ions in solution convert to carbonate ions to buffer this pH increase:

$$HCO_3^- \rightarrow CO_3^{-2} + H^+$$

The carbonate ion then combines with cations in solution to form mineral precipitates:

 $Ca^{+2} + CO_3^{-2} \rightarrow CaCO_{3(s)}$  calcite  $Fe^{+2} + CO_3^{-2} \rightarrow FeCO_{3((s))}$  siderite  $Fe^{+2} + 2OH^- \rightarrow Fe(OH)_{2(s)}$ 

## Summary of Potential Precipitation Effects

In summary, porosity losses in the reactive material could theoretically amount to about 13 to 14 percent of the original porosity per year, at least in the first year, based on field measurements to date of carbonate and hydroxide precipitate formation. This means a decrease in porosity from 0.4 to about 0.35. The values assume the concurrent precipitation of carbonate minerals and either magnetite or iron hydroxides. This rate of porosity loss may well decrease over time due to varying (decreasing) iron corrosion rates, and could also vary depending on temporal changes in the influent groundwater geochemistry and groundwater velocity.

## **Cost Comparison**

This section compares the costs for the demonstration reactive wall at LAFB with estimates of costs for other technologies. A comparison is also provided based on a fictitious full-scale application so that influences of scale on cost effectiveness can also be assessed.

### **Demonstration Scale**

The demonstration-scale cost comparison compares the costs for the performance obtained by the demonstration wall with estimates of the performance obtainable using pump-and-treat and air-sparging technologies. Pump-and-treat and air-sparge technologies were selected for this comparison because they represent, in lieu of the reactive wall, the most feasible conventional technologies for the site. To develop this comparison, designs for pump-and-treat and air-sparge systems were developed based on treating the same aquifer and chemistry that the reactive wall is treating. The following assumptions were made for these comparisons:

- Design engineering costs for all three technologies are assumed to be equal.
- Sampling and analysis costs for each technology are assumed to be equal, with the exception of air sparging, which includes the addition of air samples to the monitoring program. Costs for air sampling and analysis are included as operations and maintenance (O&M) costs with the air-sparging technology.
- A conservative refurbishing effort, involving the replacement of iron every 5 years, was incorporated into the reactive wall O&M costs.

To summarize, the cost comparisons are based on capital plus O&M costs.

Figure 7.0 shows the cumulative cost over time associated with each of the technologies as applied to the Lowry Reactive Wall. The costs represented during year one include the up-front capital costs; the remaining years reflect the O&M costs. A seven percent inflation rate is assumed. The point where the cumulative costs for the reactive wall become less than the cumulative costs associated with pump-and-treat and air sparge technologies occurs at 8 and 5 years, respectively.

## Full Scale

Figure 8.0 shows the cumulative cost over time associated with each of the technologies as applied to a fictitious full-scale application.

This full-scale application involves the following assumptions:

- Aquifer has 5,000 µg/L influent concentration (average) of TCE
- Capture width of plume is 500 ft
- Saturated thickness (also plume-capture height) is 15 ft
- Depth to water is 10 ft
- Hydraulic conductivity is 32 ft/day
- Hydraulic gradient is 0.03 ft/ft
- Porosity is 0.03
- Refurbishing effort involving replacement of iron is incorporated every 5 years
- Reactive wall is constructed using a continuous iron reactive section rather than a funnel-andgate approach; the iron is excavated and emplaced using a single-pass trenching technique.

For the full-scale application, the point where the cumulative costs for the reactive wall become less than the cumulative costs associated with pump-and-treat and air-spa.ge technologies occurs at approximately 5 and 8 years, respectively.

## References

- 1. Gillham, R.W. and O'Hannesin, S.F., 1991. Metal-catalyzed Degradation of Halogenated Organic Compounds. Presented at AGWSE/NWWA, Innovative Ground Water Technologies for the 90's, Washington, D.C., October 21-23, Abstract, Ground Water, Vol. 29, No. 5, p. 752. (patent pending).
- 2. Gillham, R.W., O'Hannesin, S.F., and Orth, S.W., 1993. Metal Enhanced Abiotic Degradation of Halogenated Aliphatics: Laboratory Tests and Field Trials. Presented at the 1993 HazMat Central Conference, Chicago, Illinois, March 9-11.
- 3. Kerfoot, W.B., Beaulieu, G., and Kiely, L. Direct-Reading Borehole Flow Meter Results in Field Applications. 5th Annual NGWA Outdoor Action Conference, Las Vegas, 1991.
- 4. Parsons Engineering-Science, Inc. (PES). 1995a. Installation Restoration Program, Preliminary Development and Screening of Alternatives for Remediation of Groundwater Contamination at the Fly Ash Disposal Area. Contract No. F33615-90-D-4014, Delivery Order No. 18. Lowry Air Force Base, Colorado. February.

10

1 Th ( 18 1 1 1

- 5. Parsons Engineering-Science, Inc. (PES). 1995b. US Air Force Environmental Restoration, Program, Installation Restoration Program, Characterization of the Source and Extent of Trichloroethene and Related Compounds in Groundwater at the Fly Ash Disposal Area, Addendum to the Characterization Summary Informal Technical Information Report Landfill Zone, Fire Training Zone, Fly Ash Disposal Area. Volume I. Lowry Air Force Base, Colorado. March.
- Senzaki, T. and Y. Kumagai, 1988. Removal of organochloro compounds in waste-water by reductive treatment - treatment of 1,1,2,2-tetrachloroethane with iron powder. Kogyo Yosui 357, 2-7 (Japanese).
- 7. Senzaki, T. and Y. Kumagai, 1989. Removal of organochloro compounds by reduction treatment (the second report) treatment of trichloroethylene with iron powder. Kogyo Yosui 369, 19-24 (Japanese).
- 8. Sweeny, K.H., 1973a. Decomposition of halogenated organic compounds using metallic couples. United States Patent No. 3,737,384.
- 9. Versar, 1996b. Draft Final Source Area Remediation Implementation Plan. Prepared for US Air Force Environmental Restoration Program. December.

.

12

Table 1.0. Required residence times for the in-situ pilot-scale treatment system.

| Volatile<br>Organic<br>Compound | Estimated VOC<br>Concentration<br>Requiring<br>Treatment<br>(µg/L) | MCL (µg/L) | Half-Life<br>(Hours) | Required<br>Residence<br>Time (Hours) |
|---------------------------------|--------------------------------------------------------------------|------------|----------------------|---------------------------------------|
| TCE                             | 1,260                                                              | 5          | 0.45                 | 3.6                                   |
|                                 |                                                                    | • •        | (2x) 0.9             | 7.2                                   |
|                                 | 10 × 17 83                                                         | ere design | (3x) 1.35            | 10.8                                  |
| cis-1,2-DCE                     | 338                                                                | 70         | 2.2                  | 5.0                                   |
|                                 |                                                                    |            | (2x) 4.4             | 10.0                                  |
|                                 | · · · · · · · · · · · · · · · · · · ·                              |            | (3x) 6.6             | 15.0                                  |
| VC                              | 65.5                                                               | 2          | 3                    | 15.1                                  |
|                                 |                                                                    |            | (2x) 6               | 30.2                                  |
|                                 |                                                                    |            | (3x) 9               | 45.3                                  |

tiones. Service – All to concrection and grandels ergendel terministical of a concentration of the concentration of the Service – All to concrete Regional Plantam

9 Versus 196 in litrate (1 e. roteca Arreski mediadon Implementarian Pars. Frequent 1 - 10 Act procession sector activity of hypright. Evolution

| Volatile Organic<br>Compound | Laboratory<br>Half-Life<br>(hr)       | Initial Conc.<br>(µg/L) | Half-Life<br>(hr) | r <sup>2</sup> |
|------------------------------|---------------------------------------|-------------------------|-------------------|----------------|
|                              | М                                     | onth 5 Measuremen       | ts                |                |
| CDCE ·                       | 2.20                                  | 208                     | 4.79              | 0.97           |
|                              |                                       | 162                     | 2.48              | 1.0            |
|                              |                                       | 162                     | 9.38              | .87            |
|                              |                                       | 190                     | 8.43              | .95            |
| TCE                          | 0.45                                  | 654                     | 2.06              | 1.0            |
|                              |                                       | 613                     | 2.07              | 1.0            |
|                              |                                       | 613                     | 2.07              | 1.0            |
|                              |                                       | 754                     | 4.04              | 1.0            |
|                              | M                                     | onth 6 Measuremen       | ts                |                |
| CDCE                         | 2.20                                  | 177                     | - 4.90            | 0.95           |
| 4                            |                                       | 121                     | 2.6               | 1.0            |
| . * • ••••                   | · · · · · · · · · · · · · · · · · · · | ···· 121 ··             | <b>9.4</b> 9      | 1.0            |
| 1                            |                                       | 141                     | 9.29              | 0.98           |
| TCE                          | 0.45                                  | 677 <sub>61.2</sub>     | 2.05              | 1.0            |
|                              |                                       | 531                     | . 2.11            | 1.0            |
|                              | and the set of the set of             |                         | 2.11              | 1.0            |
|                              |                                       | 625                     | 4.13              | 1.0            |
|                              | М                                     | onth 7 Measuremen       | ts                |                |
| CDCE                         | 2.20                                  | 192                     | 4.85              | 1.00           |
|                              |                                       | 114                     | 2.62              | 1.00           |
|                              |                                       | 114                     | 9.52              | 0.98           |
|                              |                                       | 112                     | 9.26              | 1.00           |
| TCE                          | 0.45                                  | 603                     | 2.08              | 1.00           |
|                              |                                       | 393                     | 2.19              | 1.00           |
|                              |                                       | 393                     | 2.19              | 1.00           |
|                              |                                       | 314                     | 4,52              | 0.89           |

Table 2.0 Calculated trichloroethene and cis-1,2-dichloroethene half-lives.

\* value measured at this well was at detection limit

,  $\left(\begin{array}{c} \\ \end{array}\right)$ 

• 

•

| viro <b>metal</b><br>chnologies<br>c. |
|---------------------------------------|
|                                       |

.. ..

745 Bridge St. W., Suite 7 Waterloo, Ontario Canada N2V 2G6 Tel (519) 746-2204 Fax (519) 746-2209

| To:             | Anna Fodar                                                       |
|-----------------|------------------------------------------------------------------|
| Company:        | Person, Es                                                       |
| Fax:            | 781-401-2575                                                     |
| Date:           | Men 24,00                                                        |
| From:<br>Email: | Andrzej Przepiora, Hydrogeologist, Ext. 234<br>aprzepiora@eti.ca |
| Re:             | 31317.77                                                         |
| Pages:          | 1 of <u>12</u>                                                   |

Anna,

Attacked is the meno on half-lives + a useral poper on heb test verselts.

Andry Ineproi

Original To Follow: Mail □ Courier □ No

This transmission contains information that may contain confidential and/or legally privileged. It is intended for use only by the person to whom it is directed. If you have received this in error, please notify us by telephone immediately. Thank you.

# envirometal technologies inc.

• •

| Re:   | Selection of the TCE and cDCE Half-Life Values Used in Residence Time<br>Calculations for the Ash Landfill Site – 31317.88 |
|-------|----------------------------------------------------------------------------------------------------------------------------|
| Date: | 24 March 200                                                                                                               |
| From: | John Vogan, Andrzej Przepiora, EnviroMetal Technologies Inc.                                                               |
| To:   | Anna Fodor, Jackie Travers, Parsons Engineering Science, Fax: 781-401-2575                                                 |

Further to you request, ETI has provided below the rationale for the selection of VOC halflife values that were used in residence time determination for the iron permeable wall at the Ash Landfill Site (the site).

ETI memorandum of 29 October 1998 contained residence time requirements obtained based on VOC concentrations detected in five groundwater wells at the site and MCL cleanup targets (Table 1). Half-lives of 3 hrs for TCE and 6 hrs for cDCE and VC were used for the calculations (Table 1).

A laboratory test using the site groundwater was not conducted for the site. Instead, ETI database was used to obtain VOC half-life values expected at the site groundwater conditions. At the end of 1998, ETI database contained results from over 100 bench-scale column test in which different sources of iron and a wide variety of site groundwater were used. The decision to use the database-derived half-lives at the site was based on relatively low total VOC concentrations and typical values of inorganic parameters found at the site.

Table 2 lists the TCE and cDCE half-lives obtained from three bench-scale column test conducted with Peerless iron (the iron source used at the site) in which site groundwaters had VOC composition and concentrations and geochemical parameters similar to the contaminated groundwater at the site. Half-lives obtained from numerous other tests with other iron sources have produced similar results. Laboratory half-lives established at room

745 Bridge St. W., Suite 7 Waterloo, Ontarlo Canada N2V 2G6 Tel (519) 746-2204 Fax (519) 746-2209

# envirometal technologies inc.

temperature (23° C) must be adjusted to the field groundwater temperature. Previous laboratory and field experience has shown that bench-scale half-lives should be increased to account for field effects including temperature. For example, if it is assumed that the operating (groundwater) temperature will not fall substantially below 10° C, it is reasonable to increase the effective half-lives by a factor of two. Note that even after the field adjustment is applied to the laboratory half-lives listed in Table 2, the values of 3 hrs for TCE and 6 hrs for cDCE appear conservative.

Field monitoring results from iron permeable barrier installations indicate that the VOC halfvalues detected in the field conditions correspond well to the adjusted half-lives obtained from bench scale tests. For example, half-lives calculated from the VOC monitoring of an iron permeable barrier installed in New York in 1995 ranged from 3 to 5 hrs for cDCE and were less than 4 hrs for TCE (Vogan et al., 1999). Half-lives determined based on field monitoring data from the iron reactive wall at Lowry AFB, CO ranged from 2 to 4 hrs for TCE and from 2.5 to 9.5 hrs for cDCE (Gallant and Myller, 1997). The field data would seem to support the TCE and cDCE half-lives used in the site design.

Recent research papers provide a summary of laboratory first-order degradation rates for granular iron materials (e.g. Tratnyek et al., 1998). The reported half-lives for chlorinated ethenes ranged from few minutes to several hours, depending on the source of iron and geochemical conditions of the groundwater, with half-life values of 0.5 hr (30 min.) and 4.8 hrs (290 min.) considered as representative for TCE and cDCE, respectively (Tratnyek et al., 1998). Note that most of the published laboratory data is based on column and batch experiments conducted with laboratory grade iron material which has different characteristics (i.e. surface area, size distribution) than commercial iron sources used in field installations. Data collected in ETI's laboratory database are from column tests conducted with commercial iron sources only, but the contained results are similar to these values.

If you have any questions regarding this memorandum, please contact us.

2

with the matrix of point of out and the

3

....

# References

Gallant, W.A. and Myller, B. 1997. The results of a zero valence metal reactive wall demonstration at Lowry AFB, Colorado. Air & Waste Management Association's 90<sup>th</sup> Annual Meeting and Exhibition, June 8-13, Toronto, Canada. pp 1-13.

Tratnyck, P.G., Johnson, T.L., Scherer, and Eykholt, G.R. 1997. Remediating ground water with zero-valent iron: chemical consideration in barrier design. Ground Water Monitoring and Remediation. vol. XVII, no 4:108-113.

Vogan, J.L., Focht, R.M., Clark, D.K. and Graham, S.L. 1999. Performance evaluation of permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, 68:97-108.

44 'MAR' 00

.....

| chnologies inc. |
|-----------------|
|                 |

|              | C MCL<br>(µg/L) |   |      | MCL           | MCL  | MCL       | Half  |       |       | Well Locat | ion and Co | oncentrati | on |  |
|--------------|-----------------|---|------|---------------|------|-----------|-------|-------|-------|------------|------------|------------|----|--|
| VOC          |                 |   |      | Lives<br>(hr) | PI   | <b>17</b> | MW-28 | MW-53 | PT-24 | MW-29      | MW-27      |            |    |  |
| TCE          | 5               | 3 | 260  | 190           | 35   | 4         | 7     | 5     | nd    |            |            |            |    |  |
| CDCE         | 5               | 6 | 53   | 17            | 53   | 51        | 140   | 150   | nd    |            |            |            |    |  |
| VC           | 2               | 6 | 14   |               |      |           |       |       | nd    |            |            |            |    |  |
| RT<br>(hrs)  |                 |   | 30   | 25            | 23   | 21        | 29    | 30    |       |            |            |            |    |  |
| RT<br>(days) |                 |   | 1.25 | 1.04          | 0.96 | 0.88      | 1.21  | 1.25  |       |            |            |            |    |  |

Table 1:Residence Time Requirements, Ash Landfill (From ETI memorandum of 29October 1998)

Table 2: Range of TCE and cDCE half-lives obtained from bench-scale column tests (23° C) using site waters with total VOC concentration <1,000 µg/L and low (<1,000 mg/L) TDS levels (ETI Database).

| Iron     | Lal          | poratory | TCE H | alf-life (h | urs)        | Lab          | oratory o | DCE H | alf-life ( | hrs)        |
|----------|--------------|----------|-------|-------------|-------------|--------------|-----------|-------|------------|-------------|
| Туре     | No.<br>tests | Меап     | Min.  | Max.        | Std.<br>dev | No.<br>tests | Mean      | Min.  | Max.       | Std.<br>dev |
| Peerless | 3            | 0.28     | 0.18  | 0.37        | 0.1         | 3            | 1.0       | 0.28  | 2.4        | 1.2         |

# Remediating Ground Water with Zero-Valent Metals: Chemical Considerations in Barrier Design

by Paul G. Tratnyek, Timothy L. Johnson, Michelle M. Scherer, and Gerald R. Eykholt

# Abstract

o gain perspective and insight into the performance of permeable reactive barriers containing granular iron metal, it is useful to compare the degradation kinetics of individual chlorinated solvents over a range of operating conditions. Pseudo first-order disappearance rate constants normalized to iron surface area concentration  $(k_{sA})$  recently have been reported for this purpose. This paper presents the results of further exploratory data analysis showing the extent to which variation in k<sub>sA</sub> is due to initial halocarbon concentration, iron type, and other factors. To aid in preliminary design calculations, representative values of ksA and a reactive transport model have been used to calcu-: late the minimum barrier width needed for different ground water flow velocities and degrees of halocarbon conversion. Complete dechlorination of all degradation intermediates requires a wider treatment zone, but the effect is not simply additive because degradation occurs by sequential and parallel reaction pathways.

# Introduction

During the last several years, a great deal of progress has been made toward understanding the design and performance of in situ permeable treatment barriers using zero-valent metals (Gillham 1996; Tratnyek 1996). Much of this progress has come from laboratory experiments with halogenated aliphatic compounds and granular iron in well-mixed bottles or in homogeneously packed columns (recent examples include Orth and Gillham 1996; Roberts et al. 1996; Allen-King et al. 1997; Johnson et al. 1997). Kinetic data from these types of experiments are now quite abundant, and represent a wide range of experimental conditions. We recently reported a statistical analysis of the available data that identifies the factors that contribute most to variability in observed contaminant degradation rates (Johnson et al. 1996). The results show that most of the range in first-order disappearance rate constants is due to differences in the reactivity of individual chemical contaminants and the amount of reactive surface area on the iron particles. By using surface area normalized rate constants, it is possible to make generalizations about degradation rates by iron metal that apply over a wide range of laboratory conditions (Johnson et al. 1996). In this paper, we consider the effects of additional experimental variables and apply representative rate constants to a reactive transport model for degradation of contaminants by an in situ permeable treatment barrier.

108 = FALL 1997 GWMR

Pages 108-114

# Surface Area Normalized Disappearance Kinetics

. ........

. .

The most successful kinetic models for environmental degradation reactions are usually second order overall: first order in concentration of the substrate, P, and first order in concentration of each specific environmental reactant (Hoigné 1990). The parameters in this formulation are sufficiently general to be site independent, and yet are specific enough to be derived from available data. For degradation of a contaminant by a zero-valent metal, such a model can be written as

$$-\frac{d[P]}{dt} = \kappa_{SA} \rho_a[P] \tag{1}$$

-------

where  $k_{SA}$  is the specific reaction rate constant (L hr<sup>-1</sup> m<sup>-2</sup>);  $\rho_a$  is the concentration of iron surface area (m<sup>2</sup> L<sup>-1</sup> of solution); and P represents the reacting halocarbon (Johnson et al. 1996). In a particular system where  $\rho_a$  is known and constant,  $k_{SA}$  can be derived from  $k_{obs} = k_{SA} \rho_a$ , where  $k_{obs}$  is the observed pseudo first-order disappearance rate constant for P.

Values of  $k_{SA}$  recently have been compiled from all published data on the degradation of halogenated alkanes and alkenes in batch and column systems containing zero-valent iron (Johnson et al. 1996). The individual data (open circles in Figure 1) show that variability in reported values of  $k_{SA}$  for each individual halocarbon averages about one order of magnitude. The reasons for this variability have been discussed previously (Johnson et al. 1996), and are further elaborated below. It is important to note, however, that variability in  $k_{SA}$  for individual compounds is modest relative to the five orders of magnitude variability between the various halocarbons.

## Processes Contributing to Degradation

The kinetic model represented by Equation 1 is formulated to reflect only a single pathway of contaminant transformation. However, it now appears that the degradation of halocarbons by iron metal can be due to a variety of degradation pathways (Roberts et al. 1996). The various possibilities can be accommodated by expanding  $k_{SA}$  into the sum of rate constants for each individual degradation pathway. Thus, we can write

$$k_{SA} = k_{et} + k_{re} + k_{other}$$
(2)

where  $k_{et}$  represents hydrogenolysis by single electron transfer (Matheson and Tratnyek 1994);  $k_{re}$  represents reductive elimination by two electron transfer (Roberts et al. 1996); and  $k_{other}$  is included to accommodate other possibilities whose importance remains to be demonstrated (such as hydrogen atom transfer). The model (Figure 2) assumes that the rate of degradation is controlled by chemical reaction rather than adsorption (Burris et al. 1995; Allen-King et al. 1997; Campbell et al. 1997) or mass transport across the stagnant bound-

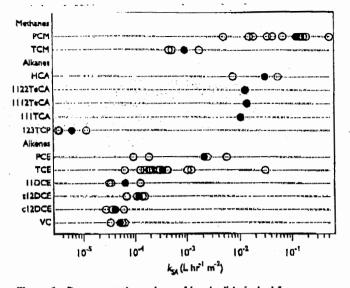



Figure 1. Representative values of  $k_{SA}$  (solid circles) for common chlorinated solvents, superimposed on the individual  $k_{SA}$  data from which the average values were derived (open circles). Batch-, regression-, and column-derived data are included. Representative data can be found in Table 1 and Johnson et al. 1996.

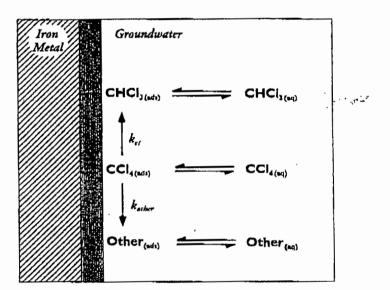
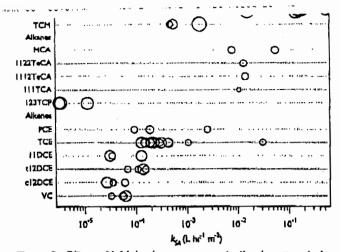
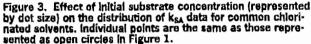





Figure 2. Conceptual model of parallel transformation processes that contribute to  $k_{SA}$  for reduction of a halocarbon at the surface of iron metal in aqueous systems. Rate constants reflect those defined in Equation 2. Reversible arrows indicate adsorption/desorption. The reductive elimination pathway is not shown.

ary layer (Scherer et al. 1997). Although experimental data are not yet available to quantify each of the terms in Equation 2 independently, the formulation does provide qualitative insight into degradation reactions occurring at the metal surface. For example, the relative contributions of the terms comprising  $k_{SA}$  will not only vary from compound to compound, but are also likely to be affected in compound-specific ways by experimental variables such as pH and precipitation of oxides, carbonates, or sulfides.





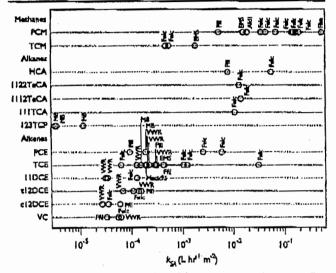



Figure 4. Effect of iron type (labels) used in degradation studies on the distribution of  $k_{SA}$  data for the major chlorinated solvents. Felc=Fisher electrolytic; Ffil=Fisher filings. Other label abbreviations can be found in Johnson et al. 1996.

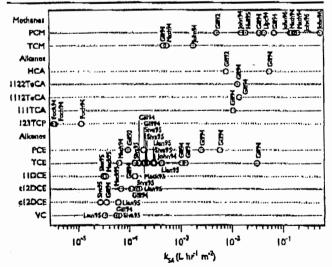



Figure 5. Effect of literature source (labels) on the distribution of  $k_{sA}$  data for the major chlorinated solvents. Labels abbreviate first author and year for the  $k_{sA}$  data found in the supporting material to Johnson et al. 1996.

110 = FALL 1997 GWMR

# Kinetics

In addition to the primary effects of substrate and metal surface area (Equation 1), several other factors influence the kinetics of halocarbon degradation by iron. One factor that can be quantified using currently available data is the saturation of reactive surface area with increasing substrate concentration. When initial substrate concentration is increased up to 2.0 mM. under otherwise constant conditions, data from batch experiments exhibit the classical behavior of site-limited reaction kinetics (Scherer and Trainvek 1995; Johnson et al. 1996; Johnson et al. 1997). A similar effect has been reported for degradation of PCE on zinc (Arnold and Roberts 1997). Despite this, the effect of initial substrate concentration is not discernible in the collective set of currently reported kinetic data (Figure 3). This suggests that a single value of  $k_{SA}$ should be adequate over the range of chlorinated solvent concentrations commonly encountered in ground water, although a more complex kinetic model may be necessary to accommodate highly contaminated water or laboratory systems containing small quantities of metal.

Metal "type" is the variable that is most commonly invoked to rationalize otherwise unexplained variability in degradation rates by iron. The p<sub>s</sub> term in Equation 1 characterizes quantity of iron surface area, but does not address differences in the reactivity of the surface. Formally, the density of reactive sites can be factored out of  $\rho_a$  (Johnson et al. 1996), but there is little prospect that this can be done routinely for environmental applications. At present, the best we can do is treat iron type as a category variable and look for qualitative trends in the available data. Figure 4 represents such a comparison, but it does not reveal any trends in k<sub>SA</sub>. There may be effects of iron type that eventually will be discerned from controlled experiments designed for this purpose, but Figure 4 suggests that the effect on k<sub>SA</sub> is less pronounced than is widely assumed.

Other factors may influence  $k_{SA}$ , but their general significance is difficult to evaluate because detailed studies of each factor are not yet available. Some of these factors are experimental variables that are likely to vary in ways that correlate with the laboratory in which the data were measured (such as buffer formulation, treatment of the iron, and conditions of incubation). However, applying a source identifier as a category variable to the distribution of  $k_{SA}$  (Figure 5) reveals no obvious patterns in the data that can be used to explain the order of magnitude variability in literature values of  $k_{SA}$ . This does not mean that differences in laboratory protocols are not important, but it shows that their effects are modest relative to the range of reactivities exhibited by the different chlorinated solvents.

Since there is no immediate prospect of defining or measuring a more general descriptor than  $k_{SA}$ , we have calculated average values (Johnson et al. 1996) and reported them in Table 1. These rate constants are "typ-

| Halocarbon                | Abbreviation | k <sub>s∧</sub> ւ<br>(L m-²hr-1) | t <sub>1</sub> (min) <sup>2</sup><br>@ 1 m <sup>2</sup> mL <sup>-1</sup> | t <sub>%</sub> (min)²<br>Ø 3.5 m²mL- |
|---------------------------|--------------|----------------------------------|--------------------------------------------------------------------------|--------------------------------------|
| Tetrachloromethane        | PCM          | $1.2 \times 10^{-1}$             | 0.35                                                                     | 0.10                                 |
| Trichloromethane          | TCM          | 9.2 × 10-4                       | 45                                                                       | 13                                   |
| Tribromomethane           | TBM          | $1.7 \times 10^{-2}$             | 2.4                                                                      | 0.70                                 |
| Hexachloroethane          | HCA          | $3.1 \times 10^{-2}$             | 1.3                                                                      | 0.38                                 |
| 1,1,2,2-tetrachloroethane | 1122TeCA     | $1.3 \times 10^{-2}$             | 3.2                                                                      | 0.91                                 |
| 1,1,1.2-tetrachloroethane | 1112TeCA     | $1.4 \times 10^{-2}$             | 3.0                                                                      | 0.85                                 |
| 1,1,1-trichloroethane     | 111TCA       | $1.1 \times 10^{-2}$             | 3,8                                                                      | 1.1                                  |
| 1,2,3-trichloropropane    | 123TCP       | $6.1 \times 10^{-6}$             | 6800                                                                     | 1900                                 |
| Tetrachloroethene         | PCE          | $2.1 \times 10^{-3}$             | 20                                                                       | 5.7                                  |
| Trichloroethene           | TCE          | $3.9 \times 10^{-1}$             | 110                                                                      | 30                                   |
| 1,1-dichloroethene        | 11DCE        | $6.4 \times 10^{-5}$             | 650                                                                      | 190                                  |
| t-1,2-dichloroethene      | 112DCE       | $1.2 \times 10^{-4}$             | 350                                                                      | 99                                   |
| c-1,2-dichloroethene      | c12DCE       | $4.1 \times 10^{-5}$             | 1000                                                                     | 290                                  |
| Vinyl chloride            | VC           | $5.0 \times 10^{-5}$             | 830                                                                      | 240                                  |

<sup>2</sup>Derived from tabulated values of k<sub>SA</sub>.

ical" in the sense that they reflect the whole range of disappearance rates reported (as of November 1996). As such, they are the best available input parameters for preliminary design calculations. Of course, final designs for a particular site should be based on values of  $k_{SA}$  determined in treatability tests done under site-specific conditions.

# Implications for Barrier Design

One of the most critical issues that must be considered in the design of permeable reactive barriers is selection of an appropriate barrier width (Gavaskar 1997; Suthersan 1997). The barrier width must provide sufficient contact time to ensure that contaminants are degraded to target levels. The necessary contact time is a function of the reactive surface area of the iron; degradation rate constants for the contaminants by iron; reaction pathways that lead to formation and degradation of hazardous reaction products; and the degree of contaminant degradation required to reduce effluent concentrations to regulatory limits. By modeling the net contribution of these four factors, it is possible to derive some quantitative guidelines for the preliminary design of reactive barriers.

Contaminant degradation rates are determined, in part, by first-order rate constants ( $k_{obs}$ ), which are equal to the product of  $k_{SA}$  for the particular contaminant and the surface area of iron per unit pore volume in the treatment zone (i.e.,  $\rho_a$  in Equation 1). While it is convenient to report kinetic data normalized to  $\rho_a = 1 m^2$ mL<sup>-1</sup> (Gillham and O'Hannesin 1994), iron treatment systems are often designed with  $\rho_a$  as high as 3.5 m<sup>2</sup> mL<sup>-1</sup>. Half-lives for the reduction of halocarbons by iron metal, calculated using both 3.5 and 1.0 m<sup>2</sup> mL<sup>-1</sup> for  $\rho_a$ , are shown in Table 1.

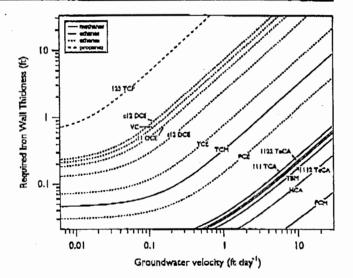



Figure 6. Preliminary barrier width design curves for thousandfold reduction in parent halocarbon concentration as a function of ground water velocity (v). Curves are based on  $k_{SA}$  values in Table 1; iron surface area  $\rho_A = 1 \text{ m}^2 \text{ mL}^{-1}$ ; dispersion D =(0.001 ft.) v + (9.3 x10<sup>-4</sup> ft<sup>2</sup> d<sup>-1</sup>); and the steady-state reactive transport model discussed in Eykholt and Sivavec 1995. The effects of parallel or sequential first-order reactions and changes ln  $k_{SA}$  over time are not represented.

Half-lives for contaminant degradation can be related to contact time in a treatment zone by application of a reactive transport model. The general analytical solution of the advection-dispersion equation (van Genuchten 1981) considers transient, one-dimensional transport of a contaminant in a saturated column with simple boundary conditions, steady flow, Fickian dispersion, linear sorption, first-order degradation, and a zeroorder source-sink term. In the following analysis of reactive transport in a permeable barrier, we have included only steady-state transport with first-order degradation

FALL 1997 GWMR = 111

(no sorption and no other sources or sinks), using conservative values for velocity-dependent dispersion (Eykholt and Sivavec 1995). At higher velocities, the model converges to the steady-state solution for first-order reaction with plug flow, but the solution used here deviates substantially from this approximation at lower velocities.

Using this approach, the required width of an ironbearing treatment zone can be calculated as a function of ground water flow rate for the various chlorinated solvents (Eykholt and Sivavec 1995). Figure 6 shows the calculated wall thickness for a thousandfold decrease in contaminant concentration as a function of ground water flow rate, using representative values of  $k_{SA}$ (Table 1) as input parameters for each halocarbon and assuming  $\rho_a = 1.0 \text{ m}^2 \text{ mL}^{-1}$ . Preliminary design widths (W<sub>d</sub>) for other degrees of conversion and values of  $\rho_a$ can be calculated with the following scaling relationship:

$$W_{d} = \frac{(1.0 \text{ m}^{2} \text{ mL}^{-1})}{\rho_{a}} \frac{\log (C_{0}/C_{d})}{3} W_{ref} \qquad (3)$$

where  $C_d$  is the desired effluent concentration;  $C_0$  is the input concentration; and  $W_{ref}$  is the reference width obtained from Figure 6. Note that barrier widths are inversely proportional to  $\rho_a$  and to  $k_{SA}$  (reflected in  $W_{ref}$ ). Thus, barrier width must be doubled if treatability tests indicate a  $k_{SA}$  which is half of the corresponding value in Figure 6.

The calculation of an appropriate barrier width is more challenging for reactions involving parallel and sequential first-order reactions, such as the reduction of chlorinated ethenes to ethene (Roberts et al. 1996; Campbell et al. 1997). Where contaminant degradation leads to several possible products, the kinetics can be formulated in terms of branching ratios (i.e., the proportion of a degradation rate constant that goes to formation of each product). Unfortunately, few data are available from which branching ratios can be derived for degradation by zero-valent iron, and little is known about how much these ratios vary with operational conditions. Nevertheless, the simple model described above can be extended to illustrate the effects that parallel and sequential degradation pathways may have on barrier design.

The extended model, and its limitations, are illustrated in the following analysis for TCE and PCE. Good estimates are available for  $k_{SA}$  for TCE and PCE (Table 1). However, few data are available regarding the branching ratios for formation of the various products such as c12DCE, t12DCE, and 11DCE (by hydrogenolysis) and chloroacetylene (by  $\beta$ -elimination). Typically, as TCE degrades, the main chlorinated products are c12DCE and VC (Liang et al. 1997). The compound 11DCE may also be produced, but usually at concentrations an order of magnitude below c12DCE. Chloroacetylene is produced by elimination (Roberts et al. 1996), but it should degrade quickly to acetylene or VC. As ground water standards are usually most stringent for vinyl chloride, the formation and degradation

112 = FALL 1997 GWMR

of this degradation product is particularly important to the design of permeable reactive barriers.

Thus, a simplified system of rate equations can be written for the degradation of PCE in terms of TCE, t12DCE. VC, chloroacetylene,  $f_{\beta}$  (the branching ratio for  $\beta$ -elimination of TCE to give chloroacetylene), and Ac (the combined concentrations of chloroacetylene and acetylene).

$$-\frac{d[PCE]}{\rho_a dt} = k_{SA,PCE}[PCE]$$
(4)

$$-\frac{d[TCE]}{\rho_0 dt} = k_{SA,TCE}[TCE] - k_{SA,PCE}[PCE]$$
(5)

$$-\frac{d[c12DCE]}{\rho_{s}dt} = k_{SA,c12DCE}[c12DCE] - (1-l_{\beta})k_{SA,TCE}[TCE]$$
(6)

$$-\frac{d[Ac]}{\rho_{a}dt} = k_{SA,Ac}[Ac] - f_{\beta}k_{SA,TCE}[TCE]$$
(7)

$$-\frac{d[VC]}{\rho_{s}dt} = k_{SA,VC}[VC] - k_{SA,c12DCE}[c12DCE]$$
(8)

An analytical solution set can be derived for the concentrations of all species in Equations 4 through 8 using Laplace transforms (Walas 1981). The solution can be used to make quantitative estimates of the barrier width necessary to treat each contaminant. Table 2 illustrates the result for the case where a thousandfold decrease in initial chlorinated ethene concentration is needed to reach the target effluent concentration of vinyl chloride. For this simulation,  $f_{\beta} = 0.75$  was used to simulate faster formation of Ac than c12DCE (Roberts et al. 1996), degradation of Ac was not considered, and rate constants for all other reactions were taken from Table 1.

The results in Table 2 show that barrier widths estimated only from degradation of PCE and TCE (as in Figure 6) are far less than the widths required when action levels for degradation products such as VC are considered. The width required to treat any input combination of chlorinated ethenes is never greater than that required for the same conversion of c12DCE, but is always greater than that required to treat an equivalent molar concentration of vinyl chloride. Therefore, a conservative approach to barrier design for mixtures of chlorinated ethenes (that does not require additional modeling) may be to choose a width of treatment zone greater than the width required if all chlorinated ethenes were present as c12DCE. To achieve the target effluent concentration of VC, barrier widths for c12DCE from Figure 6 should be increased by 20 percent. Substantially narrower treatment zones may suffice where ground water velocities are slower or the required degree of contaminant degradation is less (see Figure 6, Equation 3).

These design guidelines are based only on the analysis in Figure 6 and Table 2, so they do not incorporate

|      |      | centrations in the Inf<br>rations of Vinyl Chlo |                      | E,                        | stimate of Req   | uired Barrier Wid               | th (ft) <sup>2</sup> |
|------|------|-------------------------------------------------|----------------------|---------------------------|------------------|---------------------------------|----------------------|
|      |      | e Effluent <sup>i</sup>                         | $\rho_{\tt s} = 1.0$ | տ² տԸ-۱                   | $\rho_{a} = 3.5$ | տ <sup>2</sup> տL <sup>-1</sup> |                      |
| PCE  | TCE  | c12DCE                                          | VC                   | of<br>parent <sup>3</sup> | to<br>VC         | of<br>parent                    | to<br>VC             |
| 1000 | -    |                                                 |                      | 0.1                       | 7.0              | 0.03                            | 2.0                  |
|      | 1000 |                                                 |                      | 0.7                       | 7.0              | 0.2                             | 2.0                  |
|      |      | 1000                                            |                      | 7.0                       | 8.4              | 2.0                             | 2.4                  |
|      |      |                                                 | 1000                 | 5.8                       | 5.8              | 1.7                             | 1.7                  |
|      | 600  | 200                                             | 200                  |                           | 7.3              |                                 | 2.1                  |
|      | 800  | 200                                             |                      |                           | 7.4              |                                 | 2.1                  |
|      | 400  | 500                                             | 100                  |                           | 7.8              |                                 | 2.2                  |
|      | 200  | 800                                             | •                    | . •                       | 8.2              |                                 | 2.3                  |

<sup>3</sup>For a thousandfold decrease in parent concentration only, as in Figure 6.

(statistical) uncertainty in rate constants or flow velocity. Using Monte Carlo modeling, we have recently shown that safety factors in barrier width ranging from two to six may be required to reduce the probability of exceeding the target effluent concentration to 5 percent (Eykholt 1997). This analysis assumed that ground water velocities vary log-normally with standard deviations ranging from 0.5 to three times the velocity, and that degradation reactions are independent (not sequential) with normally distributed rate constants having standard deviations that range from zero to 0.5 times the rate constant. While these safety factors may be generous, it is important to note that they apply to widths calculated from average values of velocity and rate constants. Realizing the impact of large variations in either parameter, some designers may choose to select widths based on expected extreme values.

The calculations presented here are based on average estimates of reaction rate constants and the assumption that reductive dechlorination is the primary degradation mechanism. Deviations from the model predictions are likely with longer exposure time due to the gradual passivation of iron surfaces by precipitates in the treatment zone. Predictions for sequential firstorder processes are particularly vulnerable to changes in the mechanism or rate constants for less reactive constituents. However, these results do provide a quantitative basis for performing preliminary design calculations and should be useful in this capacity as long as they are followed by laboratory feasibility testing.

## Acknowledgments

This study was supported in part by the University Consortium Solvents-In-Groundwater Research Program, the National Science Foundation through award BCS-9212059, and the Petroleum Research Fund through award 29995-AC5. S. Warner (Geomatrix Consultants) made valuable suggestions that improved the manuscript.

## References

- Allen-King, R.M., R.M. Halket, and D.R. Burris. 1997. Reductive transformation and sorption of cis- and trans-1,2-dichloroethene in a metallic iron-water system. Environ. Toxicol. Chem. 16, no. 3: 424-429.
- Arnold, W.A., and A.L. Roberts. 1997. Development of a quantitative model for chlorinated ethylene reduction by zero-valent metals. 213th National Meeting, San Francisco, California, Division of Environmental Chemistry, American Chemical Society, Preprint Extended Abstracts vol. 37, no. 1: 76-77.
- Burris, D.R., T.J. Campbell, and V.S. Manoranjan. 1995. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. *Environ. Sci. Technol.* 29, no. 11: 2850-2855.
- Campbell, T.J., D.R. Burris, A.L. Roberts, and J.R. Wells. 1997. Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system. *Environ. Toxicol. Chem.* 16, no. 4: 625-630.
- Eykholt, G.R. 1997. Uncertainty-based scaling of iron reactive barriers. In In situ remediation of the geoenvironment, eds. J. Evans and L. Reddi, 41-55. New York: American Society of Civil Engineers.
- Eykholt, G.R., and T.M. Sivavec. 1995. Contaminant transport issues for reactive-permeable barriers. In Geoenvironment 2000, Characterization, containment, remediation, and performance in environmental geotech-
- nics, Volume 2, eds. Y.B. Acar and D.E. Daniel, 1608-1621. New York: American Society of Civil Engineers.
- Gavaskar, A.R. 1997. Permeable barriers for groundwater remediation: Design, construction, and monitoring. Columbus, Ohio: Battelle.
- Gillham, R.W. 1996. In situ treatment of groundwater: Metalenhanced degradation of chlorinated organic contami-

remediation, ed. M.M. Aral, 249-274. The Netherlands: Kluwer Academic.

. ......

and ou ourouting

. . . ...

.....

- Gillham, R.W., and S.F. O'Hannesin. 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32, no. 6: 958-967.
- Hoigné, J. 1990. Formulation and calibration of environmental reaction kinetics: Oxidations by aqueous photooxidants as an example. In Aquatic chemical kinetics: Reaction rates of processes in natural waters, ed. W. Stumm, 43-70. New York: Wiley-Interscience.
- Johnson, T.L., W. Fish, Y.A. Gorby, and P.G. Tratnyek. 1997. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface. J. Contam. Hydrol. in press.
- Johnson, T.L., M.M. Scherer, and P.G. Tratnyek. 1996. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 30, no. 8: 2634-2640.
- Liang, L., N. Korte, J.D. Goodlaxson, J. Clausen, Q. Fernando, and R. Muftikian. 1997. Byproduct formation during the reduction of TCE by zero-valence iron and palladized iron. Ground Water Monitoring and Remediation 17, no. 1: 122-127.
- Matheson, L.J., and P.G. Tratnyck. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. *Environ. Sci. Technol.* 28, no. 12: 2045–2053.
- Orth, S.W., and R.W. Gillham. 1996. Dechlorination of trichlorethene in aqueous solution using Fe(0). Environ. Sci. Technol. 30, no. 1: 66-71.
- Roberts, A.L., L.A. Totten, W.A. Arnold, D.R. Burris, and TJ. Campbell. 1996. Reductive elimination of chlorinated ethylenes by zero-valent metals. *Environ. Sci. Technol.* 30, no. 8: 2654–2659.
- Scherer, M.M., and P.G. Tratnyek. 1995. Dechlorination of carbon tetrachloride by iron metal: Effect of reactant concentrations. 209th National Meeting, Anaheim, California, American Chemical Society, Division of Env. Chem., Preprint Extended Abstracts, vol. 35, no. 1: 805-806.
- Scherer, M.M., J.C. Westall, M. Ziomek-Moroz, and P.G. Tratnyek. 1997, Kinetics of carbon tetrachloride reduction at an oxide-free iron electrode. *Environ. Sci. Technol.* 31, no. 8: 2385–2391.
- Suthersan, S.S. 1997. Remediation engineering: Design concepts. Boca Raton, Florida: Lewis Publishers.
- Tratnyck, P.G. 1996. Putting corrosion to use: Remediation of contaminated groundwater with zero-valent metals. Chem. Ind. (London) 13: 499-503.

- transport with simultaneous adsorption, zero-order production and first-order decay. J. Hydrol. 49, nos. 3/4: 213-233.
- Walas, S.M. 1981. Modeling with differential equations in chemical engineering, Boston, Massachusetts: Butterworths-Heinemann.

# **Biographical Sketches**

. . . .

Paul G. Tratnyek is an associate professor in the Department of Environmental Science and Engineering at the Oregon Graduate Institute (P.O. Box 91000, Portland, OR 97291; e-mail: tratnyek@ese.ogi.edu). He received his Ph.D. from the Colorado School of Mines in 1987. Tratnyek served as a National Research Council postdoctoral fellow at the U.S. Environmental Protection Agency Laboratory in Athens, Georgia, during 1988 and as a research associate at the Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG) from 1989 to 1991. His research has involved remediation with zero-valent iron metal since he joined the University of Waterloo Solvents-in-Groundwater Research Programme in 1992.

**Timothy L. Johnson is currently a postdoctoral associate at** the Oregon Graduate Institute (Department of Environmental Science and Engineering, P.O. Box 91000, Portland, OR 97291) studying the effects of ligands on dechlorination by zero-valent iron. He was a DOE energy research fellow from 1993 to 1995 and received an AGWSE graduate student fellowship in 1994.

Michelle M. Scherer is currently a doctoral candidate at the Oregon Graduate Institute (Department of Environmental Science and Engineering, P.O. Box 91000, Portland, OR 97291) using electrochemical techniques to probe the reaction of chlorinated solvents with zero-valent iron. Scherer has an M.S. in environmental engineering from the University of Connecticut and received an AGWSE graduate student fellowship in 1995.

Gerald R. Eykholt is assistant professor in the Department of Civil and Environmental Engineering at the University of Wisconsin, Madison (Madison, WI 53706). His prior position was as staff scientist at General Electric Corporate Research and Development, Schenectady, New York. Eykholt received his M.S. and Ph.D. degrees from the University of Texas, Austin.

#### 114 FALL 1997 GWMR

• ,



# Memorandum

| Re:   | Anticipated Iron Lifetime and O&M Requirements for a Permeable<br>Reactive Barrier Located at Ash Landfill, Romulus, NY – 31317.77 |
|-------|------------------------------------------------------------------------------------------------------------------------------------|
| Date: | 20 April 2000                                                                                                                      |
| From: | Andrzej Przepiora, John Vogan, EnviroMetal Technologies Inc.                                                                       |
| То:   | Anna Fodor, Parsons Engineering Science, Inc. Fax: 781-401-2575                                                                    |

Further to your request, EnviroMetal Technologies Inc. (ETI) performed the following calculations to determine the theoretical lifetime of granular iron in an additional permeable reactive barrier (PRB) designed for VOC treatment at Ash Landfill, Romulus, NY. Also included is a response to your recent enquiry about long-term iron PRB operation and maintenance.

The calculations are based on measured iron corrosion rates with water, volatile organic compound (VOC) degradation and oxidation by dissolved oxygen (DO). To simplify the calculations, iron loss due to corrosion is calculated for a representative "unit" volume of iron wall with a face surface area of 1 cm<sup>2</sup> and a thickness equal to the PRB thickness (2.1 ft or 64 cm in the PRB located in the vicinity of the source zone). Iron porosity of 0.5, iron bulk density of 2.6 g/cm<sup>3</sup> (162 lb/ft<sup>3</sup>), a maximum dissolved oxygen (DO) concentration in groundwater of 7.8 mg/L and a groundwater velocity of 0.4 ft/day were assumed for the calculations.

When iron is exposed to water containing dissolved VOCs, several reactions occur which corrode or "consume" the iron. One reaction is the iron corrosion reaction by water to produce hydrogen and hydroxide ions.

$$Fe^{\circ} + 2H_{2}O \rightarrow Fe^{2+} + H_{2} + 2OH^{-}$$
<sup>(1)</sup>

42 Arrow Road Guelph, Ontario Canada N1K 1S6 Tel: (519) 824-0432 Fax: (519) 763-2378

619-146-2208

1-010 P.UZ/U4 F-110

For the purpose of this calculation, this reaction is assumed to be independent of groundwater flow rate (velocity) through the iron (i.e. in will occur whether. "fresh" groundwater is entering the system or not). By equating the measured hydrogen gas production rate to the rate of iron corrosion in the laboratory, corrosion rates for granular iron have been determined to be 0.05 mmol/kg Fe/day (Reardon, 1997). Using the molecular weight of iron (55.9 g/mol), 0.05 mmol is equivalent to 2.8 mg of iron. If each day, 2.8 mg of each kg of iron are converted from Fe to Fe<sup>2+</sup>, then in the representative cell containing 166.4 g of iron (64 cm × 1 cm<sup>2</sup> × 2.6 g/cm<sup>3</sup>) about 0.47 mg (166.4 g ÷ 1,000 g × 2.8 mg) of iron would be consumed each day in this reaction.

Iron corrosion is not the only iron consuming reaction occurring in these systems. Iron also serves as the electron donor in the reduction of chlorinated VOCs. This reaction can be represented by the equation:

$$RCl + Fe^{\circ} + H_{2}O \rightarrow RH + Fe^{2\pi} + Cl^{-} + OH^{-}$$
<sup>(2)</sup>

The amount of iron consumed in this reaction is dependent on the mass flux of VOCs entering the PRB. From equation (2) 1 mol of iron is consumed for 1 mol of chloride released into solution. For a PRB located in the vicinity of the source zone, 1L of water containing about 10 mg/L TCE (C<sub>2</sub>HCl<sub>3</sub>) (0.076 mmols) would consume 12.7 mg (0.228 mmols) of iron. At a groundwater flow velocity of 0.43 ft/day, about 0.2 pore volumes passes each day through a 2.1-ft (64 cm) thick cell, equating to about 0.006 L ( $0.2 \times 0.5 \times 64$  cm  $\times 1$  cm<sup>2</sup>  $\div$  1,000 cm<sup>3</sup>/L) of groundwater. Therefore, about 0.08 mg of iron (12.8 mg/L  $\times$  0.006 L) would be corroded each day in the representative cell due to the reaction presented in equation (2).

A third reaction that consumes iron is the aerobic reaction with DO.

$$2Fe^{\circ} + O_{2} + 2H_{2}O \rightarrow 2Fe^{2+} + 4OH^{-}$$
(3)

The amount of iron corrosion in this reaction is dependent on the mass flux of DO entering the PRB. From the reaction, 2 mols of iron are consumed for 1 mol of DO. Based on data from well MW-45, 1 L of water containing 7.8 mg/L (0.244 mmol) of DO will consume 27.3

2

envirometal technologies inc.

mg of iron. At this rate, about 0.16 mg (27.3 mg/L  $\times$  0.006 L) of iron a day would be corroded in this reaction in the representative cell.

The cumulative rate of iron consumption in the representative cell due to corrosion reactions represented in equations (1), (2) and (3) equals 0.71 mg/day (0.47 mg/day + 0.08 mg/day + 0.16 mg/day). Therefore in the representative cell containing 166.4 g of iron, it would take about 642 years (166,400 mg  $\div$  0.71 mg/day  $\div$  365 days/yr) to consume all iron material at this rate.

Similar calculation were performed for the other two proposed walls; the middle wall (groundwater velocity of 0.43 ft/day, wall thickness of 1.2 ft, DO = 3.9 mg/L, TCE = 0.53 mg/L) and the downgradient wall (groundwater velocity of 1.23 ft/day, wall thickness of 2.1 ft, DO = 1.8 mg/L, TCE = 0.10 mg/L). The theoretical lifetimes of iron in these two walls are 695 and 756 years, respectively.

Although there is some uncertainty in the above calculations and the groundwater flux conditions that may exist decades in the future, it seems reasonable to expect the iron in the PRB to last for many decades.

The major factor affecting O&M costs is the possible need for periodic rejuvenation of iron sections affected by precipitates. The precipitates (if significant) will form in a narrow zone at the upgradient aquifer/iron interface. Rejuvenation therefore could be as simple as agitating the upgradient face of the iron every few (i.e. 7 to 10) years with an auger to restore the permeability of this material. Cost of this procedure may be in the order of \$5 to \$7 per  $ft^2$ .

This periodic O&M requirement should be included in long-term cost models for the technology. The rise in pH as a result of corrosion of the iron typically causes the precipitation of carbonate minerals such as calcium carbonate and iron carbonate (siderite), and at pH values in the range of 9 to 10, iron will precipitate as iron hydroxide. Concern has been expressed regarding the potential for these precipitates to reduce the activity of the iron and/or to reduce the permeability through pore clogging. Experience to date indicates calcium carbonate to represent by far the largest volume of precipitates, and also indicates that precipitates have only minor effect on the activity of the iron.

#### 518-746-2208

1-815 P.04/04 F-115

# envirometal technologies inc.

Memorandum

Recent core analyses from pilot-scale systems in New York and Colorado revealed porosity losses in the upgradient few inches of iron in the range of 10% of the initial porosity, with losses declining sharply over the first foot to below 2% (Vogan et al., 1998). These porosity losses were calculated based on carbonate analyses of iron material retrieved by coring the treatment zone. The porosity loss measured in the core samples was consistent with that predicted on the basis of changes in the inorganic water chemistry. Assuming an initial porosity of 0.5, the porosity after 18 months (Colorado) to 2 years (New York) in the first few inches of the iron zones had declined to about 0.45. Concurrent field data (VOC and groundwater velocity measurements) indicated that system hydraulics and iron reactivity had not been adversely affected by the precipitates. Based on groundwater monitoring data, a porosity loss of 0.35% a year was calculated for an iron PRB at a site in Colorado (McMahon et al., 1999). A commercial system in Sunnyvale, CA (Szerdy et. al., 1996) has also been performing consistently for over 5 years. Groundwater at this site exhibits TDS in the range of 1,000 to 3,500 mg/L. No significant precipitates were observed in cores from an in situ reactive wall at the University of Waterloo Borden test site two and four years after it was installed (O'Hannesin and Gillham, 1998). This wall performed consistently over a 5 year period, with the expectation that it would continue to perform for at least another five years with no maintenance.

#### References:

McMahon, P. B., K. F. Dennehy, and M. W. Sandstrom. 1999. Hydraulic geochemical performance of a permeable reactive barrier containing zero-valent iron, Denver Federal Center. Ground Water. 37(3): 396-404.

O'Hannesin, S.F., and Gillham, R.W., 1998. Long-Term Performance of an In-Situ "Iron Wall" for Remediation of VOCs. Ground Water, Vol. 36, No. 1, pp. 164-170.

Reardon, E.J., 1997. Department of Earth Sciences, University of Waterloo. Personal Communication.

Szerdy, F.S., Gallinatti, J.P., Warner, S.D., Yamane, C.L., Hankins, D.L. and Vogan, J.L., 1996. In-situ groundwater treatment by granular zero-valent iron: Design, construction and operation of an in-situ treatment wall. A.I.C.E. Fall meeting, Houston, Texas.

Vogan, J.L., Butler, B.G., Odziemkowski, M.K., Friday, G. and Gillham, R.W., 1998. Laboratory evaluation of cores from permeable reactive barriers. Proceedings from The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 18-21, Battele Press, Columbus, Ohio, Vol. C1-6, pp. 163-168.

.





| То:   | CMichael Duchesneau, Parsons Engineering Science, Inc. Fax: 781-401-2575                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| From: | John Vogan, Andrzej Przepiora, EnviroMetal Technologies Inc.                                                                     |
| Date: | 20 May 2000                                                                                                                      |
| Re:   | Anticipated Amount of Hydrogen Gas Generation in a Permeable<br>Reactive Barrier Located at Ash Landfill, Romulus, NY – 31317.77 |

Further to our recent discussions, EnviroMetal Technologies Inc. (ETI) performed the following calculations to determine the theoretical amount of hydrogen generated in the permeable reactive barrier (PRB) at Ash Landfill, Romulus, NY.

Hydrogen gas is produced during iron corrosion reaction by water:

$$Fe^{\circ} + 2H_{2}O \rightarrow Fe^{2+} + H_{2} + 2OH^{-}$$
<sup>(1)</sup>

Laboratory experiments with commercial iron indicated that the hydrogen gas production in this reaction is 0.05 mmol/kg Fe/day (Reardon, 1997).

For the purposes of the calculations, we have made the following assumptions:

- A unit length of the wall (1 ft wide  $\times$  10 ft high  $\times$  0.5 ft thick) contains 5 ft<sup>3</sup> of iron,
- A long-term  $H_2$  gas production rate is 0.05 mmol  $H_2/kg$  Fe/day,
- Iron bulk density is 160 lbs/ft<sup>3</sup> and porosity is 0.4,
- Solubility of H<sub>2</sub> equals 0.019 L/L of groundwater (Dean, 1985),
- Groundwater flow velocity is 1 ft/day.

Based on the iron density of 160 lbs/ft<sup>3</sup>, about 800 lbs (363 kg) is contained in the 5 ft<sup>3</sup> iron zone. Therefore, the amount of H<sub>2</sub> formed during corrosion in this iron zone equals 20 mmol

745 Bridge St. W., Suite 7 Waterloo, Ontario Canada N2V 2G6 Tel: (519) 746-2204 Fax: (519) 746-2209

#### DYAM FRUM-ENVIRUMETAL LECHNULUGIES INC

518-140-2208

1-830 P. 02703 F-531

envirometal technologies inc.

 $H_2/day$  (363 kg × 0.05 mmol/kg Fe/day). Since at standard pressure and temperature 1 mol of  $H_2$  occupies 22.441 L, about 0.45 L/day of hydrogen is formed in the 5 ft<sup>3</sup> iron zone.

Based on the assumed groundwater velocity of 1 ft/day, about 2 ft<sup>3</sup>/day (56.6 L/day) of water moves through the 5 ft<sup>3</sup> iron zone (1 ft/day  $\times$  10 ft  $\times$  0.5 ft  $\times$  0.4). Based on H<sub>2</sub> gas solubility, the maximum amount of H<sub>2</sub> gas dissolved in that amount of water equals about 1.1 L/day (56.6 L/day  $\times$  0.019 L/L), and therefore all of the H<sub>2</sub> generated in the iron zone (0.45 L/day) should theoretically remain in the dissolved phase (no free H<sub>2</sub> gas).

The generated hydrogen will undoubtedly influence microbial population as the iron-treated water moves into the downgradient aquifer. Monitoring results from iron PRBs provide an indirect evidence of increased microbial activity directly downgradient of the iron zone. For example, Warner et al. 1998 reported methane levels in downgradient aquifer wells 6-fold higher than those measured in the upgradient wells, indicating increased methanogenesis. Similar increases in methane levels were observed in the monitoring wells downgradient of an iron PRB in Elizabeth City, NC (EPA, 1999). However, we (or our EPA contacts) are not aware of any published data concerning quantification of hydrogen-related microbial activity downgradient of an iron PRB.

Our literature database includes a few references dealing with microbiological hydrogen consumption and dehalogenation (see the attached list). Sample published  $H_2$  microbial consumption rates are as follows:

- low H<sub>2</sub>-gas consumption rate=0.13 mole/hr/gbacteris(dry weight)=3.12 mole/day/gbacteris(dry weight) (Ahring and Westermann, 1987); and
- high H<sub>2</sub>-gas consumption rate=0.43 mole/hr/g<sub>bacteria(dry weight)</sub>=10.32 mole/day/g<sub>bacteria(dry weight)</sub>
   (Zehnder et al., 1981).

We are currently checking with researchers active in this area to see if any unpublished data can be made available concerning microbial activity downgradient of a PRB. We will forward any information we can in this regard as soon as possible.

# Cited References

Dean, J.A., 1985. Lange's Handbook of Chemistry, 13<sup>th</sup> ed, McGraw-Hill Inc., New York, 1985.

EPA, 1999. An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water. Vol. 2, Performance monitoring. EPA/6000/R-99/095b.

Reardon, E.J., 1997. Department of Earth Sciences, University of Waterloo. Personal Communication.

Warner, S.D., Yamane, C.L., Bice, N.T., and Szedry, F.S., 1998. Technical update: the first commercial subsurface permeable reactive treatment zone composed of granular zero-valent iron. Presented at the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, California, May-18-21, 1998. Vol. C1-6m Battelle Press, Columbus, Ohio.

# Microbial References:

Ahring and Wastermann, 1987. Kinetics of butyrate-degrading triculture. Appl. Environ. Microbiol. 54:434-439.

Fennell, D.E., Gossett, J.M., Zinder, S.H., 1997. Comparison of butric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dehalogenation of tetrachloroethene. Environ. Sci. Technol. 31:918-926.

Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1996. Comparative Kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ. Sci. Technol. 30:2850-2858.

Zehnder, 1982. Microbiology of methane bacteria. In: D.E. Hughes (ed.) Anaerobic digestion. Elsevier/North Holland Biomedical Press, Amsterdam.

# Appendix E

# Groundwater Monitoring and Modeling at the Ash Landfill

- Modeling for Remedial Design for Continuous Reactive Wall Scenarios at the Ash Landfill, Seneca Army Depot Activity
- Groundwater Chemical Results Round 1 Groundwater Monitoring Ash Landfill Remedial Design, Seneca Army Depot Activity, Romulus, NY
- Groundwater Chemical Results Round 2 Groundwater Monitoring Ash Landfill Remedial Design, Seneca Army Depot Activity, Romulus, NY
- Ash Landfill 1998 Third Quarter Groundwater Monitoring Indicator Parameters

# **Technical Memorandum**

To: Ash Landfill Remedial Design Project File

From: Ko-Hui Liu and Paul Feshbach-Meriney

Date: June 6, 2000

Re: Modeling for Remedial Design for Continuous Treatment Wall Scenarios at the Ash Landfill Ash, Seneca Army Depot Activity

# INTRODUCTION

This memorandum presents the results of groundwater flow and solute transport modeling that evaluated four designs of additional continuous, zero-valent (reactive) iron walls at the Ash Landfill. The additional walls will supplement the existing iron wall that was installed on the site in 1998. The designs (scenarios) evaluated were as follows:

- 1. Scenario 1 One additional cut-off trench installed perpendicular to the direction of groundwater flow;
- 2. Scenario 2 Two additional cut-off trenches installed perpendicular to the direction of groundwater flow;
- 3. Scenario 3 V-trench and parallel trench configuration; and
- 4. Scenario 4 Multiple parallel trenches and single cut-off trench.

Prior to evaluating the reactive iron wall designs, a three-dimensional numerical groundwater flow model was developed for the site. The numerical model was based on conceptual hydrogeologic model that was first developed during previous modeling of the site (Parsons, 1996). The conceptual model was refined in the area of the Ash Landfill site for this evaluation, and translated into a steady-state, numerical groundwater flow model. The steady-state flow model was calibrated until a reasonable match to long-term water levels was made. A solute transport model was then developed. The solute transport model was calibrated to the observed concentrations in the plume, prior to the Removal Action at the Ash Landfill. Then, the calibrated model was used to evaluate the four design scenarios using the most recent chemical data as starting concentrations (of total chlorinated ethenes), and affects of matrix-controlled diffusion of the chlorinated ethenes, for the predictive simulations. Finally, the model was run using the scenario with the best overall performance (Scenario 2), and it included the affect of increased biodegradation due to hydrogen addition to the aquifer system from the reactions in the iron wall. This last model scenario provided the best estimate of the clean-up time for the plume of chlorinated ethenes at the site.

The groundwater modeling was conducted using MODFLOW<sup>win32</sup> [MODFLOW (McDonald and Harbough, 1984)]. The solute transport simulations were conducted using the MT3DMS solute transport model (Zheng and Wang, 1998). Both models are well-known, well-documented, public domain models. The model data were managed in Microsoft Excel and Golden Software's Surfer Version 6. ESI's Groundwater Vistas pre- and post-processing software (ESI, 1998) was used to develop the model and evaluate the modeling results. The modeling results were exported to ESRI's Arcview 3.1 GIS software for preparation of the figures for this report.

# **GROUNDWATER FLOW MODEL**

The groundwater flow model consisted of four layers, one for the till/weathered shale aquifer, and three other layers for the competent shale. The model had a dimension of 122 x 353 cells. The model cells were set at 25 feet within the area of the Ash Landfill site, but these cells were later refined during solute transport to simulate the reactive iron walls. Model boundaries were set at large distances from the Ash Landfill site (**Figure 1**). Seneca Lake was a constant head boundary to the west, the topographic (and groundwater) divide along Route 96 was a no-flow boundary to the east, and streamline no-flow boundaries were used for the northern and southern boundaries of the model.

## **Model Calibration**

Calibration of an existing four-layer steady-state groundwater flow model was accomplished by adjusting hydraulic conductivity zones in the upper three layers and recharge in layer 1. Initially, conductivity zones were established based on hydrostratigraphic determinations made during the previous modeling (Parsons, 1996). Then, in selected locations of the upper three layers of the model, the conductivity values were further adjusted, however, the range of adjustments were within an order of magnitude established using field measurements during the RI. In addition, zones of regional net recharge were established on the top of layer 1 to reflect the relative amount of recharge based on the slope of the ground surface. The recharge zones were also adjusted based on the presence of landfilled areas and wetlands. A large roadside drainage ditch along North-South Baseline Road was simulated using model drains, which removed water at the western end of the Ash Landfill. The steady-state model was calibrated when the simulated water levels reasonably matched the long-term water level targets. Simulated groundwater contours are shown in Attachment A. Statistically, the model was considered to have been calibrated when the absolute mean error (average of the absolute value of the differences between the observed and simulated water levels) was 10% or less of the difference in water level across the modeled area. The actual calibrated error was 1.8%. The water balance error for the model was approximately 0.3 %.

## **Refined Groundwater Flow Grid and Establishing Treatment Walls**

Prior to establishing the reactive iron walls in the model, the grid in the area of the proposed walls was refined. This allowed the narrow walls to be simulated, and increased the hydraulic head and concentration resolution of the modeling results. To refine the grid, the 25-ft grid spaces of the steady-state flow model were adjusted to a regularly spaced grid size of 3.1 ft, which is the approximate width of a typical excavator bucket, and the anticipated width of the final reactive walls. Beyond this area, the grid expanded by roughly 1.5 times. The refined flow model had a dimension of 310 x 632 cells. Then the four reactive iron wall scenarios were established in four separate flow models. The reactive walls were established in layer 1 and they consisted of elongate zones with a hydraulic conductivity of 7.4 x  $10^{-3}$  cm/sec (or 20.97 ft/day), which is based on laboratory permeability testing of the iron/sand mixture in existing reactive iron wall. Steady-state groundwater flow head solutions were obtained first for each scenario and then transient groundwater flow simulations were subsequently conducted to generate the input files required by MT3DMS.

# SOLUTE TRANSPORT MODEL

The solute transport modeling evaluated the effectiveness of the four reactive iron wall scenarios and evaluated the potential for the portion of the plume that exists downgradient of the existing

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\ASHMODEL\Gw\_model\crw\_rpt\crwd\_rpt.doc

reactive iron wall to adversely impact the wells at the Farm House. In these evaluations, the solute transport model simulated the movement of the total chlorinated ethenes plume as TCE; multispecies transport was not simulated for this project.

The MT3DMS computer code was selected to simulate contaminant transport. MT3DMS includes the standard finite-difference method, several mixed Eulerian-lagrangian methods, and a third-order TVD method with a universal flux limiter. These solution options treat the dispersion, sink/source and reaction terms in exactly the same fashion, using the block-centered finite-difference method, either explicitly or implicitly. They differ; however, in the way the advection term is solved. In this simulation, the Generalized Conjugate Gradient Solver package was selected, and the implicit upstream finite difference method was used to solve the advection term without any stability constraints.

## **Calibration**

Prior to simulating the reactive wall scenarios, the transport model was calibrated. The model was calibrated by simulating the plume migration from constant sources in the former source areas at the Ash Landfill, without the presence of the continuous reactive walls. The time of the initial release was estimated to be 30 years. The constant sources were based on the chemical concentrations measured in the plume source areas prior the Removal Action. Two of the sources were represented by the total chlorinated ethene concentrations in MW44 (132,360  $\mu$ g/l) and in PT18 (13.953 ug/l) (Figure 1-1, Parsons 1996). During the calibration process, one additional point source was established between MW44 and PT18. A distribution coefficient (Kd) of 0.0752 ml/g was used for the model calibration. It was calculated using site-specific organic carbon data (foc of 0.0008) for the till matrix and a literature-derived Koc (94 ml/g), which is the geometric mean for TCE as cited by EPA (1996). This revised Kd for TCE is different from the one used in previous Ash Landfill model (Parsons 1996), which was a literature-derived value of 0.013 ml/g. Using the revised Kd, and bulk density and porosity data, a retardation factor of 1.9 was calculated for TCE in the till/weathered shale aquifer at the Ash Landfill site, which is consistent with the TCE retardation factor of 2.2 calculated by Mehran et al. (1987) and within the range cited by Wilson et al. (1981) of 1.5 to 2.0. Other parameters such as longitudinal, transverse, and vertical dispersivity were adopted from the previous modeling effort.

The biodegradation rate constant (k) was considered to be the most uncertain variable that controlled the plume configuration and, therefore, it was the parameter that was adjusted for calibration. The k value was obtained from the resultant of natural log of 2 divided by a half-life of the TCE. A half-life of 875 days (k = 0.00079/day) resulted in a simulated plume that was most similar to the total chlorinated ethene plume prior to the Removal Action (Figure 1-1, Parson ES, 1996). A k value of 0.00079/day is consistent with the range of values cited in *Anerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies* (API 1997). This report cites a lower limit equal to 0.00014/day (half-life of 4950 days), which is the lowest measured field value, to 0.0025/day (half life of 277 days), which is the mean value for the field/in situ microcosm data set cited in the report.

## **Transport Modeling Results**

## **Evaluation of Treatment Wall Designs**

Four separate solute transport models were established using the initial calibrated solute transport model as a framework for each reactive wall scenario (**Figure 2**). The model scenarios used initial total chlorinated ethene (as TCE) plume concentrations that were based on October 1999

chemical sampling results. Total chlorinated ethenes were calculated by adding the molar concentrations of the individual chlorinated ethene compounds (PCE, TCE, 1,2-DCE, and VC), and converting the total molar concentration back to a weight concentration (equivalent to TCE). Then, the initial plume concentration array for the model scenarios were generated in SURFER using the converted chemical data and a krigging method with an exponential variogram model.

The chemical reaction parameters defined for the model were based on site-specific data, benchscale testing, and literature. The half life (and k) in the aquifer was previously established during model calibration, however, a different half-life was used in the cells that simulated the reactive walls. In the walls, a half-life of 6 hours (0.25 days) was used, which is an empirical value for zero-valent iron based on several years of bench-scale, chemical column testing by EnviroMetal Technologies, Inc. (March 20, 2000).

While advective transport, retardation and biodegradation of chemicals are all considered in the solute transport model, matrix-controlled diffusion was identified as an important factor in evaluating the effectiveness of the scenarios and clean-up times for the plume. Long-term diffusion of chemicals (e.g., TCE, 1,2-DCE, and VC) from the aquifer matrix was considered to be a significant factor at the site due to the presence of the till aquifer, which has a relatively high silt and clay content. To approximate the effects of the matrix-controlled diffusion on clean-up times in the simulations, the Kd of the aquifer matrix was adjusted up by two times the value that was used to calibrate the transport model in a zone that extended from the existing wall to just beyond the eastern plume boundary. This adjustment that was based on TCE adsorption and desorption studies cited by Olsen and Davis, 1990. During the simulation, the result was an increase in the mass of chemical solute adsorbed to the solid phase relative to the mass of solute in the liquid phase in the aquifer. This, in effect, accounted for the additional flushing of pore water that would ultimately be needed to remove the dissolved chemicals sorbed to the solid phase. Analytical data collected during the treatability study of the existing iron wall provides further support for the importance of chemical diffusion from the till matrix when assessing clean-up times at the Ash Landfill site.

| The table below presents generalized descriptive results from the modeling that can be used to |  |
|------------------------------------------------------------------------------------------------|--|
| compare the relative effectiveness of the four treatment wall scenarios (Attachment A).        |  |

| Scenario | Approximate<br>Total Length of<br>Reaction Walls<br>(feet) | Comments                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 1,400                                                      | The two cut-off walls effectively divided the plume in half and the<br>plume had to move a relatively large distance to be treated by the walls.<br>This configuration was not as effective as other scenarios (2 and 3) in<br>reducing, in a timely manner, the zone of elevated concentrations<br>downgradient of the southern portion of the Ash Landfill.                                                                        |
| 2        | 2,000                                                      | The three cut-off walls segmented the plume and minimized the travel<br>distances needed before treatment in the walls. The walls were effective<br>in reducing the large plume to relatively small impact areas. The wall<br>immediately east of North South Baseline Road was effective in cutting<br>off the plume to allow the portion of the plume at the depot boundary to<br>be treated in a relatively short period of time. |

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\ASHMODEL\Gw model\crw rpt\crwd rpt.doc

| 3 | 1,900 | The "V" wall was effective in cutting off the high concentration portion<br>of the plume, however, the wall parallel to groundwater flow did little to<br>treat the plume. The drawback to this configuration is that the plume<br>immediately beyond the "V" had to move the entire distance to the<br>existing wall before being treated. This resulted in a relatively long<br>treatment time for most of the plume. |
|---|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | 2,700 | The parallel walls isolated the plume into zones and treat plume on the edges of these zones in the immediate vicinity of the wall, but they did not significantly induce groundwater to flow toward them. Ultimately, the cut-off wall at the downgradient end of the parallel walls performed most of the treatment. This scenario required the plume to move a relatively large distance before being treated.       |

Note:

\* This range of years was based on visual observation of plume maps with a 5-year time series cycle.

Based on the results of the simulations using the four continuous reactive wall scenarios, the following general observations were made:

- 1. All four reactive wall scenarios were effective in capturing and treating the on-site plume.
- 2. The continuous reactive walls do not significantly affect the hydraulic heads around them and, therefore, the wall systems rely on natural gradients to move the plume toward them.
- 3. In general, cut-off walls installed perpendicular to the plume movement perform better than walls installed parallel to the long axis of the plume. The parallel walls do not significantly induce groundwater (and the plume) to flow toward them and, thus, treatment times for parallel walls are relative long, unless a perpendicular wall is also installed to directly intercept the plume. The regional westerly direction of groundwater flow dominates over any local hydraulic influence from these parallel walls.
- 4. Configurations with a reactive iron wall installed immediately east of North-South Baseline Road (Scenarios 2 and 4) were effective in cutting off the movement of upgradient portion of the plume. This resulted in a reduction in the plume concentrations at the depot boundary within a relatively quick time frame compared to the other scenarios.

While it is clear that, at the Ash Landfill site, cut-off walls perform better than "V" wall or walls installed parallel to the flow of the plume, the last factor to consider in estimating the clean-up time for the site is the effect that chemical reactions in the wall have on "natural "degradation rates in the aquifer. Specifically, the effects of increased delivery of dissolved hydrogen to the aquifer system from the reactions in the wall. Chemical data from wells downgradient of the existing iron wall indicate that dissolved hydrogen concentrations range from 0.026  $\mu$ g/L (12.9 nM/L) to >0.101  $\mu$ g/L (>50 nM/L). The increase in hydrogen generated by the wall would undoubtedly influence microbial populations as the iron-treated water moves into the downgradient aquifer (ETI, May 2000). This would, in effect, increase the rate of biodegradation in the aquifer by stimulating the microbes. The hydrogen is rapidly used as an electron donor by naturally-occurring bacteria to achieve reductive dechlorination of chlorinated ehenes in the subsurface.

The effect of hydrogen addition from reactive iron walls has not been widely studied due to the fact that in-situ reactive iron walls are a relative new and innovative technology and the long-term field data are not available to date. However, it is widely accepted that hydrogen (an electron donor) is a key factor governing dechlorination. Recently published laboratory results of long term column studies at (>1 year) at Rice University indicate the potential for stimulating and sustaining dechlorination activity through direct hydrogen addition (Fisher et. al, undated).

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\ASHMODEL\Gw\_model\crw\_rpt\crwd\_rpt.doc

To estimate effect that hydrogen would have on the half-life of TCE in the aguifer at the Ash Landfill, we examined the rate of decay for TCE in a commingled, dissolved plume containing TCE and BTEX at a site at the Plattsburgh Airforce Base in Plattsburgh, New York (Wiedemeier, et al., 1996). At this site, reductive dechlorination supported by fuel hydrocarbons (BTEX) is described as one of the chemical environments in the dissolved plume that results in increased hydrogen in the aquifer, among other geochemical changes. Hydrogen concentrations of up to 0.023 µg/L (11.3 nM) were measured in this portion of the plume at Plattsburgh. In this area of the plume, the first-order biodegradation rate constant for TCE ranged from 0.0033/day to 0.0010/day, which corresponds to half lives of 210 days and 630 days, respectively. The biodegradation rate for DCE was also within this range. These rates reflect the increased degradation due to the presence of BTEX as a primary substrate and the resulting addition of hydrogen to the aquifer system. Similarly, at the Ash Landfill, hydrogen is produced during the iron corrosion reaction by water in the wall and it is released to downgradient portions of the aquifer. While the methods by which dissolved hydrogen is produced in the Plattsburgh and Ash Landfill systems are different, the net effect is an increase in availability of hydrogen to be used by the microbial population in the reductive dechlorination of TCE.

Dissolved hydrogen concentrations above  $0.010 \ \mu g/L$  (5 nM/L) indicate that the dominant terminal electron-accepting process in the aquifer system is methanogenesis Wiedemeier (1996). At the Ash Landfill the dissolved hydrogen concentrations downgradient of the existing permeable reactive iron wall are between  $0.026 \ \mu g/L$  (12.9 nM/L) and  $>0.101 \ \mu g/L$  (>50 nM/L), which provides support for the predominance of methanogenesis as the dominant electron-accepting process. The presence of increased methane concentrations downgradient of the wall at the Ash Landfill also indicates that methanogenesis is an active process at the site.

Based on the available groundwater chemical data, it is important that the estimate of clean-up time at the Ash Landfill consider the potential benefits of long-term hydrogen addition from the reactive walls. Therefore, the final model scenario combined the Scenario 2 wall configuration, which had the best overall performance, with an estimate of the effect of hydrogen addition to the zones between the reactive walls. This scenario also included the effect of adding carbon in areas upgradient of the easternmost wall, near the former source area at the Ash Landfill, which when degraded by microbes would produce hydrogen. The effect of the increase hydrogen in the aquifer was simulated in the model by setting the half-life for the biodegradation term to 437 days (0.0015/day), which is one-half of the value established under "natural" dechlorination conditions (877 days) at the site. The estimate of 437 days is consistent with the range of first-order biodegredation rates established at the commingled TCE and BTEX plume in Plattsburgh noted in the discussion above.

The results of the model simulation using the Scenario 2 wall configuration (three cut-off trenches) and the effects of both matrix-controlled diffusion and hydrogen addition (i.e., zones of increase dechlorination) indicated that that the plume of total chlorinated ethenes would be remediated in about 15 years (**Figure 3**).

# **Impact on Farm House Wells**

To evaluate the potential for the plume to impact the wells at the downgradient Farm House, the solute transport model simulation evaluated the movement of the portion of the plume beyond the existing trench using the Scenario 2 wall configuration described above. It is important to note that down gradient of the existing trench the simulation used the same Kd value that was used to calibrate the transport model, since the intent was to determine the forward movement of the

plume and not the effects of long term, matrix-controlled diffusion on clean-up time. The initial plume concentrations were, again, based on October 1999 results that were converted to TCE equivalents. During this simulation, two downgradient monitoring points were established in the model to record the changes in concentration over time. Monitoring Point 1 was located at the mid-point between the Farm House and the Depot boundary, and Monitoring Point 2 was located at the Farm House (**Figure 4**).

The results of the simulation showed that a slug of the plume would continue to move beyond the existing reactive iron wall, however, the concentrations within the slug were degraded as they moved farther downgradient of the existing wall. The simulation predicted that a maximum concentration of approximately 0.2  $\mu$ g/L (total chlorinated ethenes) would reach Monitoring Point 1 in approximately 25 years. At the Farm House, the results indicated that the maximum concentration would be approximately two orders of magnitude less than this (~0.008  $\mu$ g/L) in about 40 years (**Figure 5**). The plume of total chlorinated ethenes is expected to move in the till/weathered shale aquifer at about one half the average pore-water velocity based on a retardation factor of 1.9, which was established earlier.

## References

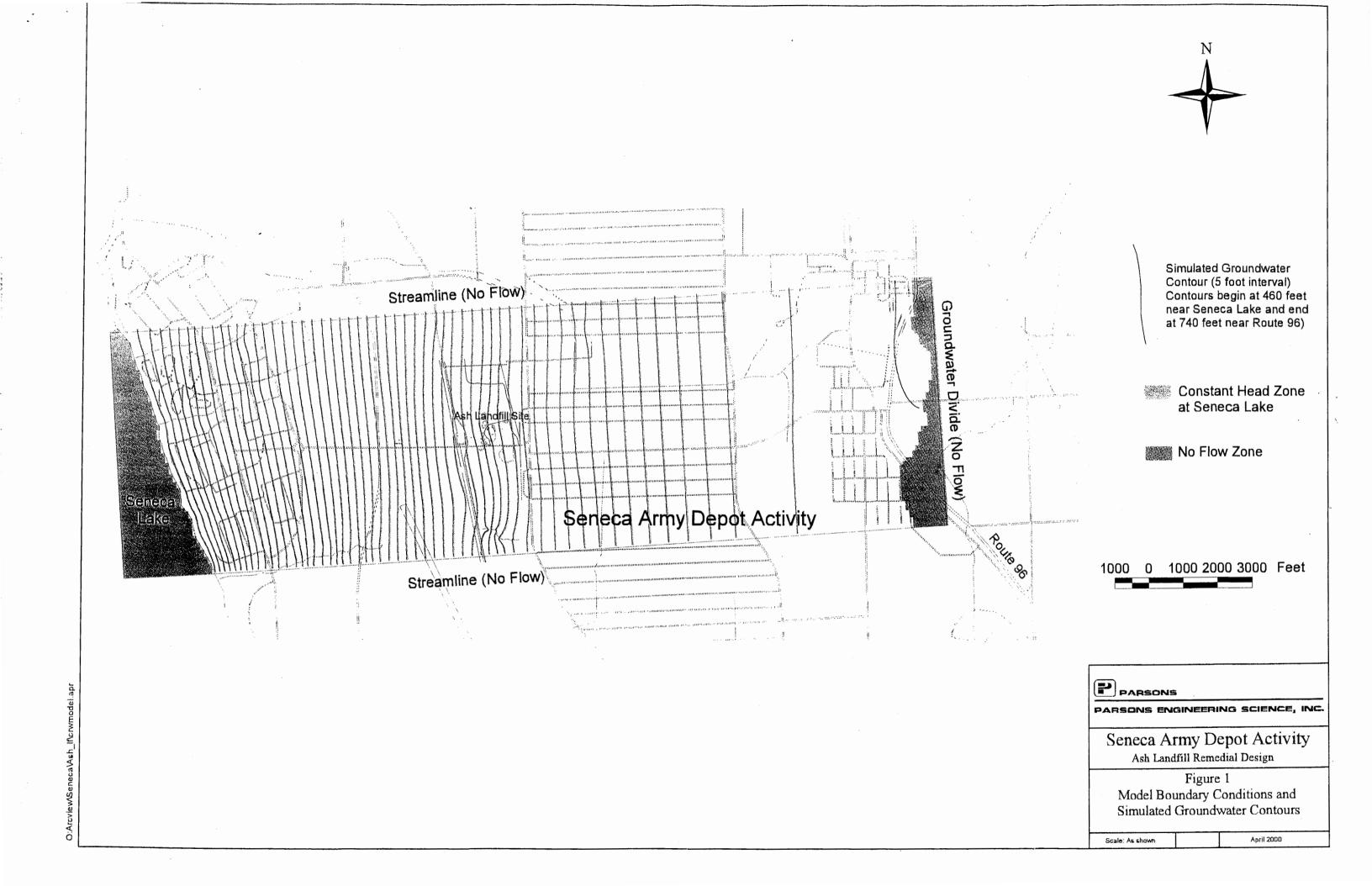
American Petroleum Institute (API), 1997, Anerobic Biodegradation of Organic Chemicals in Groundwater: A Summary of Field and Laboratory Studies, Draft Final Report, prepared by Environmental Science Center, Syracuse Research Corporation, North Syracuse, New York, SRC TR-97-0223F.

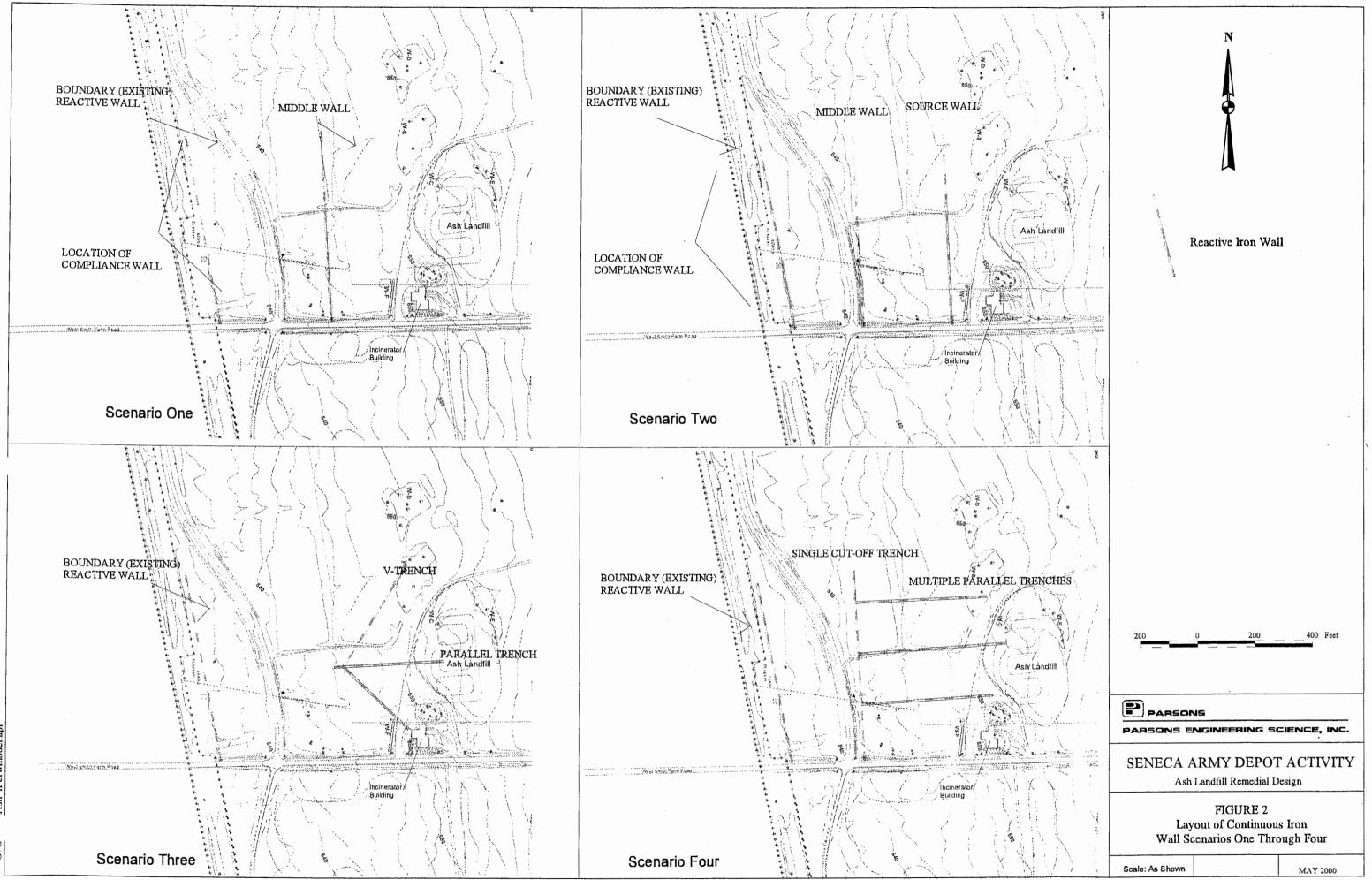
EnviroMetal Technologies, Inc. (ETI), Memorandum, March 20, 2000.

EnviroMetal Technologies, Inc. (ETI), Memorandum, May 20, 2000.

Environmental Simulations, Inc, 1998, Guide to Using Groundwater Vistas.

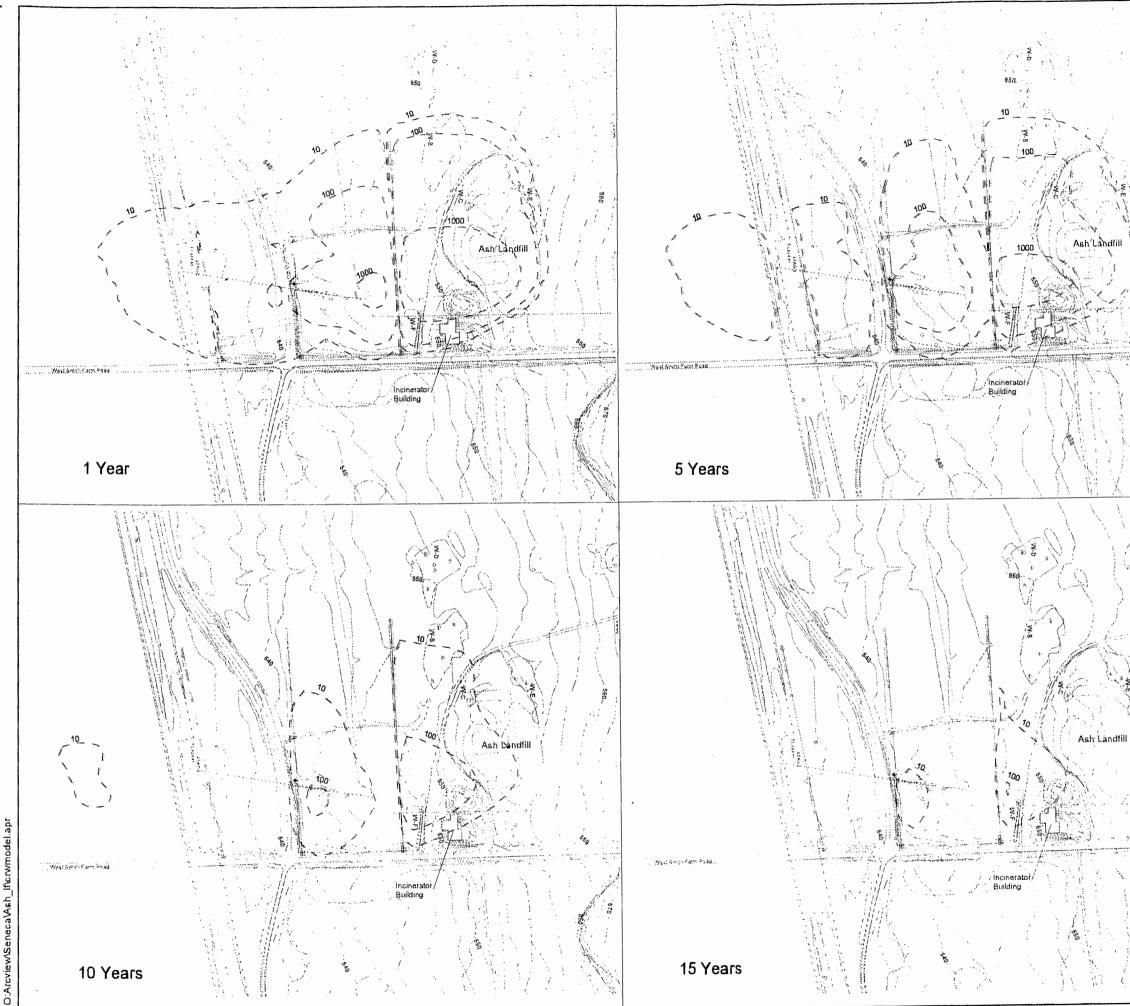
- Fisher, T.R., C.J. Newell, J.B. Hughes, P.E. Haas, and P.C. Johnson, undated, Pulse Biosparging of Hydrogen for the In-situ Biodegradation of Chlorinated Solvents, posted at aecwww.apgea.army.mil/prod/usaec/et/etw/39/htm.
- McDonald M.G., and A.W. Harbough, 1984, A modular Three-Dimensional Finite Difference Groundwater Flow Model, U.S. Geological Survey Open File Report 83-875.
- Mehran, M., R.L. Olsen, and B.M. Rector, 1987, Distribution Coefficient of Trichloroethlyene in Soil-Water Systems, Groundwater, May-June 1987.
- Olsen, R.L. and A. Davis, 1990, Predicting the Fate and Transport of Organic Compounds in Groundwater, Hazardous Materials Control, May-June 1990.

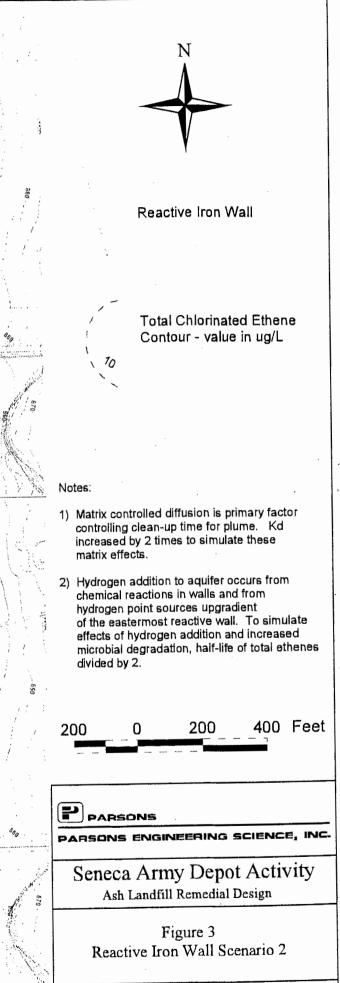

Parsons Engineering Science, Inc., 1996, Groundwater Modeling Report at the Ash Landfill Site.


- U.S. EPA, 1996, Soil Screening Guidance: Technical Background Document, Office of Solid Waste and Emergency Response, Washington, DC, EPA/540R-95/128, May 1996.
- Wiedemeier, T.H., J.T. Wilson, and D.H. Kampbell, Natural Attenuation of Chlorinated Aliphatic Hydrocarbons at Plattsburgh Air Force Base, New York, In: Symposium on Natural Attenuation of Chlorinated Organics in Ground Water. USEPA Office of Research and Development. EPA/540/R-96/509. Hyatt Regency Dallas, Dallas, TX, September 11-13, 1996.
- Wilson, J.T., C.G. Enfield, W.J. Dunlap, R.L. Cosby, D.A. Foster, and L.B. Baskin, 1981, Transport and fate of selected organic pollutants in a sandy soil, J. Environ. Qual. v. 10, no. 4, pp. 501-506.
- Zheng, C. and P.P. Wang, 1999, MT3DMS, A Modular Three-Dimensional Multispecies Transport Model, Documentation and Users Guide, prepared for U.S. Army Corps of Engineers, Washington, DC, Contract Report SERDP-99-, June 1998, revised November 1999.

# ATTACHMENT A

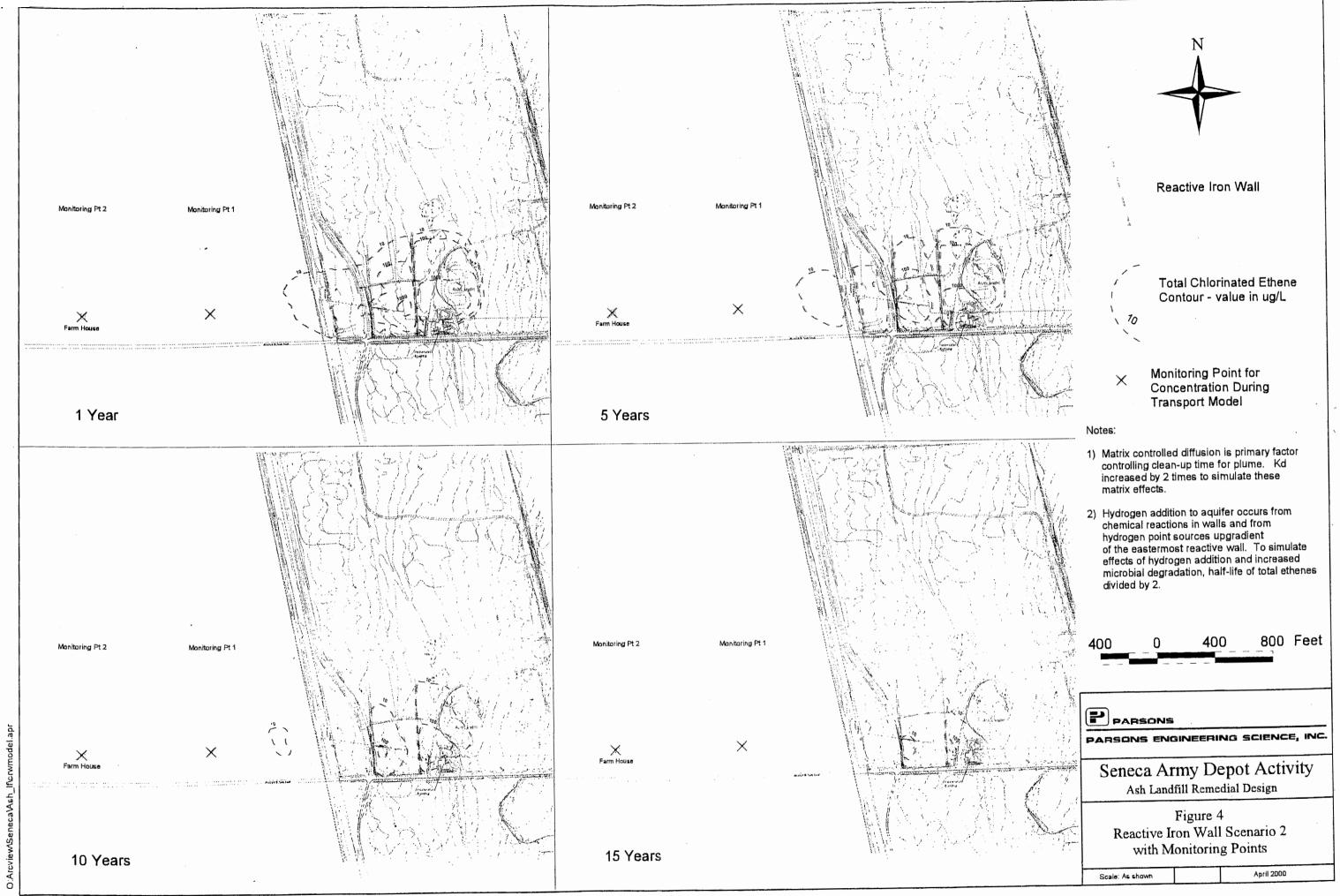
# Figures

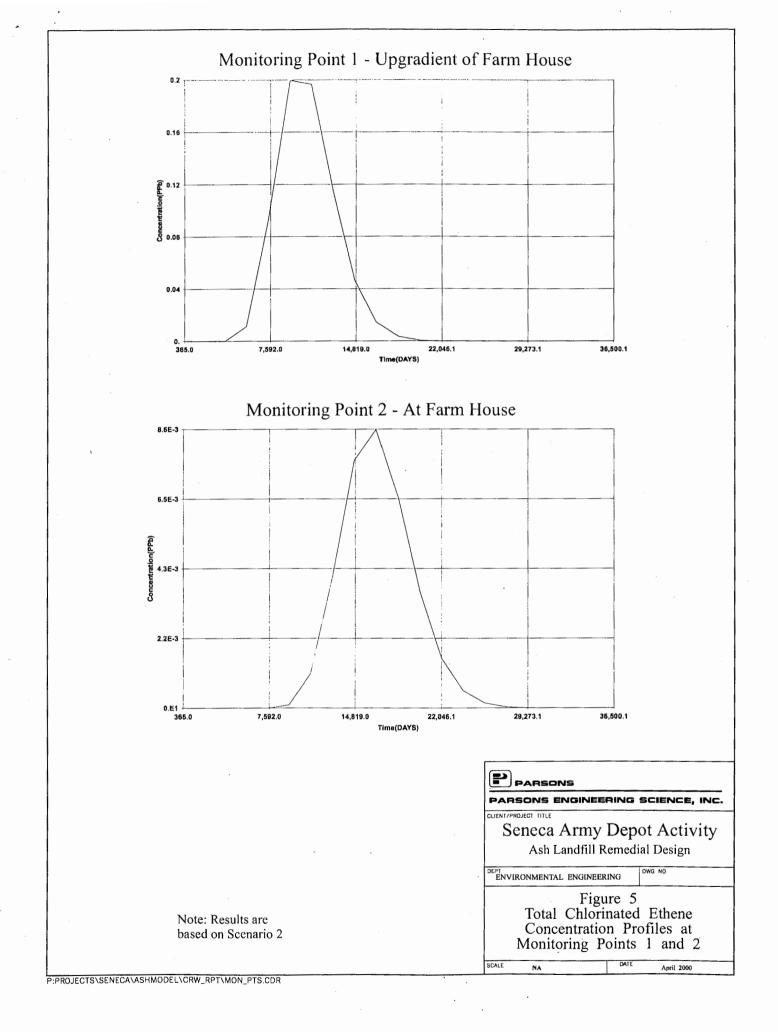

\\BOSFS02\PROJECTS\PIT\Projects\SENECA\ASHMODEL\Gw\_model\crw\_rpt\crwd\_rpt.doc






Ash If crwmodel


S\:O






Scale: As shown

April 2000





 $\left( \sum_{i \in \mathcal{I}_{n}} \left| i \right| \right) = 0$  TABLE 1

# GROUND WATER CHEMICAL RESULTS ROUND 1 GROUNDWATER MONITORING ASH REMEDIAL DESIGN SENECA ARMY DEPOT ACTIVITY ROMULUS, NY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1                                     |           |          |        |         |          | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | 1                                     |                  | 1                                     |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|-----------|----------|--------|---------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|------------------|---------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                                     |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | · · · · · · · · · · · · · · · · · · · |                  | 1 I                                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +- ·· ·· · · · · · · · · ·            |                  |                                       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                  |                                       | •                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1                                     | •                |                                       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |           |          |        |         | [.       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                  |                                       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                  |                                       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                  | 1                                     |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1                                     |           |          |        |         | · ·      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                  | · · · · · · · · · · · · · · · · · · · |                         |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      |                                       |           | 1        |        |         |          | ASH LAND  | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH LANDFILL    | ASH LANDFILL                          | ASH LANDFILL     | ASH LANDF                             |                         |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      |                                       |           |          |        |         | l .      | BN-S      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FH-D            | FH-S                                  | MW-12A           | MW-27                                 |                         |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                       |           |          |        |         |          | GROUND    | MATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GROUND WATER    | GROUND WATER                          | GROUND WATER     | GROUND W                              |                         |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | +                                     |           |          |        | •       |          | ARD2038   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2036         | ARD2037                               | ARD2047          | ARD2030                               |                         |
| DEPTH TO TOP OF SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | +                                     |           | -        |        |         |          | 1102000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND2030         |                                       |                  |                                       |                         |
| DEPTH TO BOTTOM OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                       |           |          |        | · ••• · |          | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               | 0                                     | 11               | 10                                    |                         |
| And and any second strengthered and and any second strengthered and any second strengthered and strengthered | SAWFLE | +··· · · - ···                        |           |          |        |         |          | 10.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               | U                                     | 11               | 10                                    |                         |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | · · · · · · · · · · · · · · · · · · · |           |          |        |         |          | 19-Oct-99 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19-Oct-99       | 19-Oct-99                             | 21-Oct-99        | 19-Oct-99                             |                         |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                       |           |          |        |         |          | SA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA              | SA                                    | SA               | SA                                    |                         |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       | FREQUENCY | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REM   | EDIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASH REMEDIAL DE | S ASH REMEDIAL DES                    | ASH REMEDIAL DES | ASH REMED                             | DIAL DES                |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                       | OF        | CLASS GA | ABOVE  | OF      | OF       | . 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | 1                                     | 1                | 1                                     |                         |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT   | MAXIMUM                               | DETECTION | STD.     | STD.   | DETECTS | ANALYSES | N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N               | N                                     | N                | N                                     |                         |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                       |           |          |        |         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       |                  |                                       |                         |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L   | 1                                     | 2%        | 5        | 0      | 1       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 L                                  | J                       |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L   | 0                                     | 0%        | 5        | 0      | Ó       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  | J                       |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L   | 0                                     | 0%        |          | 0      | 0       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  | J                       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L   | 9                                     | 2%        | 5        | 1      | 1       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  | J                       |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L   | 0                                     | 0%        | 5        | 0      | 0       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 L                                  | j                       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L   | 4                                     | 4%        | 5        | Ő      | 2       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 L                                  | and managements and and |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L   | 1100                                  | 27%       | 5        | 14     | 15      | 55       |           | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 940              | 10 L                                  |                         |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L   | 0                                     | 0%        | 5        | Ö      | 0       | 55       |           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 L                                  |                         |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L   | 2                                     | 4%        |          | 0      | 2       | 55       | 10        | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 UJ           | 10 UJ                                 | 73 UJ            | 10 U                                  |                         |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L   | 0                                     | 0%        | 0.7      | 0      | 0       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L   | 0                                     | 0%        |          | 0      | 0       | 55       | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L   | 0                                     | 0%        |          | Ó      | Ö       | 55       | 10        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L   | 0                                     | 0%        |          | 0      | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L   | 0                                     | 0%        | 5        | n n    |         | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L   | 0                                     | 0%        | 5        | n n    |         | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L   | - o                                   | 0%        | - · ·    |        |         | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 0            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L   | 0                                     | 0%        | 5        |        |         | 55       |           | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L   | 74                                    | 2%        | 7        |        | 1       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L   | /4                                    | 2%        | ,<br>E   |        |         | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L   | ō                                     | 0%        |          | 0      |         | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  |                  |                                       |                         |
| Ethyl benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L   | 0                                     | 0%        |          | i i    | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                       | 73 U             | 10 U                                  |                         |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | · · · · · · · · · · · · · · · · · · · |           |          | 0      | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U<br>10 UJ   | 10 U                                  | 73 U             | 10 U                                  |                         |
| Methyl butyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L   | 0                                     | 0%        |          |        | 0       |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 10 UJ                                 | 73 U             | 10 U                                  |                         |
| Methyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L   | 0                                     |           | 5        | 0      | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Methyl ethyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L   | 0                                     | 0%        | 50       | 0      | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 UJ           | 10 UJ                                 | 73 U             | 10 U                                  |                         |
| Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L   | 0                                     | 0%        |          | 0      | 0       | 55       |           | CARTER AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS | 10 UJ           | 10 UJ                                 | 73 U             | 10 U                                  |                         |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L   | 0                                     | 0%        | 5        | 0      | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L   | 0                                     | 0%        |          | 0      | 0       | 55       | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L   | 0                                     | 0%        | 5        | 0      | 0       | 55       |           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L   | 0                                     | 0%        | 5        | 0      | 0       | 55       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U            | 10 U                                  | 73 U             | 10 U                                  |                         |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L   | 0                                     | 0%        | 5        | 0      | 0       | 55       | 10        | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 U            | 10 U                                  | 73 U             | 10 U                                  | j                       |

.

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

|                           |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | 1         |              |                 |          |                 |                 |                                                                                                                 | 1         |          |
|---------------------------|---------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------------------------------------|----------|-----------|--------------|-----------------|----------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------|----------|
|                           | 1                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Ì      | [                                       |          |           |              |                 |          |                 |                 | ſ '                                                                                                             |           | · ·      |
|                           |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         | 1        |           |              |                 |          |                 |                 |                                                                                                                 |           |          |
| and the second second     |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          |           |              |                 |          |                 |                 |                                                                                                                 | E. I      |          |
|                           |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | L      |                                         |          |           |              |                 |          |                 |                 |                                                                                                                 | I I I I I | I        |
|                           |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          |           |              | 1.              |          |                 |                 |                                                                                                                 |           |          |
|                           |                                       | ·       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          |           |              |                 |          |                 |                 |                                                                                                                 |           |          |
|                           |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        | Ļ                                       |          |           |              |                 |          |                 |                 |                                                                                                                 |           |          |
| FACILITY<br>LOCATION ID   | · · · · · · · · · · · · · · · · · · · |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | ASH LAN   | <b>JFILL</b> | ASHLAN          | OFILL    | ASH LANDFILL    | ASH LAND        | FILL                                                                                                            | ASH LAND  | FILL     |
| MATRIX                    |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | BN-S      |              | FH-D            |          | FH-S            | MW-12A          | L                                                                                                               | MW-27     | L        |
| SAMPLE ID                 |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | GROUND    |              | GROUND          | WATER    | GROUND WATER    |                 | WATER                                                                                                           | GROUND    | WATER    |
| DEPTH TO TOP OF SAMP      |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        | <b>.</b>                                |          | ARD2038   |              | ARD2036         |          | ARD2037         | ARD2047         |                                                                                                                 | ARD2030   | ·        |
| DEPTH TO BOTTOM OF S      |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | L         |              |                 |          | 0               | 11              | the second second second second second second second second second second second second second second second se | 10        |          |
| SAMPLE DATE               |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | 19-Oct-99 |              | 10.0000         |          | 0               | 11              |                                                                                                                 | 10        |          |
| QC CODE                   |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          | 19-0ct-99 |              | 19-Oct-99<br>SA | +        | 19-Oct-99<br>SA | 21-Oct-99<br>SA |                                                                                                                 | 19-Oct-99 | <u> </u> |
| STUDY ID                  |                                       |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NYSDEC   | NUMBER | NUMBER                                  | NUMBER   |           |              |                 |          | SASH REMEDIAL D |                 |                                                                                                                 | SA        |          |
| SAMPLE ROUND              |                                       |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLASS GA | ABOVE  | OF                                      | OF       | AGH REM   |              | 1 ASIA REIM     | LUIALUES |                 | A TESINOTI REMI | DIAL DES                                                                                                        | ASH KEME  |          |
| PARAMETER                 | UNIT                                  | MAXIMUM | Contraction of the local division of the loc | STD.     | STD.   | DETECTS                                 | ANALYSES | N         |              | N               | +        | N               | N               |                                                                                                                 | N '       | <u> </u> |
| Frans-1,3-Dichloropropene |                                       | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 010.   | • · · · · · · · · · · · · · · · · · · · | 55       |           | U            | 10              | U        | 10 U            | 73              | U                                                                                                               | 10        | 11       |
|                           | UG/L                                  | 9100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 10     | i · · · · · · · · · ·                   |          |           | U            |                 | U        | 10 U            | 840             | -                                                                                                               | 10        |          |
|                           | UG/L                                  | 180     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 2      | 3                                       | 55       |           | U            |                 | U        | 10 U            |                 |                                                                                                                 | 10        |          |
| METALS                    |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                                         |          |           | J <b>Č</b>   |                 |          | 10 0            |                 |                                                                                                                 | +         | <u> </u> |
|                           | UG/L                                  | 2600    | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0      | 34                                      | 52       |           |              | +               |          |                 | 56.2            |                                                                                                                 | 1130      |          |
|                           | UG/L                                  | 3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 1                                       | 52       |           |              |                 |          |                 | 2.7             |                                                                                                                 | 2.7       |          |
|                           | UG/L                                  | 7       | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       | 0      | 12                                      | 52       |           |              |                 |          | +               | 1.9             |                                                                                                                 | 1.9       |          |
| Barium                    | UG/L                                  | 176     | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000     | 0      | 51                                      | 52       |           |              |                 |          | 1               | 32.8            |                                                                                                                 | 47.5      |          |
|                           | UG/L                                  | 0.66    | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0      | 5                                       | 52       |           |              |                 |          |                 | 0.2             |                                                                                                                 | 0.2       |          |
| Cadmium                   | UG/L                                  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | 0      | 0                                       | 52       | t         |              |                 | 1        |                 | 0.3             | U                                                                                                               | 0.3       | U        |
|                           | UG/L                                  | 268000  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0      | 51                                      | 52       |           |              | 1               |          |                 | 268000          |                                                                                                                 | 83200     |          |
|                           | UG/L                                  | 5.6     | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50       | 0      | 8                                       | 52       |           |              | 1               |          |                 | 0.9             | U.                                                                                                              | 0.9       | U        |
|                           | UG/L                                  | 8.4     | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 2                                       | 52       | [         |              |                 |          |                 | 2.5             |                                                                                                                 | 2         | U        |
|                           | UG/L                                  | 6.1     | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200      | 0      | 5                                       | 52       |           |              |                 |          |                 | 1.7             | U                                                                                                               | 1.7       |          |
| Cyanide                   | UG/L                                  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      | 0      | Ő                                       | 52       |           |              |                 |          |                 | 5               |                                                                                                                 | 5         | U        |
| ron                       | UG/L                                  | 11600   | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300      | 14     | 35                                      |          |           |              | 1               |          |                 | 155             |                                                                                                                 | 1130      |          |
|                           | UG/L                                  | 5.4     | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       | 0      | 5                                       | 52       |           |              |                 |          |                 | 1.2             |                                                                                                                 | 1.1       |          |
|                           | UG/L                                  | 47100   | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Ō      | 51                                      | 52       |           |              |                 |          |                 | 38400           |                                                                                                                 | 10800     |          |
|                           | UG/L                                  | 3140    | 83%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300      | 7      | 43                                      | 52       |           |              |                 |          |                 | 528             |                                                                                                                 | 102       |          |
|                           | UG/L                                  | 0.2     | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2        | 0      | . 6                                     | 52       |           |              |                 |          |                 | 0.1             |                                                                                                                 | 0.1       | U        |
|                           | UG/L                                  | 5.6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 6                                       | 52<br>52 |           |              |                 |          |                 | 1.7             |                                                                                                                 | 1.7       |          |
|                           | UG/L                                  | 18400   | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0      | 51                                      | 52       |           |              |                 |          |                 | 6100            |                                                                                                                 | 2640      |          |
|                           | UG/L                                  | 2.6     | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | 0      | 1                                       | 52       |           |              |                 |          |                 | 2.4             | U                                                                                                               | 2.4       | U        |
|                           | UG/L                                  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | 0      | 0                                       |          |           |              |                 |          |                 | 1.6             |                                                                                                                 | 1.6       |          |
|                           | UG/L                                  | 142000  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20000    | 27     | 51                                      | 52       |           |              |                 |          |                 | 74000           |                                                                                                                 | 28600     |          |
|                           | UG/L                                  | 10.8    | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0      | 10                                      |          |           |              |                 |          |                 | 2.9             |                                                                                                                 | 2.7       |          |
|                           | UG/L                                  | 4.5     | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      |                                         |          |           |              |                 |          |                 | 1.5             |                                                                                                                 | 1.5       | Ū        |
| Zinc                      | UG/L                                  | 134     | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300      | 0      | 42                                      |          |           |              |                 |          | +               | 6.5             |                                                                                                                 | 5.2       |          |

TABLE 1 GROUND WATER CHEMICAL RESULTS ROUND 1 GROUNDWATER MONITORING ASH REMEDIAL DESIGN SENECA ARMY DEPOT ACTIVITY ROMULUS, NY

|                                                                     | 1     | 1       |           |                    | 1      |           |          | 1                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------|-------|---------|-----------|--------------------|--------|-----------|----------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · ·                                                   |       | -       |           |                    |        |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     |       |         |           | -                  | 1      |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     | -     |         |           |                    | · ·    |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                   |       |         |           |                    |        |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |       |         |           |                    |        |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESC |
|                                                                     |       |         |           |                    |        |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |       |         |           |                    |        |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |       |         |           |                    |        |           |          | ASH LANDFILL                                                                                                     | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASH LANDFILL     | ASH LANDFILL     | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FACILITY                                                            |       |         |           |                    |        |           |          | MW-28                                                                                                            | MW-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-30            | MW-31            | MW-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LOCATION ID                                                         |       |         |           |                    |        |           |          | GROUND WATER                                                                                                     | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GROUND WATER     | GROUND WATER     | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MATRIX                                                              |       | +       |           |                    |        | • • • • • |          | ARD2044                                                                                                          | ARD2056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ARD2028          | ARD2003          | ARD2029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SAMPLE ID                                                           |       |         |           |                    |        |           |          | ARD2044                                                                                                          | the strength of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEPTH TO TOP OF SAMP                                                |       |         |           |                    |        |           |          | 9                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5              | 9.8              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DEPTH TO BOTTOM OF S                                                | AMPLE |         |           |                    |        |           |          | 9                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5              | 9.8              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLE DATE                                                         |       |         |           |                    |        |           |          | 21-Oct-99                                                                                                        | 22-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19-Oct-99        | 08-Oct-99        | 19-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| QC CODE                                                             |       |         |           |                    |        |           |          | SA                                                                                                               | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA               | SA               | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STUDY ID                                                            | · ·   |         | FREQUENCY | NYSDEC             | NUMBER | NUMBER    | NUMBER   | ASH REMEDIAL DES                                                                                                 | ASH REMEDIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASH REMEDIAL DES | ASH REMEDIAL DES | ASH REMEDIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAMPLE ROUND                                                        |       |         | OF        | CLASS GA           | ABOVE  | OF        | OF       | 1                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | 1                | 4. · · - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PARAMETER                                                           | UNIT  | MAXIMUM | DETECTION | STD.               | STD.   | DETECTS   | ANALYSES | N                                                                                                                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                | N                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VOLATILE ORGANICS                                                   |       |         |           | L                  |        |           |          |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | 4011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1,1-Trichloroethane                                               | UG/L  | 1       | 2%        | 5                  | 0      | 1         | 55       |                                                                                                                  | 1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| weather the restance of the second state of the second state of the | UG/L  | 0       |           | 5                  | 0      | 0         | 55       | •                                                                                                                | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1,2-Trichloroethane                                               | UG/L  | 0       |           |                    | 0      | 0         | 55       | and a second second second second second second second second second second second second second second second s | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1-Dichloroethane                                                  | UG/L  | 9       |           | 5                  | 1      | 1. 1      | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U<br>10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,1-Dichloroethene                                                  | UG/L  | 0       | 0%        | 5                  | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane                                                  | UG/L  | 4       | 4%        | 5                  | 0      | 2         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2-Dichloroethene (total)                                          | UG/L  | 1100    | 27%       | 5                  | 14     | 15        |          | Nepully Condervation                                                                                             | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2-Dichloropropane                                                 | UG/L  | 0       | 0%        | 5                  | 0      | 0         |          |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U<br>2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Acetone                                                             | UG/L  | 2       | 4%        |                    | 0      | 2         | 55       |                                                                                                                  | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 UJ            | 10 UJ            | 2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzene                                                             | UG/L  | 0       | 0%        | 0.7                | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bromodichloromethane                                                | UG/L  | 0       | 0%        |                    | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bromoform                                                           | UG/L  | 0       | 0%        |                    | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Carbon disulfide                                                    | UG/L  | 0       | 0%        | Late 1 and 1 and 1 | 0      | 0         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Carbon tetrachloride                                                | UG/L  | 0       | 0%        |                    | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chlorobenzene                                                       | UG/L  | 0       | 0%        |                    | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ .          | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chlorodibromomethane                                                | UG/L  | Ō       | 0%        |                    | 0      | 0         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chloroethane                                                        | UG/L  | 0       | 0%        | 5                  | 0      | 0         | 55       | 4                                                                                                                | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chloroform                                                          | UG/L  | 74      | 2%        |                    | 1      | 1         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cis-1,3-Dichloropropene                                             | UG/L  | 0       |           |                    | 0      | 0         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ethyl benzene                                                       | UG/L  | 0       |           |                    | 0      | 0         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Methyl bromide                                                      | UG/L  | 0       |           |                    | 0      | 0         | 55<br>55 | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Methyl butyl ketone                                                 | UG/L  | 0       |           |                    | 0      | 0         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 UJ            | 10 UJ            | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Methyl chloride                                                     | UG/L  | 0       |           |                    | 0      | 0         | 55<br>55 | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Methyl ethyl ketone                                                 | UG/L  | 0       |           | 50                 | 0      | 0         |          |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 UJ            | 10 UJ            | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Methyl isobutyl ketone                                              | UG/L  | 0       | 0%        |                    | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 UJ            | 10 UJ            | 10 UJ<br>10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                     | UG/L  | 0       | 0%        | 5                  | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Styrene                                                             | UG/L  | 0       | 0%        |                    | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tetrachloroethene                                                   | UG/L  | 0       | 0%        | 5                  | 0      | 0         | 55       |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Toluene                                                             | UG/L  | 0       |           |                    | 0      | 0         | 55       | 10 U                                                                                                             | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | UG/L  | 0       |           |                    | 0      | 0         |          |                                                                                                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U             | 10 UJ            | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I Utal Aylenes                                                      | 100/L | 0       | 0%        | 5                  | 0      | 0         |          | 10 0                                                                                                             | 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 0             | 10 00            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtbl1--5-22-00.xls 06/15/2000 GROUND WATER CHEMICAL RESULTS 3 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 1            |           |                    |          |         |          | 1         |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                       |                    |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-----------|--------------------|----------|---------|----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|--------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |           |                    |          |         |          |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 1                     |                    | · · · ·          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              | İ         |                    |          |         |          |           |           | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |                       |                    | - · ·            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |           |                    |          |         |          | -         |           | + .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | and the second second |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |           |                    |          |         |          |           |           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                       |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |           |                    |          |         |          |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |           |                    | · · ·    |         |          |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . *                                   |                       |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | +            |           |                    | <b>.</b> |         |          |           | ••••      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                    |                  |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |              |           |                    | -        |         |          |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |           |                    |          |         |          | ASH LANE  |           | ASH LAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | ASH LANDFILL          | ASH LANDFILL       | ASH LANDFILL     |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |           |                    |          |         |          | MW-28     |           | MW-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | MW-30                 | MVV-31             | MVV-32           |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |              |           |                    |          |         |          | GROUND    | WATER     | GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WATER                                 | GROUND WATER          | GROUND WATER       | GROUND WATER     |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |           |                    |          |         |          | ARD2044   |           | ARD2056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | ARD2028               | ARD2003            | ARD2029          |
| DEPTH TO TOP OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | where we are the second of |              |           |                    |          |         |          | 9         |           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 9.5                   | 9.8                | 10               |
| DEPTH TO BOTTOM OF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMPLE                      |              |           |                    |          |         |          | 9         |           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 9.5                   | 9.8                | 10               |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |           |                    |          |         |          | 21-Oct-99 |           | 22-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 19-Oct-99             | 08-Oct-99          | 19-Oct-99        |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 1            |           |                    |          |         |          | SA        |           | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | SA                    | SA                 | SA               |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |              | FREQUENCY | NYSDEC             | NUMBER   | NUMBER  | NUMBER   | ASH REM   | EDIAL DES | ASH REM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EDIAL DES                             | ASH REMEDIAL DE       | S ASH REMEDIAL DES | ASH REMEDIAL DES |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |              | OF        | CLASS GA           | ABOVE    | OF      | OF       | 1         |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 1                     | 1                  | 1                |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNIT                       | MAXIMUM      | DETECTION | STD.               | STD.     | DETECTS | ANALYSES | N         |           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | N                     | N                  | N                |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L                       | 0            | 0%        | 5                  | 0        | 0       | 55       |           | U         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                     | 10 U                  | 10 UJ              | 10 U             |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 9100         | 27%       | 5                  | 10       | 15      | 55       |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                     | 2 J                   | 10 UJ              | 10 U             |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L                       | 180          | 5%        | 2                  | 2        | 3       | 55       |           |           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 10 U                  | 10 UJ              | 10 U             |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | -            |           |                    |          |         |          |           |           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                       |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 2600         | 65%       |                    | ō        | 34      | 52       | 21.1      |           | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 106 J                 | 38.4 J             | 826              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 3            | 2%        | ·· ·· ·· · · · · · | ō        | 1       | 52       |           |           | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 2.7 U                 | 4.9 UJ             | 2.7 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 7            | 23%       | 25                 | ō        | 12      | 52       |           |           | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 1.9 U                 | 3.7 UJ             | 1.9 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 176          |           | 1000               | i i      | 51      | 52       |           |           | 67.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 46.8 J                | 42.6 J             | 45.4 J           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 0.66         |           |                    |          | 5       | 52       |           |           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 0.2 U                 | 0.2 UJ             | 0.2 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 0.00         | 0%        | 10                 |          |         | 52       |           |           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 0.2 U                 | 0.7 UJ             | 0.2 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 268000       | 98%       | 10                 | 0        | 51      | 52       |           |           | 164000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · | 112000                | 91500 J            | 108000           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 5.6          | 15%       | 50                 |          | 51      | 52       |           |           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 0.9 U                 | 0.9 UJ             | 0.9 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 8.4          | 4%        |                    | ·        |         | 52       |           |           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 2 U                   | 2.5 UJ             | 20               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 6.1          | 10%       | 200                |          | · · 2   | 52       |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                       |                    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 0.1          | 0%        | 100                |          | 0       | 52       |           |           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U<br>U                                | 1.7 U<br>5 U          | 1.9 UJ<br>5 UJ     | 1.7 U<br>5 U     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 11600        | 67%       |                    |          |         | 52       | 5         |           | AND A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACT |                                       |                       |                    |                  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                       | 11600<br>5.4 |           | 300<br>25          | . 14     | 35      | 52       | 28.8      |           | 442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J                                     | 109                   | 14.7 UJ            | 1490             |
| Annual study to a state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                            |              | 10%       | 25                 |          | 5       | 52       | 1 10100   | Ų         | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                     | 10                    | 1.2 UJ             | 10               |
| • • • • · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L                       | 47100        | 98%       |                    | 0        | 51      | 52       |           |           | 18900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 15600                 | 11600 J            | 14000            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 3140         | 83%       | 300                | 7        | 43      | 52       |           |           | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 1.4 J                 | 17.1 J             | 805              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 0.2          | 12%       | 2                  | 0        | 6       | 52       |           |           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 0.1 U                 | 0.1 UJ             | 0.1 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 5.6          | 12%       |                    | 0        | 6       | 52       |           |           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 1.7 U                 | 2.6 UJ             | 1.8 J            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 18400        | 98%       |                    | 0        | 51      | 52       |           |           | 1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 2760 J                | 1860 J             | 3390 J           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 2.6          | 2%        | 10<br>50           | 0        | 1       | 52       |           |           | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 2.4 U                 | 2.8 UJ             | 2.4 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 0            | 0%        |                    | 0        | 0       | 52       |           |           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                     | 1.6 U                 | 1.6 UJ             | 1.6 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                       | 142000       | 98%       | 20000              | 27       | 51      | 52       |           |           | 22900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 16300                 | 15800 J            | 21100            |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L                       | 10.8         | 19%       |                    | 0        | 10      | 52       |           | J         | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U.                                    | 2.7 U                 | 2.9 UJ             | 2.7 U            |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L                       | 4.5          | 6%        |                    | 0        | 3       | 52       | 1.5       | U         | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                     | 1.5 U                 | 3.2 UJ             | 1.5 U            |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                       | 134          | 81%       | 300                | 0        | 42      | 52       | 2.1       |           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 3 J                   | 2 J                | 5.1 J            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              | 2.70      |                    | 5        |         |          | <b>_</b>  | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |                       |                    | 010              |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000 GROUND WATER CHEMICAL RESULTS 4 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                   |           |               |          |         |          |              | i          |                                       |                     |                  |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------|---------------|----------|---------|----------|--------------|------------|---------------------------------------|---------------------|------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 1. 1                              |           |               |          | ĺ       | 1        | 1            | , ·        |                                       |                     |                  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                   |           |               |          | Ì       |          |              |            |                                       |                     |                  | 1 1                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1               |                                   |           |               |          |         |          |              |            |                                       |                     |                  | 1                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | ·                                 |           |               |          |         |          |              |            |                                       | • • • • • • • • • • |                  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | ··· -                             | t         |               |          |         |          |              |            |                                       |                     |                  |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | ••••• •                           |           |               |          | - ·     |          |              | · · ·      |                                       |                     | · · · · · · ·    |                                  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                   |           |               |          |         |          |              |            | · · · · · · · · · · · · · · · · · · · |                     |                  | • • • • • •                      |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | i+-                               |           |               | -        |         | -        | ASH LANDFILL |            | ASH LANDFILL                          | ASH LANDFILL        |                  | ASH LAN                          |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                   |           |               |          |         |          |              |            | MW-34                                 |                     | ASH LANDFILL     |                                  |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                   |           |               |          |         | -        | MW-33        |            |                                       | MW-35D              | MW-36            | MW-36                            |
| MANAGAMATAN AND AND AND AND AND AND AND AND AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · | • • • • • • • • • • • • • • • • • |           |               | · •·     | -       |          | GROUND WATE  | . <b>K</b> | GROUND WATER                          | GROUND WATER        | GROUND WATER     | GROUND                           |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                   |           |               |          |         |          | ARD2020      |            | ARD2021                               | ARD2043             | ARD2041          | ARD2040                          |
| DEPTH TO TOP OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                   |           |               | <b>_</b> |         |          | 9.79         |            | 12.5                                  | 44                  | 10               | 10                               |
| DEPTH TO BOTTOM OF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE          |                                   |           |               |          |         |          | 9.79         |            | 12.5                                  | 44                  | 10               | 10                               |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                   |           |               |          |         |          | 12-Oct-99    |            | 12-Oct-99                             | 20-Oct-99           | 20-Oct-99        | 20-Oct-99                        |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                   |           |               |          |         |          | SA           | L          | SA                                    | SA                  | DU               | SA                               |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                   | FREQUENCY | NYSDEC        | NUMBER   | NUMBER  | NUMBER   | ASH REMEDIAL | DESIGN     | ASH REMEDIAL DES                      | ASH REMEDIAL DES    | SASH REMEDIAL DE | S ASH REM                        |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                   | OF        | CLASS GA      | ABOVE    | OF      | OF       | 1            |            | 1                                     | 1                   | 1                | 1                                |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNIT            | MAXIMUM                           | DETECTION | STD.          | STD.     | DETECTS | ANALYSES | N            |            | N                                     | N                   | N                | N                                |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                   |           |               |          |         |          |              |            |                                       |                     |                  |                                  |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L            | 1                                 | 2%        | 5             | 0        | 1       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 0                                 | 0%        | 5             | 0        | 0       | 55<br>55 | 10           | U          | 10 U                                  | 10 U                | 10 U             | . 10                             |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L            | 0                                 | 0%        |               | 0        | 0       | 55       | 10           | U          | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L            | 9                                 | 2%        | 5             | 1        | 1       | 55       | 10           | บ          | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L            | 0                                 | 0%        | 5             | 0        | 0       | 55       | 10           | U          | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L            | 4                                 | 4%        | 5             | 0        | 2       | 55       | 10           | υ          | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L            | 1100                              | 27%       | 5             | 14       | 15      | 55       | 10           | U          | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L            | 0                                 | 0%        | 5             | 0        | 0       | 55       | 10           | U          | 10 U                                  | 10 U                | 10 U             | 10<br>10                         |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L            | 2                                 | 4%        |               | 0        | 2       | 55       | 10           |            | 10 U                                  | 10 UJ               | 10 UJ            | 10                               |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L            | 0                                 | 0%        | 0.7           | 0        | 0       | 55       | 10           | U          | 10 U                                  | 10 U                | 10 U             | 10                               |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L            | 0                                 | 0%        |               | õ        | 0       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L            | 0                                 | 0%        |               | 0        | 0       | . 55     | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L            | 0                                 | 0%        |               | 0        | 0       | . 55     | 10           |            | 10 U                                  | 10 U                | 10 U             | 10<br>10                         |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L            | 0                                 | 0%        | 5             | ō        | ö       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L            | 0                                 | 0%        | 5             | 0        | Ö       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10<br>10                         |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L            | 0                                 | 0%        |               | 0        | Ö       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L            | 0                                 | 0%        | 5             | n n      |         | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L            | 74                                | 2%        | 7             | 1        | 1       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L            | . 0                               | 0%        | 5             | 0        |         | 55       | 10           |            | 10 0                                  |                     | 10 U             | 10                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L            | . 0                               | 0%        |               |          | 0       | 55       | 10           |            | 10 U                                  | 10 U<br>10 U        | 10 U             | 10                               |
| Ethyl benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L<br>UG/L    | 0                                 | 0%        | - · · · ·     | 0        | 0       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L<br>UG/L    | 0                                 | 0%        |               | 0        |         | 55<br>55 | 10           |            | 10 U                                  | 10 UJ               | 10 UJ            | 10                               |
| Methyl butyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L            |                                   | 0%        | · · · · · · · |          | 0       | 55<br>55 | 10           |            | 10 U                                  | 10 U                | 10 UJ            |                                  |
| Methyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 0                                 |           | 5             | 0        | 0       |          | 10           |            | 10 U                                  | 10 UJ               |                  | 10<br>10<br>10<br>10<br>10<br>10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L            |                                   | 0%        | 50            | 0        |         | 55       |              |            |                                       |                     | 10 UJ            | 10                               |
| Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L            | 0                                 | 0%        |               | 0        | 0       | 55<br>55 | 10           |            | 10 U                                  | 10 UJ               | 10 UJ            | 10                               |
| revenues. But the backback of a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | UG/L            | 0                                 | 0%        | 5             | 0        | 0       |          | 10           |            | 10 U                                  | 10 U                | 10 U             | 10                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L            | 0                                 | 0%        |               | 0        | 0       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             |                                  |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L            | 0                                 | 0%        | 5<br>5        | 0        | 0       | 55       | 10           |            | ,10 U                                 | 10 U                | 10 U             | - 10                             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L            | 0                                 | 0%        | 5             | 0        | 0       | 55       | 10           |            | 10 U                                  | 10 U                | 10 U             | 10<br>10                         |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L            | 0                                 | 0%        | 5             | 0        | . 0     | 55       | 10           | U          | 10 U                                  | 10 U                | 10 U             | 10                               |

}

|                                       |      |         | -                                 |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
|---------------------------------------|------|---------|-----------------------------------|---------------------------------------|----------|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|-----------------|
|                                       |      |         | r :                               |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
|                                       |      |         |                                   |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
|                                       |      |         |                                   |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
|                                       | L    |         |                                   |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                         |                 |
|                                       |      |         |                                   |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | · • · · · · · · · · · · · · · · · · · · |                 |
| · · · · · · · · · · · · · · · · · · · |      |         |                                   |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
| FACILITY                              |      |         |                                   |                                       |          |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
|                                       |      | +       |                                   |                                       |          |         |          | ASH LANDFILL<br>MW-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASH LANDFILL           | ASH LANDFILL                            | ASH LAN         |
| MATRIX                                |      | +       |                                   |                                       |          |         |          | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-34<br>GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MW-35D<br>GROUND WATER | MW-36                                   | MW-36           |
| SAMPLE ID                             |      |         |                                   |                                       |          |         | · ·      | ARD2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARD2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ARD2043                | GROUND WATER                            | GROUND          |
| DEPTH TO TOP OF SAMP                  |      |         |                                   |                                       |          |         |          | In the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s<br>second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                         | ARD2040         |
| DEPTH TO BOTTOM OF S                  |      |         |                                   | · · · · ·····                         |          |         |          | 9.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                     | 10                                      | 10              |
| SAMPLE DATE                           |      |         |                                   |                                       | •••      |         |          | 12-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.5<br>12-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20-Oct-99              |                                         | 10              |
| QC CODE                               |      |         |                                   |                                       |          |         |          | 12-00-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SA                     | 20-Oct-99                               | 20-Oct-99<br>SA |
| STUDY ID                              |      |         | FREQUENCY                         | NYSDEC                                | NUMBER   | NUMBER  | NUMBER   | ASH REMEDIAL DESIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | time is a short so short and the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so that the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the short so the | ESI ASH REMEDIAL DE    |                                         |                 |
| SAMPLE ROUND                          |      |         | OF                                | CLASS GA                              | ABOVE    | OF      | OF       | ASH REMEDIAL DESIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASH REWEDIAL DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | ASH REWIEDIAL DE                        | S ASR REM       |
| PARAMETER                             | UNIT | MAXIMUM | DETECTION                         | STD.                                  | STD.     | DETECTS | ANALYSES | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N '                    | N                                       | N               |
| Frans-1,3-Dichloropropene             |      | 0       | 0%                                | 5                                     | 010.     |         | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 U                   | 10 U                                    | 10              |
| Frichloroethene                       | UG/L | 9100    | 27%                               | 5                                     | 10       | 15      |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 U                   | 10 U                                    | 10              |
| /inyl chloride                        | UG/L | 180     |                                   | 2                                     | 2        | 3       |          | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 U                   | 10 U                                    | 10              |
| METALS                                | 00/2 |         |                                   | · · · · · · · · · · · · · · · · · · · | <u> </u> |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |                 |
| Aluminum                              | UG/L | 2600    | 65%                               |                                       | 0        | 34      | 52       | 89.3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 J                   | 14.3 U                                  | 24              |
| Antimony                              | UGIL | 3       | 2%                                |                                       | ō        | 1       | 52       | a contraction destance descentions and and contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7 U                  | 2.7 U                                   | 2.7             |
| Arsenic                               | UG/L | 7       | 23%                               | 25                                    | n<br>n   | 12      |          | • · · · • · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6 J                  | 2.2 J                                   | 3.2             |
| Barium                                | UG/L | 176     | and an exercise the second second | 1000                                  | Ő        | 51      | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.6 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102 J                  | 68.4 J                                  | 66.9            |
| Beryllium                             | UG/L | 0.66    | 10%                               |                                       | -<br>-0  | 5       | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2 U                  | 0.2 U                                   | 0.2             |
| Cadmium                               | UG/L | 0       | 0%                                | 10                                    | 0        | 0       | 52       | 0.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3 U                  | 0.3 U                                   | 0.3             |
| Calcium                               | UG/L | 268000  | 98%                               |                                       | 0        | 51      | 52       | 106000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19400                  | 114000                                  | 108000          |
| Chromium                              | UG/L | 5.6     |                                   | 50                                    | 0        | 8       | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9 U                  | 0.9 U                                   | 0.93            |
| Cobalt                                | UG/L | 8.4     | 4%                                |                                       | 0        | 2       | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5 U                  | 2.5 U                                   | 2.5             |
| Соррег                                | UG/L | 6.1     | 10%                               | 200                                   | 0        | 5       | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U                  | 1.7 U                                   | 1.7             |
| Cyanide                               | UG/L | 0       | 0%                                | 100                                   | 0        | Ō       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 U                    | 5 U                                     | 5               |
| ron                                   | UG/L | 11600   | 67%                               | 300                                   | 14       | 35      | 52       | 81.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.9 J                 | 25.4 U                                  | 25.4            |
| ead                                   | UG/L | 5.4     | 10%                               | 25                                    | 0        | 5       | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                     | 1 U                                     | 1               |
| Magnesium                             | UG/L | 47100   | 98%                               |                                       | 0        | 51      | 52       | 11200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6010                   | 16700                                   | 16500           |
| Manganese                             | UG/L | 3140    | 83%                               | 300                                   | 7        | 43      | ÷        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.6                   | 23.1                                    | 20.7            |
| Mercury                               | UG/L | 0.2     | 12%                               | 2                                     | 0        | 6       | 52       | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 U                  | 0.2 J                                   | 0.1             |
| lickel                                | UG/L | 5.6     | 12%                               |                                       | 0        | 6       | 52       | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U                  | 1.7 U                                   | 1.7             |
| Potassium                             | UG/L | 18400   | 98%                               |                                       | 0        | 51      | 52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2450 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1820 J                 | 1830 J                                  | 1850            |
| Selenium                              | UG/L | 2.6     | 2%                                | 10                                    | 0        | 1       | 52       | 2.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4 U                  | 2.4 U                                   | 2.4             |
| Silver                                | UG/L | 0       | 0%                                | 50                                    | 0        | 0       | 52       | 1.6 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6 U                  | 1.6 U                                   | 1.6             |
| Sodium                                | UG/L | 142000  | 98%                               | 20000                                 | 27       | 51      | 52       | 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95900                  | .32600                                  | 32600           |
| Thallium                              | UG/L | 10.8    | 19%                               |                                       | 0        | 10      | 52       | 2.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.9 U                  | 2.9 U                                   | 2.9             |
| /anadium                              | UG/L | 4.5     | 6%                                |                                       | 0        | 3       | 52       | 1.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5 U                  | 1.5 U                                   | 1.5             |
| Zinc                                  | UG/L | 134     | 81%                               | 300                                   | 0        | 42      | 52       | 1.6 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7 J                  | 3.7 J                                   | 4.2             |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

|                                        |              |                |           |                                       |             |                                         | 1                                     |          |                  |                        |                                                            | 1                     |          |
|----------------------------------------|--------------|----------------|-----------|---------------------------------------|-------------|-----------------------------------------|---------------------------------------|----------|------------------|------------------------|------------------------------------------------------------|-----------------------|----------|
|                                        |              |                |           | i                                     |             |                                         | 1                                     |          | • •              |                        |                                                            |                       |          |
|                                        | · ·          |                |           |                                       |             |                                         |                                       |          |                  |                        |                                                            |                       | , 1      |
| 1                                      |              |                |           |                                       |             |                                         |                                       |          |                  |                        |                                                            |                       | 1        |
|                                        |              |                |           |                                       |             |                                         |                                       |          |                  |                        | · · · · · · · · · · · · · · · · · · ·                      |                       |          |
|                                        |              |                |           |                                       |             |                                         |                                       |          |                  |                        |                                                            | + + ·                 |          |
|                                        |              |                |           |                                       |             |                                         |                                       |          |                  |                        |                                                            | · · · · · ·           |          |
|                                        | +            |                |           |                                       |             |                                         |                                       | ·        |                  |                        |                                                            | I. j. j               | <b>.</b> |
| FACILITY                               | +            |                | · · · ·   |                                       |             |                                         | -                                     | FILL     | ASH LANDFILL     |                        |                                                            |                       |          |
| LOCATION ID                            |              |                | · · · · · |                                       |             |                                         |                                       | FILL     | MW-37            | ASH LANDFILL<br>MW-38D | ASH LANDFILL<br>MW-39                                      | ASH LANDFILL<br>MW-40 |          |
| MATRIX                                 |              |                |           |                                       |             |                                         |                                       | ATER     | GROUND WATER     | GROUND WAT             |                                                            |                       |          |
| SAMPLE ID                              |              |                |           |                                       | ···· .      |                                         |                                       | AIER     | ARD2017          | ARD2015                |                                                            | GROUND WATER          |          |
| DEPTH TO TOP OF SAME                   |              |                |           |                                       |             | • ••• •••                               |                                       |          |                  |                        | ARD2007                                                    | ARD2008               |          |
| DEPTH TO BOTTOM OF S                   |              | +              |           |                                       |             |                                         |                                       |          | 11<br>11         | 20                     | 9.5                                                        | 12                    |          |
| SAMPLE DATE                            |              |                |           |                                       | • • • •• •• |                                         |                                       |          | 11-Oct-99        | 11-Oct-99              | NUMBER OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY. | 12                    |          |
| QC CODE                                | +            |                |           |                                       |             |                                         |                                       |          | SA SA            | IN-OCL-99              | 09-Oct-99                                                  | 09-Oct-99             |          |
| STUDY ID                               |              |                | FREQUENCY | NYSDEC -                              | NUMBER      | NUMBER                                  | NUMBER                                |          |                  |                        | SA                                                         | SA                    | FOION    |
| SAMPLE ROUND                           |              |                | OF        | CLASS GA                              | ABOVE       | OF                                      | OF                                    | DIAL DES | ASH REMEDIAL DES |                        | DES ASH REMEDIAL DES                                       | ASH REMEDIAL DE       | ESIGN    |
| PARAMETER                              | UNIT         | MAXIM          | DETECTION | STD.                                  | STD.        | DETECTS                                 | ANALYSES                              | · · · ·  | N                | - <u>-</u>             |                                                            | 1                     |          |
| VOLATILE ORGANICS                      |              |                | DETECTION | 510.                                  |             | DETECTS                                 | ANALISES                              |          | N                | N                      | N                                                          | N                     |          |
| 1,1,1-Trichloroethane                  | UG/L         | 1              | 2%        | 5                                     |             | ••••••••••••••••••••••••••••••••••••••• | 55                                    |          | 10 U             | 10 U                   | 10.12                                                      |                       |          |
|                                        | UG/L         |                | 0%        | 5                                     | 0           |                                         | 55                                    |          | 10 U             |                        | 10 U<br>10 U                                               | 10 U                  |          |
| 1,1,2-Trichloroethane                  | UG/L .       | 0              | 0%        | <u> </u>                              |             |                                         | 55                                    |          | 10 U             | 10 U<br>10 U           | 10 U                                                       | 10 U<br>10 U          |          |
| 1,1-Dichloroethane                     | UG/L         |                | 2%        | 5                                     | 1           |                                         | 55                                    |          | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |
| 1,1-Dichloroethene                     | UG/L         | ō              | 0%        | 5                                     |             |                                         | 55                                    |          | 10 0             | 10 U                   | 10 U                                                       |                       |          |
| 1,2-Dichloroethane                     | UG/L         | A              | 4%        | 5                                     | 0           | 2                                       |                                       |          | 10 U             | 10 U                   |                                                            | 10 U                  |          |
| 1,2-Dichloroethene (total)             | UG/L         | 1100           | 27%       | 5                                     | 14          | 15                                      |                                       |          | 10 U             | 10 0                   | 10 U<br>10 U                                               | 10 U<br>10 U          |          |
| 1,2-Dichloropropane                    | UG/L         | 0              | 0%        | 5                                     | 0           | 0                                       |                                       |          | 10 U             | 10 0                   |                                                            |                       |          |
| Acetone                                | UG/L         | 2              | 4%        | · · · · · · · · · · · · · · · · · · · | 0           | . 2                                     | k                                     | UJ       | 10 U             | 10 U                   | 10 U<br>10 U                                               | 10 U                  |          |
| Benzene                                | UG/L         | 2              | 0%        | 0.7                                   | 0           |                                         |                                       |          | 10 U             | 10 U                   | 10 0                                                       | 10 U                  |          |
| Bromodichloromethane                   | UG/L         | 0              | 0%        |                                       | 0           |                                         | 55                                    |          | 10 U             | 10 0                   | 10 U                                                       | 10 U<br>10 U          |          |
| Bromoform                              | UG/L         | 0              | 0%        |                                       | 0           |                                         |                                       |          | 10 U             | 10 U                   | 10 U                                                       |                       |          |
| Carbon disulfide                       | UG/L         | 0              | 0%        |                                       | 0           |                                         | 55                                    |          | 10 U             |                        | 10 U                                                       | 10 U<br>10 U          |          |
| Carbon tetrachloride                   | UG/L         | 0              | 0%        | 5                                     |             |                                         | 55                                    |          |                  | 10 U<br>10 U           |                                                            |                       |          |
| Chiorobenzene                          | UG/L         | 0              | 0%        |                                       | 0           |                                         | 55                                    | L        | 10 U<br>10 U     | 10 U                   | 10 U<br>10 U                                               | 10 U<br>10 U          |          |
| Chlorodibromomethane                   | UG/L         | 0              | 0%        | J                                     |             |                                         | 55                                    |          | 10 U             | 10 U                   | 10 U                                                       |                       |          |
| Chloroethane                           | UG/L         | 0              | 0%        | 5                                     | 0           |                                         | 55                                    |          | 10 U             | 10 0                   |                                                            | ÷ 10 U                |          |
| Chloroform                             | UG/L         | 74             | 2%        |                                       |             |                                         | 55                                    |          | 10 U             | 10 U                   | 10 U<br>10 U                                               | 10 U<br>10 U          |          |
| Cis-1,3-Dichloropropene                | UG/L         | <u>/4</u><br>0 | 2%        |                                       | 0           |                                         | · · · · · · · · · · · · · · · · · · · |          | 10 U             | 10 U                   | 10 U                                                       | 10 U<br>10 U          |          |
| Ethyl benzene                          | UG/L         | 0              | 0%        | 5                                     | 0           |                                         |                                       |          | 10 U             | 1010                   | 10 U                                                       | 10 U                  |          |
| Methyl bromide                         | UG/L         | 0              | 0%        | · · · · · · · · · · ·                 | 0           | <br>Ö                                   |                                       |          | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |
| Methyl butyl ketone                    | UG/L         | 0              | 0%        |                                       | 0           |                                         |                                       | ŬJ       | 10 U             | 10 0                   | 10 U                                                       | 10 U                  |          |
| Methyl chloride                        | UG/L         | 0              | 0%        | 5                                     | o           | 0                                       |                                       |          | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |
| Methyl ethyl ketone                    | UG/L         | 0              | 0%        | 50                                    | 0           |                                         |                                       |          | 10 U             | 10 0                   | 10 U                                                       | 10 0                  |          |
|                                        | UG/L<br>UG/L | 0              | 0%        |                                       |             |                                         |                                       | UJ       | 10 U             | 10 U                   |                                                            |                       |          |
|                                        | UG/L<br>UG/L | 0              | 0%        | 5                                     |             | 0                                       |                                       |          | 10 U             |                        | 10 U                                                       | 10 U                  |          |
|                                        | UG/L         | 0              |           | 5                                     |             |                                         |                                       |          |                  | 10 U                   | 10 U                                                       | 10 U                  |          |
| THE R. LEWIS CO., LANSING, MICH. MICH. |              | 0              | 0%        |                                       | 0           | 0                                       | 55<br>55                              |          | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |
|                                        | UG/L         |                | 0%        | 5                                     |             |                                         |                                       |          | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |
| Toluene                                | UG/L         | 0              | 0%        |                                       | 0           | 0                                       |                                       |          | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |
| Total Xylenes                          | UG/L         | 0              | 0%        | 5                                     | 0           | 0                                       | 55                                    | U        | 10 U             | 10 U                   | 10 U                                                       | 10 U                  |          |

p:/pit/projects/seneca/irontmc/draftmemo/gwtb11-5-22-00.xls 06/15/2000

GROUND WATER CHEMICAL RESULTS 7 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        | 1       |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | ······       |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1         |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |         |                                       |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L         |           |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         | [                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 1         |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         | ĺ                                     |                         | 1 · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              | • • •    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        | ··· · · | i i i i i i i i i i i i i i i i i i i | FILL                    | ASH LAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FILI        | ASH LAND  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASH LAND  |           | ASH LANDFILL |          |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | · · ·  |         |                                       | · · · · · · · · · · · · | MW-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | MW-38D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-39     |           | MW-40        |          |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       | ATER                    | GROUND V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | GROUND    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND    | MATER     | GROUND WATE  | ED       |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         | ARD2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | ARD2015   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2007   |           | ARD2008      |          |
| DEPTH TO TOP OF SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5       |           |              |          |
| DEPTH TO BOTTOM OF SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |        |         |                                       |                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5       |           | 12<br>12     |          |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         | 11-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 11-Oct-99 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09-Oct-99 | · · · ·   | 09-Oct-99    |          |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |            | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NYSDEC   | NUMBER |         |                                       |                         | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | SA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA        |           | SA           |          |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLASS GA |        | NUMBER  | NUMBER                                | DIAL DES                | ASH REME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIAL DES    | ASH REM   | EDIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASH REM   | EDIAL DES | ASH REMEDIAL | L DESIGN |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |              |            | a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          | ABOVE  | OF      | OF                                    |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |           | 1            |          |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |            | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STD.     | STD.   | DETECTS | ANALYSES                              |                         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N         | l         | N            |          |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 0.         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        | 0      | 0       | 55                                    |                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        |           | 10           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 9100       | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 10     | 15      | 55                                    |                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        |           | 10           | U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 180        | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2        | 2      | 3       | 55                                    | U                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U           | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10        | U         | 10           | U        |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 2600       | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0      | 34      | 52                                    |                         | 69.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J           | 16.3      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.3      | U         | 71.2         | J        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 3          | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0      | 1       | 52                                    | U                       | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U           | 4.9       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9       | υ         | 4.9          | U        |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 7          | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       | 0      | 12      | 52                                    | J                       | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U           | 4.5       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7       | U         | 3.7          | U        |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 176        | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000     | 0      | 51      | 52                                    | J                       | 58.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J           | 164       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.2      | J         | 69.8         | J        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 0.66       | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Õ      | 5       | 52                                    | U                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ū           | 0.2       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2       | U         | 0.2          |          |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 0          | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10       | 0      | 0       | 52                                    | U                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U           | 0.7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7       |           | 0.7          |          |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 268000     | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0      | 51      | 52                                    |                         | 97600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 91200     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92300     |           | 99200        |          |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 5.6        | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50       | ō      | 8       | 52                                    |                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U           | 0.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9       | Ũ         | 0.9          | U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 8.4        | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0      | 2       | 52                                    |                         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 2.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5       |           | 2.5          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 6.1        | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200      | Ö      | 5       | 52                                    |                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 1.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9       |           | 1.9          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 0          | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      | 0      | ő       | 52                                    |                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | U         | 5            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 11600      | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300      | 14     | 35      | 52                                    |                         | 61.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 172       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7      |           | 14.7         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 5.4        | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       | o i    | 5       | 52                                    |                         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 1.2       | the state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second st | 1.2       |           | 14.7         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 47100      | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 20     | ö      | 51      | 52                                    |                         | 13400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · | 16500     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11800     |           | 10600        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 3140       | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300      |        | 43      | 52                                    |                         | 13400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 16500     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9       |           |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L         | 0.2        | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        |        | 43      | 52                                    | in · ·                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | 0.9          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L<br>UG/L | 0.2<br>5.6 | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        | 0      | 6       |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1       |           | 0.1          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         | 52                                    |                         | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 2.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6       |           | 2.6          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JG/L         | 18400      | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0      | 51      | 52                                    |                         | 1120 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 7100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2430      | -         | 1720         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JG/L         | 2.6        | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10       | 0      |         | 52                                    |                         | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 2.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8       |           | 2.8          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JG/L         | 0          | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50       | 0      | 0       | 52                                    | U                       | 1.6 l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J           | 1.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6       |           | 1.6          | U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JG/L         | 142000     | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20000    | 27     | 51      | 52                                    |                         | 9360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 5580      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8040      |           | 13600        |          |
| Thallium L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JG/L         | 10.8       | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0      | 10      | 52                                    |                         | 2.9 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J           | 2.9       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.9       | UJ        | 2.9          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |              |          |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JG/L         | 4.5        | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0      | 3       | 52<br>52                              | U                       | 3.2 ไ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J           | 3.2       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2       | U         | 3.2          | U        |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

.

GROUND WATER CHEMICAL RESULTS 8 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |                                   | 1                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-----------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | †     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | · · · · · · · · · · |                                   | 1 · · ·           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |                                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |                                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                |                     |                                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i        |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     | • • • • • •                       |                   |
| · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |                                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         | •=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | · · , · · · |                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | +··· ·· ····        |                                   | · · · · · · · · · |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ASH LANDFIL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASH LANDFILL       | ASH LANDFILL        | ASH LANDFILL                      | ASH LANDFI        |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW-41D      | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW-42D             | MW-43               | MW-44A                            | MW-45             |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             | · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GROUND WA   | TEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GROUND WATER       | GROUND WATER        | GROUND WATER                      | GROUND W          |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ARD2001     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2053            | ARD2049             | ARD2050                           | ARD2054           |
| DEPTH TO TOP OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . =   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                 | 7                   | 12                                |                   |
| DEPTH TO BOTTOM OF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                 | 7                   | 12                                | 7.8               |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08-Oct-99   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22-Oct-99          | 22-Oct-99           | 12<br>22-Oct-99                   | 22-Oct-99         |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00-001-99   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA                 | SA                  | SA                                | SA 22-001-99      |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYSDEC   | NUMBER      | NUMBER                          | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASH REMEDI  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ASH REMEDIAL DES    |                                   |                   |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLASS GA | ABOVE       | OF                              | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AOT REMEDI  | AL DESIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASH REIVIEUIAL DES | ASH REMEDIAL DES    |                                   | ASH REWEDI        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LINUT |         | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | STD.        | DETECTS                         | ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | N                   | N                                 | N                 |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT  | WAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STD.     | 510.        | DETECTS                         | ANALISES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     | N                                 |                   |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L  |         | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E        |             |                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  |         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 5        |             |                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 10 U               | 10 U                | 55 U                              | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | THE R. LEWIS CO., LANSING MICH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               |                     | 55 U                              | 10                |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0           |                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          | * 1 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm + 10 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 U               | 10 U                | 9 J                               | 10                |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | 9       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 1           |                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | statis Autor of the second states |                   |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             | U .                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10 U                | 55 U                              | 10<br>10          |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | -       | 4%<br>27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5        |             | 2                               | 55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U<br>10 U       | 10 U                | 55 U                              | 10                |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L  | 1100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        | 14          | 15                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10 U                | 690                               | 10                |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               | 55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L  | 2       | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 2                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 UJ<br>10 U      | 10 UJ               | 55 UJ<br>55 U                     | 10<br>10<br>10    |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7      | 0           | 0                               | a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 0                               | 55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10 U                | 55 U                              | 10<br>10          |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U<br>10 U       | 10 U                | 55 U                              | 10                |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10 U                | 55 U<br>55 U                      | 10                |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | ···· ·      | 0                               | 55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U<br>10 U        | 55 U                              | 10                |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U<br>10 U       |                     | 55 U                              | 10                |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10 U<br>10 U        | 55 U                              | 10                |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L  | 74      | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |             | 1                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               |                     | 55 U                              | 10                |
| Cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               | 55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>10    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 U<br>10 U       | 10 U                | 55 U<br>55 U                      | 10                |
| - service and the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the ser | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                |                                   | 10                |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10 U                | 55 U                              | 10<br>10<br>10    |
| Methyl butyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               | 55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10<br>10          |
| Methyl ethyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50       |             | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              |                   |
| Methyl isobutyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0           | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 U               | 10 U                | 55 U                              | 10                |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 0           | 0                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10          | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U               | 10 U                | 55 U                              | 10                |

GROUND WATER CHEMICAL RESULTS 9 of 24

•

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |               | !           |             |          | 1         | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------------|-------------|-------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             |             |          |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             |             |          |           | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            |          |               |             |             |          | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          | l.            |             |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | L            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l            |          |               |             |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             | ASH LANDFIL | L        | ASH LANE  | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH LANE  | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH LANDFILL    | ASH LANDFI |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             | MW-41D      |          | MW-42D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-43     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-44A          | MW-45      |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               | I           | GROUND WA   | TER      | GROUND    | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GROUND    | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GROUND WATER    | GROUND W   |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            |          |               |             | ARD2001     |          | ARD2053   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2049   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2050         | ARD2054    |
| DEPTH TO TOP OF SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPLE         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             | 32          |          | 38        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12              | 7.8        |
| DEPTH TO BOTTOM OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               | 1           | 32          |          | 38        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12              | 7.8        |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          | · -· ·· • - · | 1           | 08-Oct-99   |          | 22-Oct-99 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22-Oct-99 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22-Oct-99       | 22-Oct-99  |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               | + · · · · - | SA          |          | SA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA              | SA         |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NYSDEC       | NUMBER   | NUMBER        | NUMBER      | ASH REMEDI  | AL DESIG |           | EDIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | DIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASH REMEDIAL D  |            |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | +            | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLASS GA     | ABOVE    | OF            | OF          | 1           | E BLOIO  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | 1          |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNIT         | MAXIMUM      | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STD.         | STD.     | DETECTS       | ANALYSES    | N '         | ·····    | N.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N               | N          |
| Trans-1,3-Dichloroproper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 0            | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5            |          | 0212010       | 55          | 10          |          | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55 U            | 10         |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L         | 9100         | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5            | 10       | 15            | 55          | 10          |          | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26 J            | 10         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L         | 180          | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |               | 55          | 10          |          | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180             | 10         |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UGIL         | 100          | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del> | <u>۲</u> | °             |             |             | 00       | 10        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TON             |            |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 0000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |               |             |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.9.11         |            |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 2600         | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        |               | 52          | 16.3        |          | 14.3      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.3 U<br>2.7 U | 14.7       |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 0        | 1             | 52          | 4.9         |          | 3         | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7       | Contraction of the local division of the loc |                 | 2.7        |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 7            | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25           |          | 12            | 52          | 3.7         |          | 1.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9 U           | 1.9        |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 176          | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000         | 0        | 51            | 52          | 66.3        |          | 79.1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.9 J          | 44.5       |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0.66         | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        | 5             | 52          | 0.2         |          | 0.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 U           | 0.2        |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0            | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10           | 0        | 0             | 52<br>52    | 0.7         |          | 0.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3 U           | 0.3        |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 268000       | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        | 51            | 52          | 86700       |          | 62600     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 112000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 236000          | 100000     |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 5.6          | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50           | 0        | 8             | 52          | 0.9         |          | 0.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3 J           | 0.9        |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 8.4          | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0        | - 2           | 52          | 2.5         |          | 2.5       | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 U           | 2.5        |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 6.1          | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200          | 0        | 5             | 52          | 1.9         |          | 1.7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7 U           | 1.7        |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0            | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          | 0        | 0             | 52          | 5           |          | 1         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 U             | 5          |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 11600        | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300          | 14       | 35            |             | 14.7        | UJ       | 58.6      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.2      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.6 J          | 25.4       |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 5.4          | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25           | Ō        | 5             | 52          | 1.2         | UJ       | 1         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 U             | 1          |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 47100        | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        | 51            | 52<br>52    | 31100       | J        | 28600     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9700      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43400           | 11000      |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 3140         | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300          | 7        | 43            |             | 252         | J        | 88        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1250            | 0,44       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0.2          | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2            | 0        | 6             | 52          | 0.1         |          | 0.1       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1 U           | 0.1        |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 5.6          | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        | 6             | 52          | 2.6         | UJ       | 1.7       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7 U           | 1.7        |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 18400        | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        | 51            | 52<br>52    | 3520        |          | 3230      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1140      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18400           | 1050       |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 2.6          | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10           |          | 1             |             | 2.8         |          | 2.4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4 U           | 2.4        |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 2.0          | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50           | 0<br>0   |               |             | 1.6         |          | 1.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6 U           | 1.6        |
| The set of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | UG/L<br>UG/L | 142000       | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20000        | 27       | 51            |             | 35500       |          | 14300     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13200     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78100           | 7400       |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 20000        |          | 51            | 52          | 2.9         |          | 2.9       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3 J           | 2.9        |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 10.8         | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0        | 10<br>3       | 52<br>52    |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 4.5          | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0        |               |             | 3.2         |          | 1.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5 U           | 1.5        |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 134          | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300          | 0        | 42            | 52          | 4.8         | J        | 2.5       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.3 J           | 3.3        |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1--5-22-00.xls 06/15/2000 GROUND WATER CHEMICAL RESULTS 10 of 24

|                            |              |             |             |          |        |         |          | 1        | 1            |                                 | !         | 1         | 1         |            | 1         | 1         |
|----------------------------|--------------|-------------|-------------|----------|--------|---------|----------|----------|--------------|---------------------------------|-----------|-----------|-----------|------------|-----------|-----------|
|                            |              |             |             | 1        | i      |         |          |          |              |                                 | · · ·     |           |           |            |           |           |
|                            |              | + · · · · • |             | ł        |        |         |          |          | -            |                                 | · · · ·   |           |           |            |           | ł         |
|                            | - ·          |             |             |          |        |         |          | ł        |              |                                 |           |           |           |            | · · ·     |           |
| · · · · ·                  |              |             |             |          |        |         |          |          |              |                                 |           |           |           |            |           |           |
|                            |              |             |             |          |        |         |          | }        |              |                                 |           |           |           |            |           |           |
|                            |              |             |             | 1        | ÷ .    |         |          |          |              |                                 |           |           |           |            |           |           |
|                            |              |             | · · · · · • |          | ł      |         |          |          |              |                                 |           |           |           |            |           |           |
|                            |              |             |             |          |        |         |          |          |              |                                 |           | L         |           |            |           |           |
| FACILITY                   | f            |             |             |          |        |         | -        | L .      | ASH LANDFILL | r                               | ASH LANE  | PFILL     | ASH LAND  | FILL       | ASH LAND  | FILL      |
| LOCATION ID                |              |             |             |          |        |         |          |          | MW-46        |                                 | MW-47     |           | MW-48     |            | MW-49D    |           |
| MATRIX                     | +            |             |             |          |        |         |          | ER       | GROUND WAT   | ER                              | GROUND    | WATER     | GROUND    | NATER      | GROUND    | WATER     |
| SAMPLE ID                  | L            |             |             |          |        |         |          | ·        | ARD2009      |                                 | ARD2032   |           | ARD2012   |            | ARD2011   |           |
| DEPTH TO TOP OF SAMP       |              |             |             |          |        |         |          |          | 10.5         |                                 | 9.5       |           | 10        |            | 26        |           |
| DEPTH TO BOTTOM OF S       | SAMPLE       |             |             |          |        |         |          |          | 10.5         |                                 | 9.5       |           | 10        |            | 26        |           |
| SAMPLE DATE                |              |             |             |          |        |         |          |          | 10-Oct-99    |                                 | 19-Oct-99 |           | 10-Oct-99 |            | 10-Oct-99 |           |
| QC CODE                    |              |             |             |          |        |         |          |          | SA           |                                 | SA        |           | SA        |            | SA        |           |
| STUDY ID                   |              |             | FREQUENCY   | NYSDEC   | NUMBER | NUMBER  | NUMBER   | L DESIG  | ASH REMEDIAL | DESIGN                          | ASH REM   | EDIAL DES | ASH REME  | DIAL DES   | ASH REME  | EDIAL DES |
| SAMPLE ROUND               |              |             | OF          | CLASS GA | ABOVE  | OF      | OF       |          | 1            |                                 | 1         |           | 1         |            | 1         |           |
| PARAMETER                  | UNIT         | MAXIMUM     | DETECTION   | STD.     | STD.   | DETECTS | ANALYSES |          | N            |                                 | Ν         |           | N         |            | N         |           |
| VOLATILE ORGANICS          |              |             |             |          |        |         |          |          |              |                                 |           |           |           |            |           |           |
| 1,1,1-Trichloroethane      | UG/L         | 1           | 2%          | 5        | 0      | 1       | 55       |          | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| 1,1,2,2-Tetrachloroethane  | UG/L         | 0           | 0%          | 5        | 0      | 0       | 55       | U        | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| 1,1,2-Trichloroethane      | UG/L         | 0           | 0%          |          | 0      | 0       | 55       | U        | 10           | U                               | 10        | U         | 10        | υ          | 10        | U         |
| 1,1-Dichloroethane         | UG/L         | 9           | 2%          | 5<br>5   | 1      | 1       | 55       |          | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| 1,1-Dichloroethene         | UG/L         | 0           | 0%          |          | 0      | 0       | 55       | U        | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| 1,2-Dichloroethane         | UG/L         | 4           | 4%          | 5        | 0      | 2       | 55       | U        | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| 1,2-Dichloroethene (total) | UG/L         | 1100        | 27%         | 5<br>5   | 14     | 15      | 55       | U        | 73           |                                 | 10        | U         | 10        | U          | 14        |           |
| 1,2-Dichloropropane        | UG/L         | 0           | 0%          | 5        | 0      | 0       | 55       | U        | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| Acetone                    | UG/L         | 2           | 4%          |          | 0      | 2       | 55       | ŨĴ       | 10           | U                               | 10        |           | 10        | U          | 10        | Ü         |
| Benzene                    | UG/L         | 0           | 0%          | 0.7      | 0      | 0       | 55       | U        | 10           | U                               | 10        | U         | 10        | U          | 10        |           |
| Bromodichloromethane       | UG/L         | 0           | 0%          |          | 0      | 0       | 55       | U        | 10           | U                               | 10        | U         | 10        | U          | 10        |           |
| Bromoform                  | UG/L ·       | 0           | 0%          |          | Õ      | 0       | 55       | Ü        | 10           |                                 | 10        | U         | 10        | U          | 10        | U         |
| Carbon disulfide           | UG/L         | 0           | 0%          |          | 0      | Ö       | 55       | ΰ        | 10           | U                               | 10        | U         | 10        | U          | 10        | U         |
| Carbon tetrachloride       | UG/L         | 0           | 0%          | 5        | 0      | 0       | 55       | U        | 10           |                                 | 10        |           | 10        | U          | 10        |           |
| Chlorobenzene              | UG/L         | ō           | 0%          | 5        | 0      | 0       | 55       | U        | 10           | U                               | 10        |           | 10        | U          | 10        |           |
| Chlorodibromomethane       | UG/L         | 0           | 0%          |          | 0      | 0       | 55<br>55 | U        | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Chloroethane               | UG/L         | 0           | 0%          | 5        | ō      | 0       | 55       | U        | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Chloroform                 | UG/L         | 74          | 2%          | 7        | 1      | 1       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Cis-1,3-Dichloropropene    | UG/L         | 0           | 0%          | 5        | Ō      | ō       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Ethyl benzene              | UG/L         | . 0         | 0%          | 5        | 0      | Ō       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Methyl bromide             | UG/L         | 0           | 0%          |          | 0      | Ö       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Methyl butyl ketone        | UG/L         | 0           | 0%          |          | 0      | 0       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Methyl chloride            | UG/L         | 0           | 0%          | 5        | 0      | 0       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Methyl ethyl ketone        | UG/L         | 0           | 0%          | 5<br>50  | 0      | 0       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        | <u>.</u>  |
| Methyl isobutyl ketone     | UG/L         | o           | 0%          |          | 0      | 0       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Methylene chloride         | UG/L         |             | 0%          | 5        | 0      | 0       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
| Styrene                    | UG/L         | 0           | 0%          |          | 0      | 0       | 55       |          | 10           |                                 | 10        |           | 10        |            | 10        |           |
|                            | UG/L         | 0           | 0%          | 5        | 0      | 0       | 55       |          | 10           | THE R PROPERTY AND A REAL OF    | 10        |           | 10        |            | 10        |           |
| Toluene                    | UG/L         | 0           | 0%          | 5        | 0      | 0       | 55       | <u> </u> | 10 1         | and some manager and the second | 10        |           | 10        |            | 10        |           |
|                            | UG/L<br>UG/L | 0           | 0%          | 5        | 0      | 0       | 55       |          |              |                                 |           |           |           |            | 10        |           |
| Total Xylenes              | UG/L         | 0           | 0%          | 5        | 0      | U       | 55       | U        | 10 1         | U                               | 10        | U I       | 10        | <u>ا ر</u> | 10        | <u>v</u>  |

GROUND WATER CHEMICAL RESULTS 11 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                        |                                       |                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 1         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | 1. C. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i I             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 1         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                        | L                                     | ASH LANDFILL               | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ASH LAND                        | FILL      | ASH LAND  | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH LAND        | DFILL                       |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | i. i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | † · - ·                |                                       | MW-46                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MW-47                           | Г         | MW-48     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW-49D          | 1                           |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        | ER                                    | GROUND WAT                 | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GROUND                          | WATER     | GROUND    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND          | WATER                       |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • · · · · · · | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                        |                                       | ARD2009                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ARD2032                         |           | ARD2012   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2011         |                             |
| DEPTH TO TOP OF SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | ···- · - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                        |                                       | 10.5                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.5                             |           | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26              |                             |
| DEPTH TO BOTTOM OF SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       | 10.5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5                             |           | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |                             |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       | 10-Oct-99                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19-Oct-99                       |           | 10-Oct-99 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>10-Oct-99 |                             |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       | SA 10-001-99               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA SA                           | · · · ·   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |        | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NYSDEC        | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUMBER  | NUMBER                 | L DESIG                               | ASH REMEDIA                | DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |           | SA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA              | EDIAL DES                   |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | OF                     | LDESIG                                | ASH REMEDIA                | LDESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASHREM                          | EDIAL DES | ASH REME  | DIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASHREME         | EDIAL DES                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.15.117     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLASS GA      | and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | OF      |                        |                                       | 1                          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                               |           | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |                             |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | **     | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STD.          | STD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DETECTS | ANALYSES               |                                       | N                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                               |           | N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N               |                             |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 0      | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 55                     |                                       | 10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                              |           | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 9100   | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15      | 55                     |                                       | 57                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                              | -         | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | J                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 180    | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | 55                     | U                                     | 1                          | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                              | U         | 10        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10              | U                           |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        | ····· · · · · · · · · · · · · · · · · |                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 2600   | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34      |                        |                                       | 124                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.1                            | J         | 16.3      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.3            | U                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 3      | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       | 52                     |                                       | 4.9                        | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                             | U         | 4.9       | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.9             | UJ                          |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JG/L         | 7      | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12      | 52                     |                                       | 3.7                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9                             | U         | 3.7       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7             | U                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 176    | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51      | 52                     | J                                     | 71.4                       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.3                            | J         | 45.2      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115             | J                           |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JG/L         | 0.66   | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | · 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5       | 52                     | Ú                                     | 0.23                       | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                             | U         | 0.2       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2             | U                           |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JG/L         | 0      | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10            | Ό                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 52                     | U                                     | 0.7                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                             | U         | 0.7       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7             | U                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 268000 | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51      | 52                     |                                       | 129000                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110000                          |           | 104000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000          |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 5.6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8       | han an management of a | U                                     | 0.9                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9                             |           | 0.9       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 8.4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | 52                     |                                       | 2.5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | U         | 2.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 6.1    | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       |                        |                                       | 1.9                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                             |           | 1.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 0      | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 100           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 52                     |                                       | and a star of the basel of | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | U         | 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | U                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 11600  | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35      |                        |                                       | 1330                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                            |           | 14.7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L<br>JG/L | 5,4    | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 52                     |                                       | 1 <b>.</b> 50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the summaries and the summaries | U         | 14.7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L<br>JG/L | 47100  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51      | 52                     |                                       | 17800                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12000                           |           | 12500     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23200           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L<br>JG/L |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43      | 52                     |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 3140   | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1 m 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                        |                                       | 570                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9                             |           | 1.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 0.2    | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6       | 52                     |                                       | 0.1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                             |           | 0.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 5.6    | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6       | 52                     |                                       | 2.6                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                             |           | 2.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 18400  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51      | 52                     |                                       | 2690                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 992                             |           | 1870      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1820            |                             |
| and and and an an an and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | JG/L         | 2.6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | 52                     |                                       | 2.8                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                             |           | 2.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 0      | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       |                        | U                                     | 1.6                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                             |           | 1.6       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 142000 | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20000         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51      | 52                     |                                       | 10100                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9240                            |           | 8490      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8220            |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |           | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                 | the second second second is |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JG/L         | 10.8   | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10      |                        |                                       | 2.9                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7                             | U         | 2.9       | U I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9             | U                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10      | 52<br>52               |                                       | 2.9<br>3.2                 | And a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | 2.7                             |           | 2.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9<br>3.2      |                             |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtbl1--5-22-00.xis 06/15/2000

-

GROUND WATER CHEMICAL RESULTS 12 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 1      |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               |                        |                     |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -      |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     | <b>.</b> .                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        | -       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -      |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | - · · · · · · -        |                     |                                        |
| 1. A. A. A. A. A. A. A. A. A. A. A. A. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     | . i                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | ł       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     |                                        |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        |         |          | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASH LANDFILL    | ASH LANDFILL           | ASH LANDFILL        | ASH LAN                                |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         | ļ        | MW-50D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-51D          | MW-52D                 | MW-53               | MW-54D                                 |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND WATER    | GROUND WATER           | GROUND WATER        | GROUND                                 |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          | ARD2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARD2033         | ARD2034                | ARD2055             | ARD2023                                |
| DEPTH TO TOP OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28              | 50                     | 11.5                | 25                                     |
| DEPTH TO BOTTOM OF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AMPLE |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28              | 50                     | 11.5                | 25                                     |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          | 10-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19-Oct-99       | 19-Oct-99              | 22-Oct-99           | 13-Oct-99                              |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |          | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SA              | SA                     | SA                  | SA                                     |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REMEDIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH REMEDIAL DE | SI ASH REMEDIAL DESIGN | ASH REMEDIAL DESIGN | ASH REM                                |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLASS GA | ABOVE  | OF      | OF       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | 1                      | 1                   | 1                                      |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNIT  | MAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STD.     | STD.   | DETECTS | ANALYSES | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N               | N                      | N                   | N                                      |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         | 1.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                        |                     |                                        |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | 1       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 1       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10<br>10<br>10<br>10<br>10<br>10<br>10 |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 9       | **** *** · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        | 1      | 1       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 4       | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 2       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                |                                        |
| 1,2-Dichloroethene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L  | 1100    | and a summer of the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        | 14     | 15      | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 15                  | 2<br>10<br>10<br>10<br>10              |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       | In technical and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 10 U            | 10 U                   | 10 U                | 10                                     |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L  | 2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 2       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 UJ           | 2 J                    | 10 UJ               | 10                                     |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7      | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55<br>55 | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10<br>10                               |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | . 0     | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | UG/L  | 74      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        | 1      | 1       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 5        | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U            | 10 U                   | 10 U                | 10                                     |
| Methyl butyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 UJ           | 10 UJ                  | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
| Methyl ethyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 UJ           | 10 UJ                  | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 UJ           | 10 UJ                  | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0       |          | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10<br>10                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10<br>10                               |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0       |          | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L  | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0       | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 U            | 10 U                   | 10 U                | 10                                     |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000 GROUND WATER CHEMICAL RESULTS 13 of 24

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          | 1        | Υ <u>΄</u>        | 1         | 1        | 1            | 1        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      | ÷         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|----------|----------|-------------------|-----------|----------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          |                   |           |          |              | ł        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ł                                     |          |          |                   |           | · .      |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | · ·       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |
| · • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L      | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          | 1        |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |           |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          | ASH LANDFILL      | ASH LANDF | ILL      | ASH LANDFILL | -        | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | ASH LAN   |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          | MW-50D            | MW-51D    |          | MW-52D       |          | MW-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | MW-54D    |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          | 1        | GROUND WATER      | GROUND W  | ATER     | GROUND WAT   | ER       | GROUND WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÉR     | GROUND    |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          | 1        | ARD2010           | ARD2033   |          | ARD2034      | 1        | ARD2055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | ARD2023   |
| DEPTH TO TOP OF SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | APLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          | 50                | 28        |          | 50           |          | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 25        |
| DEPTH TO BOTTOM OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          | 50                | 28        |          | 50           |          | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 25        |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          | 10-Oct-99         | 19-Oct-99 |          | 19-Oct-99    |          | 22-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 13-Oct-99 |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       |          |          | SA                | SA        |          | SA           |          | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | SA        |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NYSDEC   | NUMBER                                | NUMBER   | NUMBER   | ASH REMEDIAL DESI |           | IAL DESI |              | L DESIGN | ASH REMEDIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DESIGN |           |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLASS GA | ABOVE                                 | OF       | OF       | 1                 | 1         |          | 1            | T        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1         |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STD.     | STD.                                  |          | ANALYSES | N                 | N         |          | N            |          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | N         |
| Trans-1,3-Dichloroproper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        |                                       | 0        | 55       |                   | 10        | 11       | 10           | 11       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11     | 10        |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9100    | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 10                                    | 15       |          |                   | 10        |          | 10           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J      | 10        |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180     | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 2                                     |          | 55<br>55 | 10 U              | 10        |          | 10           |          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 10        |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100     | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | ····· · · · · · · · · · · · · · · · · |          |          | 10.0              |           | <u> </u> | 10           | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U      |           |
| Aluminum .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2600    | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       | 34       | 52       | 22.7 J            | 20.2      | 1        | 2350         |          | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 14.3      |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                       |          | 52       | 4.9 UJ            | 20.2      |          | 2350         | 11       | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |           |
| the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3       | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       |                                       | 12       |          |                   | 1.9       |          | 1.9          |          | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 2.7       |
| Arsenic<br>Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 176     | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000     |                                       | 12<br>51 |          |                   | 1.9       |          | 64.7         |          | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 1.9       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.66    | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       | 5        | 52       | 0.46 J            | 0.2       |          | 0.2          |          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 0.2       |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 0.00    | a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 10       | 0                                     | 5        |          |                   |           |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.2       |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10       | 0                                     | 0        | 52       |                   | 0.3       | U        | 0.3          | _        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      |           |
| Calcium,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 268000  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0                                     | 51       | . 52     |                   | 85400     |          | 5920         |          | 165000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 82000     |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6     | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50       |                                       | 8        | 52       |                   | 0.9       |          | 0.9          |          | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 0.9       |
| Cobait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.4     | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0                                     | 2        | 52       |                   |           | U        | 2            | -        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 2         |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.1     | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200      | 0                                     |          | 52       |                   | 1.7       |          | 1.9          |          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.7       |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      | 0                                     | 0        | 52       | 5 U               |           | U        | 5            | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U      | 5         |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11600   | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300      | 14                                    | 35       |          |                   | 56.2      |          | 2310         |          | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 28.7      |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.4     | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       | 0                                     | 5        | 52<br>52 | 1.2 U             |           | U        | 2.6          |          | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | U      | 1         |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47100   | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0                                     | 51       |          | 22400             | 13500     |          | 2180         | J        | 20100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 24600     |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3140    | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300      | 7                                     | 43       |          | 87.4              | 42.5      |          | 39.3         |          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 127       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2     | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        | 0                                     | 6        | 52       | 0.1 U             | 0.1       |          | 0.1          |          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 0.1       |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6     | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0                                     | 6        | 52       | 2.6 U             | 1.7       |          | 2.7          |          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.7       |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18400   | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0                                     | 51       | 52       | 2270 J            | 1350      | J        | 1570         |          | 1690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J      | 2570      |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6     | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10       | 0                                     | 1        | 52       | 2.8 U             | 2.6       | J        | 2.4          | U        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U      | 2.4       |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50       | 0                                     | Ō        | 52       | 1.6 U             | 1.6       | U        | 1.6          | U        | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U      | 1.6       |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142000  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20000    | 27                                    | 51       | 52       | 20900             | 26300     |          | 102000       |          | 24100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 23300     |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.8    | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0                                     | 10       |          | 2.9 U             | 2.7       | 11       | 2.7          | 11       | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U      | 2.7       |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5     | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0                                     | 3        | 52       | 3.2 U             | 1.5       |          | 3.3          |          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 134     | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300      | 0                                     | 42       |          | 1.8 U             | 2.9       |          | 6.9          |          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1.8       |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UGIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 134     | 51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3001     | 0                                     | 42       | 52       | 1.8 U             | 2.9       | J        | 6.9          | J        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J      | 1.8       |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1--5-22-00.xls 06/15/2000

GROUND WATER CHEMICAL RESULTS 14 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | i              | 1         |           | 4               |                   | 1                                       |          | 1                  |                                        | 1               |          | 1                                           |         |                 | 1         | · · · · · · · · · · · · · · · · · · · |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-----------|-----------|-----------------|-------------------|-----------------------------------------|----------|--------------------|----------------------------------------|-----------------|----------|---------------------------------------------|---------|-----------------|-----------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |           |           |                 |                   |                                         |          |                    |                                        |                 |          |                                             |         |                 |           |                                       |
| · · ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | -              |           |           |                 | 1                 |                                         |          |                    |                                        |                 |          |                                             |         |                 |           |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |           |           |                 | -                 |                                         |          |                    |                                        |                 |          |                                             |         |                 |           |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |           |           |                 |                   |                                         |          |                    |                                        |                 |          | · · _ · ·                                   |         |                 |           | 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | (x, y) = x     |           |           |                 |                   |                                         |          |                    |                                        |                 |          |                                             |         |                 |           |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |           |           |                 | · .               | -                                       |          |                    |                                        |                 |          |                                             |         |                 |           | + · ·]                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |           |           |                 | 1                 |                                         |          |                    |                                        |                 |          |                                             |         |                 |           |                                       |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                |           |           |                 |                   |                                         | en i     |                    | -                                      |                 |          |                                             |         |                 |           |                                       |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                |           |           |                 | · · ·             | -                                       | FILL     | ASH LAND<br>MW-55D |                                        | ASH LAND        |          | ASH LANDFILL                                |         | ASH LANE        |           | ASHLAN                                |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | · ···· · · · · |           |           |                 |                   |                                         | ATER     | GROUND             |                                        | GROUND V        |          | MW-57D<br>GROUND WAT                        |         | MW-58D          | AVATED    | MW-59                                 |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                |           | · ·       |                 |                   |                                         | AIER .   | ARD2022            | WAIER                                  | ARD2035         | VATER    | ARD2039                                     | · · · · | GROUND          | WATER     | GROUND                                |
| DEPTH TO TOP OF SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F    |                |           |           |                 |                   |                                         |          | 50 ARD2022         |                                        | ARD2035         |          |                                             |         | ARD2042         |           | ARD2005                               |
| DEPTH TO BOTTOM OF SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                |           |           | · · · · · - ·-· |                   |                                         |          | 50                 | ······                                 | 6               |          | 25<br>25                                    |         | 48              |           |                                       |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                |           |           |                 | + · · · · · · · · |                                         |          | 13-Oct-99          |                                        | 20.000          |          | THE R. O. LAN. MICH. & ARABA MARKANING MALE |         |                 |           | 80 Oct 00                             |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | ** **          |           |           | · · ·           |                   |                                         |          | SA                 | ······································ | 20-Oct-99<br>SA |          | 20-Oct-99<br>SA                             |         | 20-Oct-99<br>SA |           | 09-Oct-99<br>SA                       |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                | FREQUENCY | NYSDEC    | NUMBER          | NUMBER            | NUMBER                                  |          | ASH REME           |                                        |                 |          | ASH REMEDIA                                 |         |                 |           | SASH REM                              |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                | OF        | CLASS GA  | ABOVE           | OF                | OF                                      | DIAL DEG | 1                  |                                        | 1               | DIAL DES |                                             | L DESIG |                 | LUIAL DES | AST REM                               |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT | MAXIMUM        | DETECTION | STD.      | STD.            | DETECTS           | ANALYSES                                |          | N                  |                                        | N               |          | N                                           |         | N               |           | N '                                   |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                |           |           |                 | DETECTO           | 111121020                               |          |                    |                                        |                 |          | · · · · · · · · · · · · · · · · · · ·       |         |                 |           | +                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 1              | 2%        | 5         | 0               | 1                 | 55                                      | цї — —   | 10                 |                                        | 10              |          | 10                                          |         | 10              | 11        | 10                                    |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | UG/L | 0              | 0%        | 5         | 0               |                   | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           |           | 0               | 0                 | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 9              |           | 5         | 1               | 1                 | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           | 5         | 0               | Ó                 | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 4              | 4%        |           | 0               | 2                 | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 1100           | ·         | 5         | 14              | 15                | • · · · · · · · · · · · · · · · · · · · |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              | 0%        | 5         | Ō               | 0                 | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         | 10              |           |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 2              | 4%        |           | 0               | 2                 | 55                                      |          | 10                 | Ū · · · ·                              | 10              |          | 10                                          |         |                 | ŬJ        | 10<br>10                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           | 0.7       | 0               | Ö                 | 55                                      |          | 10                 |                                        | 10              |          | 10                                          |         |                 |           | 10                                    |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L | 0              | 0%        |           | 0               | 0                 | 55                                      |          | 10                 | U                                      | 10              |          | 10                                          |         | 10<br>10        | U         | 10<br>10                              |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L | 0              | 0%        |           | 0               | 0                 | 55                                      | U        | 10                 |                                        | 10              |          | 10                                          |         | 10              | Ū         | 10                                    |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L | 0              | 0%        | · · · · · | 0               | Ő                 | 55                                      |          | 10                 |                                        | 10              |          | . 10                                        |         | 10              | U         | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | Ō              |           | 5         | 0               | 0                 | 55                                      | U        | 10                 |                                        | 10              |          | 10                                          |         | 10              | U         | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              | 0%        | 5         | 0               | Ō                 | 55                                      | υ        | 10                 | U                                      | 10              |          | 10                                          |         | 10              |           | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           |           | Ó               | 0                 | 55                                      | U        | 10                 | U                                      | 10              |          | 10                                          |         | 10              | U         | 10                                    |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UG/L | 0              |           | 5         | Ö               | 0                 | 55                                      | U        | 10                 | Ū                                      | 10              | U        | 10                                          | J       | 10              | U         | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 74             |           | 7         | 1               | 1                 | 55                                      | U        | 10                 | U                                      | 10              |          | 10                                          | J       | 10              | Ū         | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           | . 5       | 0               | Ō                 | 55                                      |          | 10                 | U                                      | 10              |          | 10                                          |         | 10              | U         | 10                                    |
| Ethyl benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UĠ/L | 0              |           | 5         | 0               | Ö                 | 55                                      |          | 10                 | U                                      | 10              | U        | 10                                          | J       | 10              | U         | 10                                    |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L | 0              |           |           | 0               | Ö                 | 55                                      |          | 10                 | U                                      | 10              | U        | 10                                          |         | 10              | U         | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              | 0%        |           | 0               | 0                 | 55                                      |          | 10                 |                                        | 10              | UJ       | 10                                          | JJ      | 10              | UJ        | 10                                    |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L | 0              | 0%        | 5         | 0               | 0                 |                                         |          | 10                 |                                        | 10              |          | 10                                          | J       | 10              | U         | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           | 50        | 0               | 0                 |                                         |          | 10                 |                                        | 10              |          | 10                                          | JJ      | 10              | UJ        | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              | 0%        |           | Ō               | 0                 |                                         |          | 10                 |                                        | 10              |          | 10                                          | LI I    | 10              | UJ        | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L | 0              |           | 5         | . 0             | 0                 |                                         |          | 10                 | U                                      | 10              |          | 10 1                                        | J       | 10              |           | 10                                    |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L | 0              |           |           | 0               | 0                 |                                         | U        | 10                 | U                                      | 10              |          | 10                                          | J       | 10              | U         | 10                                    |
| Tetrachloroethene I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L | 0              | 0%        | 5         | 0               | 0                 |                                         | U        | 10                 | U                                      | 10              | J        | 10 1                                        | J .     | 10              |           | 10                                    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L | 0              | 0%        | 5         | 0               | 0                 | 55                                      | 11       | 10                 | U                                      | 10              | J        | 10                                          | 1       | 10              | 11        | 10                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |           |           |                 |                   |                                         | Ų        | 10                 | Ŷ                                      | 101             |          | 1010                                        |         | 101             |           |                                       |

| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1                     |                 |                  |        |              | 1                                                                                                                |          | 1           |           | 1 1             | 1           |          | 1           | 1         |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------|------------------|--------|--------------|------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------|-----------------|-------------|----------|-------------|-----------|--------------|
| а. а. — с. ж. н. — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                       |                 |                  |        |              | · ·                                                                                                              |          |             |           |                 |             |          |             |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                 |                  |        |              |                                                                                                                  |          |             |           |                 |             |          |             |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | · · · · · -           |                 |                  |        |              |                                                                                                                  |          | t           |           |                 |             |          |             |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       | · •             |                  | · ·    |              |                                                                                                                  |          |             |           |                 |             |          |             |           |              |
| · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                       |                 |                  | •••••• | -            |                                                                                                                  |          | · · · ·     |           |                 |             |          |             |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Record and the second |                 | **               |        |              |                                                                                                                  |          | -           | · · ·     |                 |             |          |             |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                 |                  |        |              |                                                                                                                  |          |             |           |                 |             |          |             |           |              |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 1                     |                 |                  |        |              |                                                                                                                  | FILL     | ASH LANE    | DFILL     | ASH LANDFILL    | ASH LANDFIL | L        | ASH LANE    | OFILL     | ASH LAN      |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                       |                 |                  |        |              |                                                                                                                  |          | MW-55D      |           | MW-56           | MW-57D      |          | MW-58D      |           | MW-59        |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                       |                 |                  |        |              |                                                                                                                  | ATER     | GROUND      | WATER     | GROUND WATER    | GROUND WA   | TER      | GROUND      | WATER     | GROUND       |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                       |                 |                  |        |              |                                                                                                                  |          | ARD2022     |           | ARD2035         | ARD2039     |          | ARD2042     |           | ARD2005      |
| DEPTH TO TOP OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                       |                 |                  |        |              | L                                                                                                                |          | 50          |           | 6               | 25          |          | 48          |           | 8            |
| DEPTH TO BOTTOM OF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AMPLE        |                       |                 |                  |        |              |                                                                                                                  |          | 50          |           | 6               | 25          |          | 48          |           | 8            |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                       |                 |                  |        |              |                                                                                                                  |          | 13-Oct-99   |           | 20-Oct-99       | 20-Oct-99   |          | 20-Oct-99   |           | 09-Oct-99    |
| QC CODE<br>STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                       | CDE QUENOV      | NIVODEO          |        |              | NUMPER                                                                                                           | DIAL DEC | SA          |           | SA              | SA          |          | SA          |           | SA           |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                       | FREQUENCY<br>OF | NYSDEC           | ABOVE  | NUMBER<br>OF | NUMBER<br>OF                                                                                                     | DIAL DES | ASHREM      | EDIAL DES | ASH REMEDIAL DE | SASHREMEDI  | AL DESIG | ASH REM     | EDIAL DES | S ASH REM    |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT         | MAXIMUM               |                 | CLASS GA<br>STD. | STD.   | DETECTS      | ANALYSES                                                                                                         |          | 1           |           | N               | N           |          | N 1         |           | N            |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                       | DETECTION<br>0% | 510.             | STD.   | DETECTS      | ANALTSES                                                                                                         | 11       | 10          | 11.       | 10 U            | 10          | 11       | 10          | h         | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 9100                  |                 | 5                | 10     | 15           | and an and the second second second second second second second second second second second second second second |          | 10          |           | 10 U            | 10          |          | 10          |           | 10           |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 180                   |                 | 2                | 2      |              | 55                                                                                                               |          | 10          | Ū         | 10 U            | 10          |          | 10          |           | 10           |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                       |                 |                  |        |              |                                                                                                                  |          | +           | 1         |                 |             |          |             |           |              |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L         | 2600                  | 65%             |                  | 0      | 34           | 52                                                                                                               | U        | 1160        |           | 160 J           | 688         |          | 2400        |           | 21.9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 3                     |                 |                  | 0      | 1            | 52                                                                                                               |          | 2.7         |           | 2.7 U           | 2.7         | U        | 2.7         | U         | 4.9          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 7                     | 23%             | 25               | 0      | 12           |                                                                                                                  |          | 1.9         |           | 1.9 U           | 1.9         | U        | 1.9         | U         | 3.7          |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 176                   | 98%             | 1000             | 0      | 51           | 52                                                                                                               | J        | 61.9        | J         | 44.5 J          | 62.1        | J        | 69.1        | J         | 121          |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 0.66                  | 10%             |                  | 0      | 5            | 52                                                                                                               | U        | 0.2         | U         | 0.2 U           | 0.2         |          | 0.2         |           | 0.2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0                     | 0%              | 10               | 0      | 0            | 52                                                                                                               | U        | 0.3         | U         | 0.3 U           | 0.3         |          | 0.3         |           | 0.7          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 268000                | 98%             |                  | 0      | 51           | 52                                                                                                               |          | 2440        |           | 104000          | 3130        |          | 4110        |           | 199000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 5.6                   |                 | 50               | 0      | 8            | 52                                                                                                               |          | 0.9         |           | 0.9 U           | 1.9         |          | 4.5         |           | 0.9          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 8.4                   | 4%              |                  | 0      | - 2          | 52                                                                                                               |          |             | U         | 2.5 U           | 2.5         |          | 2.5         |           | 2.5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 6.1                   | 10%             | 200              | 0      | 5            | 52                                                                                                               |          | 1.7         |           | 1.7 U           | 1.7         |          | 2.2         |           | 1.9          |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0                     | 0%              | 100              | 0      | 0            | 52                                                                                                               |          |             | U         | 5 U             | 5           |          |             | U         | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 11600                 | 67%             | 300              | 14     | 35           |                                                                                                                  | J        | 1050        |           | 149 J           | 853         |          | 3200        |           | 14.7         |
| A service to a service descent and the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of t | UG/L         | 5.4                   | 10%             | 25               | 0      | 5            | 52                                                                                                               | U        | 1.5         | J         | 1 U<br>12500    | 1<br>842    |          | 1.9<br>1350 |           | 1.2<br>47100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L<br>UG/L | 47100<br>3140         | 98%<br>83%      | 300              |        | 51<br>43     | 52<br>52                                                                                                         |          | 781<br>16.9 | J         | 12500<br>12.3 J | 3.2         |          | 35.3        |           | 47100        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0.2                   | 12%             | 300              | í      | - 43         |                                                                                                                  |          | 0.1         |           | 0.1 U           | 0.1         |          | 0.1         |           | 0.5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 5.6                   | 12%             |                  | 0      | 6            |                                                                                                                  |          | 1.7         |           | 1.7 U           | 1.7         |          | 3.4         |           | 2.6          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 18400                 | 98%             |                  | 0      | 51           | 52                                                                                                               | J        | 1120        |           | 1630 J          | 1150        |          | 1740        |           | 2610         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 2.6                   | 2%              | 10               | 0      | 1            | 52                                                                                                               |          | 2.4         |           | 2.4 U           | 2.4         |          | 2.4         |           | 2.8          |
| and the second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 0                     | 0%              | 50               | 0      | 0            |                                                                                                                  |          | 1.6         |           | 1.6 U           | 1.6         |          | 1.6         |           | 1.6          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 142000                | 98%             | 20000            | 27     | 51           | 52                                                                                                               |          | 118000      |           | 18800           | 133000      |          | 142000      |           | 36200        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 10.8                  | 19%             |                  | 0      | 10           | A A A A A A A A A A A A A A A A A A A                                                                            | U        | 2.7         | J         | 2.9 U           | 2.9         | U        | 2.9         |           | 2.9          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 4.5                   | 6%              |                  | 0      | 3            | 52                                                                                                               |          | 1.5         | -         | 1.5 U           | 1.5         |          | 4.1         |           | 3.2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 134                   | 81%             | 300              | 0      | 42           | 52                                                                                                               |          | 15.7        |           | 3.7 J           | 7.1         | J        | 8.9         | J         | 2.5          |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

ç2

GROUND WATER CHEMICAL RESULTS 16 of 24

|                            |                                | 1       |           | 1        |        |                      | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
|----------------------------|--------------------------------|---------|-----------|----------|--------|----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------------------------------------------|-----------------------------------------|
| and the second second      | Į .                            |         |           |          | 1      |                      |                                       | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                  |                                                   |                                         |
|                            |                                |         |           |          | [ ]    |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
|                            |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
|                            |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
|                            |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
|                            | - 10                           |         |           |          | 1      |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
|                            | 1                              |         | • • • • • |          |        | •                    |                                       | • ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  |                                                   | • • • • • • • • • • • • • • • • • • • • |
|                            | ·                              |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  | + · · · • · · · · - + · · · · · · · · · · · · · · | +                                       |
| FACILITY                   |                                |         |           |          | · ·    |                      |                                       | FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASH LANDFILL                          | ASH LANDFILL     | ASH LANDFILL                                      | ASH LANDFILL                            |
| LOCATION ID                | - · ·                          |         |           | -        | -      |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MW-60                                 | PT-10            | PT-11                                             | PT-15                                   |
| MATRIX                     | · · ·                          |         |           |          | 1      | • ···· · · · · · · · |                                       | ATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GROUND WATER                          |                  |                                                   |                                         |
| SAMPLE ID                  |                                |         |           |          |        |                      |                                       | LAIER .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • • • • • • • • • • • • • • • • • • | GROUND WATER     | GROUND WATER                                      | GROUND WATER                            |
| DEPTH TO TOP OF SAMP       |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ARD2004                               | ARD2002          | ARD2006                                           | ARD2031                                 |
|                            | NAME OF BRIDE AND A DOMESTICS. |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.5                                   | 40               | 18                                                | 18.5                                    |
| DEPTH TO BOTTOM OF S       |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.5                                   | . 40             | 18                                                | 18.5                                    |
| SAMPLE DATE                |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09-Oct-99                             | 08-Oct-99        | 10-Oct-99                                         | 20-Oct-99                               |
| QC CODE                    |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SA                                    | SA               | SA                                                | SA                                      |
| STUDY ID                   |                                |         | FREQUENCY | NYSDEC   | NUMBER | NUMBER               | NUMBER                                | DIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH REMEDIAL DES                      | ASH REMEDIAL DES | ASH REMEDIAL DESIGN                               | ASH REMEDIAL DES                        |
| SAMPLE ROUND               |                                |         | OF        | CLASS GA | ABOVE  | OF                   | OF                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                     | 1                | 1                                                 | 1                                       |
| PARAMETER                  | UNIT                           | MAXIMUM | DETECTION | STD.     | STD.   | DETECTS              | ANALYSES                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                     | N                | N                                                 | N                                       |
| VOLATILE ORGANICS          |                                |         |           |          |        |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |                                                   |                                         |
| 1,1,1-Trichloroethane      | UG/L                           | 1       | 2%        | 5        | 0      | 1                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,1,2,2-Tetrachloroethane  | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,1,2-Trichloroethane      | UG/L                           | 0       | 0%        |          | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,1-Dichloroethane         | UG/L                           | 9       | 2%        | 5        | 1      | 1                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,1-Dichloroethene         | UG/L                           | 0       | 0%        | 5        | Ö      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,2-Dichloroethane         | UG/L                           | 4       | 4%        | 5        | 0      | 2                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,2-Dichloroethene (total) | UG/L                           | 1100    | 27%       | 5        | 14     | 15                   | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| 1,2-Dichloropropane        | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Acetone                    | UG/L                           | 2       | 4%        |          | o      | 2                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 UJ                                   |
| Benzene                    | UG/L                           | 0       | 0%        | 0.7      | 0      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Bromodichloromethane       | UG/L                           | 0       | 0%        |          | 0      | Ō                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Bromoform                  | UG/L                           | 0       | 0%        |          | 0      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Carbon disulfide           | UG/L                           | 0       | 0%        |          | Ō      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Carbon tetrachloride       | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Chlorobenzene              | UG/L                           | 0       | 0%        | 5        | Ó      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Chlorodibromomethane       | UG/L                           | 0       | 0%        |          | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Chloroethane               | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 74      | 2%        | 7        | 1      | 1                    | - 55                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       |           | 5        | Ō      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
| Methyl bromide             | UG/L                           | 0       |           |          | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       |           |          | Ō      | ō                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 UJ                                   |
|                            | UG/L                           | 0       | 0%        | 5        |        | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       | 0%        | 50       | 0      | ō                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 UJ                                   |
|                            | UG/L                           | 0       | 0%        |          | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 UJ                                   |
|                            | UG/L                           | 0       |           | 5        | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       | 0%        |          | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       | 0%        | 5        |        | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |
|                            | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 U                                  |                  |                                                   |                                         |
|                            | UG/L<br>UG/L                   | 0       | 0%        | 5        |        | 0                    |                                       | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                                       | 10 UJ            | 10 U                                              | 10 U                                    |
| Total Xylenes              | UG/L                           | 0       | 0%        | 5        | 0      | 0                    | 55                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 U                                  | 10 UJ            | 10 U                                              | 10 U                                    |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtb11--5-22-00.xls 06/15/2000

· ·

GROUND WATER CHEMICAL RESULTS 17 of 24

|                           | 1                 |             |                                            | 1        |           |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
|---------------------------|-------------------|-------------|--------------------------------------------|----------|-----------|---------------------------------------|----------|----------|-----------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
|                           |                   |             |                                            |          |           |                                       | 1        | 1        |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
|                           | ł                 |             |                                            |          | -         |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .         |         |
|                           | -                 |             |                                            |          |           |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
|                           |                   |             |                                            |          |           |                                       |          | ļ        |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
|                           |                   |             |                                            |          |           |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
|                           |                   | -           |                                            |          |           |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
|                           |                   |             |                                            |          |           |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         |         |
|                           |                   |             |                                            |          |           |                                       | _        |          |           |           | ]         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>.</b>  |         |
| FACILITY                  |                   |             |                                            |          |           |                                       | _        | FILL     | ASH LAND  | FILL      | ASH LAND  | OFILL     | ASH LANDFILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASH LAND  | FILL    |
| LOCATION ID               |                   |             |                                            |          |           |                                       |          |          | MW-60     |           | PT-10     | 1         | PT-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PT-15     |         |
| MATRIX                    | 1                 |             |                                            |          |           |                                       |          | ATER     | GROUND    | WATER     | GROUND    | WATER     | GROUND WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND    | NATER   |
| SAMPLE ID                 |                   |             |                                            |          |           |                                       |          |          | ARD2004   | <b>_</b>  | ARD2002   |           | ARD2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARD2031   |         |
| DEPTH TO TOP OF SAME      | PLE               |             |                                            |          |           |                                       |          |          | 8.5       |           | 40        |           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.5      |         |
| DEPTH TO BOTTOM OF S      | SAMPLE            |             |                                            |          |           |                                       |          |          | 8.5       | ······    | 40        |           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.5      |         |
| SAMPLE DATE               | T                 |             |                                            |          |           |                                       |          |          | 09-Oct-99 |           | 08-Oct-99 |           | 10-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20-Oct-99 |         |
| QC CODE                   | +                 |             |                                            |          | t · · · · |                                       |          |          | SA SA     |           | SA        |           | SA IO-OCL-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SA        |         |
| STUDY ID                  |                   |             | FREQUENCY                                  | NYSDEC   | NUMBER    | NUMBER                                | NUMBER   |          |           |           |           |           | ASH REMEDIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |
| SAMPLE ROUND              | - · · · · · · · · |             | OF                                         | CLASS GA | ABOVE     | OF                                    | OF       | DIAL DES |           | LUIAL DES |           | EDIAL DES | ASH REMEDIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LDESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASH REME  | DIAL DE |
| PARAMETER                 | UNIT              | MANYINALINA | DETECTION                                  | STD.     | STD.      | DETECTS                               | ANALYSES |          | N         |           | N         |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
| Trans-1,3-Dichloropropene |                   | 0           | DETECTION<br>0%                            | 31D.     | - 310.    | DETECTS                               | ANALTSES |          | 10        |           | 11        |           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N         |         |
| Trichloroethene           | UG/L              | 9100        | 27%                                        | ວ<br>5   |           | · · · · · · · · · · · · · · · · · · · | 55       |          | 10        |           |           | UJ        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10        |         |
|                           |                   |             | COMPANY OF REPORT A 12 DOMEST 1 1          |          | 10        | 15                                    |          |          | 10        |           |           | UJ        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10        |         |
| Vinyl chloride            | UG/L              | 180         | 5%                                         | 2        | 2         |                                       | 55       | U        | 10        | 0         | 10        | UJ        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10        | U       |
| METALS                    |                   |             |                                            |          |           |                                       |          |          |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
| Aluminum                  | UG/L              | 2600        | 65%                                        |          | 0         | 34                                    | 52       |          | 16.3      |           | 16.3      |           | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2600      |         |
| Antimony                  | UG/L              | 3           | _2%                                        |          | 0         | 1                                     | 52       |          | 4.9       |           |           | បរ        | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.7       |         |
| Arsenic                   | UG/L              | 7           | 23%                                        | 25       | 0         | 12                                    | 52       |          | 3.7       | U         | 4.7       | J         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3         | J       |
| Barium                    | UG/L              | 176         | 98%                                        | 1000     | 0         | 51                                    | 52       |          | 46.6      | J         | 176       |           | 86.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119       | J       |
| Beryllium                 | UG/L              | 0.66        | 10%                                        |          | • 0       | 5                                     | 52       | U        | 0.66      | J         | 0.2       | UJ        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2       | U       |
| Cadmium                   | UG/L              | 0           | 0%                                         | 10       | 0         | Ó                                     | 52       | U        | 0.7       | U         | 0.7       | UJ        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3       | บ       |
| Calcium                   | UG/L              | 268000      | 98%                                        |          | Ō         | 51                                    | 52       |          | 114000    |           | 81200     |           | 92000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92000     |         |
| Chromium                  | UG/L              | 5.6         | 15%                                        | 50       | 0         | 8                                     | 52       | U        | 0.9       | U         | 0.9       | UJ        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.6       | J       |
| Cobalt                    | UG/L              | 8.4         | 4%                                         |          | 0         | 2                                     | 52       |          | 2.5       |           | 2.5       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.4       |         |
| Copper                    | UG/L              | 6.1         | 10%                                        | 200      | Ö         | 5                                     | 52       |          | 1.9       |           | 1.9       |           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.1       |         |
| Cyanide                   | UG/L              | 0           | 0%                                         | 100      | Ó         | 0                                     | 52       |          | 5         |           |           | UJ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5         |         |
| Iron                      | UG/L              | 11600       | 67%                                        | 300      | 14        | 35                                    | 52       | ŭ        | 14.7      |           | 21.8      |           | 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4410      |         |
| Lead                      | UG/L              | 5.4         | 10%                                        | 25       | 0         | 5                                     | 52       |          | 1.2       |           | 1.2       |           | DALENSO MERCO CONTRACTO LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILIO DE LA COSCILICOSCILIO DE LA COSCILICOSCILIO DE LA COSCILIO DE LA COSCILIO D | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4       |         |
| Magnesium                 | UG/L              | 47100       | 98%                                        | 20       | ő         | 51                                    | 52       |          | 16400     | <u> </u>  | 33300     |           | 31900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22100     |         |
| Manganese                 | UG/L              | 3140        | 83%                                        | 300      | 7         | 43                                    | 52       |          | 1.8       |           | 105       |           | 31900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22100     |         |
| Mercury                   | UG/L              | 0.2         | 12%                                        |          | Ó         | 43                                    | 52       |          | 0.1       |           | 0.1       |           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1       |         |
| Nickel                    | UG/L              | 5.6         | 12%                                        | · 2      | 0         | 6                                     | 52       |          | 2.6       |           | 2.6       |           | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |
| Potassium                 | UG/L              | 18400       | 98%                                        |          | 0         | 51                                    | 52       |          | 2.6       |           | 2560      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.6       |         |
|                           | UG/L              |             | and the second second second second second |          |           | 51                                    |          |          |           |           |           |           | 3160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 3460      |         |
| Selenium                  |                   | 2.6         | 2%                                         | 10<br>50 |           | 1                                     | 52       |          | 2.8       |           | 2.8       |           | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.8       |         |
| Silver                    | UG/L              | 0           | 0%                                         |          | 0         | 0                                     | 52       | 0        | 1.6       | U         | 1.6       |           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6       | U       |
| Sodium                    | UG/L              | 142000      | 98%                                        | 20000    | 27        | 51                                    | 52       |          | 19900     |           | 33500     |           | 19700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27600     |         |
| Thallium                  | UG/L              | 10.8        | 19%                                        |          | 0         | 10                                    | 52       |          | 2.9       |           | 2.9       |           | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3       |         |
| Vanadium                  | UG/L              | 4.5         | 6%                                         |          | 0         | 3                                     | 52       |          | 3.2       |           | 3.2       | UJ        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5       | J       |
| Zinc 2                    | UG/L              | 134         | 81%                                        | 300      | 0         | 42                                    | 52       | J        | 1.8       | U         | 1.8       | 11.1      | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.1      |         |

|                                                                                                                  | 1       | 1                                       |                                   | 1        | 1      |         | i              | · · · · · · · · · · · · · · · · · · · | 1     | 1 1         |          | 1           | 1         |                                         |                         | 1               |
|------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------|-----------------------------------|----------|--------|---------|----------------|---------------------------------------|-------|-------------|----------|-------------|-----------|-----------------------------------------|-------------------------|-----------------|
|                                                                                                                  |         | † · †                                   | i .                               |          | 1      | t       |                |                                       |       |             | . /      | • · · • · · | - ·       |                                         | · · ··                  |                 |
| and the second second second second second second second second second second second second second second second |         | 1 1                                     | 1                                 | ,        | 1      |         |                | - mod                                 |       |             | · · · ·  |             |           | f                                       |                         |                 |
|                                                                                                                  |         |                                         |                                   |          |        |         |                | 1                                     |       |             |          |             | -         | + ··· +                                 |                         |                 |
|                                                                                                                  |         | ·                                       |                                   | 1        | 1      |         |                |                                       |       |             |          |             |           | f                                       |                         | - <b>!</b>      |
|                                                                                                                  | -       |                                         | ł                                 |          |        |         |                |                                       | -     |             | !        |             | i         | ( .                                     |                         | <b>!</b>        |
|                                                                                                                  |         | +                                       | f                                 |          | - I    |         | 1              |                                       | -     |             |          |             |           | ÷ · · · · · · · · · · · · · · · · · · · |                         |                 |
| ina is contra to associate                                                                                       |         | 4                                       | ↓ <sup> </sup>                    |          |        | -       |                | 1                                     |       |             |          |             | <u>-</u>  | f                                       |                         |                 |
|                                                                                                                  |         | +                                       | Į. 1                              | . !      | 1      |         |                |                                       |       |             |          |             | L         |                                         |                         |                 |
| FACILITY                                                                                                         |         | 4                                       | ↓ I                               | !        |        |         | -              | ASH LANE                              |       | ASH LANDFIL |          | ASH LANDFI  |           | ASH LAND                                | FILL                    | ASH LAN         |
| LOCATION ID                                                                                                      |         | <u> </u>                                | · · · · · · · · · · · · · · · · · |          |        |         |                | PT-16                                 |       | PT-16       |          | PT-17       |           | PT-18                                   |                         | PT-19           |
| MATRIX                                                                                                           |         |                                         | <u> </u>                          |          |        |         |                | GROUND                                | WATER | GROUND WA   |          | GROUND W    | AIER      | GROUND                                  | NATER                   | GROUND          |
| SAMPLE ID                                                                                                        | <u></u> |                                         |                                   |          | +      |         |                | ARD2014                               |       | ARD2013     |          | ARD2027     |           | ARD2048                                 |                         | ARD2018         |
| DEPTH TO TOP OF SAMP                                                                                             |         |                                         |                                   |          |        |         |                | 10                                    |       | 10          | l        | 10.5        |           | 11.1                                    |                         | 10.5            |
| DEPTH TO BOTTOM OF S                                                                                             | AMPLE   |                                         | · · · · · · · · · · · ·           |          |        |         |                | 10                                    |       | 10          |          | 10.5        |           | 11.1                                    |                         | 10.5            |
| SAMPLE DATE                                                                                                      |         |                                         |                                   | ļ        |        |         |                | 11-Oct-99                             |       | 11-Oct-99   |          | 18-Oct-99   |           | 21-Oct-99                               |                         | 11-Oct-99       |
| QC CODE                                                                                                          | ļ       | ļ                                       |                                   |          |        |         |                | DU                                    |       | SA          |          | SA          |           | SA                                      |                         | SA              |
| STUDY ID                                                                                                         |         | + · · · · · · · · · · · · · · · · · · · | FREQUENCY                         | NYSDEC   | NUMBER | NUMBER  |                | ASH REM                               |       | ASH REMED   | AL DESI  | ASH REMED   | IAL DESIG | ASH REME                                | DIAL DES                | ASHREM          |
| SAMPLE ROUND                                                                                                     |         |                                         | OF                                | CLASS GA | ABOVE  | OF      | OF             | 1                                     |       | 1           |          | 1           |           | 1                                       |                         | 1               |
| PARAMETER                                                                                                        | UNIT    | MAXIMUM                                 | DETECTION                         | STD.     | STD.   | DETECTS | ANALYSES       | N                                     |       | N .         |          | N           |           | N                                       |                         | N               |
| VOLATILE ORGANICS                                                                                                |         |                                         |                                   |          |        |         |                |                                       |       |             |          |             |           |                                         |                         |                 |
|                                                                                                                  | UG/L    | 1                                       | 2%                                | 5        |        | 1       | 55             |                                       |       | 10 l        |          | 1           | บม        | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        | 0      | 0       | 55             |                                       |       | 10 l        |          |             | UJ        | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       | 55             |                                       |       | 10 נ        |          |             | UJ        | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 9                                       |                                   | 5        | 1      | 1       | 55             |                                       |       | 10 L        |          |             | UJ        | 540                                     |                         | 10<br>10        |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        | 0      | 0       |                |                                       |       | 10 L        |          |             | UJ        | 540                                     |                         |                 |
|                                                                                                                  | UG/L    | 4                                       | 4%                                | 5        |        | 2       | 2 55           |                                       |       | 10 l        |          |             | UJ        | 540                                     | <u>U</u>                | 10              |
|                                                                                                                  | UG/L    | 1100                                    | 27%                               |          |        | 15      |                |                                       |       | 10 L        |          | 16          |           | 1100                                    |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        |        | 0       |                |                                       |       | 10 ไ        |          |             | UJ        | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 2                                       | 4%                                |          | 0      | 2       |                |                                       |       | 10 l        |          |             | ΟJ        | 540                                     |                         | <u>10</u><br>10 |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 0.7      |        | 0       |                |                                       |       | 10 נ        |          |             | UJ        | 540                                     |                         |                 |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                | 10                                    |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                | 10                                    |       | 10 L        | J        |             | UJ        | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                |                                       |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       | show my second |                                       |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
| Chlorobenzene                                                                                                    | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                |                                       |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
| Chlorodibromomethane                                                                                             | UG/L    | 0                                       | 0%                                |          | 0      | Ō       | 55             |                                       | U     | 10 L        | <u> </u> | 10          |           | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       |                                   | 5        | 0      | 0       | 55             |                                       |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 74                                      | 2%                                | 7        | 1      | 1       | 55             | 10                                    |       | 10 L        |          | 10          |           | 74                                      |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       |                                   | 5        | 0      | 0       | 55             | 10                                    |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        | 0      | Ö       | 55             | 10                                    |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                | 10                                    |       | 10 L        |          | 10          |           | 540                                     | CARGON A MARKED AS INC. | 10              |
| Methyl butyl ketone                                                                                              | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                | 10                                    |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
| Methyl chloride                                                                                                  | UG/L    | 0                                       | 0%                                | 5        |        | 0       |                | 10                                    |       | 10 L        |          | 10          |           | 540                                     |                         | 10              |
| Methyl ethyl ketone                                                                                              | UG/L    | 0                                       | 0%                                | 50       |        | 0       | 55             | 10                                    |       | 10 L        |          | 10          |           | 540                                     | U                       | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       | 55             | 10                                    | U     | 10 L        | J        | 10          |           | · 540                                   | U                       | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        | 0      | 0       | 55             |                                       | U     | 10 L        | j 👘      | 10          | UJ        | 540                                     | U                       | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                |          | 0      | 0       |                | 10                                    | υ     | 10 L        | †        | 10          | UJ        | 540                                     | U                       | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        | 0      | 0       |                | 10                                    | U     | 10 L        |          | 10          |           | 540                                     | U                       | 10              |
|                                                                                                                  | UG/L    | 0                                       | 0%                                | 5        |        | 0       |                | 10                                    |       | 10 L        |          | 10          |           | 540 1                                   | J                       | 10              |
|                                                                                                                  |         |                                         |                                   |          |        |         |                |                                       |       |             |          |             |           |                                         |                         |                 |

p:/pit/projects/seneca/irontrnc/draftmemo/gwtbl1--5-22-00.xls 06/15/2000

GROUND WATER CHEMICAL RESULTS 19 of 24

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1--5-22-00.xls 06/15/2000

GROUND

| WATER | <b>CHEMICAL</b> | RESULTS  |
|-------|-----------------|----------|
|       |                 | 20 of 24 |

| r                      |              | :            | 1             | 1           | i      | i       |          | 1                        |          | 1          |          |           | 1      | 1                                     |          | 1        |
|------------------------|--------------|--------------|---------------|-------------|--------|---------|----------|--------------------------|----------|------------|----------|-----------|--------|---------------------------------------|----------|----------|
|                        |              |              | · .           |             | 1      |         |          |                          |          | -          |          |           |        |                                       |          |          |
|                        |              |              |               | ł .         | 1      |         |          | ţ                        | i i      |            |          |           | ł      |                                       |          |          |
|                        |              | - <u>-</u> . |               |             |        |         |          | +                        | ł        |            |          |           |        |                                       |          |          |
|                        | · · · · ·    |              |               |             |        | -       | 1        |                          |          |            |          |           |        | · · · · · · · · · · · · · · · · ·     |          |          |
| · · · · · · · · ·      | · · · ·      |              | • · · · · · · |             |        |         |          | }                        |          |            |          |           | +      | · }                                   |          |          |
|                        |              | 4            |               |             |        |         |          |                          |          |            |          |           |        |                                       |          |          |
|                        |              |              |               | · · · · · · |        |         |          |                          |          |            |          |           | +      | · · · · · · · · · · · · · · · · · · · |          |          |
| FACILITY               | ·            |              |               | + · ·       |        |         |          | ASH LANE                 |          | ASH LANDFI |          |           | 1      |                                       |          | 10111.1  |
| LOCATION ID            | ·····  ····  |              |               |             |        |         |          | PT-16                    |          |            |          | ASH LANDF |        | ASH LAND                              |          | ASH LA   |
| MATRIX                 |              |              |               |             | ·····  |         |          | GROUND                   |          | PT-16      |          | PT-17     | () TED | PT-18                                 |          | PT-19    |
|                        |              |              |               |             |        |         | +        | where respect to page 11 | WATER    | GROUND WA  | ATER     | GROUND W  |        | GROUND V                              | VATER    | GROUN    |
|                        |              |              |               | <u>↓</u>    |        |         | ļ        | ARD2014                  | <u>.</u> | ARD2013    |          | ARD2027   |        | ARD2048                               |          | ARD201   |
| DEPTH TO TOP OF SA     |              |              |               |             |        |         |          | 10                       |          | 10         |          | 10.5      |        | 11.1                                  |          | 10       |
| DEPTH TO BOTTOM (      | JF SAMPLE    |              |               |             |        |         |          | 10                       |          | 10         |          | 10.5      |        | 11.1                                  |          | 10       |
| SAMPLE DATE            |              |              |               |             |        |         | L        | 11-Oct-99                |          | 11-Oct-99  |          | 18-Oct-99 |        | 21-Oct-99                             |          | 11-Oct-  |
| QC CODE                |              |              | EDEOUEVAL     |             |        |         |          | DU                       |          | SA         |          | SA        |        | SA                                    |          | SA       |
| STUDY ID               |              |              | FREQUENCY     | NYSDEC      | NUMBER | NUMBER  | NUMBER   | ASH REM                  | DIAL DES | ASH REMED  | IAL DESI |           |        | ASH REME                              | DIAL DES | 3 ASH RE |
| SAMPLE ROUND           |              |              | OF            | CLASS GA    | ABOVE  | OF      | OF       | 1                        |          | 1          |          | 1         |        | 1                                     |          |          |
| PARAMETER              | UNIT         |              | DETECTION     | STD.        | STD.   | DETECTS | ANALYSES |                          |          | N          |          | N         |        | N                                     |          | N        |
| Trans-1,3-Dichloroprop |              | 0            |               | 5           | 0      |         | 55       |                          |          | 10 1       |          |           | UJ     | 540                                   | J        |          |
| Trichloroethene        | UG/L         | 9100         |               | 5           | 10     | 15      |          |                          |          | 10 1       | _        |           | 3      | 9100                                  |          |          |
| Vinyl chloride         | UG/L         | 180          | 5%            | 2           | 2      | 3       | 55       | 10                       | U        | 10 ሀ       | J        | 10        | UJ     | 540                                   | 1        |          |
| METALS                 |              |              |               |             |        |         | L        |                          |          |            |          |           |        |                                       |          |          |
| Aluminum .             | UG/L         | 2600         |               |             | 0      | 34      | 52       |                          |          | 16.3 l     |          | 198       |        | 51.6                                  |          | 18       |
| Antimony               | UG/L         | 3            |               |             | 0      | 1       | 52       |                          | U        | 4.9 ไ      |          |           | UJ     | 2.7                                   |          | 4        |
| Arsenic                | UG/L         | 7            | 23%           | 25          |        | 12      | 52       |                          | J        | 3.7 1      |          | 1.9       | UJ     | 3.7                                   | J        |          |
| Barium                 | UG/L         | 176          |               | 1000        | 0      | 51      | 52       | 40.6                     | J        | 44.5       | J        | 50.5      |        | 50.3                                  | J        | 17       |
| Beryllium              | UG/L         | 0.66         | 10%           |             | 0      | 5       | 52       |                          | Ĵ        | 0.2 l      |          |           | UJ     | 0.2                                   |          | 0.4      |
| Cadmium                | UG/L         | 0            | 0%            | 10          | 0      | 0       | 52       | 0.7                      | U        | 0.7 L      | j        | 0.3       | UJ     | 0.3                                   | J        | 0        |
| Calcium                | UG/L         | 268000       | 98%           |             | 0      | .51     | 52       | 95500                    |          | 100000     |          | 105000    | J      | 224000                                |          | 20200    |
| Chromium               | UG/L         | 5.6          |               | 50          | 0      | 8       | 52       | 0.9                      | Ũ        | 0.9 1      | J        | 0.9       | UJ     | 0.93                                  |          | 1        |
| Cobalt                 | UG/L         | 8.4          | 4%            |             | 0      | 2       | 52       | 2.5                      | U        | 2.5 1      | J        | 2         | UJ     | 2.5                                   | J        | 3        |
| Copper                 | UG/L         | 6.1          | . 10%         | 200         | 0      | 5       | 52       | 1.9                      | U        | 1.9 L      | J        | 1.7       | UJ     | 1.7 1                                 | J        | 3        |
| Cyanide                | UG/L         | 0            | 0%            | 100         | 0      | 0       | 52       | 5                        | U        | 5 L        | j i      | 5         | IJ     | 5 1                                   | J        |          |
| Iron                   | UG/L         | 11600        | 67%           | 300         | 14     | 35      | 52       | 14.7                     | U        | 14.7 L     | J        | 243       | J      | 199 .                                 | ,        | 116      |
| Lead                   | UG/L         | 5.4          | 10%           | 25          | Ó      | 5       | 52       | 1.2                      | U        | 1.2 L      | j        | 1         | UJ     | 1.2 (                                 | j        | 1        |
| Magnesium              | UG/L         | 47100        | 98%           |             | , o    | 51      | 52       |                          |          | 12400      |          | 10200     | J      | 27900                                 |          | 2570     |
| Manganese              | UG/L         | 3140         | 83%           | 300         | 7      | 43      | 52       |                          | J        | 3.7 J      |          | 12.2      |        | 471                                   |          | 314      |
| Mercury                | UG/L         | 0.2          | 12%           | 2           | 0      | 6       | 52       |                          |          | 0.15       |          | 0.1       | UJ     | 0.16                                  | <br>     | 0.1      |
| Nickel                 | UG/L         | 5.6          | 12%           |             | 0      | 6       | 52       |                          |          | 2.6 L      | <u>,</u> | 1.7       |        | 1.8                                   |          | 2        |
| Potassium              | UG/L         | 18400        | 98%           |             | 0      | 51      | 52       | +                        |          | 1160 J     |          | 1230      |        | 4470                                  |          | 827      |
| Selenium               | UG/L         | 2.6          | 2%            | 10          |        | 1       | 52       |                          |          | 2.8 L      |          | 2.4       |        | 2.4 1                                 |          | 2        |
| Silver                 | UG/L         | 0            | 0%            | 50          | 0      |         | 52       |                          |          | 1.6 L      |          | 1.6       |        | 1.6 l                                 |          | 1        |
| Sodium                 | UG/L         | 142000       | 98%           | 20000       | 27     | 51      | 52       |                          | ~        | 7780       |          | 20000     |        | 58600                                 |          | 2890     |
| Thallium               | UG/L         | 10.8         | 19%           | 20000       | 0      | 10      | 52       |                          | <u>.</u> | 2.9 L      | <u></u>  | 2.7       |        | 4.2                                   |          | 10       |
| Vanadium               | UG/L<br>UG/L | 4.5          | 6%            |             | 0      | 3       | 52       |                          |          | 3.2 L      |          | 1.5       |        | 4.2 J                                 |          | 3.       |
|                        | UG/L         | 4.5          | 81%           | 300         | 0      |         | 52       |                          |          | 2.9 J      |          | 2.3       |        |                                       | ,        |          |
| Zinc                   | UG/L         | 134          | ö1%           | 300         | U      | 42      | 52       | 1.8                      | U [      | Z.9 J      |          | 2.3       | J      | 134                                   |          | 4.       |

# TABLE 1 GROUND WATER CHEMICAL RESULTS ROUND 1 GROUNDWATER MONITORING ASH REMEDIAL DESIGN SENECA ARMY DEPOT ACTIVITY ROMULUS, NY

.

|                                 |                                        |             | 1        |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |
|---------------------------------|----------------------------------------|-------------|----------|--------|---------|----------|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|
|                                 |                                        | 1           |          |        |         | Ì        |          |              | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | + +····                                 |
|                                 |                                        | i           |          |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |
|                                 |                                        |             |          |        |         |          |          |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                         |
|                                 |                                        |             | -        |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |
| 1                               |                                        |             |          |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - · · · · · · ·       |                                         |
|                                 |                                        |             |          |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |
|                                 |                                        |             |          |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | • ··· · · · · · · · · · · · · · · · · · |
|                                 |                                        |             |          |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |
| FACILITY                        |                                        |             |          |        |         |          | FILL     | ASH LANDFILL | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASH LANDFILL          | ASH LANDFILL                            |
| LOCATION ID                     |                                        |             |          |        |         |          |          | PT-20        | PT-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PT-21A                | PT-22                                   |
| MATRIX                          |                                        |             |          |        |         | · ·      | ATER     | GROUND WATER | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | GROUND WATER          | GROUND WATER                            |
| SAMPLE ID                       |                                        |             |          |        |         |          |          | ARD2026      | ARD2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARD2046               | ARD2045                                 |
| DEPTH TO TOP OF SAMPLE          |                                        |             |          |        |         |          | -        | 10           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5                  | 11.3                                    |
| DEPTH TO BOTTOM OF SAMPI        | LE                                     |             |          |        |         |          |          | 10           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.5                  | 11.3                                    |
| SAMPLE DATE                     |                                        |             |          |        |         |          |          | 18-Oct-99    | 18-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21-Oct-99             | 21-Oct-99                               |
| QC CODE                         |                                        |             |          |        |         |          |          | DU           | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA                    | SA                                      |
| STUDY ID                        |                                        | FREQUENCY   | NYSDEC   | NUMBER | NUMBER  | NUMBER   | DIAL DES | ASH REMEDIAL | DES ASH REMEDIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G ASH REMEDIAL DESIGN | ASH REMEDIAL DES                        |
| SAMPLE ROUND                    |                                        | OF          | CLASS GA | ABOVE  | OF      | OF       |          | 1            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                     | 1                                       |
|                                 | NIT MAXIMU                             | M DETECTION | STD.     | STD.   | DETECTS | ANALYSES |          | N            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                     | N                                       |
| VOLATILE ORGANICS               |                                        |             |          |        |         |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |
| 1,1,1-Trichloroethane UG/L      |                                        | 1 2%        | 5        | 0      | 1       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| 1,1,2,2-Tetrachloroethane UG/L  |                                        | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| 1,1,2-Trichloroethane UG/L      |                                        | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| 1,1-Dichloroethane UG/L         |                                        | 9 2%        | 5        | 1      | 1       | 55       |          | 、 10 UJ      | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| 1,1-Dichloroethene UG/L         |                                        | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| 1,2-Dichloroethane UG/L         |                                        | 4 4%        | 5        | 0      | 2       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 J                   | 4 J88                                   |
| 1,2-Dichloroethene (total) UG/L |                                        |             |          | 14     | 15      | 55       |          | <b>28</b> J  | <b>29</b> J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                    | 88                                      |
| 1,2-Dichloropropane UG/L        |                                        | 0 0%        | 5        | 0      | 0       | 55       | U        | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Acetone UG/L                    |                                        | 2 4%        |          | 0      | 2       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 UJ                 | 10 UJ                                   |
| Benzene UG/L                    |                                        | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Bromodichloromethane UG/L       | time and a second second second second | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Bromoform UG/L                  | L                                      | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Carbon disulfide UG/L           | L                                      | 0 0%        |          | 0      | 0       | 55       | U        | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Carbon tetrachloride UG/L       |                                        | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Chlorobenzene UG/L              | L                                      | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Chlorodibromomethane UG/L       |                                        | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Chloroethane UG/L               |                                        | 0 0%        | 5        | 0      | 0       | 55       | U        | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Chloroform UG/L                 |                                        |             | 7        | 1      | 1       | 55       | U        | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Cis-1,3-Dichloropropene UG/L    |                                        | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Ethyl benzene UG/L              |                                        | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Methyl bromide UG/L             |                                        | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Methyl butyl ketone UG/L        |                                        | 0 0%        |          | Ō      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Methyl chloride UG/L            |                                        | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Methyl ethyl ketone UG/L        | _                                      | 0 0%        | 50       | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Methyl isobutyl ketone UG/L     | -                                      | 0 0%        |          | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Methylene chloride UG/L         |                                        | 0 0%        | 5        | Ō      | Ō       | 55       | U        | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Styrene UG/L                    |                                        | 0 0%        |          | 0      | 0       | 55       | U        | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Tetrachloroethene UG/L          |                                        | 0 0%        | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Toluene UG/L                    |                                        | 0%          | 5        | 0      | 0       | 55       |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |
| Total Xylenes UG/L              |                                        | 0 0%        | 5        | 0      | 0       |          |          | 10 UJ        | 10 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 U                  | 10 U                                    |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

GROUND WATER CHEMICAL RESULTS 21 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |           |          |              |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|----------|--------------|----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷ .          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              |          | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |           |          |              |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        | i.                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |        | ļ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |           |          |              |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        | -                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           | -        |              |          | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |        | L .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           | `.       |              | ł        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ            |        | - · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | · · ·     |          |              |          | <u> </u>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | ·····                  |                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              |          | ACHIAN                  | DEILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 1.        |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +• • · -···  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                     |           |          | · · · · · ·  | FILL     | ASH LANI<br>PT-20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASH LANDFI<br>PT-20             |           | ASH LANDFILL<br>PT-21A | ASH LANE                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              | ATER     | GROUND                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND W/                       |           | GROUND WATER           | GROUND                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              | AIER     | ARD2026                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARD2025                         |           | ARD2046                | ARD2045                               | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DEPTH TO TOP OF SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              |          | ARD2026<br>10           | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - · · · · · · · · · · · · · · · |           | 17.5                   | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEPTH TO BOTTOM OF SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              |          | 10                      | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                              |           |                        | 11.3                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANIPLE       | - +    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - · · ·                               |           |          |              |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18-Oct-99                       | ·         | 17.5                   | 11.3<br>21-Oct-99                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           |          |              |          | 18-Oct-99<br>DU         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18-00-99<br>SA                  |           | 21-Oct-99<br>SA        | SA                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |        | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYSDEC                                | NUMBER    | NUMBER   |              |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | ASH REMEDIAL DESIG     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |        | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLASS GA                              | ABOVE     | OF       | NUMBER<br>OF | DIAL DES |                         | EDIAL DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AST REIVIED                     | AL DESIG  | ASH REMEDIAL DESIG     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UNIT         |        | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STD.                                  | STD.      | DETECTS  | ANALYSES     |          | N                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                               |           | N                      | N                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                              | SID.<br>0 | DETECTS  | ANALTSES     |          |                         | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | UJ        | 10 U                   | 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 9100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 10        | 15       | 55           |          | 36                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                              |           | <b>6</b> J             | 74                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| the summaries of the state of the formation of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state | UG/L         | 180    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |           | 10       | 55           |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                              |           | 10 U                   | 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 160    | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۷                                     | Z         | 3        |              | U        |                         | UJ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                              | UJ        |                        |                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 2600   | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |           | 34       | 52           |          | 14.3                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.3                            | 111       | 14.3 U                 | 30.3                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 0         |          | 52           |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                             |           | 2.7 U                  | 2.7                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 7      | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                    | 0         | 12       | 52           |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9                             |           | 2.7 U<br>2.2 J         | 1.9                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic<br>Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 176    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                  |           | 51       | 52           |          | 81.1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.6                             |           | 56.9 J                 | 77.5                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec                                                                                                                                                                                                                                            | UG/L         | 0.66   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                  | 0         | 5        | 52           |          |                         | 2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                             |           | 0.2 U                  | 0.2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L         | 0.88   | a second and an a second as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                    |           |          | 52           |          |                         | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                             |           | 0.2 U                  | 0.2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cadmium<br>Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 268000 | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 0         | 51<br>51 |              |          | 159000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124                             |           | 191000                 | 236000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 5.6    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | 50                                    | ō         | 51<br>8  | 52<br>52     |          | And 1 1 1 1 1           | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                             |           | 0.9 U                  | 230000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 8.4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 0         |          | 52           | J        |                         | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | UJ        | 2.5 U                  | 2.5                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTRACTOR MATERIAL CONTRACTOR IN CONTRACTOR CONTRACTOR CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 6.1    | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                                   | 0         |          | 52           | J        |                         | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7                             |           | 1.7 U                  | 1.7                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 0.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                   |           |          | 52           | J        |                         | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | <u>UJ</u> | 50                     | · · · · · · · · · · · · · · · · · · · | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cyanide<br>Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 11600  | 67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                   | 14        | 35       | 52           | <u> </u> | 14.7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                            |           | 556 J                  | 58.4                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 5.4    | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 0         | 5        | 52<br>52     |          | · · · · · · · · · · · · | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | UJ        | 1 U                    | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L         | 47100  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                    | 0         |          | 52           | U        | 16200                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134                             |           | 36200                  | 28500                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L<br>UG/L | 3140   | 83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                   | 7         | 43       | 52           |          | 3.3                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                             |           | 503                    | 37.1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese<br>Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0.2    | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                     |           | 6        | 52           |          | 0.12                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                             |           | 0.1 U                  | 0.1                                   | Ú.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 5.6    | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · | 0         | 6        | 52           | Ŭ        | 1.7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                             |           | 1.7 U                  | 1.7                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L         | 18400  | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 0         | 51       | 52           |          | 2050                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 261                             |           | 8560                   | 1990                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 2.6    | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                    | 0         | 1        | 52           |          | 2.000                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                             |           | 2.4 U                  | 2.4                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 2.0    | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                    |           | 0        | 52           |          | 1.6                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                             |           | 1.6 U                  | 1.6                                   | and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 142000 | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000                                 | 27        | 51       | 52           |          | 24800                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 875                             |           | 41300                  | 59400                                 | COLUMN A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION O |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 142000 | 19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000                                 | 27        | 10       | 52           |          | 2.7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7                             |           | 5.1 J                  | 3.9                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 4.5    | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 0         |          | 52           |          | 1.5                     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1.5                             |           | 1.5 U                  | 1.5                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 4.5    | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                   | 0         |          | 52           |          | 2.4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                             |           | 4.2 J                  | 5.3                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 134    | 81%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                   | 0         | 42       | 52           | 5        | 2.4                     | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6                             | 01        | 4.2 J                  | 5.3                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

GROUND WATER CHEMICAL RESULTS 22 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          | 1        |                    |                                                                                                                 |              |                   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------|-------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Į       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              | · ·               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          | -        |                    |                                                                                                                 |              |                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    | -                                                                                                               |              |                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              |                   |      |
| · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              |                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              |                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              |                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              |                   |      |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | ASH LANDFILL       | ASH LANDFILL                                                                                                    | ASH LANDFILL | ASH LANDFILL      |      |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | PT-23              | PT-24                                                                                                           | PT-25        | PT-26             |      |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | GROUND WATER       | GROUND WATER                                                                                                    | GROUND WATER | GROUND WATER      | 1    |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | ARD2016            | ARD2000                                                                                                         | ARD2019      | ARD2057           |      |
| DEPTH TO TOP OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LE           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | 12                 | 10.4                                                                                                            | 11.5         | 13.5              |      |
| DEPTH TO BOTTOM OF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AMPLE        | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | 12                 | 10.4                                                                                                            | 11.5         | 13.5              | 1    |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | 11-Oct-99          | 07-Oct-99                                                                                                       | 12-Oct-99    | 27-Oct-99         |      |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          | SA                 | SA                                                                                                              | SA           | SA                |      |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NYSDEC   | NUMBER | NUMBER   | NUMBER   | ASH REMEDIAL DESIG |                                                                                                                 |              | S ASH REMEDIAL DE | SIGN |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | † · ·   | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLASS GA | ABOVE  | OF       | OF       | 1                  | 1                                                                                                               | 1            | 1                 |      |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UNIT         | MAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STD.     | STD.   | DETECTS  | ANALYSES | N                  | N                                                                                                               | N            | N                 |      |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |          |                    |                                                                                                                 |              |                   |      |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 1       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 1        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | o      | 0        | 55       | 10 U               | 10 UJ.                                                                                                          | 10 U         | 10 U              |      |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L         | 9       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 1      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 4       | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>5   | 0      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 1100    | 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5        | 14     | 15       | 55       | 10 U               | 86 J                                                                                                            | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 2       | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | ō      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 UJ             | · +  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7      | 0      | <u>~</u> | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              | +    |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7      | ō      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 0        | 55       | 10 0               | 10 UJ                                                                                                           | 10 U         | 10 0              |      |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L<br>UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L<br>UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| In case of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |              |         | CONTRACTOR OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIP |          | 0      |          | 55       | 10 U               |                                                                                                                 | 10 U         | 10 U              |      |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L<br>UG/L | 0<br>74 | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      |          | 55       | 10 U               | 10 UJ<br>10 UJ                                                                                                  | 10 U         | 10 U              |      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 1      | 1        | 55       |                    | the second second second second second second second second second second second second second second second se | 10 U<br>10 U |                   |      |
| Cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        |        | 0        | 55       | 10 U               | 10 UJ                                                                                                           |              | 10 U              | +    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U<br>10 U | 10 U              |      |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      |          | 55       | 10 U               | 10 UJ                                                                                                           | 10 U<br>10 U | 10 U              |      |
| Methyl butyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           |              | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 UJ             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | . 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5        | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | ō      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        | 0      | 0        | 55       | 10 U               | 10 UJ                                                                                                           | 10 U         | 10 U              |      |

GROUND WATER CHEMICAL RESULTS 23 of 24

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | !       | 1                                 | 1                  | 1                                     |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                     |                  |                   | 1                                             |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------------------|--------------------|---------------------------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|-------------------|-----------------------------------------------|-------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    |                                       |               | ļ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  | 1 A 1             | 1 . 1                                         |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    |                                       |               |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    |                                       |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               | 1                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    |                                       |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    | 1                                     |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    |                                       | i .           |          | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  | 1                 |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   | • • •              | 1                                     | ţ             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  | ·····             | + • •                                         |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    | t                                     |               | · · ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | • •• •• |                                   |                    |                                       | 1 1 A         |          | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASH LANDFILL                          | ASH LANDFILL     | ACHIAN            |                                               |                                           |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                                   | ,                  |                                       |               |          | PT-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PT-24                                 |                  | ASH LAND<br>PT-26 |                                               |                                           |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |         |                                   |                    |                                       |               |          | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                                       | PT-25            |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    | L                                     |               |          | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GROUND WATER                          | GROUND WATER     | GROUND            | WATER                                         |                                           |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         |                                   |                    |                                       | l             |          | ARD2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARD2000                               | ARD2019          | ARD2057           |                                               |                                           |
| DEPTH TO TOP OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |         |                                   |                    | 1                                     |               | L        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                  | 11.5             | 13.5              |                                               |                                           |
| DEPTH TO BOTTOM OF SAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MPLE |         |                                   |                    |                                       |               |          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4                                  | 11.5             | 13.5              |                                               |                                           |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |                                   |                    |                                       |               |          | 11-Oct-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07-Oct-99                             | 12-Oct-99        | 27-Oct-99         |                                               |                                           |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |                                   |                    |                                       |               |          | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA                                    | SA               | SA                |                                               |                                           |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |         | FREQUENCY                         | NYSDEC             | NUMBER                                | NUMBER        | NUMBER   | ASH REMEDIAL DESIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ASH REMEDIAL DES |                   | EDIAL DESI                                    | GN                                        |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |         | OF                                | CLASS GA           |                                       | OF            | OF       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                     | 1                | 1                 |                                               | 0.1                                       |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UNIT | MAXIMUM | DETECTION                         | STD.               | STD.                                  | DETECTS       | ANALYSES | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                     | N                | N                 |                                               |                                           |
| Trans-1,3-Dichloropropene U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         | 0%                                |                    | 0                                     | DETECTS       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 9100    | 27%                               | 5                  | · · · · · · · · · · · · · · · · · · · | <b>U</b>      | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 UJ                                 | 10 U             | 10                |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   | 5                  | 10                                    | 15            | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 J                                   | 10 U             | 10                |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 180     | .5%                               | 2                  | 2                                     | 3             | 55       | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 UJ                                 | 10 U             | 10                | U                                             |                                           |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |         |                                   |                    |                                       |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 2600    | 65%                               |                    | 0                                     | 34            | 52       | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.3 UJ                               | 41.9 J           | 96.2              | J                                             | and the address of a contraportion of the |
| Antimony U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JG/L | 3       | 2%                                |                    | 0                                     | 1             | 52       | 4.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.9 UJ                                | 2.7 U            | 2.7               | U                                             |                                           |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JG/L | 7       | 23%                               | 25                 | 0                                     | 12            | 52       | 3.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7 UJ                                | 1.9 U            | 1.9               |                                               |                                           |
| Barium U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JG/L | 176     | 98%                               | 1000               |                                       | 51            | 52       | 52.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.3 J                                | 29.2 J           | 58.2              |                                               |                                           |
| Beryllium U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JG/L | 0.66    | 10%                               | anan a tat timit a | 0                                     | 5             |          | 0.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2 UJ                                | 0.2 U            | 0.2               |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 0       | 0%                                | 10                 | o o                                   | ō             |          | 0.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7 UJ                                | 0.2 U            | 0.2               |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 268000  | 98%                               |                    | 0                                     |               | 52       | 104000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101000 J                              | 77200            | 36900             | <u>ا</u> ــــــــــــــــــــــــــــــــــــ |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 200000  | 15%                               | 50                 |                                       | 8             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   | 50                 | 0                                     | · ··· · · · · | 52       | 0.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9 UJ                                | 0.9 U            | 1.2               |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 8.4     | 4%                                |                    | 0                                     | 2             | 52<br>52 | 2.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5 UJ                                | 2 U              | 2.5               |                                               |                                           |
| the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of | JG/L | 6.1     | 10%                               | 200                |                                       | 5             | 52       | 1.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9 UJ                                | 1.7 U            | 1.7               |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 0       |                                   | 100                | 0                                     | 0             |          | 5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 UJ                                  | 5 U              |                   | U                                             |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 11600   | 67%                               | 300                | 14                                    | 35<br>5       | 52       | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.7 UJ                               | 27.8 J           | 191               | J                                             |                                           |
| Lead U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JG/L | 5.4     | 10%                               | 25                 | 0                                     | 5             | 52       | 1.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2 UJ                                | 1 U              | 1                 | Ū                                             |                                           |
| Magnesium U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JG/L | 47100   | 98%                               |                    | Ō                                     | 51            | 52       | 12700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11400 J                               | 8130             | 14000             |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 3140    | 83%                               | 300                | 7                                     | 43            | 52       | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9 UJ                                | 0.9 U            | 82.2              |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 0.2     | 12%                               | 2                  | 0                                     | 6             | 52       | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1 UJ                                | 0.15 J           | 0.1               | 11                                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 5.6     | 12%                               |                    | ····                                  | 6             | 52       | 2.6 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6 UJ                                | 1.7 U            | 1.7               |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JG/L | 18400   | 98%                               |                    | 0                                     | 51            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | 1050 J           |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |         |                                   |                    |                                       | 51            | 52       | 2220 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1510 J                                |                  | 2680              |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IG/L | 2.6     | 2%                                | 10                 | 0                                     | 1             | 52       | 2.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8 UJ                                | 2.4 U            | 2.4               |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IG/L | 0       | 0%                                | 50                 | 0                                     |               | 52       | 1.6 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6 UJ                                | 1.6 U            | 1.6               | U                                             |                                           |
| Sodium U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0  | 142000  | 98%                               | 20000              | 27                                    | 51            | 52       | 10600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10200 J                               | 10800            | 91100             |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IG/L |         |                                   |                    |                                       |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |                   |                                               |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IG/L | 10.8    | 19%                               |                    | 27<br>0                               | 10            | 52       | 2.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9 UJ                                | 2.7 U            | 5.5               | J                                             |                                           |
| Thallium U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         | and and an and an and a statement |                    | 0                                     |               | 52<br>52 | 2.9 U<br>3.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9 UJ<br>3.2 UJ                      | 2.7 U<br>1.5 U   | 5.5<br>1.5        | and a second second second second             |                                           |

p:/pit/projects/seneca/irontmc/draftmemo/gwtbl1-5-22-00.xls 06/15/2000

GROUND WATER CHEMICAL RESULTS 24 of 24

.  $\left( \begin{array}{c} \end{array} \right)$ 

|                             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | 1         |          |        |         | ,        |             |          |            | 1         | 1            |        |            |         |            |           |
|-----------------------------|---------------------------------------|---------------------------------------|-----------|----------|--------|---------|----------|-------------|----------|------------|-----------|--------------|--------|------------|---------|------------|-----------|
|                             | 1                                     |                                       |           | ł        |        |         |          |             |          |            |           |              |        |            | •-      |            | -         |
|                             |                                       | 1                                     |           | l        |        |         | -        |             |          |            |           |              |        |            |         |            |           |
|                             |                                       |                                       |           |          |        |         |          |             |          |            |           |              |        |            |         |            |           |
|                             |                                       | 1.                                    |           |          |        |         |          |             |          |            |           |              | !      |            |         |            |           |
|                             |                                       |                                       |           |          |        |         |          |             |          |            |           |              |        |            |         | 1          |           |
|                             |                                       |                                       |           |          |        |         |          |             |          |            |           |              |        |            |         |            |           |
|                             |                                       |                                       |           |          |        |         |          |             |          |            |           |              |        |            |         |            |           |
| FACILITY                    | L                                     | 1                                     |           |          |        | L .     |          | ASH LANDFIL | L        | ASH LAND   | FILL      | ASH LANDFILI |        | ASH LANDFI | L       | ASH LANDFI | LL        |
| LOCATION ID                 | L                                     |                                       | L         |          |        |         |          | BN-S        |          | FH-D       |           | FH-S         |        | MW-12A     |         | MW-27      |           |
| MATRIX                      |                                       |                                       |           |          |        |         |          | GROUND WA   | TER      | GROUND V   | VATER     | GROUND WAT   | TER    | GROUND W/  | ATER    | GROUND W   | ATER      |
| SAMPLE ID                   | L                                     |                                       |           |          |        |         |          | ARD2141     |          | ARD2140    |           | ARD2139      |        | ARD2152    |         | ARD2132    |           |
| DEPTH TO TOP OF SAMPLE      |                                       |                                       |           |          |        |         | 1        | 0           |          | C          |           | 0            |        | 12         |         | 10         |           |
| DEPTH TO BOTTOM OF SAM      | VPLE                                  |                                       |           |          |        |         |          | 0           |          | C          |           | 0            |        | 12         |         | 10         |           |
| SAMPLE DATE                 |                                       |                                       |           |          |        |         |          | 01/19/2000  |          | 01/19/2000 | T         | 01/19/2000   |        | 01/21/2000 |         | 01/10/2000 | [         |
| QC CODE                     |                                       |                                       |           |          |        |         | 1        | SA          |          | SA         | 1         | SA           |        | SA         |         | SA         |           |
| STUDY ID                    |                                       |                                       | FREQUENCY | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REMEDI  | AL DESIG | ASH REME   | DIAL DESI | ASH REMEDIA  | L DESI | ASH REMED  | AL DESI | ASH REMED  | IAL DESIG |
| SAMPLE ROUND                |                                       |                                       | OF        | CLASS GA | ABOVE  | OF      | OF       | 2           |          | 2          |           | 2            |        | 2          |         | 2          |           |
| PARAMETER                   | UNIT                                  | MAXIMUM                               | DETECTION | STD.     | STD.   | DETECTS | ANALYSES | N           |          | N          | 1         | N            |        | N          |         | N          |           |
| VOLATILE ORGANICS           |                                       |                                       |           |          |        |         |          |             |          |            |           |              |        |            |         |            |           |
| 1,1,1-Trichloroethane       | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 1           | J        | 1          | U         | 1 U          |        | 58         | U       | 1          | U         |
| 1,1,2,2-Tetrachloroethane   | UG/L                                  | 0                                     | 0%        | 5        | Ó      | 0       | 54       | 1           | J        | 1          | U         | 10           |        | 58         | 0       | 1          | U         |
| 1,1,2-Trichloroethane       | UG/L                                  | 0                                     | 0%        |          | Ò      | ō       | 54       | 1           | j        | 1          | U         | 10           |        | 58         | U       | 1          | U         |
| 1,1-Dichloroethane          | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 1           | j        | 1          | U         | 10           |        | 58         | U       | 1          | U         |
| 1,1-Dichloroethene          | UG/L                                  | 0                                     |           | 5        | 0      | 0       | 54       | 1           | J        | 1          | U         | 1 U          |        | 58         | U       | 1          | U         |
| 1,2,4-Trichlorobenzene      | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 1           | j        | 1          | U         | 1 U          |        | 58         | U       | 1          | U         |
| 1,2-Dibromo-3-chloropropane | UG/L                                  | 0                                     | 0%        |          | 0      | 0       | 54       | 1           | J        | 1          | U         | · 1 U        |        | 58         |         | 1          | U         |
| 1,2-Dibromoethane           | UG/L                                  | 0                                     | 0%        |          | 0      | 0       | 54       | 1           | j        | 1          | υ         | 10           |        | 58         | U       |            | U         |
| 1,2-Dichlorobenzene         | UG/L                                  | 0                                     | 0%        | 4.7      | 0      | 0       | 54       | 11          | j        | 1          | U         | 1 U          |        | 58         | U       | 1          | U         |
| 1,2-Dichloroethane          | UG/L                                  | 3                                     | 2%        | 5        | 0      | 1       | 54       | 1           | J        | 1          | U         | 1 U          |        | 58         |         | 1          | υ         |
| 1,2-Dichloropropane         | UG/L                                  | 0                                     | 0%        | 5        | Ó      | Ō       | 54<br>54 | 1           | j        | 1          | Ū         | 1 U          |        | 58         | U       | 1          | U         |
| 1,3-Dichlorobenzene         | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 1           | j        | 1          | U         | 10           |        | 58         | U       | 1          | U         |
| 1,4-Dichlorobenzene         | UG/L                                  | ō                                     | 0%        | 4.7      | Ō      | 0       | 54       | 11          | j        | 1          | U         | 1 U          |        | 58         | J       | 1          | υ         |
| Acetone                     | UG/L                                  | 1                                     | 4%        |          | 0      | 2       | 54       | 51          | JJ T     | 1          | J         | 5 U.         | j      | 290        | R       | 5          | UJ        |
| Benzene                     | UG/L                                  | 0                                     | 0%        | 0.7      | 0      | Ō       | 54<br>54 | 1           | <u>j</u> | 1          | U         | 1 U          |        | 58         | J       | 1          | U         |
| Bromochloromethane          | UG/L ·                                | 0                                     | 0%        |          | 0      | 0       | 54       | 1           | j        | 1          | U         | 1 U          |        | 58         | J       | 1          | U         |
| Bromodichloromethane        | UG/L                                  | 0                                     | 0%        |          | 0      | ō       | 54       | 1           | J        | 1          | U         | 1 U          |        | 58         | J       | 1          | U         |
| Bromoform                   | UG/L                                  | 0                                     | 0%        |          | 0      | 0       | 54       | 11          |          | 1          | U         | 1 U          |        | 58         |         | 1          |           |
| Carbon disulfide            | UG/L                                  | 0                                     | 0%        |          | Ō      | 0       | 54       | 11          | <u>,</u> | 1          | U         | 1 U          |        | 58         | J       | 1          | υ         |
| Carbon tetrachloride        | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       |          | 11          | j 👘      |            | U         | 1 U          |        | 58         |         | 1          |           |
| Chlorobenzene               | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54<br>54 | 1           |          |            | U         | 1 U          |        | 58         |         | 1          |           |
|                             | UG/L                                  | 0                                     | 0%        |          | 0      | 0       | 54       | 1 1         | j j      | 1          | U         | 10           |        | 58         |         | .1         | U         |
|                             | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 11          | j in     | 1          | U         | 1 U          |        | 58 0       |         | 1          |           |
|                             | UG/L                                  | 0                                     | 0%        | 7        | 0      | 0       | 54       | 1           | )        | 1          | Ū         | 1 U          |        | 58 1       | J       | 1          |           |
| Cis-1,2-Dichloroethene      | UG/L                                  | 980                                   | 28%       | 5        | 14     | 15      | 54       | 11          | j [      |            | U         | 1 U          | 1      | 980        |         | 1          |           |
| Cis-1,3-Dichloropropene     | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 11          | j        | 1          | U         | 10           | ſ      | 58 1       |         | 1          | U         |
| Ethyl benzene               | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 11          |          | 1          | υ         | 1 U          |        | 58 1       |         | 1          | U         |
| Methyl bromide              | UG/L                                  | 0                                     | 0%        |          | Ő      | 0       | 54       | 11          | j        |            | U         | 1 U          |        | 58 0       | J       | 1          | υ         |
|                             | UG/L                                  | Ō                                     | 0%        |          | 0      | 0       | 54       | 51          |          | 5          | U         | 5 U          |        | 290 1      |         | 5          | U         |
|                             | UG/L                                  | ō                                     | 0%        | 5        | 0      | 0       | 54       | 1           |          |            | υ         | 10           |        | 58 (       |         | 1          |           |
|                             | UG/L                                  | Ö                                     | 0%        | 50       | 0      | 0       | 54       | 5 0         |          | 5          |           | 5 U          | +      | 290 1      |         |            | ŬĴ        |
|                             | UG/L                                  | 0                                     | 0%        |          | 0      | 0       | 54       | 51          |          |            | Ū         | 5 U          |        | 290 1      |         | 5          |           |
|                             | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       | 21          |          | 2          |           | 20           |        | 120 1      |         | 2          |           |
|                             | UG/L                                  | 0                                     | 0%        |          |        | 0       | 54       | 11          |          | 1          |           | 1 U          |        | 58 1       |         | 1          |           |
|                             | UG/L                                  | 0                                     | 0%        | 5        | 0      | 0       | 54       |             |          | 1          |           | 10           |        | 58 0       |         | 1          |           |
|                             | UG/L                                  | 2                                     | 6%        | 5        | 0      | 3       | 54       | 1           |          | 1          |           | 10           |        | 58 0       |         | 1          |           |
| Tolucite                    | UGIL                                  | Z                                     | 0.701     |          | 0      | 3       | C +      | 10          |          | 1          | <u> </u>  | 10           |        | 36 (       | , ,     | 1          | 0         |

.

| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1            | 7           |           |          |         |         |          | -                                     |                     | 1          |                  |            | 1         | 1          |          |                                       |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------|----------|---------|---------|----------|---------------------------------------|---------------------|------------|------------------|------------|-----------|------------|----------|---------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - · ·        | 4 .         |           |          |         |         |          |                                       |                     |            |                  |            |           |            | -        |                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -            |             |           |          |         |         | 1        |                                       |                     | - ·        |                  |            |           |            |          | -                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |             |           |          |         |         | 1        |                                       |                     |            | · ·              |            |           | +          |          | · · · · · · · · · · · · · · · · · · · |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +            | - · · · · - |           |          |         |         |          |                                       |                     |            |                  |            |           |            |          |                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |             |           |          |         |         | -        |                                       |                     |            |                  |            |           |            |          | · · · · · · · · · · · · · · · · · · · |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |             |           |          |         |         | Ļ        |                                       |                     |            | +                |            |           | +          |          | · · ··· · · · · · · · · · · · · · · · |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |             |           |          |         |         |          | Lan Stere                             | <u> </u>            |            | <u> </u>         |            | <u> </u>  |            |          |                                       |          |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |             |           |          |         |         | -        | ASH LANDF                             | ILL                 | ASH LAND   | FILL             | ASH LAND   | - ILL     | ASH LANDFI |          | ASH LANDFILL                          |          |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |             |           |          |         |         |          | BN-S                                  |                     | FH-D       |                  | FH-S       |           | MW-12A     |          | MVV-27                                |          |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |             |           |          |         |         |          | GROUND W                              | ATER                | GROUND     | NATER            | GROUND V   | VATER     | GROUND W   | ATER     | GROUND WATER                          | <u>.</u> |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |           |          |         |         |          | ARD2141                               |                     | ARD2140    |                  | ARD2139    | ļ         | ARD2152    |          | ARD2132                               |          |
| DEPTH TO TOP OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |             |           |          |         |         |          | 0                                     |                     |            | 2                | C          |           | 12         |          | 10                                    |          |
| DEPTH TO BOTTOM OF SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MPLE         |             |           |          |         |         |          | 0                                     |                     |            | 2                | C          |           | 12         |          | . 10                                  |          |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |             |           |          |         |         |          | 01/19/2000                            |                     | 01/19/2000 | 0                | 01/19/2000 |           | 01/21/2000 |          | 01/10/2000                            |          |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |             |           |          |         |         |          | SA                                    |                     | SA         | 1                | SA         |           | SA         |          | SA                                    |          |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |             | FREQUENCY | NYSDEC   | NUMBER  | NUMBER  | NUMBER   | ASH REMED                             | IAL DESIG           | ASH REME   | DIAL DESI        | ASH REME   | DIAL DESI | ASH REMED  | IAL DESI | ASH REMEDIAL D                        | ESI      |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |             | OF        | CLASS GA | ABOVE   | OF      | OF       | 2                                     |                     |            | 2                | 2          |           | 2          |          | 2                                     |          |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNIT         | MAXIMUM     | DETECTION | STD.     | STD.    | DETECTS | ANALYSES | N                                     |                     | N          |                  | N          |           | N          |          | N                                     |          |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 0           | 0%        | 5        | 0       | 0       | 54       | 1                                     | υ                   | 1          | IU ·             | 1          | U         | 58         |          | 1 U                                   |          |
| Trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 2           | 4%        | 5        | 0       | 2       | 54       | 1                                     | U                   | 1          | IU               | 1          | U         | 58         | U        | 1 U                                   |          |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0           | 0%        | 5        | 0       | Ō       | 54       | 1                                     | U                   |            | U                | 1          | U         | 58         | υ        | 1 U                                   |          |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UGA          | 760         | 28%       | 5        | 8       | 15      | 54       | 1                                     | υ                   |            | U                | 1          | U         | 760        |          | 10                                    |          |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L         | 25          | 2%        | 2        | 1       | 1       | 54       | 1                                     | U                   | 1 1        | ΙU               | 1          | U         | 58         | U        | 1 U                                   |          |
| METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |             |           |          |         |         |          |                                       | · · · · · · · · · · |            |                  |            |           |            |          |                                       |          |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 7700        | 49%       |          | 0       | 25      | 51       |                                       |                     |            |                  | 1          |           | 34.4       | UJ       | 443 J                                 |          |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 4.5         | 12%       |          | 0       | 6       | 51       |                                       |                     |            |                  |            |           | 5.4        |          | 2.2 U                                 |          |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 5           | 22%       | 25       | 0       | 11      | 51       |                                       |                     |            |                  | 1          |           | 2.4        | U        | 2.5 U                                 |          |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 173         | 100%      | 1000     | Ö       | 51      | 51       |                                       | +                   |            |                  |            | 1         | 24.2       |          | 40.6 J                                |          |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0.26        | 14%       |          | 0       | 7       | 51       |                                       |                     |            |                  | +          | †         | 0.6        |          | 0.1 U                                 |          |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0.35        | 2%        | 10       | 0       | i       | 51       |                                       | <u> </u>            |            |                  |            | 1         | 0.2        |          | 0.2 U                                 |          |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 391000      | 100%      |          | 0       | 51      | 51       |                                       |                     | +          |                  |            |           | 240000     | ,        | 92900                                 |          |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 4.1         | 14%       | 50       | 0       | 7       | 51       | · · · · · · · · · · · · · · · · · · · |                     | +          |                  |            |           | 1          | u        | 10                                    |          |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 2           | 6%        |          | n       |         | 51       |                                       | <u>+</u>            |            |                  |            |           | 3.5        |          | 1.3 U                                 |          |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 14.6        | 33%       | 200      |         | 17      | 51       |                                       | t ·                 | +          | +                |            |           | 1.6        |          | 2.2 J                                 |          |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 14.0        | 0%        | 100      |         | 0       | 51       |                                       |                     |            |                  |            |           | 10         |          | 10 U                                  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L         | 6350        | 63%       | 300      | 14      | 32      | 51       |                                       |                     |            |                  |            |           | 42.8       |          | 347 J                                 |          |
| Iron<br>Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L         | 3.8         | 10%       | 25       |         | 54      | 51       |                                       |                     |            |                  |            |           | 42.0       |          | 1.3 U                                 |          |
| AN INVESTIGATION CONTRACTOR OF A CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRA | UG/L         | 85900       | 100%      | 25       |         | 51      | 51       |                                       |                     |            | +· · · · · · · · |            |           | 38000      | ·        | 9390                                  |          |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 344         | 100%      | 300      |         | 51      | 51       |                                       |                     |            | +                |            |           | 196        |          | 24                                    |          |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0.14        | 2%        | 300      |         |         | 51       |                                       |                     |            |                  |            |           | 0.1        | F1       | 0.1 U                                 |          |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L<br>UG/L | 6.2         | 2%<br>10% |          |         |         | 51       |                                       |                     |            |                  |            |           | 4.2        |          | 1.7 U                                 |          |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 25600       |           |          | 0       | 51      |          |                                       |                     |            |                  |            |           | 4.2        |          | 1610 J                                |          |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 25600       | 100%      |          |         | 51      | 51       |                                       |                     |            |                  |            |           | 2.2        |          | 2.2 U                                 |          |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | •           | 2%        | 10<br>50 |         |         | 51       |                                       |                     |            |                  |            |           |            |          |                                       |          |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 2.8         | 2%        |          | 0       | 1       | 51       |                                       |                     |            |                  |            |           | 1          |          | 1.3 UJ                                |          |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 175000      | 90%       | 20000    | 23<br>0 | 46      | 51       |                                       |                     |            |                  |            |           | 60800      |          | 26500                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L         | 7.4         | 6%        |          |         | 3       | 51       |                                       |                     |            |                  |            |           | 3.2        |          | 3.2 UJ                                |          |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 10.8        | 8%        |          | 0       | 4       | 51       |                                       |                     |            |                  |            |           | 2.8        |          | 1.8 U                                 |          |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L         | 1620        | 100%      | 300      | 1       | 51      | 51       |                                       |                     |            |                  |            |           | 2          | J        | 7.9 J                                 |          |

p:/pil/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000 GROUND WATER CHEMICAL RESULTS RD. 2 2 @F 22

| 1                               |              | 1        |                                       | 1        | 1      | 1             | :        | 1            |             | i                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
|---------------------------------|--------------|----------|---------------------------------------|----------|--------|---------------|----------|--------------|-------------|-------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| - · · · ·                       | + ·          |          |                                       |          |        |               |          |              |             |                   | · · · · · · · · · · · · | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|                                 |              |          |                                       |          |        |               |          |              |             | .,                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                 | ļ            |          | ł                                     |          |        |               |          |              |             |                   |                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                 | -            |          | -                                     |          | -      |               | İ        |              |             |                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                 |              |          |                                       |          |        | [             |          |              |             |                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                     |
|                                 |              |          |                                       |          |        |               |          |              |             |                   |                         | Le de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composicinde la composición de la composición de la composición de la compo |                                       |
|                                 |              |          |                                       |          |        |               | [        |              |             |                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| FACILITY                        |              |          |                                       |          | L      | · · ·         |          | ASH LANDFILL |             | ASH LANDFILL      | ASH LANDFILL            | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASH LANDFILL                          |
| LOCATION ID                     |              |          |                                       |          |        |               |          | MW-28        |             | MW-29             | MW-30                   | MW-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-31                                 |
| MATRIX                          |              | 1        |                                       |          | 1      | 1 .           |          | GROUND WAT   | ER          | GROUND WATER      | GROUND WATER            | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GROUND WATER                          |
| SAMPLE ID                       |              | L        |                                       |          |        |               |          | ARD2146      |             | ARD2148           | ARD2129                 | ARD2115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ARD2114                               |
| DEPTH TO TOP OF SAMPLE          |              |          |                                       |          |        |               |          | 8.5          |             | 9.5               | 8.5                     | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                   |
| DEPTH TO BOTTOM OF SAM          | MPLE         |          |                                       |          |        | •             |          | 8.5          |             | 9.5               | 8.5                     | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                   |
| SAMPLE DATE                     |              |          |                                       |          |        |               |          | 01/20/2000   |             | 01/20/2000        | 01/09/2000              | 01/09/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01/09/2000                            |
| QC CODE                         |              |          |                                       |          |        |               |          | SA           |             | SA                | DU                      | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA                                    |
| STUDY ID                        |              |          | FREQUENCY                             | NYSDEC   | NUMBER | NUMBER        | NUMBER   | ASH REMEDIA  | L DESI      | ASH REMEDIAL DESI | ASH REMEDIAL DESI       | ASH REMEDIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASH REMEDIAL DESI                     |
| SAMPLE ROUND                    |              | 1        | OF                                    | CLASS GA | ABOVE  | OF            | OF       | 2            |             | 2                 | 2                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                     |
| PARAMETER                       | UNIT         | MAXIMUM  | DETECTION                             | STD.     | STD.   | DETECTS       | ANALYSES | N            |             | N                 | N                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                     |
| VOLATILE ORGANICS               |              |          |                                       |          |        | [ · · · · · ] |          | t            |             | t=                | t                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                                     |
| 1,1,1-Trichloroethane           | UG/L         | 0        | 0%                                    | 5        | 0      | 0             | 54       | 10           |             | 4 U               | 1 U                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                   |
| 1,1,2,2-Tetrachloroethane       | UG/L         | 0        |                                       | 5        | ō      | 0             | 54       | 10           |             | 4 U               | 1 UJ                    | 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                    |
| 1,1,2-Trichloroethane           | UG/L         | 0        | 0%                                    |          | 0      | o o           | 54       | 1 U          |             | 4 U               | 1 U                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                    |
| 1,1-Dichloroethane              | UG/L         | 0        |                                       | 5        | o      | 0             | 54       | 1 U          | ·····       | 4 U               | 1 U                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                   |
| 1,1-Dichloroethene              | UG/L         | 0        |                                       | 5        | 0      | 0             | 54       | 10           |             | 4 U               | 1 U                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 UJ                                  |
| 1,2,4-Trichlorobenzene          | UG/L         | 0        |                                       | 5        | Ō      | 0             | 54       | 10           | ·· ·- · · · | 4 U               | 1 U                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                   |
| 1,2-Dibromo-3-chloropropane     |              | 0        |                                       |          | ō      | 0             | 54       | 10           |             | 4U                | 1 U                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| 1,2-Dibromoethane               | UG/L         | Ō        |                                       |          | Ő      | o i           | 54       | 10           |             | 4 U<br>4 U        | 1 U                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| 1,2-Dichlorobenzene             | UG/L         | Ō        |                                       | 4.7      | 0      | Ö             | 54       | 10           | • •         | 4 U               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                   |
| 1,2-Dichloroethane              | UG/L         | 3        | 2%                                    | 5        | - ñ    | 1             | 54       | 10           |             | 4 Ŭ               | 1 U                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| 1,2-Dichloropropane             | UG/L         |          | 0%                                    | 5        | Ő      | -0            | 54       | 10           |             | 4 U               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| 1,3-Dichlorobenzene             | UG/L         | <u>-</u> | 0%                                    | 5        | 0      | ñ             | 54       | 10           |             | 4 U               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                   |
| 1,4-Dichlorobenzene             | UG/L         |          | 0%                                    | 4.7      |        |               | 54       | 10           |             | 4 Ū               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                   |
| Acetone                         | UG/L         | ·····    | 4%                                    |          |        |               | 54       | 5 R          |             | 19 R              | 5 UJ                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                   |
| Benzene                         | UG/L         | 0        |                                       | 0.7      | 0      |               | 54       | 10           |             | 40                | 1 U                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Bromochloromethane              | UG/L         | 0        |                                       |          | ō      | n i           | 54       | 10           |             | 40                | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Bromodichloromethane            | UG/L         | 0        |                                       |          |        |               | 54       | 10           |             | 40<br>4U          | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 0                                   |
| Bromoform                       | UG/L         | ō        |                                       |          | 0      | 0             | 54       | 10           |             | 40                | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Carbon disulfide                | UG/L         | 0        | · · · · · · · · · · · · · · · · · · · |          | <br>   |               | 54       | 10           |             | 40                | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Carbon tetrachloride            | UG/L         | 0        |                                       | 5        | n      | n i           | 54       | 10           | • • • •     | 40                | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Chlorobenzene                   | UG/L         | 0        | 0%                                    |          | n<br>N | 'n            | 54       | 10           |             | 4 U               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Chlorodibromomethane            | UG/L         | 0        | 0%                                    |          |        | 0             | 54       | 10           |             | 4 U               | 10                      | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                    |
| Chloroethane                    | UG/L         | 0        |                                       | 5        |        |               | 54       | 1 U          |             | 4 U               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Chloroform                      | UG/L         | 0        |                                       |          |        |               |          | 10           | ···· -      | 4 U               | 1 UJ                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Cis-1,2-Dichloroethene          | UG/L         | 980      | 28%                                   |          | 14     | 15            | 54<br>54 | 19           |             | 72                | 103                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Cis-1,3-Dichloropropene         | UG/L         | 300      | 0%                                    |          | 0      |               | 54<br>54 | 1U           |             | 4 U               | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
|                                 | UG/L<br>UG/L | 0        | 0%                                    |          |        | 0             | 54       | 1 U          |             | 40                | 10                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                    |
| Ethyl benzene<br>Mothyl bromido | UG/L         | 0        | 0%                                    |          |        |               | 54       | 10           |             | 40                | 1 UJ                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                   |
| Methyl bromide                  | UG/L         | 0        | 0%                                    |          | 0      |               | 54<br>54 | 5 U.         |             | 19 UJ             | 50                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                    |
| Methyl butyl ketone             | UG/L<br>UG/L | 0        | 0%                                    | 5        |        |               | 54<br>54 | 1 U          |             | 4 U               | 1 UJ                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1U                                    |
| Methyl chloride                 |              | 0        |                                       | _        |        | 0             | 54       | 50           |             |                   | 5 UJ                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                   |
| Methyl ethyl ketone             | UG/L         | 0        | 0%                                    | 50       | 0      | 0             |          | 5 U<br>5 U   | · · · · ·   | 19 U              |                         | 5 U<br>5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 U<br>5 U                            |
| Methyl isobutyl ketone          | ÜG/L         | -        |                                       |          | -      | -             | 54       |              |             | 19 U              | 5 U                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                 | UG/L         | 0        |                                       | 5        | 0      | 0             | 54       | 2 U          |             | 8 U               | 2 U                     | 2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 U                                   |
|                                 | UG/L         | 0        | 0%                                    |          | 0      | 0             | 54<br>54 | 1 U          |             | 4 U               | 1 U                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                   |
| Tetrachloroethene               | UG/L         | 0        | 0%                                    | 5        | 0      | 0             |          | 1 U          |             | 4 U               | 1 U                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                   |
| Toluene                         | UG/L         | 2        | 6%                                    | 5        | 0      | 3             | 54       | 1 U          |             | 4 U               | 1 U                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                   |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

1

.

GROUND WATER CHEMICAL RESULTS RD. 2 4 OF 22

| ·· ·                      |      |                       | ĺ         | í        |         | 1       |          |            |          | i .        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |          |            |         |
|---------------------------|------|-----------------------|-----------|----------|---------|---------|----------|------------|----------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|------------|---------|
|                           |      |                       |           |          |         |         |          |            |          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |          |            | · ·     |
|                           |      |                       | ·         | -        |         |         |          |            |          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |          |            |         |
|                           |      | T                     |           | ĺ        |         |         |          |            |          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |          |            |         |
|                           |      | 1                     |           |          | İ       |         |          |            |          | - · · ·    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | • ···      |          |            | t - ··  |
|                           |      | · · · · · · · · · · - |           |          |         |         | ··· · -  | · · ·      | • · · ·  |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |          |            |         |
| FACILITY                  |      |                       |           | ţ        |         |         |          | ASH LANDFI | LL       | ASH LANDF  | ici.     | ASH LANDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ILL      | ASH LANDFI | LL       | ASH LANDFI | TLL .   |
| LOCATION ID               |      |                       |           |          |         |         |          | MW-28      | • • •    | MW-29      |          | MW-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | MW-30      |          | MW-31      |         |
| MATRIX                    |      |                       |           |          |         |         |          | GROUND W   | ATER     | GROUND W   | ATER     | GROUND W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATER     | GROUND W   | ATER     | GROUND W   | ATER    |
| SAMPLE ID                 |      |                       |           |          | - · · · |         |          | ARD2146    |          | ARD2148    |          | ARD2129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Γ        | ARD2115    |          | ARD2114    |         |
| DEPTH TO TOP OF SAMPL     | E    |                       |           |          |         |         |          | 8.5        |          | 9.5        |          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 8.5        |          | 8.5        |         |
| DEPTH TO BOTTOM OF SA     | MPLE |                       |           |          |         |         |          | 8.5        |          | 9.5        |          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 8.5        |          | 8.5        |         |
| SAMPLE DATE               | T    |                       |           |          |         |         |          | 01/20/2000 |          | 01/20/2000 |          | 01/09/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 01/09/2000 |          | 01/09/2000 |         |
| 2C CODE                   |      |                       |           |          |         |         |          | SA         |          | SA         |          | DU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | SA         |          | SA         |         |
| STUDY ID                  |      |                       | FREQUENCY | NYSDEC   | NUMBER  | NUMBER  | NUMBER   | ASH REMED  | IAL DESI | ASH REMED  | IAL DESI | ASH REMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IAL DESI | ASH REMED  | IAL DESI | ASH REMED  | DIAL DE |
| SAMPLE ROUND              |      |                       | OF        | CLASS GA | ABOVE   | OF      | OF       | 2          |          | 2          | -        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I        | 2          |          | 2          | T       |
| PARAMETER                 | UNIT | MAXIMUM               | DETECTION | STD.     | STD.    | DETECTS | ANALYSES | N          |          | N          |          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | N          |          | N          |         |
| Total Xylenes             | UG/L | 0                     | 0%        | 5        | 0       | 0       | 54       | 1          | U        | 4          | U        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U        | 1          | υ        | 1          | U       |
| Frans-1,2-Dichloroethene  | UG/L | 2                     | 4%        | 5        | 0       | 2       | 54       | 1          | U        |            | U        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U        | 1          |          | 1          | U       |
| Frans-1,3-Dichloropropene | UG/L | .0                    |           | 5        | 0       | 0       | 54<br>54 | 1          | U        | 4          | U        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | υ        | 1          |          |            | U       |
| richloroethene            | UG/L | 760                   | 28%       | 5        | 8       | 15      | 54       | 20         |          | 2          | J        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J        | 1          | U        | . 1        | U       |
| /inyl chloride            | UG/L | 25                    | 2%        | 2        | 1       | 1       | 54       | • 1        | υ        | 4          | U        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UJ       | 1          | U        | 1          | UJ      |
| METALS                    |      |                       |           |          |         |         |          |            |          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |          |            |         |
| Aluminum                  | UG/L | 7700                  | 49%       |          | 0       | 25      | 51       | 123        | J        | 98         |          | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 15.5       |          | 833        | J       |
| Antimony                  | UG/L | 4.5                   | 12%       |          | 0       | 6       | . 51     | 2.2        |          | 2.2        |          | 2.2<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U        | 2.2        |          | 2.2        |         |
| Arsenic                   | UG/L | 5                     | 22%       | 25       | 0       | 11      | 51       | 2.5        |          | 4.1        | J        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 2.4        |          | 2.5        |         |
| Banum                     | UG/L | 173                   | 100%      | 1000     | 0       | 51      | 51       | 45.1       | J        | 64.1       | J        | 37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 38         | J        | 34         |         |
| Beryllium                 | UG/L | 0.26                  | 14%       |          | 0       | 7       | 51       | 0.1        |          | 0.1        |          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.1        | U        | 0.1        |         |
| Cadmium                   | UG/L | 0.35                  | 2%        | 10       | 0       | 1       | 51       | 0.2        | U        | 0.2        | U        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.2        | U        | 0.2        |         |
| Calçium                   | UG/L | 391000                | 100%      |          | 0       | 51      | 51       | 126000     |          | 173000     |          | 94900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 99300      |          | 82700      |         |
| Chromium                  | UG/L | 4.1                   | 14%       | 50       | . 0     | 7       | 51       | 1          | U        | 1          | -        | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1          |          | 1.8        |         |
| Cobalt                    | UG/L | 2                     | 6%        |          | 0       | 3       | 51       | 1.3        |          | 1.3        |          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.3        |          | 1.3        |         |
| Copper                    | UG/L | 14.6                  | 33%       | 200      | 0       | 17      | 51       | 1.9        | U        | 5.2        | J        | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.6        |          | 1.6        |         |
| yanide                    | UG/L | 0                     | 0%        | 100      | 0       | Ō       | 51       | 10         | U        | 10         |          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 10         |          | 10         |         |
| ron                       | UG/L | 6350                  | 63%       | 300      | 14      | 32      | _51      | 150        |          | 98.6       | J        | 63.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 20.3       |          | 647        | P       |
| ead                       | UG/L | 3.8                   | 10%       | 25       | 0       | 5       | 51       | 1          | U        |            | U        | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ບ        | 1.3        | U        | 1.3        |         |
| lagnesium                 | UG/L | 85900                 | 100%      |          | 0       | 51      | 51       | 13500      |          | 20800      |          | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 14500      |          | 10800      |         |
| langanese                 | UG/L | 344                   | 100%      | 300      | 2       | 51      | 51       | 4.6        | J        | 7.6        |          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.5        |          | 16.9       |         |
| lercury                   | UG/L | 0.14                  | 2%        |          | 0       | 1       | 51       | 0.1        |          | 0.1        |          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.1        |          | 0.1        |         |
| lickel                    | UG/L | 6.2                   | 10%       |          | 0       | -5      | 51       | 1.7        |          | 1.7        |          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.7        |          | 1.7        |         |
| otassium                  | UG/L | 25600                 | 100%      |          | 0       | 51      | 51       | 607        |          | 594        |          | 1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 1830       |          | 1210       |         |
| elenium                   | UG/L | 3                     | 2%        | 10       | 0       | 1       | 51       | 2.2        |          | 2.2        |          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 2.5        |          | 2.5        |         |
| ilver                     | UG/L | 2.8                   | 2%        | 50       | 00      | 1       | 51       | 1.3        |          | 1.3        |          | and a state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second | UJ       | 1          | UJ       | 1          | บา      |
| odium                     | UG/L | 175000                | 90%       | 20000    | 23      | 46      | 51       | 8210       |          | 20900      |          | 13200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 12300      |          | 11400      |         |
| hallium                   | UG/L | 7.4                   | 6%        |          | 0       | 3       | 51       | 3.2        |          | 3.2        |          | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6.2        |          | 3.6        |         |
| anadium                   | UG/L | 10.8                  | 8%        |          | 0       | 4       | 51       | 1.8        |          | 1.8<br>5.2 | U        | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1.8        |          | 1.8        |         |
| inc                       | UG/L | 1620                  | 100%      | 300      | 1       | 51      | 51       | 3.9        | J        | 5.2        | J        | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J        | 5          | J        | 6.4        | J       |

TABLE 2 GROUND WATER CHEMICAL RESULTS ROUND 2 GROUNDWATER MONITORING ASH REMEDIAL DESIGN SENECA ARMY DEPOT ACTIVITY ROMULUS, NY

|                             |             |         |           |          |        |        | · · · · · |              |          |                   |              |        |                   |                   |
|-----------------------------|-------------|---------|-----------|----------|--------|--------|-----------|--------------|----------|-------------------|--------------|--------|-------------------|-------------------|
|                             |             |         |           |          |        |        | 1         |              | 1        |                   |              |        |                   |                   |
|                             |             |         |           |          |        |        |           |              |          |                   |              |        |                   |                   |
|                             |             |         |           |          |        |        |           |              |          |                   |              |        |                   |                   |
|                             |             |         |           |          |        |        |           |              |          |                   |              |        |                   |                   |
|                             |             |         |           |          |        |        |           |              |          |                   |              |        |                   |                   |
|                             |             |         |           |          |        |        |           |              | 1        |                   |              |        |                   |                   |
|                             |             |         |           |          |        |        | i         |              |          |                   |              |        |                   |                   |
| FACILITY                    |             |         |           |          |        |        |           | ASH LANDFILL |          | ASH LANDFILL      | ASH LANDFILI | Ľ      | ASH LANDFILL      | ASH LANDFILL      |
| LOCATION ID                 |             | 1       |           |          |        |        |           | MW-32        |          | MW-33             | MW-34        |        | MW-35D            | MW-36             |
| MATRIX                      |             |         |           |          | 1      |        |           | GROUND WATE  | R        | GROUND WATER      | GROUND WAT   | TER    | GROUND WATER      | GROUND WATER      |
| SAMPLE ID                   |             |         |           |          |        |        |           | ARD2119      | · · · ]. | ARD2118           | ARD2117      |        | ARD2127           | ARD2124           |
| DEPTH TO TOP OF SAMPLE      |             |         |           |          |        |        |           | 8.5          |          | 8.5               | 15           |        | 45                | 12                |
| DEPTH TO BOTTOM OF SAM      | <b>IPLE</b> |         |           |          |        |        |           | 8.5          |          | 8.5               | 15           |        | 45                | 12                |
| SAMPLE DATE                 |             |         |           |          |        |        |           | 01/09/2000   |          | 01/09/2000        | 01/09/2000   |        | 01/11/2000        | 01/11/2000        |
| QC CODE                     |             |         |           |          |        | · ·    |           | SA           |          | SA                | SA           |        | SA                | SA                |
| STUDY ID                    |             |         | FREQUENCY | NYSDEC   | NUMBER | NUMBER | NUMBER    | ASH REMEDIAL | DESI     | ASH REMEDIAL DESI | ASH REMEDIA  | L DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI |
| SAMPLE ROUND                |             |         | OF        | CLASS GA | ABOVE  | OF     | OF        | 2            |          | 2                 | 2            |        | 2                 | 2                 |
| PARAMÉTER                   | UNIT        | MAXIMUM | DETECTION | STD.     | STD.   |        | ANALYSES  | N            |          | N                 | N            |        | N                 | N                 |
| VOLATILE ORGANICS           |             |         |           |          |        |        |           |              |          |                   |              |        |                   |                   |
|                             | UG/L        | Ō       | 0%        | 5        | i o    | 0      | 54        | 1 U          |          | 1 U               | 10           |        | 1 U               | 10                |
|                             | UG/L        | 0       |           | 5        | 0      | 0      | 54        | 1 UJ         |          | 1 U               | 10           |        | 1 UJ              | 1 U               |
|                             | UG/L        | 0       |           |          | 0      | 0      | 54        | 1 U          |          | 10                | 10           |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        | 5        | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 10                | 1 U               |
|                             | UG/L        | 0       | 0%        | 5        | 0      | Ö      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           | 5        | 0      | Ő      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
| 1,2-Dibromo-3-chloropropane |             | 0       | 0%        |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 10                |
|                             | UG/L        | 0       |           | 4.7      | 0      | 0      | 54        | 10           |          | 1 U               | 1 U          |        | 1 U               | 10                |
|                             | UG/L        | 3       |           | 5        | Ő      | 1      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        | 5        | 0      | 0      | 54<br>54  | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 10                |
| 1,3-Dichlorobenzene         | UG/L        | 0       | 0%        | 5        | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        | 4.7      | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
| Acetone                     | UG/L        | 1       | 4%        |          | 0      | 2      | 54        | 5 UJ         |          | 5 U               | 5 U          | Ĵ      | 5 UJ              | 5 U               |
|                             | UG/L        | 0       | 0%        | 0.7      | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
| Bromochloromethane          | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
| Bromoform                   | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           | 5        | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           | 5        | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           |          | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        | 5        | 0      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           | 7        | 0      | 0      | 54        | 1 UJ         |          | 1 U               | 1 U.         | J      | 1 UJ              | 1 U               |
|                             | UG/L        | 980     | 28%       | 5        | 14     | 15     | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        | 5        | 0      | Ō      | -54       | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        | 5        | Ò      | 0      | 54        | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 1 UJ         |          | 1 U               | 1 U.         |        | 1 UJ              | 1 U               |
|                             | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 5 U          | 1        | 5 U               | 5 U          |        | 5 U               | 5 U               |
|                             | UG/L        | 0       |           | 5        | 0      | 0      | 54        | 1 UJ         |          | 1 U               | 1 U.         | J      | 1 UJ              | 1 U               |
|                             | UG/L        | 0       |           | 50       | 0      | 0      | 54        | 5 UJ         |          | 5 U               | 5 U.         | J      | 5 UJ              | 5 U               |
|                             | UG/L        | 0       | 0%        |          | 0      | 0      | 54        | 5 U          | -        | 5 U               | 5 U          |        | 5 U               | 5 U               |
|                             | UG/L        | 0       |           | 5        | 0      | 0      |           | 2 U          |          | 2 U               | 2 U          |        | 2 U               | 2 U               |
|                             | UG/L        | 0       | 0%        |          | 0      | 0      |           | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 0       |           | 5        | 0      | Ō      |           | 1 U          |          | 10                | 1 U          |        | 1 U               | 1 U               |
|                             | UG/L        | 2       |           | 5        | 0      | 3      |           | 1 U          |          | 1 U               | 1 U          |        | 1 U               | 2                 |
| 10100110                    | 00/L        | ~ ~     | 570       |          |        |        | 04        | .,0          |          |                   |              |        |                   |                   |

|                           | i    | 1       |           |          | 1      | 1       |          | ,          |          |                   |                   | 1                 | 1                 |
|---------------------------|------|---------|-----------|----------|--------|---------|----------|------------|----------|-------------------|-------------------|-------------------|-------------------|
|                           |      |         |           |          |        |         |          | i          |          |                   |                   |                   |                   |
|                           |      |         |           |          |        |         |          | · ·        |          | 1.1               |                   |                   |                   |
|                           |      |         |           |          |        |         |          |            |          |                   |                   |                   | · · · · · · · · · |
|                           |      |         |           |          |        |         |          |            |          |                   |                   |                   |                   |
|                           | +    |         |           |          |        |         |          |            |          |                   |                   |                   |                   |
|                           | +    |         |           |          |        |         |          |            |          |                   |                   | +                 |                   |
| FACILITY                  |      |         |           |          |        |         |          | ASH LANDFI | LL ····· | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL      |
| LOCATION ID               | •••• |         |           |          |        |         |          | MW-32      |          | MW-33             | MW-34             | MW-35D            | MW-36             |
| MATRIX                    | +    |         |           |          |        |         |          | GROUND W   | ATER     | GROUND WATER      | GROUND WATER      | GROUND WATER      | GROUND WATER      |
| SAMPLE ID                 |      |         |           |          |        |         |          | ARD2119    |          | ARD2118           | ARD2117           | ARD2127           | ARD2124           |
| DEPTH TO TOP OF SAMPLE    | I    |         |           |          |        |         |          | 8.5        |          | 8.5               | 15                | 45                | 12                |
| DEPTH TO BOTTOM OF SAM    |      | +       |           |          |        |         |          | 8.5        |          | 8.5               | 15                | 45                | 12                |
| SAMPLE DATE               |      |         |           |          |        |         |          | 01/09/2000 |          | 01/09/2000        | 01/09/2000        | 01/11/2000        | 01/11/2000        |
| QC CODE                   |      |         |           |          |        |         |          | SA         |          | SA                | SA                | SA                | SA                |
| STUDY ID                  |      |         | FREQUENCY | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REMED  | IAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI |
| SAMPLE ROUND              |      |         | OF        | CLASS GA | ABOVE  | OF      | OF       | 2          |          | 2                 | 2                 | 2                 | 2                 |
| PARAMETER                 | UNIT | MAXIMUM | DETECTION | STD.     | STD.   | DETECTS | ANALYSES | N          |          | N                 | N .               | N                 | N                 |
| Total Xylenes             | UG/L | 0       | 0%        | 5        | Ő      | 0       | 54       | 1          | υ        | 10                | 10                | 1 U               | 1 U               |
| Trans-1,2-Dichloroethene  | UG/L | 2       | 4%        | 5        | 0      | 2       | 54       | 1          | U        | 10                | 1 U               | 1 U               | 1 U               |
| Trans-1,3-Dichloropropene | UG/L | 0       | 0%        | 5        | 0      | 0       | 54       | 1          | U        | 10                | 1 U               | 1 U               | 1 U               |
| Trichloroethene           | UG/L | 760     | 28%       | 5        | 8      | 15      | 54       | 1          | U        | 1U                | 1 U               | 1 U               | 1 U               |
| Vinyl chloride            | UG/L | 25      | 2%        | . 2      | 1      | 1       | 54       | 1          | ŪJ       | 10                | 1 UJ              | 1 UJ              | 1 U               |
| METALS                    |      |         | ······    |          |        |         |          |            |          |                   |                   |                   |                   |
| Aluminum                  | UG/L | 7700    | 49%       |          | 0      | 25      | 51       | 118        | J        | 15.5 UJ           | 55.5 J            | 91.8 J            | 20.3 J            |
| Antimony                  | UG/L | 4.5     | 12%       |          | 0      | 6       | 51       | 2.2        | U        | 2.2 U             | 2.2 U             | 3.6 J             | 2.2 U             |
| Arsenic                   | UG/L | 5       | 22%       | 25       | 0      | 11      | 51       | 2.5        | U        | 2.5 U             | 2.5 U             | 3.2 J             | 2.5 U             |
| Barium                    | UG/L | 173     | 100%      | 1000     | 0      | 51      | 51       | 41.3       | J        | 34.2 J            | 96.7 J            | 82.9 J            | 54.7 J            |
| Beryllium                 | UG/L | 0.26    | 14%       |          | 0      | 7       | 51       | 0.1        |          | 0.1 U             | 0.1 U             | 0.1 U             | 0.1 U             |
| Cadmium                   | UG/L | 0.35    | 2%        | 10       | 0      | 1       | 51       | 0.2        | U        | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |
| Calcium                   | UG/L | 391000  | 100%      |          | 0      | 51      | 51       | 102000     |          | 97500             | 75800             | 14400             | 107000            |
|                           | UG/L | 4.1     | 14%       | 50       | 0      | 7       | 51       | 1          |          | 1 U               | 1 U               | 1 U               | 1 U               |
| Cobalt                    | UG/L | 2       | 6%        |          | 0      | . 3     | 51       | 1.3        |          | 1.3 U             | 1.3 U             | 1.3 U             | 1.3 U             |
| Copper                    | UG/L | 14.6    | 33%       | 200      | 0      | 17      | 51       | 1.6        |          | 1.7 J             | 1.6 U             | 1.9 U             | 1.9 U             |
| Cyanide                   | UG/L | 0       | 0%        | 100      |        | . 0     | 51       | 10         |          | 10 U              | 10 U              | 10 U              | 10 U              |
| Iron                      | UG/L | 6350    | 63%       | 300      |        | 32      | 51       | 158        | J        | 20.3 UJ           | 203 J             | 97.8 J            | 20.3 UJ           |
| Lead                      | UG/L | 3.8     | 10%       | 25       | 0      | 5       | 51       | 1.3        | U        | 1.3 J             | 1.3 U             | 1.4 J             | 1.3 U             |
| Magnesium .               | UG/L | 85900   | 100%      |          | 0      | 51      | 51       | 13800      |          | 11100             | 13300             | 4690 J            | 15900             |
| Manganese                 | UG/L | 344     | 100%      | 300      | 2      | 51      | 51       | 12.3       |          | 2.2 J             | 39.7              | 44.4              | 41.1              |
| Mercury                   | UG/L | 0.14    | 2%        | 2        | 0      | 1       | 51       | 0.1        |          | 0.1 U             | 0.1 U             | 0.1 U             | 0.1 U             |
| Nickel                    | UG/L | 6.2     | 10%       |          | 0      | 5       | 51       | 1.7        |          | 1.7 U             | 1.8 J             | 1.7 U             | 1.7 U             |
| Potassium                 | UG/L | 25600   | 100%      |          | 0      | 51      | 51       | 1980       |          | 630 J             | 1730 J            | 1650 J            | 1250 J            |
| Selenium                  | UG/L | 3       | 2%        | 10       |        |         | 51       | 2.5        |          | 2.5 U             | 2.5 U             | 2.2 U             | 2.2 U             |
| Silver                    | UG/L | 2.8     | 2%        | 50       |        | 1       | 51       | 1          | UJ       | 1 UJ              | 1 UJ              | 1.3 UJ            | 1.3 UJ            |
| Sodium                    | UG/L | 175000  | 90%       | 20000    | 23     | 46      | 51       | 18100      |          | 15800             | .41200            | 107000            | 29300             |
|                           | UG/L | 7.4     | 6%        |          | 0      | 3       | 51       | 3.2        |          | 3.2 U             | 3.2 U             | 3.2 U             | 3.2 U             |
|                           | UG/L | 10.8    | 8%        |          | 0      | 4       | 51       | 1.8        |          | 1.8 U             | 1.8 U             | 1.8 U             | 1.8 U             |
| Zinc                      | UG/L | 1620    | 100%      | 300      | 1      | 51      | 51       | 5.1        | J        | 4.6 J             | 19.1 J            | 6.4 J             | 5.4 J             |

|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | 1       | 1        |            |          |                       |           | T          | 1         |            |           |            | ſ        |
|-----------------------------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|----------|------------|----------|-----------------------|-----------|------------|-----------|------------|-----------|------------|----------|
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | 1       |          |            |          |                       |           |            |           |            |           |            |          |
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          |            |          |                       |           |            |           |            |           |            | ļ .      |
| · · · · · · ·               |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          |            |          |                       |           |            |           |            |           |            |          |
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | ļ       |          |            |          | -                     |           |            |           |            |           |            |          |
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          |            |          | 1                     |           |            |           |            |           |            |          |
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          |            |          |                       | 4         |            |           |            |           |            |          |
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          |            |          |                       | L         |            |           |            |           |            |          |
| FACILITY                    |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          | ASH LANDFI | LL .     | ASH LANDF             | ILL .     | ASH LANDF  | ILL       | ASH LANDF  |           | ASH LANDF  | ILL      |
| LOCATION ID                 |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          | MW-37      |          | MW-38D                | l         | MW-39      |           | MW-40      |           | MW-41D     |          |
| MATRIX                      |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | 1       |          | GROUND W   | ATER     | GROUND W              | ATER      | GROUND W   | ATER      | GROUND W   | ATER      | GROUND W   | ATER     |
| SAMPLE ID                   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          | ARD2120    |          | ARD2122               |           | ARD2102    |           | ARD2108    |           | ARD2100    |          |
| DEPTH TO TOP OF SAMPLE      |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          | 11.5       |          | 20                    |           | 9.5        |           | 12         |           | 32         |          |
| DEPTH TO BOTTOM OF SAM      | IPLE   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          | 11.5       |          | 20                    |           | 9.5        |           | 12         |           | 32         |          |
| SAMPLE DATE                 |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | 1       |          | 01/10/2000 |          | 01/10/2000            |           | 01/06/2000 |           | 01/07/2000 |           | 01/06/2000 |          |
| QC CODE                     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          | SA         |          | SA                    |           | SA         | 1         | SA         |           | SA         |          |
| STUDY ID                    |        |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REMED  | IAL DESI | ASH REMED             | DIAL DESI | ASH REMED  | DIAL DESI | ASH REMED  | DIAL DESI | ASH REMED  | IAL DESI |
| SAMPLE ROUND                |        |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLASS GA | ABOVE  | OF      | OF       | 2          |          | 2                     |           | 2          |           | 2          |           | 2          |          |
| PARAMETER                   | UNIT   | MAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STD.     | STD.   | DETECTS | ANALYSES | N          |          | N                     |           | N          |           | N          |           | N          |          |
| VOLATILE ORGANICS           |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |         |          |            |          |                       | -         |            |           |            |           |            |          |
| 1,1,1-Trichloroethane       | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 54       | 1          | Ŭ        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,1,2,2-Tetrachloroethane   | UG/L   | ō       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | Ō       | 54       | 1          | U        | 1                     | UJ        | 1          | U         | 1          | U         | 1          | U        |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Ō      | ō       | 54       | 1          | U        | 1                     | U         | 1          | Ü         | 1          | U         | 1          | U        |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | Ó Ó    | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,1-Dichloroethene          | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,2,4-Trichlorobenzene      | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,2-Dibromo-3-chloropropane | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,2-Dibromoethane           | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | υ         |            | υ        |
| 1,2-Dichlorobenzene         | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7      | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,2-Dichloroethane          | UG/L   | 3       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 1       | 54       | 1          | υ        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| 1,2-Dichloropropane         | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | υ        |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         |            | Ú        |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7      | Ō      | 0       | 54       | 1          |          | 1                     | U         |            | ບ         |            | U         | 1          |          |
|                             | UG/L   | 1       | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 2       |          | 5          |          | 5                     | nı        | 5          | UJ        |            | U         |            | UJ       |
| Benzene                     | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7      | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | U         | 1          | U         | 1          | U        |
| Bromochloromethane          | UG/L · | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 54       | 1          | U        | 1                     | U         | 1          | υ         | 1          | U         | 1          | U        |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 54       | 1          |          |                       | υ         |            | U         |            | U         | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0      | 0       | 54       | 1          |          |                       | U         |            | U         |            | U         |            | U        |
|                             | UG/L   | 0       | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |          | 0      | 0       | 54       | 1          |          |                       | U         |            | U         |            | U         | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | Ō      | 0       | 54<br>54 | 1          |          |                       | υ         | 1          |           | 1          |           | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      | 0       |          | 1          |          | a second a second and | U         |            | U         |            | U         | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Ö      | 0       | 54       | 1          |          |                       | U         | 1          |           |            | U         | .1         |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      | 0       | 54<br>54 | 1          |          |                       | U         | 1          |           |            | U         | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7        | 0      | 0       |          | 1          |          |                       | UJ        |            | U         |            | U         | 1          |          |
|                             | UG/L   | 980     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 14     | 15      | 54<br>54 | 1          |          |                       | U         |            | U         |            | U         | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      | 0       | 54       | 1          |          |                       | υ         | 1          |           | 1          |           | 1          |          |
|                             | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      | 0       | 54       | 1          |          |                       | U         |            | U         |            | U         | 1          |          |
|                             | UG/L   | Ó       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0      | 0       | 54       | 1          |          |                       | UJ        |            | υ         | 1          |           | 1          |          |
| Methyl butyl ketone         | UG/L   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0      | 0       | 54       | 5          |          |                       | U         | 5          | UJ        | 5          |           |            | UJ       |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      |         | 54       | 1          |          |                       | UJ        | 1          |           |            | U         | 1          |          |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       | 0      | 0       | 54       | 5          | U        |                       | UJ        |            | UJ        | 5          |           |            | UJ       |
|                             | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0      | 0       | 54       | 5          | U        | 5                     | U         | 5          | U         | 5          | U         | 5          | U        |
|                             |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        | 0       | 54       | 2          | 1        | 2                     | U         | 2          | 11        | 2          | 11        | 2          | U        |
| Methylene chloride          | UG/L   | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 0      | 01      | 54       | 4          | 0 1      | 4                     |           |            | U U       | -          | 0         | ~          |          |
|                             |        | 0       | 0%<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5        | 0<br>0 | 0       | 54       | 1          |          | 1                     |           | 1          | U         | 1          |           | 1          |          |
| Styrene                     | UG/L   |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | Ó      | 0       |          |            | U        |                       | υ.        |            | U         |            | U         |            | U        |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

.

GROUND WATER CHEMICAL RESULTS RD. 2 7 OF 22

|                                       |      |         |           |          |        |          |          | i i             |                       |                   |                   |                   |
|---------------------------------------|------|---------|-----------|----------|--------|----------|----------|-----------------|-----------------------|-------------------|-------------------|-------------------|
|                                       |      | · ··    |           |          |        |          |          |                 |                       |                   |                   |                   |
|                                       |      | k       |           |          |        |          |          |                 |                       |                   |                   |                   |
|                                       |      |         |           |          |        |          |          |                 |                       |                   |                   |                   |
| · · · · · · · · · · · · · · · · · · · |      |         |           |          |        |          |          |                 |                       |                   |                   |                   |
|                                       |      |         |           |          |        | <b>.</b> |          |                 |                       |                   |                   |                   |
|                                       |      |         |           |          |        |          |          |                 |                       |                   |                   |                   |
| FACILITY                              |      |         |           |          |        |          |          | ASH LANDFILL    | ASH LANDFILL          | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL      |
| LOCATION ID                           |      |         |           |          |        |          |          | MW-37           | MW-38D                | MW-39             | MW-40             | MW-41D            |
| MATRIX                                |      |         |           |          |        |          |          | GROUND WATER    | GROUND WATER          | GROUND WATER      | GROUND WATER      | GROUND WATER      |
| SAMPLE ID                             |      |         | ····      |          |        |          |          | ARD2120         | ARD2122               | ARD2102           | ARD2108           | ARD2100           |
| DEPTH TO TOP OF SAMPLE                |      |         |           |          |        |          |          | 11.5            | 20                    | 9.5               | 12                | 32                |
| DEPTH TO BOTTOM OF SA                 | MPLE |         |           |          |        |          |          | 11.5            | 20                    | 9.5               | 12                | . 32              |
| SAMPLE DATE                           |      |         |           |          |        |          |          | 01/10/2000      | 01/10/2000            | 01/06/2000        | 01/07/2000        | 01/06/2000        |
| QC CODE                               |      |         |           |          |        |          |          | SA              | SA                    | SA                | SA                | SA                |
| STUDY ID                              |      |         | FREQUENCY | NYSDEC   | NUMBER | NUMBER   | NUMBER   | ASH REMEDIAL DI | ESI ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI |
| SAMPLE ROUND                          |      |         | OF        | CLASS GA | ABOVE  | OF       | OF       | 2               | 2                     | 2                 | 2                 | 2                 |
| PARAMETER                             | UNIT | MAXIMUM | DETECTION | STD.     | STD.   | DETECTS  | ANALYSES | N               | N                     | N                 | N                 | N                 |
| Total Xylenes                         | UG/L | 0       | 0%        | 5        | 0      | 0        | 54       | 1 U             | 1 U                   | 1 U               | 1 U               | 1 U               |
| Trans-1,2-Dichloroethene              | UG/L | - 2     | 4%        | 5        | 0      | 2        | 54       | 1 U             | 10                    | 1 U               | 1 U               | 10                |
| Trans-1,3-Dichloropropene             | UG/L | 0       | 0%        | 5        | 0      | 0        | 54       | 1 U             | 1 U                   | 1 U               | 1 U               | 10                |
| Trichloroethene                       | UG/L | 760     | 28%       | . 5      | 8      | 15       | 54       | 1 U             | 1 U                   | 1.0               | 1 U               | 1 U               |
| Vinyl chloride                        | UG/L | 25      | 2%        | 2        | 1      | 1        | 54       | 1 U             | 1 UJ                  | 10                | 1 U               | 1 U               |
| METALS                                |      |         |           |          |        |          |          |                 |                       |                   |                   |                   |
| Aluminum                              | UG/L | 7700    | 49%       |          | 0      | 25<br>6  | 51       | 395 J           | 80.4 J                | 15.5 UJ           | 15.5 UJ           | 15.5 UJ           |
| Antimony                              | UG/L | 4.5     | 12%       |          | ō      | 6        | 51       | 2.2 U           | 2.2 U                 | 2.2 U             | 2.2 U             | 2.2 U             |
| Arsenic                               | UG/L | 5       | 22%       | 25       | 0      | 11       | 51       | 2.5 U           | 3.1 J                 | 2.5 U             | 2.5 U             | 2.5 U             |
| Barium                                | UG/L | 173     | 100%      | 1000     | 0      | 51       | 51       | 54.9 J          | 170 J                 | 37 J              | 69.2 J            | 75.9 J            |
| Beryllium                             | UG/L | 0.26    | 14%       |          | 0      | 7        | 51       | 0.1 U           | 0.1 U                 | 0.12 J            | 0.1 U             | 0.12 J            |
| Cadmium                               | UG/L | 0.35    | 2%        | 10       | 0      | 1        | 51       | 0.2 U           | 0.2 U                 | 0.2 U             | 0.2 U             | 0.2 U             |
| Calcium                               | UG/L | 391000  | 100%      |          | 0      | 51       | 51       | 95000           | 95900                 | 94400             | 96800             | 74100             |
| Chromium                              | UG/L | 4.1     | 14%       | 50       | 0      | 7        | 51       | 1 U             | 10                    | 10                | 2.9 J             | 1 U               |
| Cobalt                                | UG/L | 2       | 6%        |          | 0      | 3        | 51       | 1.3 U           | 1.3 U                 | 1.3 U             | 1.3 U             | 1.3 J             |
| Copper                                | UG/L | 14.6    | 33%       | 200      | 0      | 17       | 51       | 1.9 U           | 1.9 U                 | 1.6 U             | 1.7 J             | 1.6 J             |
| Cyanide                               | UG/L | 0       | 0%        | 100      | 0      | 0        | 51       | 10 U            | 10 U                  | 10 U              | 10 U              | 10 U              |
| Iron                                  | UG/L | 6350    | 63%       | 300      | 14     | 32       | 51       | <b>498</b> J    | <b>595</b> J          | 20.3 UJ           | 20.3 UJ           | 20.3 UJ           |
| Lead                                  | UG/L | 3.8     | 10%       | 25       | 0      | 5        | 51       | 1.3 U           | 1.3 U                 | 1.3 U             | 1.3 U             | 1.3 U             |
| Magnesium                             | UG/L | 85900   | 100%      |          | 0      | 51       | 51       | 12800           | 15800                 | 12700             | 11100             | 27100             |
| Manganese                             | UG/L | 344     | 100%      | 300      | 2      | 51       | 51       | 53.1            | 251                   | 1.2 J             | 1.8 J             | 182               |
| Mercury                               | UG/L | 0.14    | 2%        | 2        | Ō      | 1        | 51       | 0.1 Ū           | 0.1 U                 | 0.1 U             | 0,1 U             | 0.1 U             |
| Nickel                                | UG/L | 6.2     | 10%       |          | 0      | 5        | 51       | 1.7 U           | 1.7 U                 | 1.7 U             | 1.7 U             | 2.1 J             |
| Potassium                             | UG/L | 25600   | 100%      |          | 0      | 51       | 51       | 895 J           | 7990                  | 1680 J            | 1340 J            | 3230 J            |
| Selenium                              | UG/L | 3       | 2%        | 10       | 0      | 1        | 51       | 2.2 U           | 2.2 U                 | 2.5 U             | 2.5 U             | 2.5 U             |
| Silver                                | UG/L | 2.8     | 2%        | 50       | Ő      | 1        | 51       | 1.3 UJ          | 1.3 UJ                | 1 UJ              | 1 UJ              | 1 UJ              |
| Sodium                                | UG/L | 175000  | 90%       | 20000    | 23     | 46       | 51       | 10400           | 6750                  | 7400              | 13900             | 50400             |
| Thallium                              | UG/L | 7.4     | 6%        | 20000    | - 23   | -0       | 51       | 3.2 UJ          | 3.2 UJ                | 3.2 U             | 3.2 U             | 3.2 U             |
| Vanadium                              | UG/L | 10.8    | 8%        |          | 0      | 4        | 51       | 1.8 U           | 1.8 U                 | 1.8 U             | 1.8 U             | <u> </u>          |
| Zinc                                  | UG/L | 1620    | 100%      | 300      |        | 51       |          | 13.8 J          | 7.5 J                 | 1.8 U<br>11.2 J   | 9.1 J             | 9.4 J             |
|                                       | UG/L | 1620    | 100%      | 300      | 1      | 51       | 51       | 13.8 J          | 1.5]J                 | 11.2 J            | 9.1 J             | 9.4 J             |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ļ       | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |        |         |          |                 |                    |                   |                       |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|----------|-----------------|--------------------|-------------------|-----------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | · .     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |        |         |          |                 |                    |                   |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          |                 |                    |                   |                       |                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 1      |         |          |                 |                    |                   |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         | 1        |                 |                    |                   |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          |                 |                    |                   |                       |                   |
| المتداد منه المتعد إلى إل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          |                 |                    |                   |                       |                   |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          | ASH LANDFILL    | ASH LANDFILL       | ASH LANDFILL      | ASH LANDFILL          | ASH LANDFILL      |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        |         |          | MW-42D          | MW-43              | MW-44A            | MW-45                 | MW-46             |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 1       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        |         | 1        | GROUND WATER    | GROUND WATER       | GROUND WATER      | GROUND WATER          | GROUND WATER      |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          | ARD2109         | ARD2103            | ARD2155           | ARD2112               | ARD2113           |
| DEPTH TO TOP OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          | 38              | 6.5                | 12                | 7.5                   | 9.5               |
| DEPTH TO BOTTOM OF SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>MPLE</b>  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        | ·       |          | - 38            | 6.5                | 12                | 7.5                   | 9.5               |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          | 01/07/2000      | 01/06/2000         | 01/22/2000        | 01/08/2000            | 01/08/2000        |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |         |          | SA              | SA                 | SA                | SA                    | SA                |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | NUMBER | NUMBER  | NUMBER   | ASH REMEDIAL DE | SI ASH REMEDIAL DE | SI ASH REMEDIAL D | ESI ASH REMEDIAL DESI | ASH REMEDIAL DESI |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLASS GA |        | OF      | OF       | 2               | 2                  | 2                 | 2                     | 2                 |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT         | MAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STD.     | STD.   | DETECTS | ANALYSES | N               | N                  | N                 | <u>N</u>              | N                 |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | ļ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ        | ļ      |         | L        | .               |                    |                   |                       |                   |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 UJ                  | 3 UJ              |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        | 0      | 0       | 54       | 1 UJ            | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| contractory commences and commences and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0      | 0       | 54       | 10              | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | . 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7      | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 10                    | 3 U               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 3       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      |         | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      |         | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7      | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | <u>1 U</u>            | 3 U               |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 2       | 54       | 5 U             | 5 UJ               | 88 R              | 5 U                   | 17 U              |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7      | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      |         | 54       | 10              | 10                 | 18 U              | 1 U                   | 3 U               |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 0       | and and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          | 0      |         | 54       | 1 <u>U</u>      | 1 U                | 18 U              | 1 U                   | 3 U<br>3 U        |
| Bromoform .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54<br>54 | 1 U<br>1 U      | 10                 | 18 U              | 1 U                   |                   |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG/L<br>UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        | 0       | 54<br>54 | 10<br>10        | 10                 | 18 U              | -1U<br>1U             | 3 U<br>3 U        |
| A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR O | UG/L<br>UG/L |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        | 0      |         | 54<br>54 |                 | 1 U<br>1 U         | 18 U              | 10                    | 3 U<br>3 U        |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L<br>UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        | 0       | 54<br>54 | 1 U<br>1 U      | 10                 | 18 U<br>18 U      | 1 <u>U</u><br>1U      | 3 U<br>3 U        |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L<br>UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      |         | 54<br>54 | 10              | 10                 | 18 U<br>18 U      |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L<br>UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54<br>54 | 1 U<br>1 U      | 10                 | 18 U              | 1 U<br>1 U            | 3 U<br>3 U        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L<br>UG/L | 980     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /<br>    |        | 15      | 54<br>54 | 10<br>10        | 1 U                | 270               |                       |                   |
| And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L<br>UG/L | 980     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        |        | 15      | 54<br>54 | 1 U<br>1 U      | 1 U<br>1 U         | 18 U              | 10                    | 42<br>3 U         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        |        |         | 54<br>54 | 1 U             | 10                 | 18 U              | 1 U                   | 3 U<br>3 U        |
| Ethyl benzene<br>Mothyl bromido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Э        |        |         | 54       | 10              | 10                 | 18 U              | 10                    | 3 U               |
| Methyl bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ~ ~    |         | 54<br>54 | 5 U             | 5 UJ               | 88 UJ             | 50                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E        | 0      | 0       | 54<br>54 | 1 U             | 10                 | 18 U              | 1 U                   | 30                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L<br>UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50       | 0      | 0       |          | 50              | 5 UJ               |                   |                       | 17 U              |
| Methyl ethyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50       |        |         | 54<br>54 | 5 U<br>5 U      |                    | 88 U              | 5 U<br>5 U            | 17 U              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       |          |                 | 5 U                |                   |                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      |         | 54       | 2 U             | 2 U                | 35 U              | 2 U                   | 7 U               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0      | 0       | 54       | 1 U             | 10                 | 18 U              | 1 U                   | <u>3 U</u>        |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UG/L         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        | 0      | 0       | 54       | 1 U             | 1 U                | 18 U              | 1 U                   | 3 U               |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 2       | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 0      | - 3     | 54       | 1 U             | 1 U                | 18 U              | 10                    | 3 U               |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

ŝ

GROUND WATER CHEMICAL RESULTS RD. 2 9 OF 22

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 1               | 1         | 1                                     |           |                                       |                |                                       |          |                         |                                 | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|---------------------------------------|-----------|---------------------------------------|----------------|---------------------------------------|----------|-------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |           |                                       |           |                                       |                |                                       |          |                         |                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · -    | · · · · ·       |           |                                       |           |                                       |                |                                       |          |                         |                                 | · · · · · · · · · · · · · · · · · · · | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |           |                                       |           |                                       | -              |                                       |          | · · · · · · · · · · · · |                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·    |                 |           |                                       |           |                                       |                |                                       |          |                         | +                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | '         |                                       |           |                                       |                |                                       |          |                         |                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            |                 |           |                                       |           |                                       |                |                                       |          |                         |                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | · · · · · · · · |           |                                       |           |                                       |                |                                       |          |                         |                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | +               |           |                                       |           |                                       | <b>!</b> .     | ASH LANDFI<br>MW-42D                  |          | ASH LANDFILL            | ASH LANDFILL                    | ASH LANDFILL                          | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                 |           |                                       |           |                                       |                | GROUND W                              | TED      | MW-43                   | MW-44A                          | MW-45<br>GROUND WATER                 | MW-46<br>GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |           |                                       |           |                                       |                | ARD2109                               | ATER     | GROUND WATER<br>ARD2103 | GROUND WATER                    | ARD2112                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DEPTH TO TOP OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                 |           |                                       | · · · · · |                                       |                | ARD2109<br>38                         |          | 6.5                     |                                 |                                       | ARD2113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DEPTH TO BOTTOM OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |           |                                       |           |                                       |                | 38                                    |          |                         | 12                              | 7.5                                   | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                 |           |                                       |           |                                       |                | 38<br>01/07/2000                      |          | 6.5                     | 12<br>01/22/2000                | 7.5                                   | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                 |           |                                       |           |                                       |                | SA                                    |          | 01/06/2000              |                                 | 01/08/2000                            | 01/08/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | +               | FREQUENCY | NYSDEC                                | NUMBER    | NUMBER                                | NUMBER         |                                       |          | SA<br>ASH REMEDIAL DESI | SA<br>ASH REMEDIAL DESI         | SA                                    | SA<br>ASH REMEDIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | +               | OF        | CLASS GA                              | ABOVE     | NUMBER<br>OF                          | OF             | ASH REMED                             | IAL DESI |                         |                                 |                                       | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT         | MAYINA          | DETECTION | STD.                                  |           |                                       | ANALYSES       |                                       |          | 2                       | 2<br>N                          | 2<br>N                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THE REAL PROPERTY AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O | UG/L         |                 |           | 510.                                  | - SID.    | DETECTS                               | ANALTSES<br>54 | 1                                     |          | 1 U                     |                                 | 10                                    | N<br>3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Xylenes<br>Trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 2               | 0%        | 5                                     | 0         | 0                                     | 54<br>54       | 1                                     |          | 10                      | 18 U<br>18 U                    | 10                                    | 3 U<br>3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second designed as a second de | UG/L         | 2               |           | 5                                     |           | _ ·                                   | 54             | 1                                     |          | 1 U                     | 18 U                            |                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         |                 | 28%       | 5                                     |           |                                       |                | 1                                     |          | 10                      | 13 J                            | 1 U                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 760             | 20%       | 5                                     |           | 15                                    | 54             |                                       | UJ       | 10                      | 2023 CONTRACTOR STORE AND ADD - | 1 U                                   | 3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vinyl chloride<br>METALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L         | 25              | 2%        | 2                                     | ·         | · · · · · · · · · · · · · · · · · · · | 54             | · · · · · · · · · · · · · · · · · · · | UJ       | 10                      | 25                              | 1 U                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L         | 7700            | 49%       |                                       |           |                                       | 51             | 15.5                                  |          | 15.5 UJ                 | 34.4 UJ                         | 15.5 UJ                               | 15.5 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L         | 4.5             | 49%       |                                       | 0         | 25                                    | 51             | . 2.2                                 |          | 2.2 U                   | 2.5 J                           | 2.2 U                                 | 2.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L         | 4.5             | 22%       | 25                                    | 0         | 11                                    | 51             | 2.2                                   |          | 2.2 U                   | 2.5 J                           | 2.2 U                                 | 2.2 U<br>2.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 173             | 100%      | 1000                                  |           | 51                                    | 51             | 93.2                                  |          | 39.6 J                  | 66.9 J                          | <u>2.5 0</u><br>41 J                  | 56 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 0.26            | 14%       | 1000                                  |           | 51                                    | 51             | 93.2                                  |          | 0.1 U                   | 0.1 U                           | 0.1 U                                 | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0.26            | 2%        | 10                                    |           | · · · · · · · · · · · · · · · · · · · | 51             | 0.1                                   |          | 0.1 U                   | 0.1 U                           | 0.1 0                                 | 0.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| second statement that has not a substantial substantial second statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 391000          | 100%      |                                       | 0         | 51                                    | 51             | 53700                                 |          | 114000                  | 391000                          | 93800                                 | 126000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 4.1             | 14%       | 50                                    |           | 7                                     | 51             | 55700                                 |          | 1 1 U                   | 1 U                             | 1.5 J                                 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 4.1             | 6%        |                                       |           |                                       | 51             | 1.3                                   |          | 1.3 U                   | 1.3 U                           | 1.3 U                                 | 1.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the second second and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                                                                                                                                                                                                                             | UG/L         | 14.6            | 33%       | 200                                   |           | 3<br>17                               | 51             | 1.6                                   |          | 3,1 J                   | 1.9 U                           | 3.1 J                                 | 2.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 14.0            | 0%        | 100                                   |           | 0                                     | 51             | 10                                    |          | 10 U                    | 10 U                            | 10 U                                  | 10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 6350            | 63%       | 300                                   | 14        | 32                                    | 51             | 137                                   |          | 20.3 UJ                 | 48.9 J                          | 20.3 UJ                               | 179 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UG/L         | 3.8             | 10%       | 25                                    | 0         | 5                                     | 51             | 1.3                                   |          | 1U                      | 10                              | 1.3 U                                 | 1.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 85900           | 100%      | 25                                    | 0         | 51                                    | 51             | 28300                                 | ·        | 10800                   | 85900                           | 10900                                 | 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UG/L         | 344             | 100%      | 300                                   | 2         | 51                                    | 51             | 28300                                 |          | 0.95 J                  | 300                             | 1.6 J                                 | 38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 0.14            | 2%        | 300                                   |           |                                       | 51             | 0.1                                   |          | 0.1 U                   | 0.1 U                           | 0.1 U                                 | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UG/L         | 6.2             | 10%       | · · · · · · · · · · · · · · · · · · · | 0         |                                       | 51             | 1.7                                   |          | 1.7 U                   | 1.7 U                           | 1.7 U                                 | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 25600           | 10%       |                                       | - ā       | 51                                    | 51             | 1960                                  |          | 420 J                   | 25600                           | 706 J                                 | 730 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 25600           | 2%        | 10                                    | ñ         |                                       | 51             | 2.5                                   |          | 2.5 U                   | 2.2 U                           | 2.5 U                                 | 2.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 2.8             | 2%        | 50                                    |           |                                       | 51             | 2.5                                   |          | 1 UJ                    | 1.3 UJ                          | 1 UJ                                  | 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 175000          | 2%<br>90% | 20000                                 | 22        | 46                                    | 51             | 15900                                 |          | 9960                    | 91500 J                         | 7060                                  | 10500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L<br>UG/L | 7.4             | 90%       | 20000                                 | 23<br>0   | 40                                    | 51             | 3.2                                   | 1        | 3.2 U                   | 3.2 U                           | 3.2 U                                 | 3.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 10.8            | 8%        |                                       | 0         | 3                                     | 51             | 1.8                                   |          | 1.8 U                   | 1.8 U                           | 1.8 U                                 | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG/L         | 1620            | 100%      | 300                                   |           | 51                                    | 51             | 3.2                                   |          | 4.1 J                   | 2.4 J                           | 4.5 J                                 | 3.8 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00/L         | 1020            | 100%      | 300                                   | 1         | 51                                    | 51             | 3.2                                   | ,        | 4.1 J                   | 2.4 J                           | 4.3 J                                 | 3.0 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

| I                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1          |       | 1       |                                       |            |           |                 |                    |                      |                   |
|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------|---------|---------------------------------------|------------|-----------|-----------------|--------------------|----------------------|-------------------|
|                             |              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |            |       | -       | 1                                     | 1          |           |                 |                    |                      |                   |
|                             | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       |            |           |                 |                    |                      |                   |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       |            |           |                 |                    |                      |                   |
|                             |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |            |       |         | 1                                     |            |           |                 |                    |                      |                   |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         | ]                                     |            |           |                 |                    |                      |                   |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       |            |           |                 |                    |                      | [                 |
|                             | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         | ĺ                                     |            |           | 1               |                    |                      | T T               |
| FACILITY                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       | ASH LANDFI | .L        | ASH LANDFILL    | ASH LANDFILL       | ASH LANDFILL         | ASH LANDFILL      |
| LOCATION ID                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       | MW-48      |           | MW-49D          | MW-50D             | MW-51D               | MW-52D            |
| MATRIX                      | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       | GROUND WA  | TFR       | GROUND WATER    | GROUND WATER       | GROUND WATER         | GROUND WATER      |
| SAMPLE ID                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       | ARD2111    |           | ARD2134         | ARD2135            | ARD2142              | ARD2143           |
| DEPTH TO TOP OF SAMPL       | <br>F        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       |         |                                       | 9.5        |           |                 | 50                 | 28                   | 50                |
| DEPTH TO BOTTOM OF SA       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | • • • |         | · ·                                   | 9.5        |           | 26<br>26        | 50                 | 28                   | 50                |
| SAMPLE DATE                 | T            | · • · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            |       |         | ÷                                     | 01/08/2000 |           | 01/18/2000      | 01/18/2000         | 01/19/2000           | 01/18/2000        |
| QC CODE                     |              | ·  ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |            |       |         | • • • • • • • • • • • • • • • • • • • | SA         | ··· · · · | SA              |                    | SA SA                | SA                |
| STUDY ID                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FREQUENCY | NYCDEC     |       |         | NUMBER                                |            |           |                 | SA SA              |                      |                   |
|                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | NYSDEC     |       | NUMBER  |                                       | ASH REMED  | AL DESI   | ASH REMEDIAL DE | SI ASH REMEDIAL DI | SI ASH REMEDIAL DESI | ASH REMEDIAL DESI |
| SAMPLE ROUND                | +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OF        | CLASS GA   | ABOVE | OF      | OF                                    |            |           | 2               | 2                  | 2                    | 2                 |
| PARAMETER                   | UNIT         | MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DETECTION | STD.       | STD.  | DETECTS | ANALYSES                              | N          |           | N               | N                  | <u>N</u>             | N                 |
| VOLATILE ORGANICS           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |       | <b></b> |                                       |            |           |                 |                    |                      |                   |
| 1,1,1-Trichloroethane       | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1          | -         | 1 U             | 1 U                | 1 U                  | 1 U               |
| 1,1,2,2-Tetrachloroethane   | UG/L         | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1          |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| 1,1,2-Trichloroethane       | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     | 0       | 54                                    | 1          | -         | 1 U             | 1 U                | 1 U                  | 1 U               |
| 1,1-Dichloroethane          | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1          |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| 1,1-Dichloroethene          | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1          | J         | 1 U             | 1 U                | 1 U                  | 1 U               |
| 1,2,4-Trichlorobenzene      | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1          | J         | 1 U             | 1 U                | 1 U                  | 10                |
| 1,2-Dibromo-3-chloropropane | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | Ö     | 0       | 54                                    | 1          | J         | 1 U             | 1 U                | 1 U                  | 1 0               |
| 1,2-Dibromoethane           | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     | 0       | 54                                    | 11         |           | 1 U             | 10                 | 1 U                  | 10                |
| 1,2-Dichlorobenzene         | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 4.7        | 0     | 0       |                                       | 11         |           | 10              | 10                 | 10                   | 10                |
| 1,2-Dichloroethane          | UG/L         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2%        |            | 0     |         | 54                                    | 1          |           | 10              | 10                 | 10                   | 10                |
| 1,2-Dichloropropane         | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5<br>5     |       | ō       | 54                                    |            |           | 10              | 10                 | 10                   | 10                |
| 1,3-Dichlorobenzene         | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          |       | ň       | 54                                    | 1          |           | 10              | 10                 | 10                   | 10                |
| 1,4-Dichlorobenzene         | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 4.7        | o     |         | 54                                    |            |           | 10              | 10                 | 10                   | 10                |
| Acetone                     | UG/L         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4%        | ···· ····· |       | 2       | 54                                    | 5          |           | 5 00            | 5 UJ               | 5 UJ                 | 5 UJ              |
|                             | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 0.7        |       |         | 54<br>54<br>54                        | 10         |           | 10              | 1 U                | 10                   | 10                |
| Benzene                     | UG/L<br>UG/L | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            |       |         | 54<br>54                              | 1          |           |                 |                    |                      |                   |
| Bromochloromethane          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | 0     |         | 54                                    |            |           | L               | 1 U<br>1 U         | 1 U                  | 10                |
| Bromodichloromethane        | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     |         | 54<br>54                              |            |           | 1 U             |                    | 10                   | 10                |
| Bromoform                   | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            |       | 0       | 54                                    | 11         |           | 1 U             | 10                 | 1 U                  | 1 U               |
| Carbon disulfide            | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | <u>.</u>   | 0     | 0       | 54                                    | 11         |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| Carbon tetrachloride        | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1          |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| Chlorobenzene               | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 11         |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| Chlorodibromomethane        | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     | 0       | 54                                    | 1 (        |           | 1 U             | 10                 | 1 U                  | 1 U               |
| Chloroethane                | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 1 נ        |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| Chloroform                  | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 7          | 0     | Ō       | 54                                    | 1 (        |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| Cis-1,2-Dichloroethene      | UG/L         | 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28%       | 5          | 14    | 15      | 54                                    | 11         | 1         | 19              | 1 U                | 1 U                  | 1 U<br>1 U        |
| Cis-1,3-Dichloropropene     | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 11         | )         | 1 U             | 1 U                | 1 U                  | 1 U               |
| Ethyl benzene               | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 11         | J         | 1 U             | 1 U                | 1 U                  | 1 U               |
| Methyl bromide              | UG/L         | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     | 0       | 54                                    | 1 L        | J         | 1 U             | 1 Ü                | 1 U                  | 1 U               |
| Methyl butyl ketone         | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     | 0       | 54                                    | 51         |           | 5 U             | 5 U                | 5 U                  | 50                |
| Methyl chloride             | UG/L         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0%        | 5          | 0     | 0       | 54                                    | 1          |           | 1 U             | 10                 | 10                   | 10                |
| Methyl ethyl ketone         | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 50         | ō     | Ō       | 54                                    | 51         |           | 5 U             | 50                 | 50                   | 5 U               |
| Methyl isobutyl ketone      | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            |       | 0       | 54                                    |            |           | 50              | 50                 | 50                   | 5 U               |
|                             | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            | 0     | 0       |                                       | 2 L        |           | 2 U             | 2 U                | 2 U                  | 2 U               |
| Methylene chloride          |              | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |           | 5          |       |         | 54<br>54                              |            |           |                 |                    |                      |                   |
| Styrene                     | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        |            |       | 0       | 54                                    | 1 L        |           | 1 U             | 1 U                | 1 U                  | 1 U               |
| Tetrachloroethene           | UG/L         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%        | 5          | 0     | 0       | 54                                    | 11         |           | 1 U             | 10                 | 1 U                  | 10                |
| Toluene                     | UG/L         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6%        | 、5         | 0     | 3       | 54                                    | 1          |           | 1 U             | 1 U                | 1 U                  | 1 U               |

-

|                                         | 1    | 1       |           |          |        |         | 1        |           |          |                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                 |                                       |                                       |
|-----------------------------------------|------|---------|-----------|----------|--------|---------|----------|-----------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
|                                         |      |         |           |          |        |         |          |           |          | ··· ··· ·· ·                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | · · · · · · · · · · · · · · · · · · ·                                                                           | 1                                     |                                       |
| · · · · ·                               |      |         |           |          |        |         |          |           |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                 |                                       |                                       |
| • • • • • • • • • • • • • • • • • • • • |      | +       | -         |          |        |         |          |           |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·        |                                                                                                                 |                                       |                                       |
|                                         |      | +       |           |          |        |         |          |           | · ·      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                 |                                       |                                       |
|                                         |      |         |           |          |        | · .     |          |           |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                 |                                       |                                       |
|                                         |      |         |           |          |        |         |          |           |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                                       |
| FACILITY                                |      |         |           |          |        |         |          | ASH LANDF |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u> |                                                                                                                 |                                       |                                       |
| LOCATION ID                             |      |         |           |          |        |         |          | MW-48     | LL       | ASH LANDFILL<br>MW-49D                 | ASH LANDF<br>MW-50D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILL      | ASH LANDFILL                                                                                                    | ASH LANDFIL                           | .L                                    |
| MATRIX                                  |      |         |           |          |        |         |          | GROUND W  |          |                                        | GROUND W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A 775 D  | MW-51D                                                                                                          | MW-52D                                |                                       |
| SAMPLE ID                               | +    | +       |           |          |        |         |          | ARD2111   |          | GROUND WATER                           | ARD2135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AIER     | GROUND WATER                                                                                                    | GROUND WA                             | IER                                   |
| DEPTH TO TOP OF SAMPLE                  | -    |         |           |          |        |         |          | 9.5       |          | a control and second or other than the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ARD2142                                                                                                         | ARD2143                               |                                       |
| DEPTH TO BOTTOM OF SAL                  |      |         |           |          |        |         |          | 9.5       |          | 26                                     | 50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 28                                                                                                              | 50                                    |                                       |
| SAMPLE DATE                             |      |         |           |          |        |         |          | 9.5       |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ        | 28                                                                                                              | 50                                    |                                       |
| QC CODE                                 |      |         |           |          |        |         |          | SA .      |          | 01/18/2000                             | 01/18/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 01/19/2000                                                                                                      | 01/18/2000                            |                                       |
| STUDY ID                                |      |         | FREQUENCY | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REMED |          | SA<br>ASH REMEDIAL DESI                | SA<br>ASH REMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAL DECL | SA<br>ASH REMEDIAL DESI                                                                                         | SA                                    |                                       |
| SAMPLE ROUND                            |      |         | OF        | CLASS GA | ABOVE  | OF      | OF       | ASH REMEL | IAL DESI | ASH REMEDIAL DESI                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·        | the second second second second second second second second second second second second second second second se | ASH REMEDIA                           | AL DESI                               |
| PARAMETER                               | UNIT | MAXIMUM | DETECTION | STD.     | STD.   | DETECTS |          | N 4       |          | N                                      | 2<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·        | 2<br>N                                                                                                          | N Z                                   |                                       |
| Total Xylenes                           | UG/L | 0       | 0%        | 510.     | 01D.   | 0       | 54       | 1         |          | 1 U                                    | THE R PROPERTY NAME OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A DATA OF A D | U        | 1 U                                                                                                             |                                       |                                       |
| Trans-1,2-Dichloroethene                | UG/L | 2       | 4%        | 5        | 0      | 2       | 54       |           |          | 10                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | υ        | 10                                                                                                              | 1 U<br>1 U                            |                                       |
| Trans-1,3-Dichloropropene               | UG/L | 0       | 0%        | 5        | ō      |         | 54       | ··· ·     | ŭ        | 10                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 10                                                                                                              | 10                                    |                                       |
| Trichloroethene                         | UG/L | 760     | 28%       | 5        | 8      | 15      | 54       |           | Ŭ        | 4                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 10                                                                                                              | 10                                    |                                       |
| Vinyl chloride                          | UG/L | 25      | 2%        |          | 1      | 1       | 54       | 1         |          |                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 10                                                                                                              | 10                                    | -                                     |
| METALS                                  |      |         |           |          |        |         |          |           | <u>.</u> |                                        | · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> |                                                                                                                 | +'  <sup>0</sup>                      | ·                                     |
| Aluminum                                | UG/L | 7700    | 49%       |          |        | 25      | 51       | 15.5      | 11.1     | 32.6 J                                 | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> | 34.4 UJ                                                                                                         | 3220 J                                |                                       |
| Antimony                                | UG/L | 4.5     | 12%       |          |        | 6       | 51<br>51 | 2.2       |          | 2.2 U                                  | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2.2 U                                                                                                           | 2.2 U                                 |                                       |
| Arsenic                                 | UG/L | 5       | 22%       | 25       | 0      | 11      | 51       | 2.5       |          | 2.5 U                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.</u> | 2.9 J                                                                                                           | 4.5 J                                 | <u></u>                               |
| Barium                                  | UG/L | 173     | 100%      | 1000     | Ō      | 51      | 51       | 36.6      |          | 133 J                                  | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 90.2 J                                                                                                          | 72.5 J                                | · · · · · · · · · · · · · · · · · · · |
| Beryllium                               | UG/L | 0.26    | 14%       |          | 0      | 7       | 51       | 0.1       |          | 0.1 U                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0.1 U                                                                                                           | 0.1 U                                 |                                       |
| Cadmium                                 | UG/L | 0.35    | 2%        | 10       | 0      | 1       | 51       | 0.2       |          | 0.2 U                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0.2 U                                                                                                           | 0.2 U                                 |                                       |
| Calcium                                 | UG/L | 391000  | 100%      |          | 0      | 51      | 51       | 90100     |          | 93100                                  | 54100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 86700                                                                                                           | 5900                                  |                                       |
| Chromium                                | UG/L | 4.1     | 14%       | 50       | Ő      | 7       | 51       | 1         | U        | 10                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 10                                                                                                              | 1 U                                   | <u>,</u>                              |
| Cobalt                                  | UG/L | 2       | 6%        |          | Ō      | . 3     | 51       | 1.3       | U        | 1.3 U                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1.3 U                                                                                                           | 1.3 U                                 |                                       |
| Copper                                  | UG/L | 14.6    | 33%       | 200      | 0      | 17      | 51       | 1.6       |          | 1.9 U                                  | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1.9 U                                                                                                           | 1.9 U                                 |                                       |
| Cyanide                                 | UG/L | 0       | 0%        | 100      | 0      | 0       | .51      | 10        |          | 10 U                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 10 U                                                                                                            | 10 U                                  |                                       |
| Iron                                    | UG/L | 6350    | 63%       | 300      | 14     | 32      | 51       | 81.1      | J        | <b>418</b> J                           | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J        | 43.5 J                                                                                                          | 1980 J                                |                                       |
| Lead                                    | UG/L | 3.8     | 10%       | 25       | 0      | 5       | 51       | 1         | U        | 1.3 U                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1 U                                                                                                             | 1.3 J                                 |                                       |
| Magnesium                               | UG/L | 85900   | 100%      |          | 0      | 51      | 51       | 11200     |          | 24400                                  | 25100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······   | 13900                                                                                                           | 2150 J                                |                                       |
| Manganese                               | UG/L | 344     | 100%      | 300      | 2      | 51      | 51       | 6.6       | J        | 99.4                                   | 79.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 17.4                                                                                                            | 48.1                                  |                                       |
| Mercury                                 | UG/L | 0.14    | 2%        | 2        | 0      | 1       | 51       | 0.1       | Ū        | 0.1 U                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0.1 U                                                                                                           | 0.1 U                                 | j –                                   |
| Nickel                                  | UG/L | 6.2     | 10%       |          | 0      | 5       | 51       | 1.7       |          | 1.7 U                                  | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1.7 U                                                                                                           | 1.7 U                                 | j                                     |
| Potassium                               | UG/L | 25600   | 100%      |          | 0      | 51      | 51       | 1260      |          | 1860 J                                 | 2360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1100 J                                                                                                          | 1280 J                                |                                       |
| Selenium                                | UG/L | 3       | 2%        | 10       | 0      | 1       | 51       | 2.5       | U        | 2.2 U                                  | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 2.2 U                                                                                                           | 2.2 U                                 | j –                                   |
| Silver                                  | UG/L | 2.8     | 2%        | 50       | 0      | 1       | 51       | 1         | UJ       | 1.3 UJ                                 | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UJ       | 1.3 UJ                                                                                                          | 1.3 U                                 |                                       |
| Sodium                                  | UG/L | 175000  | 90%       | 20000    | 23     | 46      | 51       | 6690      |          | 8970                                   | 19800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 27100                                                                                                           | 161000 J                              |                                       |
| Thallium                                | UG/L | 7.4     | 6%        |          | 0      | 3       | 51       | 3.2       | U        | 3.2 U                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U        | 3.2 UJ                                                                                                          | 3.2 U                                 |                                       |
| Vanadium                                | UG/L | 10.8    | 8%        |          | 0      | . 4     | 51       | 1.8       | U        | 1.8 U                                  | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1.8 U                                                                                                           | 2.6 J                                 |                                       |
| Zinc                                    | UG/L | 1620    | 100%      | 300      | 1      | 51      | 51       | 4         | J        | 4.5 J                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J        | 3.2 J                                                                                                           | 7.5 J                                 |                                       |

.

.

|                             |        | 1       |           |          | 1      |         | :        |            |          |            |           |            |           |            |          |            |          |
|-----------------------------|--------|---------|-----------|----------|--------|---------|----------|------------|----------|------------|-----------|------------|-----------|------------|----------|------------|----------|
|                             |        |         |           |          |        |         |          |            |          |            | l .       |            |           |            |          |            |          |
|                             |        | -       |           |          |        | -       | -        |            |          |            | 1         |            |           |            |          |            | 1 .      |
|                             |        |         |           |          |        |         | -        |            |          |            |           |            |           |            |          |            |          |
|                             |        |         |           |          |        |         |          |            |          |            |           |            |           |            |          |            |          |
| -                           |        |         |           |          |        |         |          |            |          |            |           |            | 1         |            |          | 1          |          |
|                             |        |         |           |          |        | [       |          |            |          |            |           |            |           |            |          |            |          |
|                             |        |         |           |          |        |         | 1        |            | . ,      | 1          | 1         |            | 1         |            |          |            |          |
| FACILITY                    |        |         |           |          |        |         |          | ASH LANDF  | LL       | ASH LANDF  | ILL       | ASH LANDF  | ILL       | ASH LANDF  | ILL      | ASH LANDF  | ÍLL Í    |
| LOCATION ID                 |        |         | b. b      |          |        |         |          | MW-53      |          | MW-53      |           | MW-54D     |           | MW-55D     |          | MW-56      | 1        |
| MATRIX                      |        |         |           |          |        |         |          | GROUND W   | ATER     | GROUND W   | ATER      | GROUND W   | ATER      | GROUND W   | ATER     | GROUND W   | ATER     |
| SAMPLE ID                   |        |         |           |          |        |         |          | ARD2147    |          | ARD2145    |           | ARD2137    |           | ARD2136    |          | ARD2130    |          |
| DEPTH TO TOP OF SAMPLE      |        |         |           |          |        |         |          | 9          |          | 9          |           | 25         |           | 50         |          | 6          |          |
| DEPTH TO BOTTOM OF SAM      | PLE    |         |           |          |        | _       |          | 9          |          | 9          |           | 25         |           | 50         |          | 6          |          |
| SAMPLE DATE                 |        |         |           |          |        |         |          | 01/20/2000 |          | 01/20/2000 |           | 01/18/2000 |           | 01/18/2000 |          | 01/11/2000 |          |
| QC CODE                     |        |         |           |          |        |         |          | DU         |          | SA         | 1         | SA         | 1         | SA         |          | SA         |          |
| STUDY ID                    |        |         | FREQUENCY | NYSDEC   | NUMBER | NUMBER  | NUMBER   | ASH REMED  | IAL DESI | ASH REME   | DIAL DESI | ASH REME   | DIAL DESI | ASH REMED  | IAL DESI | ASH REMED  | IAL DESI |
| SAMPLE ROUND                |        |         | OF        | CLASS GA | ABOVE  | OF      | OF       | 2          |          | 2          |           | 2          |           | 2          |          | 2          |          |
|                             | UNIT   | MAXIMUM | DETECTION | STD.     | STD.   | DETECTS | ANALYSES | N          |          | N          |           | N          | 1         | N          |          | N          |          |
| VOLATILE ORGANICS           |        |         |           |          |        |         |          |            |          |            |           |            |           |            |          |            |          |
|                             | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         |            | υ        | • 1        | υ        |
|                             | UG/L   | 0       |           | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | υ        |            | U        |
|                             | UG/L   | 0       |           |          | 0      | 0       | 54       |            | U        |            | U         |            | U         | 1          | U        | 1          | U        |
|                             | UG/L   | 0       |           | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        | 1          | U        |
|                             | UG/L   | 0       |           | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        | 1          | U        |
|                             | UG/L   | 0       |           | 5        | 0      | 0       | 54       | 1          | υ        | 1          | U         |            | U         | 1          | U        | 1          | υ        |
| 1,2-Dibromo-3-chloropropane | UG/L   | 0       | 0%        |          | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        | 1          | U        |
|                             | UG/L   | Ō       |           |          | 0      | Ō       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        |            | U        |
| 1,2-Dichlorobenzene         | UG/L   | 0       | 0%        | 4.7      | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | υ         | 1          | U        | 1          | υ        |
|                             | UG/L   | 3       | 2%        | 5        | 0      | 1       | 54       | 1          | U        | 1          | υ         |            | U         | 1          | U        | 1          | U        |
|                             | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | υ        | 1          | U        |
| 1,3-Dichlorobenzene         | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | υ         | 1          | υ        | 1          | U        |
|                             | UG/L   | 0       | 0%        | 4.7      | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        | 1          | U        |
| Acetone                     | UG/L   | 1       | 4%        |          | 0      | 2       | 54       | 5          |          | 5          | R         | 0.9        | J         | 5          | UJ       |            | UJ       |
| Benzene                     | UG/L   | 0       | 0%        | 0.7      | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          |          | 1          | U        |
| Bromochloromethane          | UG/L · | 0       | 0%        |          | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        | 1          | U        |
|                             | UG/L   | 0       | 0%        |          | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        |            | Ŭ        |
| Bromoform                   | UG/L   | 0       | 0%        |          | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         |            | U        |            | U        |
|                             | UG/L   | 0       | 0%        |          | 0      | 0       | 54       | 1          | υ        | 1          | U         | 1          | U         | 1          |          |            | U        |
|                             | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54<br>54 | 1          | Ū        |            | U         | 1          | υ         | 1          |          | 1          |          |
| Chlorobenzene               | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         |            | U         | 1          | U        | 1          | U        |
|                             | UG/L   | 0       | 0%        |          | ō      | 0       | 54       | 1          | υ        | 1          | U         | 1          | υ         | 1          | υ        | .1         | U        |
| Chloroethane                | UG/L   | 0       | 0%        | 5        | . 0    | 0       | 54       | 1          | บ        | 1          | U         |            | υ         | 1          | U        | 1          |          |
|                             | UG/L   | 0       | 0%        | 7        | 0      | 0       | 54       | 1          | U        | 1          | U         |            | U         |            | U        | 1          |          |
|                             | UG/L   | 980     | 28%       | 5        | 14     | 15      | 54       | 22         |          | 23         |           | 1          |           | 1          | U        | 1          |          |
| Cis-1,3-Dichloropropene     | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54       | 1          |          | 1          | U         | 1          | U         | 1          | U        | 1          |          |
|                             | UG/L   | 0       | 0%        | 5        | Ö      | 0       | 54       | 1          |          | 1          | U         |            | U         | 1          |          | 1          |          |
|                             | UG/L   | 0       | 0%        |          | 0      | 0       | 54       | 1          |          |            | U         | 1          |           | 1          |          | 1          |          |
| Methyl butyl ketone         | UG/L   | Ő       | 0%        |          | 0      | 0       | 54       | 5          | บม       | 5          | UJ        | 5          | U         | 5          |          | 5          |          |
|                             | UG/L   | 0       | 0%        | 5        | 0      | 0       | 54       | 1          | U        | 1          | U         | 1          | U         | 1          | U        | 1          |          |
|                             | UG/L   | 0       | 0%        | 50       | 0      | ō       | 54       | 5          | U        | 5          | U         |            | U         | 5          |          |            | UJ       |
|                             | UG/L   | 0       | 0%        |          | 0      | 0       | 54       | 5          |          |            | U         |            | U         | 5          |          | 5          |          |
|                             | UG/L   | 0       | 0%        | 5        | 0      | 0       |          | 2          |          |            | U         |            | U         | 2          |          | 2          |          |
|                             | UG/L   | 0       | 0%        |          | ō      | 0       |          | 1          |          |            | U .       | 1          |           | 1          |          | 1          | Ū        |
|                             | UG/L   | 0       | 0%        | 5        | 0      | ō       |          | 1          |          |            | Ū         |            | Ŭ         | 1          |          | 1          |          |
|                             | JG/L   | 2       | 6%        | 5        |        | 3       |          | 1          |          |            | U         |            | Ŭ         | 1          |          | 1          |          |

•

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2--5-22-00.XLS 06/15/2000

. . ...

.

· ··· ··· ···

-- --- --

-

|                           | 1    | 1        |           |          | 1      | 1       |          |                                                                                                                |                   |                   |                   |                   |
|---------------------------|------|----------|-----------|----------|--------|---------|----------|----------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
|                           |      |          |           |          |        |         |          | l                                                                                                              |                   |                   |                   |                   |
|                           |      |          |           |          |        |         |          |                                                                                                                |                   |                   |                   |                   |
| FACILITY                  |      |          |           |          |        |         |          | ASH LANDFILL                                                                                                   | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL      |
| LOCATION ID               |      |          |           |          |        |         |          | MW-53                                                                                                          | MW-53             | MW-54D            | MW-55D            | MVV-56            |
| MATRIX                    |      |          |           |          |        |         |          | GROUND WATER                                                                                                   | GROUND WATER      | GROUND WATER      | GROUND WATER      | GROUND WATER      |
| SAMPLE ID                 |      |          |           |          |        |         |          | ARD2147                                                                                                        | ARD2145           | ARD2137           | ARD2136           | ARD2130           |
| DEPTH TO TOP OF SAMPL     |      |          |           |          |        |         |          | 9                                                                                                              | 9                 | 25                | 50                | 6                 |
| DEPTH TO BOTTOM OF SA     | MPLE |          |           |          |        |         |          | 9                                                                                                              | 9                 | 25                | 50                | 6                 |
| SAMPLE DATE               |      | <u>_</u> |           |          |        |         |          | 01/20/2000                                                                                                     | 01/20/2000        | 01/18/2000        | 01/18/2000        | 01/11/2000        |
| QC CODE                   |      |          |           |          | -      |         |          | DU                                                                                                             | SA                | SA                | SA                | SA                |
| STUDY ID                  |      |          | FREQUENCY |          | NUMBER |         |          | ASH REMEDIAL DESI                                                                                              | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI |
| SAMPLE ROUND              |      |          | OF        | CLASS GA |        | OF      | OF       | 2                                                                                                              | 2                 | 2                 | 2                 | 2                 |
| PARAMETER                 | UNIT | MAXIMUM  | DETECTION | STD.     | STD.   | DETECTS | ANALYSES | all a sure and an end of a second second                                                                       | N                 | N                 | N                 | N                 |
| Total Xylenes             | UG/L | 0        | 0%        | 5        | 0      | 0       | 54       | 1 U                                                                                                            | 1 U               | 1 U               | 1 U               | 1 U               |
| Trans-1,2-Dichloroethene  | UG/L | 2        | 4%        | 5        | 0      | 2       | 54       | the second second second second second second second second second second second second second second second s | 1 U               | 1 U               | 1 U               | 1 U               |
| Trans-1,3-Dichloropropene | UG/L | 0        |           | 5        | 0      | 0       | 54       |                                                                                                                | 1 U               | 1 U               | 1 U               | 1 U               |
| Trichloroethene           | UG/L | 760      | 28%       | 5        | 8      | 15      | 54       |                                                                                                                | 2                 | 1 U               | 1 U               | 10                |
| Vinyl chloride            | UG/L | 25       | 2%        | 2        | 1      | 1       | 54       | 1 U                                                                                                            | 1 U               | 1 U               | 1 U               | 1 U               |
| METALS                    |      |          |           |          |        |         |          |                                                                                                                |                   |                   |                   |                   |
| Aluminum                  | UG/L | 7700     | 49%       |          | 0      | 25      | 51       |                                                                                                                | 34.4 UJ           | 35.6 J            | 1410 J            | 7700 J            |
| Antimony                  | UG/L | 4.5      |           |          | 0      | 6       | 51       |                                                                                                                | 2.2 U             | 2.2 U             | 3.4 J             | 2.2 U             |
| Arsenic                   | UG/L | 5        | 22%       | 25       | 0      | 11      | 51       | 2.5 U                                                                                                          | 2.5 U             | 2.5 U             | 2.8 J             | 2.5 U             |
| Barium                    | UG/L | 173      | 100%      | 1000     | 0      | 51      | 51       | 59.4 J                                                                                                         | 58.9 J            | 130 J             | 73.7 J            | 90.2 J            |
| Beryllium                 | UG/L | 0.26     | 14%       |          | 0      | • 7     | 51       | 0.1 U                                                                                                          | 0.1 U             | 0.1 U             | 0.1 U             | 0.18 J            |
| Cadmium                   | UG/L | 0.35     | 2%        | 10       | 0      | 1       | 51       | 0.2 U                                                                                                          | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U             |
| Calcium                   | UG/L | 391000   | 100%      |          | 0      | 51      | 51       | 145000                                                                                                         | 144000            | 86200             | 2960 J            | 106000            |
| Chromium                  | UG/L | 4.1      | 14%       | 50       | 0      | 7       | 51       | 1 U                                                                                                            | 1 U               | 1 U               | 1 U               | 4.1 J             |
| Cobalt                    | UG/L | 2        | 6%        |          | 0      | 3       | 51       | 1.3 U                                                                                                          | 1.3 U             | 1.3 U             | 1.3 U             | 2 J               |
| Соррег                    | UG/L | 14.6     | 33%       | 200      | Ō      | 17      | 51       | 1.9 U                                                                                                          | 1.9 U             | 1.9 U             | 1.9 U             | 5.5 J             |
| Cyanide                   | UG/L | 0        | 0%        | 100      | 0      | Ō       | 51       | 10 U                                                                                                           | 10 U              | 10 U              | 10 U              | 10 U              |
| Iron                      | UG/L | 6350     | 63%       | 300      | 14     | 32      | 51       | 20.3 U                                                                                                         | 20.3 U            | 151 J             | 1070 J            | 6350 J            |
| Lead                      | UG/L | 3.8      | 10%       | 25       | 0      | 5       | 51       | 1 U                                                                                                            | 1 U               | 1.3 U             | 1.3 U             | 3.8               |
| Magnesium                 | UG/L | 85900    | 100%      |          | Ö      | 51      | 51       | 18800                                                                                                          | 17800             | 26000             | 916 J             | 13000             |
| Manganese                 | UG/L | 344      | 100%      | 300      | 2      | 51      | 51       | 2.2 J                                                                                                          | 2.1 J             | 161               | 29.9              | 103               |
| Mercury                   | UG/L | 0.14     | 2%        | 2        | 0      | 1       | 51       | 0.1 U                                                                                                          | 0.1 U             | 0.1 U             | 0.1 U             | 0.1 U             |
| Nickel                    | UG/L | 6.2      | 10%       |          | 0      | 5       | 51       | 1.7 U                                                                                                          | 1.7 U             | 1.7 U             | 1.7 U             | 6.2 J             |
| Potassium                 | UG/L | 25600    | 100%      |          | 0      | 51      | 51       | 951 J                                                                                                          | 971 J             | 2430 J            | 1250 J            | 3530 J            |
| Selenium                  | UG/L | 3        | 2%        | 10       | Ō      | 1       | 51       | 2.2 U                                                                                                          | 2.2 U             | 2.2 U             | 2.2 U             | 2.2 U             |
| Silver                    | UG/L | 2.8      | 2%        | 50       | Ő      | 1       | 51       | 1.3 UJ                                                                                                         | 1.3 UJ            | 1.3 UJ            | 1.3 UJ            | 1.3 UJ            |
| Sodium                    | UG/L | 175000   | 90%       | 20000    | 23     | 46      | 51       | 23200                                                                                                          | 22900 U           | 22900             | 102000            | 13200             |
| Thallium                  | UG/L | 7.4      | 6%        |          | 0      | 3       | 51       | 3.2 UJ                                                                                                         | 3.2 UJ            | 3.2 U             | 3.2 U             | 3.2 U             |
| /anadium                  | UG/L | 10.8     | 8%        |          | 0      | 4       | 51       | 1.8 U                                                                                                          | 1.8 U             | 1.8 U             | 1.8 U             | 10.8 J            |
| Zinc                      | UG/L | 1620     | 100%      | 300      | 1      | 51      | 51       |                                                                                                                | 4.5 J             | 3.9 J             | 18.2 J            | 28.4              |

TABLE 2 GROUND WATER CHEMICAL RESULTS ROUND 2 GROUNDWATER MONITORING ASH REMEDIAL DESIGN SENECA ARMY DEPOT ACTIVITY ROMULUS, NY

|                                                                                        | 1    |          |           |                                        |        |                                       |                |                  |            |             |                                       |           |                   |                  |
|----------------------------------------------------------------------------------------|------|----------|-----------|----------------------------------------|--------|---------------------------------------|----------------|------------------|------------|-------------|---------------------------------------|-----------|-------------------|------------------|
| 1                                                                                      |      |          |           |                                        |        | ļ                                     |                |                  |            |             |                                       |           |                   |                  |
|                                                                                        |      | 1        |           |                                        |        | ļ                                     |                |                  |            |             |                                       |           |                   |                  |
|                                                                                        |      |          |           |                                        |        |                                       | <b>1</b> .     |                  |            |             |                                       |           |                   |                  |
|                                                                                        |      |          |           |                                        |        |                                       |                |                  |            |             | l                                     | 1         |                   |                  |
|                                                                                        |      | 1        |           |                                        |        |                                       | 1              |                  |            |             |                                       |           |                   |                  |
|                                                                                        |      | 1 !      |           |                                        |        |                                       |                |                  |            |             |                                       |           |                   |                  |
|                                                                                        | 1    | 1        |           |                                        |        |                                       |                |                  |            |             |                                       |           |                   |                  |
| FACILITY                                                                               |      | 1        |           |                                        |        |                                       | 1              | ASH LANDFILL     | ASH LAND   | FILL        | ASH LANDF                             | ILL .     | ASH LANDFILL      | ASH LANDFILL     |
| LOCATION ID                                                                            |      |          |           |                                        |        |                                       |                | MW-57D           | MW-58D     | 1           | MW-59                                 | [         | MW-60             | PT-10            |
| MATRIX                                                                                 |      | 1        |           |                                        | · ·    |                                       |                | GROUND WATER     | GROUND V   | VATER       | GROUND W                              | ATER      | GROUND WATER      | GROUND WATER     |
| SAMPLE ID                                                                              |      | 1        |           |                                        | f      |                                       |                | ARD2131          | ARD2128    | 1           | ARD2105                               | [         | ARD2104           | ARD2101          |
| DEPTH TO TOP OF SAMPLE                                                                 |      | 1        |           |                                        |        |                                       |                | 25               | 48         | 3           | 7                                     |           | 8                 | 40               |
| DEPTH TO BOTTOM OF SAI                                                                 | MPLE | 1        |           |                                        | -      | -                                     |                | 25               | 48         |             | 7                                     |           | 8                 | 40               |
| SAMPLE DATE                                                                            | Τ    |          |           |                                        |        |                                       |                | 01/11/2000       | 01/11/2000 | 5           | 01/07/2000                            | ·         | 01/07/2000        | 01/06/2000       |
| QC CODE                                                                                |      |          |           |                                        |        |                                       |                | SA               | SA         | +           | SA                                    |           | SA                | SA               |
| STUDY ID                                                                               | +    | <u> </u> | FREQUENCY | NYSDEC                                 | NUMBER | NUMBER                                | NUMBER         | ASH REMEDIAL DES |            | DIAL DESI   | ASH REMED                             | DIAL DESI | ASH REMEDIAL DESI |                  |
| SAMPLE ROUND                                                                           | +    | 1        | OF        | CLASS GA                               |        | OF                                    | OF             | 2                |            | 2           | 2                                     | *         | 2                 | 2                |
| PARAMETER                                                                              | UNIT | MAXIMUM  | DETECTION | STD.                                   | STD.   | DETECTS                               |                |                  | · - ·   N  |             | N                                     | ¦         | N                 | N 2              |
| VOLATILE ORGANICS                                                                      | 1    | 1        |           |                                        |        |                                       |                | · · · · · ·      | ··   · ·   | • • • • • • |                                       | +         | +                 | • <del> ``</del> |
| 1,1,1-Trichloroethane                                                                  | UG/L | 0        | 0%        | <br>5                                  | Π      | 'n                                    | 54             | 1 U              |            | U           | 1                                     | U         | 1 U               | 10               |
| 1,1,2,2-Tetrachloroethane                                                              | UG/L | 0        | 0%        | 5                                      | - n    |                                       | 54             | 10,              |            | U           |                                       | U         | 10                | 10               |
| 1,1,2-Trichloroethane                                                                  | UG/L | 0        | 0%        | ···· · · · · · · · · · · · · · · · · · | - č    |                                       | 54             | 103              |            | U           |                                       | U         | 10                | 10               |
| 1,1-Dichloroethane                                                                     | UG/L | 0        | 0%        | 5                                      |        |                                       | 54             | 10               |            | U           |                                       | U         | 10                | 10               |
| 1,1-Dichloroethene                                                                     | UG/L | 0        | 0%        |                                        | ă Î    |                                       | 54             | 10               |            | U           |                                       | υ         | 10                | 10               |
| International test states i and include at 11 years 111 internations and international | UG/L | 0        |           | 5                                      | 0      |                                       | 54             | 10               |            | υ           |                                       | UJ        | 10                | 10               |
| 1,2,4-Trichlorobenzene                                                                 |      | 0        | 0%        |                                        |        |                                       | 54             | 10               |            | U           |                                       | 01        | 10                | 10               |
| 1,2-Dibromo-3-chloropropane                                                            | UG/L | 0        | 0%        |                                        |        |                                       | 54<br>54       | 10               |            | U           |                                       | U         | 10                | 10               |
| 1,2-Dibromoethane                                                                      | UG/L | ļ        | 0%        |                                        |        | · · · · · · · · · · · · · · · · · · · |                | 1 U<br>1 U       |            | U           |                                       | UJ        |                   |                  |
| 1,2-Dichlorobenzene                                                                    |      | 0        | 2%        | 4.7                                    |        | 0                                     | 54<br>54       | 10               |            |             |                                       |           | 10                | 10               |
| 1,2-Dichloroethane                                                                     | UG/L | 3        | . 2%      | 5                                      | - 5    |                                       |                | l                |            | U<br>U      |                                       | U         | 1 U               | 1 U<br>1 U       |
| 1,2-Dichloropropane                                                                    | UG/L |          |           | 5                                      | 0      | U U                                   | 54             | 1 U              |            |             |                                       | U         | 1 U               |                  |
| 1,3-Dichlorobenzene                                                                    | UG/L | 0        | 0%        | 5                                      | 0      |                                       | 54             | 1 Ū              |            | U           |                                       | U         | 1 U               | 1 U              |
| 1,4-Dichlorobenzene                                                                    | UG/L | 0        | 0%        | 4.7                                    |        |                                       | 54             | 1 U              |            | U           |                                       | UJ        | 10                | 1 U              |
| Acetone                                                                                | UG/L | 1        | 4%        |                                        | 0      | 2                                     | 54<br>54       | 5 UJ             |            | UJ          |                                       | UJ        | 5 U               | 5 UJ             |
| Benzene                                                                                | UG/L | 0        | 0%        | 0.7                                    | 0      | 0                                     | 54             | 1 U              |            | U           |                                       | U         | 1 U               | 1 U              |
| Bromochloromethane                                                                     | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54             | 1 U              |            | U           |                                       | U         | 1 U               | 1 U              |
| Bromodichloromethane                                                                   | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54             | 1 <u>U</u>       |            | U           | THE R. LEWIS CO., NAMES IN CO., NAMES | U         | 1 U               | 1 U              |
| Bromoform                                                                              | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54<br>54<br>54 | 1 Ū              |            | U           | 1                                     |           | 1 U               | 1 U              |
| Carbon disulfide                                                                       | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54             | 1 U              | 1          | U           | 1                                     |           | 1 U               | 1 U              |
| Carbon tetrachloride                                                                   | UG/L | 0        | 0%        | 5                                      | 0      | 0                                     | 54<br>54       | 1 U              |            | U           | 1                                     |           | 1 U               | 1 U              |
| Chlorobenzene                                                                          | UG/L | 0        | 0%        | 5                                      | 0      | 0                                     |                | 1 U              |            | U           | 1                                     |           | 1 U               | , 1 U            |
| Chlorodibromomethane                                                                   | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54             | 1 U              |            | U           | 1                                     |           | 1 U               | 1 U              |
| Chloroethane                                                                           | UG/L | 0        | 0%        | 5                                      | 0      | 0                                     | 54             | 1 U              |            | U           | 1                                     | U         | 1 U               | 1 U              |
| Chloroform                                                                             | UG/L | 0        | 0%        | 7                                      | 0      | 0                                     | 54             | 1 UJ             |            | U           | 1                                     | U         | 1 U               | 1 U              |
| Cis-1,2-Dichloroethene                                                                 | UG/L | 980      | 28%       | 5                                      | 14     | 15                                    | 54             | 1 U              |            | U           | 1                                     |           | 1 U               | 1 U              |
| Cis-1,3-Dichloropropene                                                                | UG/L | 0        | 0%        | 5                                      | 0      | 0                                     | 54             | 1 U              |            | υ           | 1                                     |           | 1 U               | 1 U              |
| Ethyl benzene                                                                          | UG/L | . 0      | 0%        | 5                                      | Ö      | 0                                     | 54             | 1 U              |            | U           | 1                                     |           | 1 U               | 1 U              |
| Methyl bromide                                                                         | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54<br>54<br>54 | 1 UJ             |            | U           | 1                                     | U         | 1 Ū               | 1 U              |
| Methyl butyl ketone                                                                    | UG/L | 0        | 0%        |                                        | 0      | 0                                     | 54             | 5 U              |            | U           | 5                                     | UJ        | 5 U               | 5 UJ             |
| Methyl chloride                                                                        | UG/L | 0        | 0%        | 5                                      | 0      | 0                                     | 54             | 1 UJ             | 1          | U           | 1                                     |           | 1 U               | 10               |
| Methyl ethyl ketone                                                                    | UG/L | 0        | 0%        | 50                                     | 0      | 0                                     | 54             | 5 UJ             | 5          | UJ          | 5                                     |           | 5 U               | 5 UJ             |
| Methyl isobutyl ketone                                                                 | UG/L | 0        | 0%        |                                        | Ö      | 0                                     | 54             | 5 U              |            | Ũ           | 5                                     |           | 5 U               | 5 U              |
|                                                                                        | UG/L | 0        | 0%        | 5                                      | 0      | 0                                     | 54             | 2 U              |            | U           | 2                                     |           | 2 U               | 2 U              |
| Styrene                                                                                | UG/L | 0        | 0%        | ŭ                                      | 0      | ō                                     | 54             | 10               |            | U           |                                       |           | 1 U               | 1 U              |
| Tetrachioroethene                                                                      | UG/L | 0        | 0%        | 5                                      | 0      |                                       | 54             | 10               |            | Ŭ           | 1                                     |           | 10                | 10               |
| Toluene                                                                                | UG/L | 2        | 6%        | 5                                      | 0      | 3                                     | 54             | 10               |            | U           | 1                                     |           | 10                | 10               |
| 1 Olderie                                                                              |      | Z        | 076       | 5                                      | U      | 3                                     |                | 10               | 1          | 0           | 1 11                                  | 0         | 10                | 10               |

•

|                           | 1    |         |            | 1        |        |         | i        |            |          | 1          |          |             |           | 1            | 1          |              |
|---------------------------|------|---------|------------|----------|--------|---------|----------|------------|----------|------------|----------|-------------|-----------|--------------|------------|--------------|
|                           |      |         |            |          |        |         |          | i i        |          |            |          |             | 1         |              |            | Ť            |
|                           |      |         |            |          |        |         |          |            |          |            |          | 1 · · · · · |           |              |            |              |
|                           | 1    |         |            |          |        |         |          |            |          |            |          |             |           |              |            |              |
|                           |      |         |            |          |        |         | i        |            |          | 1          |          |             |           |              |            |              |
|                           |      |         |            |          |        |         |          |            |          | 1          |          |             |           |              |            |              |
|                           |      | 1       |            |          |        |         |          |            |          |            |          |             |           |              |            |              |
| FACILITY                  |      |         |            |          |        |         |          | ASH LANDFI | LL       | ASH LANDF  | LL       | ASH LANDF   | ILL       | ASH LANDFILL | ASH L      | ANDFILL      |
| LOCATION ID               |      |         |            |          |        |         |          | MW-57D     |          | MW-58D     |          | MW-59       | T         | MW-60        | PT-10      |              |
| MATRIX                    |      |         |            |          |        |         |          | GROUND W   | ATER     | GROUND W   | ATER     | GROUND W    | ATER      | GROUND WATER | R GROU     | ND WATER     |
| SAMPLE ID                 |      |         |            |          |        |         |          | ARD2131    |          | ARD2128    |          | ARD2105     |           | ARD2104      | ARD21      | 01           |
| DEPTH TO TOP OF SAMPL     |      |         |            |          |        |         | [        | 25         |          | 48         |          | 7           |           | 8            |            | 40           |
| DEPTH TO BOTTOM OF SA     | MPLE |         |            |          |        |         |          | 25         |          | 48         |          | 7           |           | 8            |            | 40           |
| SAMPLE DATE               |      |         |            |          |        |         |          | 01/11/2000 | -        | 01/11/2000 |          | 01/07/2000  |           | 01/07/2000   | 01/06      | /2000        |
| QC CODE                   |      |         |            |          |        |         |          | SA         |          | SA         |          | SA          |           | SA           | SA         |              |
| STUDY ID                  |      |         | FREQUENCY  | NYSDEC   | NUMBER |         | NUMBER   | ASH REMED  | IAL DESI | ASH REMED  | IAL DESI | ASH REMED   | DIAL DESI | ASH REMEDIAL | DESI ASH R | EMEDIAL DES  |
| SAMPLE ROUND              |      |         | OF         | CLASS GA |        | OF      | OF       | 2          |          | 2          |          | 2           |           | 2            |            | 2            |
| PARAMETER                 | UNIT | MAXIMUM | DETECTION  | STD.     | STD.   | DETECTS | ANALYSES | N          |          | N ·        |          | N           |           | N            | N          |              |
| Total Xylenes             | UG/L | 0       | 0%         | 5        | 0      | 0       | 54       | 1          |          |            | U        | 1           | U         | 1 U          |            | 1 U          |
| Trans-1,2-Dichloroethene  | UG/L | 2       |            | 5        | 0      | 2       | 54       | 1          |          |            | U        |             | U         | 1 U          |            | 1 U          |
| Trans-1,3-Dichloropropene | UG/L | 0       | 0%         | 5        | 0      | 0       | 54       | 1          |          | 1          |          | 1           | U         | 1 U          |            | 1.0          |
| Trichloroethene           | UG/L | 760     | 28%        | 5        | 8      | 15      |          | 1          |          |            | U        |             | U         | 1 U          |            | 1 U          |
| Vinyl chloride            | UG/L | 25      | 2%         | 2        | 1      | 1       | 54       | • 1        | UJ       | . 1        | U        | 1           | U         | 1 U          |            | 1 U          |
| METALS                    |      |         |            |          |        |         |          |            |          |            |          |             | 1         |              |            |              |
| Aluminum                  | UG/L | 7700    | 49%        |          | 0      | 25      | 51       | 738        |          | 3940       |          | 33.9        |           | 15.5 UJ      |            | 15.5 UJ      |
| Antimony                  | UG/L | 4.5     | 12%        |          | 0      | 6       | 51       | 2.2        |          | 2.2        |          | 2.2         |           | 2.2 U        |            | 2.2 U        |
| Arsenic                   | UG/L | 5       | 22%        | 25       | 0      | 11      | 51       | 2.7        |          | 2.5        |          | 2.5         |           | 2.5 U        |            | 2.5 U        |
| Barium                    | UG/L | 173     | 100%       | 1000     | 0      | 51      | 51       | 71.4       |          | 86.9       |          | 94.2        |           | 39.3 J       |            | 173 J        |
| Beryllium                 | UG/L | 0.26    | 14%        |          | 0      | 7       | 51       | 0.1        |          | 0.26       |          | 0.1         |           | 0.1 U        |            | 0.1 U        |
| Cadmium                   | UG/L | 0.35    | 2%         | 10       | 0      | 1       | 51       | 0.2        |          | 0.2        | U        | 0.2         |           | 0.2 U        |            | 0.2 U        |
| Calcium                   | UG/L | 391000  | 100%       |          | 0      | 51      | 51       | 3270       |          | 5450       |          | 177000      |           | 104000       | 3          | 32600        |
| Chromium                  | UG/L | 4.1     | 14%        | 50       | 0      | 7       | 51       | 1          |          | 1          |          |             | U         | 1 U          |            | 1.1 J        |
| Cobalt                    | UG/L | 2       | 6%         |          | 0      | 3       | 51       | 1.3        |          | 1.4        |          | 1.3         |           | 1.3 U        |            | 1.3 U        |
| Copper                    | UG/L | 14.6    | 33%        | 200      | 0      |         | 51       | 7.5        | J        | 1.9        |          | 1.7         |           | 1.6 U        |            | 1.6 U        |
| Cyanide                   | UG/L | 0       | 0%         | 100      | 0      | 0       | 51       | 10         |          | 10         |          | 10          |           | 10 U         |            | 10 U         |
| lron<br>Lead              | UG/L | 6350    | 63%        | 300      | 14     | 32      | 51       | 962        |          | 5010       |          | 68.2        |           | 20.3 UJ      |            | 20.3 UJ      |
| Lead                      | UG/L | 3.8     | 10%        | 25       | 0      | 5       | 51       | 1.3        |          | 1.9        |          |             | U         | 1.3 U        |            | 1 U          |
| Magnesium                 | UG/L | 85900   | 100%       |          |        | 51      | 51       | 642        | J        | 1770       |          | 40500       |           | 15300        | 3          | 80700        |
| Manganese                 | UG/L | 344     | 100%<br>2% | 300      |        | 51      | 51       | 40         |          | 96.6       |          | 7.7         |           | 3.1 J        |            | 101<br>0.1 U |
| Mercury<br>Nickel         | UG/L | 0.14    |            | 2        | 0      | 1       | 51<br>51 | 0.1        |          | 0.1        |          | 0.1         |           | 0.1 U        |            | 0.1 0        |
|                           | UGAL | 6.2     | 10%        |          |        | 5       | 51       | 1.7        |          | 5.2        |          | 1.7         |           | 1.7 U        |            | 1.7 U        |
| Potassium                 | UG/L | 25600   | 100%       |          |        | 51      |          | 1100       |          | 1900       |          | 1470        |           | 850 J        |            | 2160 J       |
| Selenium<br>Silver        | UG/L | U U     | 2%         | 10<br>50 |        | 1       | 51       | 2.2        |          | 2.2        |          | 2.5         |           | 2.5 U        |            | 2.5 U        |
|                           | UG/L | 2.8     | 2%         |          | 0      | 1       | 51       | 1.3        | 01       | 1.3        | UJ       |             | ບງ        | 1 UJ         |            | 1 UJ         |
| Sodium                    | UG/L | 175000  | 90%        | 20000    | 23     | 46      | 51       | 164000     |          | 175000     |          | 29700       |           | 16400        |            | 27700        |
| Thallium                  | UG/L | 7.4     | 6%         |          | -      | 3       | 51       | 3.2        |          | 3.2        |          | 3.2         |           | 3.2 U        |            | 3.2 U        |
| Vanadium                  | UG/L | 10.8    | 8%         | 200      | 0      | 4       | 51       | 1.8        |          | 5.5        |          | 1.8         |           | 1.8 U        |            | 1.8 U        |
| Zinc                      | UG/L | 1620    | 100%       | 300      | 1      | 51      | 51       | 7.7        | J        | 15.1       | J        | 6.1         | J         | 5.1 J        |            | 3.5 J        |

| FACILITY<br>LCCATION ID         ASH LANDFILL         ASH L                                                                                                                                                      |                            | 1    | 1 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           | 1 1        |         |            |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|----------|------------|-----------|------------|---------|------------|---------|
| LiCATON ID         PT-11         PT-15         PT-16         PT-16         PT-17           SAMPLE DO         SAMPLE OCTOP OF SAMPLE                                               | · · · ·                    |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| LÓCATION ID         PT-11         PT-16         PT-16         PT-16         PT-17           SAMPLE DO         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         TR         ARD2121         ARD2121         ARD2121         ARD2122         ARD2121         ARD2122         ARD2122         ARD2122         ARD2123         ARD2121         ARD2123         ARD2121         ARD2123         ARD2133         ARD2133<                                                                                                                                                                                                                                                                                      |                            |      | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           | · · -      |         |            |         |
| LÓCATION ID         PT-11         PT-16         PT-16         PT-16         PT-17           SAMPLE DO         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         TR         ARD2121         ARD2121         ARD2121         ARD2122         ARD2121         ARD2122         ARD2122         ARD2122         ARD2123         ARD2121         ARD2123         ARD2121         ARD2123         ARD2133         ARD2133<                                                                                                                                                                                                                                                                                      |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| LÖCATION ID         LOCATION ID         PT-11         PT-16         PT-16         PT-17           SAMPLE DO         DEPTH TO DO'T SAMPLE         DEPTH TO DO'T SAMPLE         TR         GROUND WATER                                                                                                                                                                                   |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| LÓCATION ID         PT-11         PT-16         PT-16         PT-16         PT-17           SAMPLE DO         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         TR         ARD2121         ARD2121         ARD2121         ARD2122         ARD2121         ARD2122         ARD2122         ARD2122         ARD2123         ARD2121         ARD2123         ARD2121         ARD2123         ARD2133         ARD2133<                                                                                                                                                                                                                                                                                      |                            |      | 1 · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| LÓCATION ID         PT-11         PT-16         PT-16         PT-16         PT-17           SAMPLE DO         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         TR         GROUND WATER                                                                                                                                                                                     |                            | ·    | 1 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           | - · · ·    |         |            |         |
| LÓCATION ID         PT-11         PT-16         PT-16         PT-16         PT-17           SAMPLE DO         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         TR         GROUND WATER                                                                                                                                                                                     |                            |      | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| MATRIX         GROUND WATER                                                                                                                                                                |                            |      | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            | LL       |            | ILL       |            | LL      |            | LL      |
| SAMPLE ID         ARD213         ARD213         ARD2125         ARD2125 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>PT-16</th><th></th><th>PT-17</th><th></th></t<>                                                                                                  |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           | PT-16      |         | PT-17      |         |
| DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TOP OF SAMPLE         DEPTH TO TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO TAPE SAMPLE         DEPTH TO TO |                            |      | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            | ATER     | GROUND W   | ATER      | GROUND WA  | ATER    | GROUND W   | ATER    |
| DEPHITON DO FSAMPLE         0         9         9         10           SAMPLE DATE         0         9         9         0         002000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         01112000         011120000         011120000         011100000                                                                                                                                                                                                                                                                                     |                            | L    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ARD2107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | ARD2133    |          | ARD2121    |           | ARD2125    |         | ARD2149    |         |
| SAMPLE DATE         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         SA         C         C         SA         SA         C         SA         C         SA         SA <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>18</th> <th>.  </th> <th>0</th> <th></th> <th>9</th> <th></th> <th>9</th> <th></th> <th>10</th> <th></th>                                                                                                                                                                                                                                                                                                  |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .    | 0          |          | 9          |           | 9          |         | 10         |         |
| QC CODE         FREQUENCY         NYSDE         NUMBER         NUMBER         SA         DU         SA         SA         DU         SA         A         SA         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | MPLE |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | and the state of a state ball and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state |      | 0          |          | 9          |           | 9          |         | 10         |         |
| STUDY ID         FREQUENCY         MYSBEC         NUMBER         NUMBER         ASH REMEDIAL DESI         ASH REME                                                                                 |                            | L    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 01/07/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 01/11/2000 |          | 01/10/2000 |           | 01/10/2000 |         | 01/20/2000 |         |
| SAMPLE ROUND         OF         CLASS GA         ABOVE<br>STD         OF         OF <tho< th=""><th></th><th>L</th><th></th><th></th><th></th><th></th><th></th><th></th><th>SA</th><th></th><th>SA</th><th></th><th>DU</th><th></th><th>SA</th><th></th><th>SA</th><th></th></tho<>                                                                                                                                                                                                                                                                       |                            | L    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | SA         |          | DU         |           | SA         |         | SA         |         |
| PARAMETER         UNIT         MAXIMUM         DETECTION         STD.         STD.         DETECTS         ANALYSES         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ASH REMEDIAL</th> <th>DESI</th> <th>ASH REMED</th> <th>IAL DESI</th> <th>ASH REMED</th> <th>DIAL DESI</th> <th>ASH REMED</th> <th>AL DESI</th> <th>ASH REMED</th> <th>AL DESI</th>                                                                                                                                                                                                                            |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ASH REMEDIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DESI | ASH REMED  | IAL DESI | ASH REMED  | DIAL DESI | ASH REMED  | AL DESI | ASH REMED  | AL DESI |
| VOLATLE ORGANICS         UGL         0         0%         5         0         54         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |      |          | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | . 2        |          | 2          |           | 2          |         | 2          |         |
| 1.11-Thebloroethane         UGAL         0         0%         5         0         54         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th></th> <th>UNIT</th> <th>MAXIMUM</th> <th>DETECTION</th> <th>STD.</th> <th>STD.</th> <th>DETECTS</th> <th>ANALYSES</th> <th>N</th> <th></th> <th>N</th> <th></th> <th>N</th> <th> </th> <th>N</th> <th></th> <th>N</th> <th></th>                                                                                                                                                                                                                                                                              |                            | UNIT | MAXIMUM  | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STD. | STD. | DETECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANALYSES | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | N          |          | N          |           | N          |         | N          |         |
| 1.12.2-Terrachtoroethane       UG/L       0       0%       5       0       64       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>· · · ·</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            | · · · ·  |            |           |            |         |            |         |
| 1.12-Trichloroethane       UG/L       0       0%       5       0       54       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |      | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       | 7          | υ       |
| 1.1-Dichloroethane         UG/L         0         0%         5         0         54         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           | 1          | UJ      | 7          | U       |
| 1.1-Dichloroethene       UG/L       0       0%       5       0       0       54       1       0       1       0       1       0       7         1.2-Dichloroetnane       UG/L       0       0%       5       0       0       54       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       |            |         |
| 1.2.4-Trichlorobenzene       UG/L       0       0%       5       0       0       64       1       U       1       1       1       1       0       7         1.2-Dibromo-3-chloropropane       UG/L       0       0%       0       0       54       1       UJ       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,1-Dichloroethane          |      | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       | 7          | U       |
| 1.2-Dibrono-3-chloropropane       UG/L       0       0%       0       0       54       1       UJ       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U       1       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,1-Dichloroethene          |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       | 7          | U       |
| 1,2-Dibromoethane         UG/L         0         0%         0         54         1         U         1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,2,4-Trichlorobenzene      | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1          | U        | 1          | U         | 1          | U       | 7          | U       |
| 1,2-Dibromoethane         UG/L         0         0%         0         54         1         U         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,2-Dibromo-3-chloropropane | UG/Ļ | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1          | U        | 1          | U         | 1          | U       | 7          | U       |
| 1,2-Dichloroethane         UG/L         3         2%         5         0         1         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,2-Dibromoethane           |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 0    | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | Ű        |            |           | 1          | U       |            |         |
| 1.2-Dichloropropane         UG/L         0         0%         5         0         64         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th>,2-Dichlorobenzene</th> <th></th> <th>0</th> <th>0%</th> <th>4.7</th> <th>0</th> <th>0</th> <th>54</th> <th>1 UJ</th> <th></th> <th>1</th> <th>U</th> <th>1</th> <th>υ</th> <th>1</th> <th>U</th> <th>7</th> <th>U</th>                                                                                                                                                                                                                                                                                       | ,2-Dichlorobenzene         |      | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.7  | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1          | U        | 1          | υ         | 1          | U       | 7          | U       |
| 1.2-Dichloropropane         UG/L         0         0%         5         0         54         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         7         7           1.4-Dichlorobenzene         UG/L         1         4%         0         2         54         5         UJ         5         UJ         5         UJ         36           Benzene         UG/L         0         0%         0         0         54         1         U         1         U         1         U         7           Bromochloromethane         UG/L         0         0%         0         0         54         1         U<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,2-Dichloroethane          | UG/L | 3        | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |            |          | 1          | U         | 1          | U       | 7          | U       |
| 1.4-Dichlorobenzene         UG/L         0         0%         4.7         0         0         54         1         UJ         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,2-Dichloropropane         |      | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | 0    | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1          | U        | 1          | U         | . 1        | U       | 7          | U       |
| Acetone         UG/L         1         4%         0         2         54         5         UJ         5         UJ         5         UJ         5         UJ         38           Benzene         UG/L         0         0%         0.7         0         0         54         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< th=""><th>,3-Dichlorobenzene</th><th>UG/L</th><th>0</th><th>0%</th><th>5</th><th>0</th><th>0</th><th>54</th><th>1 U</th><th></th><th>1</th><th>U</th><th>1</th><th>U</th><th>1</th><th>Ü</th><th>7</th><th>U</th></td<>                                                                                                                                                                                                                                                                                                  | ,3-Dichlorobenzene         | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | Ü       | 7          | U       |
| Berzene         UG/L         0         0%         0.7         0         0         54         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,4-Dichlorobenzene         | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.7  | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1          | U        | 1          | υ         | 1          | U       | 7          | U       |
| Benzene         UG/L         0         0%         0.7         0         0         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cetone                     | UG/L | 1        | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 5 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 5          | ŪJ       | 5          | U         | 5          | UJ      | 36         | R       |
| Bromochloromethane         UG/L         0         0%         0         0         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         7           Bromodichloromethane         UG/L         0         0%         0         0         54         1         U         1         U         1         U         7           Bromodifue         UG/L         0         0%         0         0         54         1         U         1         U         1         U         7           Carbon disulfide         UG/L         0         0%         5         0         0         54         1         U         1         U         1         U         7           Carbon disuffide         UG/L         0         0%         5         0         0         54         1         U         1         U         1         U         7           Chlorobenzene         UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | enzene                     |      | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.7  | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         |            |         | 7          | U       |
| Bromoform         UG/L         0         0%         0         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         7         Carbon disulfide         UG/L         0         0%         5         0         54         1         U         1         U         1         U         1         U         7         Carbon disulfide         UG/L         0         0%         5         0         54         1         U         1         U         1         U         1         U         7         Carbon disulfide         UG/L         0         0%         0         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | romochloromethane          | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1          | U        | 1          | U         | 1          | U       |            |         |
| Carbon disulfide         UG/L         0         0%         0         0         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         7         Chicrobic reare         UG/L         0         0%         5         0         0         54         1         U         1         U         1         U         7         Chicrobic reare         UG/L         0         0%         5         0         0         54         1         U         1         U         1         U         7         Chicrobic reare         U         1         U         1         U         7         Chicrobic reare         U         1         U         1         U         1 <th< th=""><th>romodichloromethane</th><th>UG/L</th><th>0</th><th>0%</th><th></th><th>0</th><th>0</th><th>54</th><th>1 U</th><th></th><th>1</th><th>U</th><th>1</th><th>U</th><th>1</th><th>U</th><th>7</th><th>υ</th></th<>                                                                                                                                                                                                                                                               | romodichloromethane        | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       | 7          | υ       |
| Carbon tetrachloride         UG/L         0         0%         5         0         54         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         1         U         7           Chlorodibromomethane         UG/L         0         0%         0         0         54         1         U         1         U         1         U         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | romoform                   | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1          | U        | 1          | U         | 1          | UU      | 7          | U       |
| Chlorobenzene         UG/L         0         0%         5         0         54         1         U         1         U         1         U         1         U         7           Chlorodibromomethane         UG/L         0         0%         0         0         54         1         U         1         U         1         U         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arbon disulfide            | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       | 7          | U       |
| Chlorobenzene         UG/L         0         0%         5         0         0         54         1         U         1         U         1         U         1         U         7           Chlorodibromomethane         UG/L         0         0%         0         0         54         1         U         1         U         1         U         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arbon tetrachloride        | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | υ         | 1          | U       | 7          | U       |
| Chlorodibromomethane UG/L 0 0% 0 0 54 1 U 1 U 1 U 1 U 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hlorobenzene               |      | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | U       | 7          | U       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hlorodibromomethane        | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | U         | 1          | Ú       | 7          | U       |
| Chloroethane UG/L 0 0% 5 0 0 54 1 U 1 U 1 U 1 U 1 U 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hioroethane                | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | Ó    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        | 1          | υ         |            |         |            |         |
| Chloroform UG/L 0 0% 7 0 0 54 1 U 1 UJ 1 U 1 UJ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hloroform                  | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Cis-1,2-Dichloroethene UG/L 980 28% 5 14 15 54 1 U 1 U 1 U 1 U 1 U 2 1 U 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is-1,2-Dichloroethene      | UG/L | 980      | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5    | 14   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54       | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1          | U        |            |           | 1          | J       |            |         |
| Cis-1,3-Dichloropropene UG/L 0 0% 5 0 0 54 1 U 1 U 1 U 1 U 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | UG/L |          | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 1          | Ú        |            |           |            |         |            | U       |
| Ethyl benzene UG/L 0 0% 5 0 0 54 1 U 1 U 1 U 1 U 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 0    | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Methyl bromide UG/L 0 0% 0 0 54 1 U 1 U 1 U 1 U 1 U 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | UG/L | 0        | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 0    | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Methyl butyl ketone UG/L 0 0% 0 0 54 5 UJ 5 U 5 U 5 U 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |      | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |      | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Methyl chloride         UG/L         0         0%         5         0         0         54         1         U         1         U         1         UJ         7           Methyl ethyl ketone         UG/L         0         0%         50         0         0         54         5         UJ         5         U         5         UJ         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |      | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50   | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Methyl isobutyl ketone UG/L 0 0% 0 0 54 5U 5U 5U 5U 5U 36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Methylene chloride UG/L 0 0% 5 0 54 2U 2U 2U 2U 2U 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Strene UG/L 0 0% 0 54 1U 1U 1U 1U 1U 1U 7U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |            |          |            |           |            |         |            |         |
| Tetrachloroethene UG/L 0 0% 5 0 0 54 1U 1U 1U 1U 1U 7U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |      | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    |      | and and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +    |            |          |            |           |            |         |            |         |
| Toluene UGA 2 6% 5 0 3 54 1U 1U 1J 1J 7U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54       | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |            |          |            |           |            |         |            |         |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2–5-22-00.XLS 06/15/2000

GROUND WATER CHEMICAL RESULTS RD. 2 17 OF 22

|                           | 1    |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                       | 1               | 1                 | 1                 |                   |                         | 1                                     |
|---------------------------|------|---------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-------------------|-------------------|-------------------|-------------------------|---------------------------------------|
| · · ·                     |      |         | -              |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                 |                   |                   |                   | · · · · · · · ·         |                                       |
|                           |      |         |                |          | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                 |                   |                   |                   | · · · · · · · · · · · · |                                       |
|                           |      |         | ····· · . ···· |          | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | -               |                   |                   | +                 |                         |                                       |
|                           |      |         | ···· ·         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 |                   |                   |                   |                         |                                       |
|                           |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       | + ·             |                   |                   |                   |                         | • • • • • • • • • • • • • • • • • • • |
|                           |      | +       |                |          | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · ·                   |                 |                   |                   |                   |                         |                                       |
| FACILITY                  |      | +       | ····           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL      | ASH LANDFILL            | ASH LANDFILL                          |
| LOCATION ID               |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 | PT-11             | PT-15             | PT-16             | PT-16                   | PT-17                                 |
| MATRIX                    |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 | GROUND WATER      | GROUND WATER      | GROUND WATER      | GROUND WATER            | GROUND WATER                          |
| SAMPLE ID                 |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | f               | ARD2107           | ARD2133           | ARD2121           | ARD2125                 | ARD2149                               |
| DEPTH TO TOP OF SAMPL     | E    | 1       |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | · · · · · · · · | 18                | 0                 | 9                 | 9                       | 10                                    |
| DEPTH TO BOTTOM OF SA     |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 | 18                | 0                 | 9                 | 9                       | 10                                    |
| SAMPLE DATE               | T    |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + · · · · · · · · · · · |                 | 01/07/2000        | 01/11/2000        | 01/10/2000        | 01/10/2000              | 01/20/2000                            |
| QC CODE                   |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 | SA                | SA                | DU                | SA                      | SA                                    |
| STUDY ID                  |      |         | FREQUENCY      | NYSDEC   | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUMBER                  | NUMBER          | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI | ASH REMEDIAL DESI       | ASH REMEDIAL DESI                     |
| SAMPLE ROUND              |      |         | OF             | CLASS GA | ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OF                      | OF              | 2                 | 2                 | 2                 | 2                       | 2                                     |
| PARAMETER                 | UNIT | MAXIMUM | DETECTION      | STD.     | STD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DETECTS                 | ANALYSES        | N                 | N                 | N                 | N                       | N                                     |
| Total Xylenes             | UG/L | 0       | 0%             | 5        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ő                       | 54              | 10                | 1 U               | 1 U               | 1 U                     | 7 U                                   |
| Trans-1,2-Dichloroethene  | UG/L | . 2     | 4%             | 5        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                       | 54              | 10                | 1 U               | 1 U               | 1 U                     | 7 U                                   |
| Trans-1,3-Dichloropropene | UG/L | 0       | 0%             | 5        | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                       | 54              | 10                | 1 U               | 1 U               | 1 U                     | 7 U                                   |
| Trichloroethene           | UG/L | 760     | 28%            | 5        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                      | 54              | 10                | 1 U               | 1 U               | 1 U                     | 140                                   |
| Vinyl chloride            | UG/L | 25      | 2%             | 2        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | 54              | 10                | 1 UJ              | 1 U               | 1 UJ                    | 7 U                                   |
| METALS                    |      |         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 |                   |                   |                   |                         |                                       |
| Aluminum                  | UG/L | 7700    | 49%            |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                      | 51              | 1550 J            | 135 J             | 65.5 J            | 31.2 J                  | 34.4 UJ                               |
| Antimony                  | UG/L | 4.5     | 12%            |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                       | 51              | 2.2 U             | 2.2 U             | 2.2 U             | 2.5 J                   | 2.2 U                                 |
| Arsenic                   | UG/L | 5       |                | 25       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                      | 51              | 2.5 U             | 2.5 U             | 2.5 U             | 2.5 U                   | 2.7 J                                 |
| Barium                    | UG/L | 173     | 100%           | 1000     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 95.9 J            | 79.6 J            | 39.4 J            | 39 J                    | 54.6 J                                |
| Beryllium                 | UG/L | 0.26    | 14%            |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                       | 51              | 0.13 J            | 0.1 U             | 0.1 U             | 0.1 U                   | 0.1 U                                 |
| Cadmium                   | UG/L | 0.35    | 2%             | 10       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | 51              | 0.2 U             | 0.2 U             | 0.2 U             | 0.2 U                   | 0.2 U                                 |
| Calcium                   | UG/L | 391000  | 100%           |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 126000            | 75700             | 99100             | 99400                   | 123000                                |
| Chromium                  | UG/L | 4.1     | 14%            | 50       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                       | 51              | 4 J               | 1 U               | 1 U               | 10                      | 1 U                                   |
| Cobalt                    | UG/L | 2       | 6%             |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                       | 51              | 1.3 U             | 1.3 U             | 1.3 U             | 1.3 U                   | 1.3 U                                 |
| Copper                    | UG/L | 14.6    | 33%            | 200      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                      | 51              | 5.3 J             | 1.9 U             | 2.6 J             | 1.9 U                   | 2.6 J                                 |
| Cyanide                   | UG/L | 0       | 0%             | 100      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                       |                 | 10 U              | 10 U              | 10 U              | 10 U                    | 10 U                                  |
| Iron                      | UG/L | 6350    | 63%            | 300      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                      | 51              | 2020 J            | 168 J             | 82.6 J            | 20.3 UJ                 | 20.3 U                                |
| Lead                      | UG/L | 3.8     | 10%            | 25       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 51              | 1.3 U             | 1.3 U             | 1.3 U             | 1.3 U                   | 1 U                                   |
| Magnesium                 | UG/L | 85900   | 100%           |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 34300             | 18000             | 12400             | 12400                   | 12100                                 |
| Manganese                 | UG/L | 344     | 100%           | 300      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 99.8              | 9.8 J             | 15.7 J            | 7.1 J                   | 2.2 J                                 |
| Mercury                   | UG/L | 0.14    | 2%             | 2        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 51              | 0.1 U             | 0.1 U             | 0.1 U             | 0.1 U                   | 0.1 U                                 |
| Nickel                    | UG/L | 6.2     | 10%            |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 4.6 J             | 1.7 U             | 1.7 U             | 1.7 U                   | 1.7 U                                 |
| Potassium                 | UG/L | 25600   | 100%           | 78       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 2520 J            | 1940 J            | 712 J             | 822 J                   | 690 J                                 |
| Selenium                  | UG/L | 3       | 2%             | 10<br>50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       | 51              | 2.5 U             | 2.2 U             | 2.2 U .           | 2.2 U                   | 2.2 U                                 |
| Silver                    | UG/L | 2.8     | 2%             |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | 51<br>51        | . 1 UJ            | 1.3 UJ            | 1.3 UJ            | 1.3 UJ                  | 1.3 UJ                                |
| Sodium                    | UG/L | 175000  | 90%            | 20000    | 23<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46                      | 51              | 32200             | 19800             | 5800              | 6010                    | 24100 U                               |
| Thallium                  | UG/L | 7.4     | 6%             |          | THE OWNER AND ADDRESS OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION O | 3                       | 51              | 3.6 U             | 3.2 UJ            | 3.2 UJ            | 3.2 UJ                  | 3.2 UJ                                |
| Vanadium                  | UG/L | 10.8    | 8%             |          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                       | 51<br>51        | 2 J               | 1.8 U             | 1.8 U             | 1.8 U                   | 1.8 U                                 |
| Zinc                      | UG/L | 1620    | 100%           | 300      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                      | 51              | 13.8 J            | 6.1 J             | 3.1 J             | 4 J                     | 4.1 J                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     | 1                                     | )                 | 1                                 |                                         |         | 1        | 1                                     |                      | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------------------|-----------------------------------|-----------------------------------------|---------|----------|---------------------------------------|----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          |                                       |                      |                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          |                                       |                      |                                         | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          |                                       |                      |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |                                       |                   |                                   |                                         |         |          |                                       |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          |                                       |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          |                                       |                      |                                         | ···· ···· ··· · ··· · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          |                                       |                      | • • • • • • • • • • • • • • • • • • • • | +- · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | †***** · · · · · · · · · · · · · · · · · |
| FACILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                       |                   |                                   |                                         | -       |          | ASH LANDFILL                          | ASH LANDFILL         | ASH LANDFILL                            | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASH LANDFILL                             |
| LOCATION ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 4                                     | ···· ·· · ···     |                                   |                                         |         |          | PT-18                                 | PT-19                | PT-20                                   | PT-21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PT-22                                    |
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                       | · · · · · · · · · |                                   | •                                       |         | • • •    | GROUND WATER                          | GROUND WATER         | GROUND WATER                            | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | · · · · · · · · · · · · · · · · · · · |                   |                                   |                                         |         |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | GROUND WATER         |                                         | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | GROUND WATER                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                       |                   |                                   |                                         |         |          | ARD2154                               | ARD2110              | ARD2153                                 | ARD2150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ARD2151                                  |
| DEPTH TO TOP OF SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                       |                   |                                   |                                         |         |          | 10                                    | 8.5                  | 9.5                                     | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3                                     |
| DEPTH TO BOTTOM OF SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IPLE. |                                       |                   |                                   |                                         |         |          | 10                                    | 8.5                  | 9.5                                     | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3                                     |
| SAMPLE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                       |                   |                                   |                                         |         |          | 01/21/2000                            | 01/08/2000           | 01/21/2000                              | 01/21/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01/21/2000                               |
| QC CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                       |                   |                                   |                                         |         |          | SA                                    | SA                   | SA                                      | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA                                       |
| STUDY ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                       | FREQUENCY         | NYSDEC                            | NUMBER                                  | NUMBER  | NUMBER   | ASH REMEDIAL DE                       | SI ASH REMEDIAL DESI | ASH REMEDIAL DESI                       | ASH REMEDIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASH REMEDIAL DESI                        |
| SAMPLE ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | L                                     | OF                | CLASS GA                          | ABOVE                                   | OF      | OF       | 2                                     | 2                    | 2                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                        |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNIT  | MAXIMUM                               | DETECTION         | STD.                              | STD.                                    | DETECTS | ANALYSES | N                                     | N                    | N                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                        |
| VOLATILE ORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                       |                   |                                   |                                         |         |          |                                       |                      | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | Ō       | 54       | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 |                                         |         | 54       | 23 U                                  | 1 UJ                 | 20                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | · · · · · · · · · · · · · · · · · | ň                                       |         | 54       | 23 U                                  | 10                   | 20                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UG/L  | 0                                     |                   | 5                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         | 54       | 23 U                                  | 10                   | 20                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | 5                                 |                                         | 0       | 54       | 23 U                                  | 10                   | 20                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | 5                                 | 0                                       | 0       | 54       | 23 U<br>23 U                          | 10                   | 2 U                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 0                                     |                   |                                   | 0                                       | 0       | 54<br>54 | 23 U                                  |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                       |                   |                                   |                                         |         | 54<br>54 |                                       | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   |                                   | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | 4.7                               | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 3                                     | 2%                | 5                                 | 0                                       | 1       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 J                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | 0       | 54<br>54 | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>, 5</u> U                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | 5                                 | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 บ                                      |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | UG/L  | 0                                     | 0%                | 4.7                               | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U<br>9 R                              | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 1                                     | 4%                |                                   | 0                                       | 2       | 54       | 120 R                                 | 5 U                  | 9 R                                     | 5 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 R                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 0.7                               | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                |                                   | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   |                                   | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   |                                   | . 0                                     | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   |                                   | 0                                       | 0       | 54       | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | 5                                 | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UG/L  | 0                                     | 0%                | 5                                 | Ō                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
| Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG/L  | 0                                     | 0%                | · · · •                           | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 11                                    | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5 U                                     |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | 0       | 54       | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 7                                 | 0                                       | 0       | 54<br>54 | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 980                                   | 28%               | 5                                 | 14                                      | 15      | 54       | 16 J                                  | 10                   | 24                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | 0       |          | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | 0       | 54<br>54 | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                |                                   | 0                                       | 0       | 54       | 23 U                                  | 10                   | 2 U                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UG/L  | 0                                     | 0%                |                                   | 0                                       | 0       | 54       | 120 UJ                                | 50                   | 9 UJ                                    | 5 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 UJ                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | ō                                       | ō       | 54       | 23 U                                  | 10                   | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  |                                       | 0%                | 50                                | 0                                       | 0       | 54<br>54 |                                       |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 0                                     | 0%                | 50                                |                                         | 0       | 54<br>54 | 120 U                                 | 5 U                  | 9 U                                     | 5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 U                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     |                   | <u>-</u>                          | 0                                       |         |          | 120 U                                 | 5 U                  | 9 U                                     | 5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 U                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | 0       | 54       | 46 U                                  | 2 U                  | 4 U                                     | 2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 U                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                |                                   | 0                                       | 0       | 54       | 23 U                                  | 1 U •                | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG/L  | 0                                     | 0%                | 5                                 | 0                                       | 0       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UG/L  | 2                                     | 6%                | 5                                 | 0                                       | 3       | 54       | 23 U                                  | 1 U                  | 2 U                                     | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 U                                      |

GROUND WATER CHEMICAL RESULTS RD. 2 19 OF 22

|                                       |       |         |           |          | 1           | 1          | :        | 1                                       |        | 1          |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                               | 1          |          |            |                    |
|---------------------------------------|-------|---------|-----------|----------|-------------|------------|----------|-----------------------------------------|--------|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------|------------|--------------------|
| f +                                   |       |         |           |          |             |            | 1        |                                         |        |            |                                         | h. '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · ·                                                                                                         |            |          |            |                    |
|                                       |       |         |           |          |             |            | -        | •                                       |        |            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |            |          |            |                    |
|                                       |       |         |           |          |             |            | ł        |                                         |        |            |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |            |          |            |                    |
|                                       |       |         |           |          |             |            |          |                                         |        |            | · · · · · · · · · · · · · · · · · · ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | L          |          |            |                    |
| · · · · · · · · · · · · · · · · · · · |       |         |           |          | Į .         |            | ļ        | 1                                       |        |            |                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | ļ          |          | - <u>-</u> |                    |
|                                       |       |         |           |          |             |            |          |                                         |        |            |                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |            |          |            |                    |
|                                       |       |         |           |          |             | L .        |          |                                         |        |            |                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | l          |          |            | I                  |
| FACILITY                              |       |         |           |          |             |            |          | ASH LANDFIL                             |        | ASH LANDF  |                                         | ASH LANDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ILL                                                                                                             | ASH LANDF  |          | ASH LANDF  | <u>ill</u>         |
| LOCATION ID                           |       |         |           |          |             |            | 1        | PT-18                                   |        | PT-19      |                                         | PT-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | PT-21A     | <u> </u> | PT-22      | Ĺ                  |
| MATRIX                                |       |         |           |          |             |            |          | GROUND WA                               | ER     | GROUND W   | ATER                                    | GROUND W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATER                                                                                                            | GROUND W   | ATER     | GROUND W   | ATER               |
| SAMPLE ID                             |       |         |           |          |             |            |          | ARD2154                                 |        | ARD2110    |                                         | ARD2153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | ARD2150    |          | ARD2151    |                    |
| DEPTH TO TOP OF SAMPL                 | E     |         |           |          |             |            |          | 10                                      |        | 8.5        |                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 17.5       |          | 11.3       |                    |
| DEPTH TO BOTTOM OF SA                 | MPLE  |         |           |          |             |            |          | 10                                      |        | 8.5        |                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 17.5       |          | . 11.3     |                    |
| SAMPLE DATE                           | 1     |         |           |          |             | T          | [        | 01/21/2000                              |        | 01/08/2000 |                                         | 01/21/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 01/21/2000 |          | 01/21/2000 |                    |
| QC CODE                               |       |         |           |          |             |            |          | SA                                      |        | SA         |                                         | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                               | SA         |          | SA         |                    |
| STUDY ID                              |       |         | FREQUENCY | NYSDEC   | NUMBER      | NUMBER     | NUMBER   | ASH REMEDIA                             | L DESI | ASH REMED  | IAL DESI                                | ASH REME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIAL DESI                                                                                                       | ASH REMED  | IAL DESI | ASH REMED  | IAL DESI           |
| SAMPLE ROUND                          |       | +       | OF        | CLASS GA | ABOVE       | OF         | OF       | 2                                       |        | 2          |                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Γ                                                                                                               | 2          |          | 2          |                    |
| PARAMETER                             | UNIT  | MAXIMUM | DETECTION | STD.     | STD.        | DETECTS    | ANALYSES | N                                       |        | N          |                                         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t                                                                                                               | N          |          | N          |                    |
| Total Xylenes                         | UG/L  | 0       | 0%        | 5        | 0           | ō          | 54       | 23 U                                    |        | 1          | Ū                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | υ                                                                                                               | 1          | U        | 5          | U                  |
| Trans-1,2-Dichloroethene              | UG/L  | 2       |           | 5        | Ö           | 2          | 54       |                                         |        |            | U                                       | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J                                                                                                               | 1          | U        | 2          | J                  |
| Trans-1,3-Dichloropropene             | UG/L  |         |           | 5        | Ö           | ō          | 54       |                                         |        |            | Ū                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                               | 1          | U        |            | U                  |
| Trichloroethene                       | UG/L  | 760     | 28%       |          | 8           | 15         | 54       |                                         |        |            | Ŭ                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 2          |          | 65         |                    |
| Vinvl chloride                        | UG/L  | 25      | 2%        | 2        | 1           | 1          | 54       | 23 U                                    |        |            | U                                       | The source between the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                               |            | υ        |            | U                  |
| METALS                                |       |         |           |          |             | ha ka k    |          | 200                                     |        | <u> </u>   | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | <u> </u>   | <u> </u> |            |                    |
| Aluminum                              | UG/L  | 7700    | 49%       |          | · · · · · · | 25         | 51       | 34.4 U                                  |        | 15.5       | 111                                     | 34,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111                                                                                                             | 34,4       | 111      | 34.4       | h <del>u</del> ——— |
|                                       | UG/L  | 4.5     | 12%       |          | 0           |            | 51       |                                         | J      | 2.2        |                                         | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 5.4        |          | 2.2        |                    |
| Antimony                              | UG/L  | 4.5     |           | 25       |             | 11         | 51       | 2.4 U                                   |        | 2.2        |                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 2.4        |          | 2.2        |                    |
| Arsenic                               |       | 173     |           | 1000     |             |            | 51       | 47.8 J                                  |        | 44.8       |                                         | 89.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | 69,2       |          | 74.9       |                    |
| Barium                                | UG/L  | 0.26    |           | 1000     | <u> </u>    | 51         |          | + · · · · · · · · · · · · · · · · · · · |        | 0.11       |                                         | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the second second second second second second second second second second second second second second second se | 0.6        |          |            |                    |
| Beryllium                             | UG/L  |         | 14%       |          | 0           | ·          | 51       | 0.6 U                                   |        |            |                                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                                                                 |            |          | 0.1        |                    |
| Cadmium                               | UG/L  | 0.35    | 2%        | 10       | U U         | <u>-</u> ] | 51       | 0.35 J                                  |        | 0.2        | 0                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 0.2        | 0        | 247000     |                    |
| Calcium                               | UG/L  | 391000  | 100%      |          | 0           | 51         | 51       | 289000                                  |        | 110000     |                                         | 154000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | 164000     |          |            |                    |
| Chromium                              | UG/L  | 4.1     | 14%       | 50       | 0           |            | 51       | 1 U                                     |        | 1          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                               |            | <u>U</u> | 1          | -                  |
| Cobalt                                | UG/L  | 2       | 6%        |          | 0           | 3          | 51       | 3.5 U                                   |        | 1.3        | and the state of the state of the state | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 3.5        |          | 1.3        |                    |
| Copper                                | UG/L  | 14.6    | 33%       | 200      | 0           | 17         | 51       | 14.6 J                                  |        | 1.6        |                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | 3          |          | 1.9        |                    |
| Cyanide                               | UG/L  | 0       |           | 100      | 0           | 0          |          | 10 U                                    |        | 10         |                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 10         | U        | 10         |                    |
| Iron                                  | UG/L  | 6350    | 63%       | 300      | 14          | 32         | 51       | 14.8 U                                  | J      | 812        |                                         | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | 369        |          | 20.3       |                    |
| Lead                                  | UG/L  | 3.8     | 10%       | 25       | 0           |            | 51       | 1U                                      |        | 1.3        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                               | 1          | U        | 1          |                    |
| Magnesium                             | UG/L  | 85900   | 100%      |          | Ó           | 51         | 51       | 44500                                   |        | 15300      |                                         | 19500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 37800      |          | 26400      |                    |
| Manganese                             | UG/L  | 344     | 100%      | 300      | 2           | 51         | 51       | 9.7 J                                   |        | 316        |                                         | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 344        |          | 10         |                    |
| Mercury                               | UG/L  | 0.14    | 2%        | 2        | 0           | 1          | 51       | 0.14 J                                  |        | 0.1        |                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 0.1        |          | 0.1        |                    |
| Nickel                                | UG/L  | 6.2     | 10%       |          | 0           | - 5        | 51       | 4.2 U                                   |        | 1.7        |                                         | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                               | 4.2        | U .      | 1.7        |                    |
| Potassium                             | UG/L  | 25600   | 100%      |          | 0           | 51         | 51       | 4740 J                                  |        | 1900       |                                         | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J                                                                                                               | 10300      |          | 879        |                    |
| Selenium                              | UG/L  | 3       | 2%        | 10       | 0           | 1          | 51       | 2.2 U                                   |        | 2.5        | υ                                       | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                               | 2.2        | U        | 2.2        | U                  |
| Silver                                | UG/L  | 2.8     | 2%        | 50       | Ō           | 1          | 51       | 1 Ü                                     | J -    |            | ŬJ                                      | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J                                                                                                               | 1          | UJ       | 1.3        | UJ                 |
| Sodium                                | UG/L  | 175000  | 90%       | 20000    | 23          | 46         | 51       | <b>39800</b> J                          |        | 20700      |                                         | 26200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 36300      |          | 43700      |                    |
| Thallium                              | UG/L  | 7.4     | 6%        |          | 0           | 3          | 51       | 7.4 J                                   | i      | 3.2        | U                                       | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 3.2        | UJ       | 3.2        |                    |
| Vanadium                              | UG/L  | 10.8    | 8%        |          | 0           | 4          | 51       | 2.8 U                                   |        | 1.8        |                                         | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 2.8        |          | 1.8        |                    |
|                                       | UG/L  | 1620    | 100%      | 300      |             | 51         |          | 1620                                    | ·      | 8          |                                         | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 2.0        |          | 4.3        |                    |
| Zinc                                  | JOG/L | 1 1620  | 100%      | 300      | 1           | 51         | 51       | 1020                                    |        | 0          | J                                       | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                              | 3          | J        | 4.0        | <u> </u>           |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

GROUND WATER CHEMICAL RESULTS RD. 2 20 QF 22

|                                             | 1    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  |              |          |              |          |
|---------------------------------------------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|---------|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|----------|--------------|----------|
| · · ·                                       |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
|                                             |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
| • • • • • • • • • • • •                     |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
|                                             | 1    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          | ļ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
|                                             |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
|                                             |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
|                                             |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
| FACILITY                                    |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          | ASH LANDFI | LL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASH LANDFILL       | ASH LANDFILL |          | ASH LANDFILL |          |
| LOCATION ID                                 |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                   |        |         |          | PT-23      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PT-24              | PT-25        |          | PT-26        |          |
| MATRIX                                      |      | [       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          | GROUND W   | ATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GROUND WATER       | GROUND WAT   |          | GROUND WAT   | ER       |
| SAMPLE ID                                   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          | ARD2123    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARD2144            | ARD2116      |          | ARD2138      |          |
| DEPTH TO TOP OF SAMPLE                      |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          | 10.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.4               | 10           |          | 13.5         |          |
| DEPTH TO BOTTOM OF SAM                      | NPLE |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | · · .  |         |          | 10.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.4               | 10           |          | 13.5         |          |
| SAMPLE DATE                                 |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          | 01/10/2000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01/20/2000         | 01/09/2000   |          | 01/29/2000   |          |
| QC CODE<br>STUDY ID                         |      |         | EDEOUENON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000000                               |        |         |          | SA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA                 | SA           |          | SA           |          |
|                                             |      |         | FREQUENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NYSDEC                                | NUMBER |         | NUMBER   | ASH REMED  | IAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASH REMEDIAL DESIG |              | L DESIGN |              | L DESIGN |
| SAMPLE ROUND                                | UNIT |         | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLASS GA                              | ABOVE  | OF      | OF       | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                  | 2            |          | 2            |          |
| PARAMETER                                   | UNIT | MAXIMUM | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STD.                                  | STD.   | DETECTS | ANALYSES | N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                  | N            |          | N            |          |
| VOLATILE ORGANICS                           | UG/L |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |        |         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |          |              |          |
|                                             | UG/L |         | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | . 0    |         | 54       | 1          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | U        | 1            |          |
| 1,1,2,2-Tetrachloroethane                   | UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                     | 0      | 0       | 54       |            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | UJ       |              | U        |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane | UG/L | 0       | 0%<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        |         | 54       |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | U        |              | U        |
| 1,1-Dichloroethene                          | UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         | 54<br>54 |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | U        | 1            |          |
| 1,2,4-Trichlorobenzene                      | UG/L | 0       | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 5                                     |        | 0       | 54<br>54 | 4          | ບ<br>ບ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                 |              | U        | 1            |          |
| 1,2-Dibromo-3-chloropropane                 |      | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                     |        | õ       | 54       |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | U        | 1            |          |
| 1,2-Dibromoethane                           | UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        |         |          |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | บ<br>บ   | 1            | U<br>U   |
| 1,2-Dichlorobenzene                         | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.7                                   |        |         | 54<br>54 |            | U<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 U<br>4 U         |              | U<br>U   |              |          |
| 1,2-Dichloroethane                          | UG/L | 3       | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |        |         | 54<br>54 |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | U<br>U   | 1            |          |
| 1,2-Dichloropropane                         | UG/L | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                     |        |         | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | <u>U</u> | 1            |          |
| 1,3-Dichlorobenzene                         | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      |         | 54       |            | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                 |              | U        |              |          |
| 1,4-Dichlorobenzene                         | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.7                                   | 0      |         | 54       |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                 |              | U        |              |          |
| Acetone                                     | UG/L |         | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | ů l    | 2       | 54       |            | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 R               |              | UJ       |              | UJ       |
| Benzene                                     | UG/L | o       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7                                   | ō      |         | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | U        | 1            |          |
| Bromochloromethane                          | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | õ      | n n     | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | U        | 1            |          |
| Bromodichloromethane                        | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · | ŏ      |         | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                 |              | U        |              | Ŭ        |
| Bromoform                                   | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Ő      | ö       | 54       |            | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                 |              | U        |              |          |
| Carbon disulfide                            | UG/L | Ó       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0      | 0       | 54       | i i i      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | U        | 1            |          |
| Carbon tetrachloride                        | UG/L | ō       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | õ      |         | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                 |              | Ŭ        |              |          |
| Chlorobenzene                               | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | Ō       | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | Ŭ        | 1            |          |
| Chlorodibromomethane                        | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Ö      | Ö       | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | Ū        | 1            |          |
| Chloroethane                                | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | . 0     | 54       | 1          | υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | Ū        | 1            |          |
| Chloroform                                  | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                     | 0      | 0       |          | 1          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | ŪJ       | 1            |          |
| Cis-1,2-Dichloroethene                      | UG/L | 980     | 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                     | 14     | 15      | 54       | 1          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72                 | 1            | U        | 1            | Ū — — I  |
| Cis-1,3-Dichloropropene                     | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | 0       | 54       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 4 U              |              | U        | 1            |          |
| Ethyl benzene                               | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | 0       | 54       | 1          | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | Ū        | 1            | Ū        |
| Methyl bromide                              | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0      | 0       | 54       | 1          | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                | 1            | UJ       | 1            |          |
|                                             | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0      | 0       |          | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 UJ              |              | U        | 5            | Ū        |
|                                             | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | Ō      | 0       | 54       | 1          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 U                |              | UJ       | 1            |          |
|                                             | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                    | 0      | ō       |          | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 U               |              | ŪJ       | 5            |          |
| Methyl isobutyl ketone                      | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0      | 0       |          | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 U               | 5            | U        | 5            | Ū        |
|                                             | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | 0       |          | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 U                | 2            |          | 2            |          |
|                                             | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0      | Ö       |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                | 1            | U        |              |          |
|                                             | UG/L | 0       | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | 0       |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | Ŭ        | 1            |          |
|                                             | UG/L | 2       | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                     | 0      | 3       |          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 U                |              | Ŭ        | 1            |          |
|                                             |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | - 1    | -       |          |            | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                    |              |          |              | -        |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

`

GROUND WATER CHEMICAL RESULTS RD. 2 21 OF 22

,

|                                    |                   | 1           |            |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |
|------------------------------------|-------------------|-------------|------------|------------|-----------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|
|                                    | +                 |             |            |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |
|                                    |                   |             |            |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |
|                                    |                   |             |            |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |
|                                    |                   |             |            |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |
|                                    | · · · · · · · · · |             |            |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |
| FACILITY                           |                   |             |            |            |           |           |          | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASH LANDFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASH LANDFILL   | ASH LANDFILL        |
| LOCATION ID<br>MATRIX              |                   |             |            |            |           |           |          | PT-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PT-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PT-25          | PT-26               |
|                                    |                   |             |            |            |           |           |          | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GROUND WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GROUND WATER   | GROUND WATER        |
| SAMPLE ID<br>DEPTH TO TOP OF SAMPL |                   |             |            |            |           |           |          | ARD2123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ARD2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ARD2116        | ARD2138             |
|                                    |                   |             |            |            |           |           |          | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10             | 13.5                |
| DEPTH TO BOTTOM OF SA              | MPLE              |             |            |            |           |           |          | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10             | 13.5                |
| SAMPLE DATE                        |                   |             |            |            |           |           |          | 01/10/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01/20/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01/09/2000     | 01/29/2000          |
| QC CODE                            | +                 |             | CDCOU CNOW | NN/ODEC    | NUMBER OF | hu hingsa |          | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA             | SA                  |
| STUDY ID                           |                   |             | FREQUENCY  | NYSDEC     | NUMBER    |           | NUMBER   | ASH REMEDIAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASH REMEDIAL DESIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | ASH REMEDIAL DESIGN |
| SAMPLE ROUND                       | LINIT             | MAXIMUM     | OF         | CLASS GA   | ABOVE     | OF        | OF       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2              | 2                   |
| PARAMETER<br>Total Xylenes         | UNIT<br>UG/L      | MAXIMUM     | DETECTION  | STD.       | STD.      | DETECTS   | ANALYSES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N              | N                   |
|                                    |                   | 0           | 0%         | 5          |           | 0         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U            | 1 U                 |
| Trans-1,2-Dichloroethene           | UG/L              | 2           | 4%         | 5          | 0         | 2         | 54       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U            | 1 U                 |
| Trans-1,3-Dichloropropene          | UG/L              | 0           |            | 5          | 0         | 0         | 54       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U            | 1 U                 |
| Trichloroethene                    | UG/L              | 760         | 28%        | 5          | 8         | 15        | 54       | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 U            | 1 U                 |
| Vinyl chloride                     | UG/L              | 25          | 2%         |            |           |           | •54      | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 U ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 UJ           | 1 U                 |
| METALS                             |                   |             | 49%        |            |           |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                     |
| Aluminum                           | UG/L              | 7700        |            |            | 0         | 25        | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.4 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.5 UJ        | 303 J               |
| Antimony                           | UG/L              | 4.5         | 12%        |            | 0         | 6         | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2 U          | 4.5 J               |
| Arsenic                            | UG/L              | 5           | 22%        | 25         | 0         | 11        | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5 U          | 5 J                 |
| Barium                             | UG/L              | 173<br>0.26 | 100%       | 1000       | 0         | 51        | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.7 J         | 78.9 J              |
| Beryllium                          | UG/L              | 0.26        | 14%        |            | 0         | . 7       | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1 U          | 0.1 U               |
| Cadmium                            | UG/L              | 391000      | 2%<br>100% | 10         | 0         | 51        | 51<br>51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 U<br>91400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 U          | 0.2 U               |
| Calcium                            |                   |             |            |            |           |           | 51       | 102000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68100          | 91400               |
| Chromium                           | UG/L<br>UG/L      | 4.1         | 14%<br>6%  | 50         | 0         | 3         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U            | 1 U                 |
| Cobalt                             |                   | 2           |            |            |           | -         | 51<br>51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3 U          | 1.3 U               |
| Copper                             | UG/L<br>UG/L      | 14.6        | 33%        | 200<br>100 | 0         | 17        | 51<br>51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9 U<br>10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6 U          | 1.9 U               |
| Cyanide                            | UG/L              | 6350        |            | 300        | 0         | 32        | 51<br>51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 10 U           | 10 U                |
| iron                               | UG/L              | 6350        | 63%<br>10% | 300<br>25  | 14        |           |          | to 1 No. 120, 807 Statistic of sension product Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.3 UJ        | 251 J               |
| Lead<br>Magnesium                  | UG/L<br>UG/L      | 85900       | 10%        | 25         | 0         | 5<br>51   | 51<br>51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3 U          | 1.3 U               |
|                                    | UG/L              | 344         | 100%       | 200        |           | 51<br>51  |          | and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 9800<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7480           | 33100               |
| Manganese<br>Mercury               | UG/L              | 0.14        | 2%         | 300        |           | 51        | 51<br>51 | 5.6 J<br>0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4 J<br>0.1 U | 0.1 U               |
| Nickel                             | UG/L              | 6.2         | 2%<br>10%  | Z          |           | 5         | 51<br>51 | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7 U          |                     |
| Potassium                          | UG/L              | 25600       | 10%        |            | 0         | 51        | 51       | 1.7 U<br>574 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7 U<br>753 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7 U<br>626 J | 1.7 U<br>1850 J     |
| Selenium                           | UG/L<br>UG/L      |             |            | 10         | 0         | 51        |          | 2.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                     |
| Silver                             | UG/L              | 3           | 2%<br>2%   | 50         | 0         | }         | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 U          | 2.2 U               |
|                                    |                   |             | 90%        |            |           | 1         | 51       | 1.3 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 UJ           | 1.3 UJ              |
| Sodium                             | UG/L              | 175000      |            | 20000      | 23        | 46        | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10100          | 38400               |
| Thallium                           | UG/L              | 7.4         | 6%         |            | 0         | 3         | 51       | the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                                                                                                                                                                                                                                              | 3.2 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2 U          | 3.2 U               |
| Vanadium                           | UG/L              | 10.8        | 8%         |            | 0         | 4         | 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 U          | 1.8 U               |
| Zinc                               | UG/L              | 1620        | 100%       | 300        | 1         | 51        | 51       | 5 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 J            | 5.1 J               |

p:/pit/projects/seneca/ashdesig/gwsamrd2/GWTBL1RD2-5-22-00.XLS 06/15/2000

-

GROUND WATER CHEMICAL RESULTS RD. 2 22 OF 22

()( ) I

#### Table 5 Ash Landfill 1998 Third Quarter Groundwater Monitoring Indicator Parameters

| ,,                                      | рH                                           | Spec. Cond. | Redox Pot.* | DO                                    | Fe+2                                  | Methane                               | Ethane  | Ethene   | DOC    | Nitrate/Nitrite | Tot. Alkalinity | Sulfate | Chloride |
|-----------------------------------------|----------------------------------------------|-------------|-------------|---------------------------------------|---------------------------------------|---------------------------------------|---------|----------|--------|-----------------|-----------------|---------|----------|
| Well ID                                 | (units)                                      | (umhos/cm)  | (mV)        | (mg/l)                                | (mg/l)                                | (mg/l)                                | (mg/l)  | (mg/l)   | (mg/l) | (mg/l)          | (mg/I CaCO3)    | (mg/l)  | (mg/l)   |
| , · · · · · · · · · · · · · · · · · · · | <u>(                                    </u> | ('          |             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | /       |          | ·'     | ( /             |                 |         |          |
| PT-11                                   | 6.95                                         | 975         | 308         | 3.55                                  | 0.15                                  | 0.0021                                | <0.0021 | < 0.0025 | 6.9    | 0.71            | 356             | 121     | 32.2     |
| PT-12A                                  | 6.57                                         | 1530        | 270         | 0.91                                  | 0.46                                  | 0.0089                                | <0.0021 | < 0.0025 | 7.3    | 0.03            | 3 356           | 358     | 106      |
| PT-18                                   | 6.59                                         | 1267        | 7 50        | 1.89                                  | 0.51                                  | 0.13                                  | <0.0021 | < 0.0025 | 4.7    | 0.19            | 250             | 195     | 123.0    |
| PT-19                                   | 6.88                                         | 774         | 102         | 1.00                                  | 3.36                                  | 0.15                                  | <0.0021 | <0.0025  | 3.7    | 0.16            | 5 334           | 43.7    | 25       |
| PT-21A                                  | 7.02                                         | 1202        | 2 199       | 0.93                                  | 0.33                                  | 0.0043                                | <0.0021 | <0.0025  | 4.7    | 0.19            | 250             | 195     | 123      |
| PT-24                                   | 6.70                                         |             | 1           | 0.99                                  | 0.00                                  | <0.0012                               | <0.0021 | <0.0025  | 6.2    | 0.04            | 4 310           | 84.2    | 16.8     |
| MW-27                                   | 6.44                                         | 703         | 301         | 2.00                                  | na                                    | 0.057                                 | <0.0021 | <0.0025  | 6.2    | 2 0.32          | 2 306           | 46.1    | 19.2     |
| MW-29                                   | ns                                           | ns          | ns          | ns                                    | ns                                    | ns                                    | ns      | ns       | ns     | s ns            | s ns            | ns      | ns       |
| MW-30                                   | ns                                           |             |             | ns                                    | ns                                    | ns                                    | ns      | ns       | ns     | s ns            | s ns            | ns      | ns       |
| MW-36                                   | 6.93                                         |             |             | 1.00                                  | 0.00                                  | <0.0012                               | <0.0021 | <0.0025  | 1.4    | 4 0.88          | 3 292           | 53.8    |          |
| MW-40                                   | 6.96                                         | 1           | 1 1         | 1.89                                  | 0.04                                  | <0.0012                               | <0.0021 | <0.0025  | 4.4    | 4 0.08          | 3 254           | 55.7    | 7.9      |
| MW-44A                                  | 6.95                                         | 1           | 137         | 1.02                                  | 0.99                                  | 0,053                                 | <0.0021 | 0.013    | 8.5    | 5 0.01          | 212             | 816     | 421      |
| MW-45                                   | 6.92                                         | 1           | 5 222       | 1.18                                  | 0.18                                  | <0.0012                               | <0.0021 | <0.0025  | 5.9    | 0.01            | 312             | 28.1    | 9.7      |
| MW-46                                   | . 6.75                                       | 778         | 176         | 0.83                                  | 0.38                                  | 0.003                                 | <0.0021 | <0:0025  | 2.7    | 0.01            | 350             | 58      | 13.4     |
| MW-47                                   | ns                                           |             | ns ns       | ns                                    | ns                                    | ns                                    | ns      | ns       | ns     | s ns            | s ns            | ns      | ns       |
| MW-48                                   | 6.87                                         | 1           | 200         | 0.82                                  | 0.15                                  | <0.0012                               | <0.0021 | <0.0025  | 6      | 6 0.01          | 308             | 30.1    | _ 9.8    |
| MW-56                                   | 6.77                                         | 801         | 310         | 1.00                                  | 0.01                                  | 0.014                                 | <0.0021 | <0.0025  |        |                 | 284             | 118     | 24.9     |
| MW-59                                   | 6.63                                         |             | 1           | 1 1                                   | 0.03                                  | 0.01                                  | <0.0021 | <0.0025  | 5.9    | 0.01            | 656             | 125     | 27.8     |
| MW-60                                   | 6.72                                         | 910         | 163         | 0.87                                  | 0.06                                  | 0.015                                 | <0.0021 | < 0.0025 | 4.1    | 0.01            | 422             | 67.5    | 17.9     |
| FH-S                                    | na                                           | na          | na          | na                                    | na                                    | na                                    | na      | na       | na     | na              | na na           | na      | na       |
| FH-D                                    | na                                           | na          | na          | na                                    | na                                    | na                                    | na      | na       | na     | na              | na              | na      | па       |
| BN-S                                    | na                                           | na          | na          | na                                    | na                                    | na                                    | na      | na       | na     | na              | na              | na      | na       |

na - not analyzed

ns - not sampled due to lack of water

\* = Redox values were adjusted to the standard hydrogen electrode.

### artsmp\ash\3qtr98\INDICATR.WK4

Page 1 of 1

## Appendix F

Trichloroethylene, Cis-1,2-Dichloroethylene, and Vinyl Chloride Degradation Modeling

• Table F-1 Summary of Degradation Model

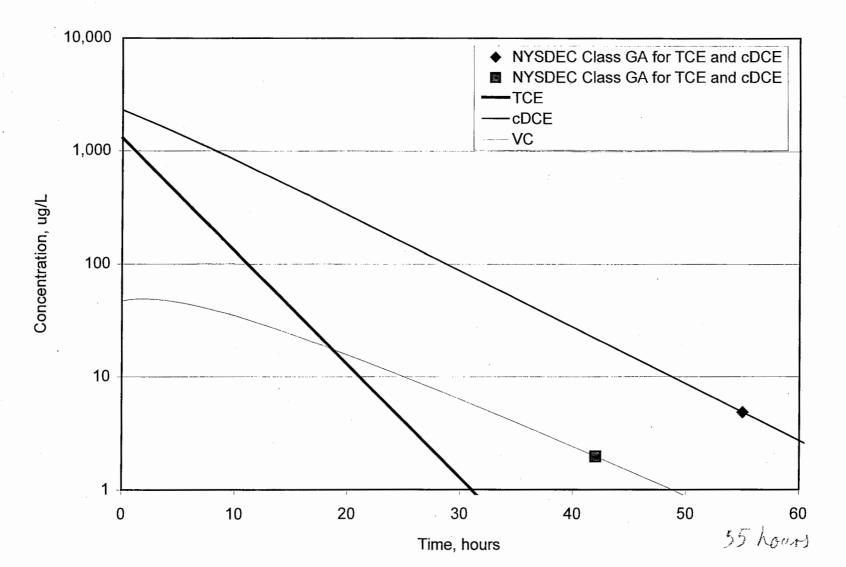
۰.

• Trichloroethylene, Cis-1,2-Dichloroethylene, and Vinyl Chloride Concentration vs. Time for Selected Monitoring Wells at the Ash Landfill

### Table F-1

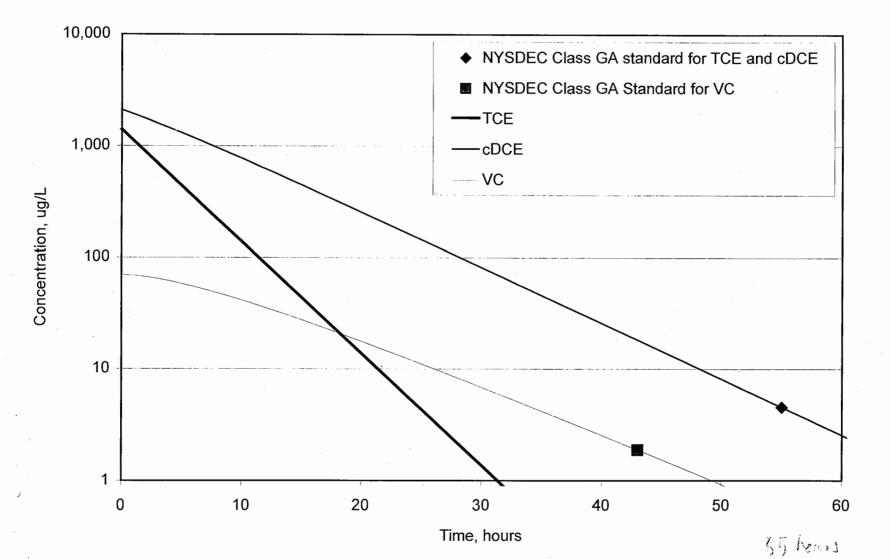
## Summary of Degradation Model Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

| Location | Date   | Residence Time, t <sub>res</sub> (hours) |
|----------|--------|------------------------------------------|
| PT-12A   | Sep-98 | 55                                       |
| PT-12A   | Jun-97 | 55                                       |
| MW-44A   | Oct-99 | 43                                       |
| MW-44A   | Sep-98 | 49                                       |
| PT-18    | Oct-99 | 59                                       |
| MWT-7    | Jun-99 | 33                                       |
| MWT-9    | Jan-00 | 21                                       |


Notes:

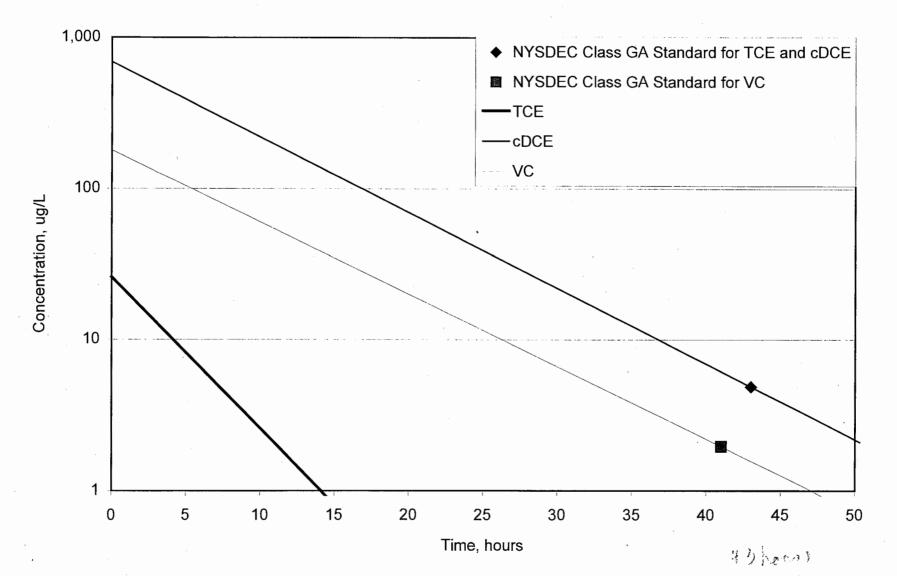
- 1) Degradation plot raw data provided by ETI on April 13, 2000. Degradation model prepared using Scientist for Windows Ver 2.0. Model assumed half life of 3 hours for TCE and half lives of 6 hours for cDCE and VC.
- Residence time means time needed for TCE and cDCE to degrade to concentrations of 5ug/L or below, and for VC to degrade below concentrations of 2ug/L.
- 3) Residence time calculated using the following equation:

$$t_{rec} = \frac{\ln \frac{C}{C_a}}{-\lambda}$$
 where C=5mg/L, (NYSDEC Class GA Standard)  
Co=55mg/L, (Maximum Effluent Cis-1,2-Dichloroethene)


$$\lambda = -\frac{\ln(0.5)}{halflife}$$

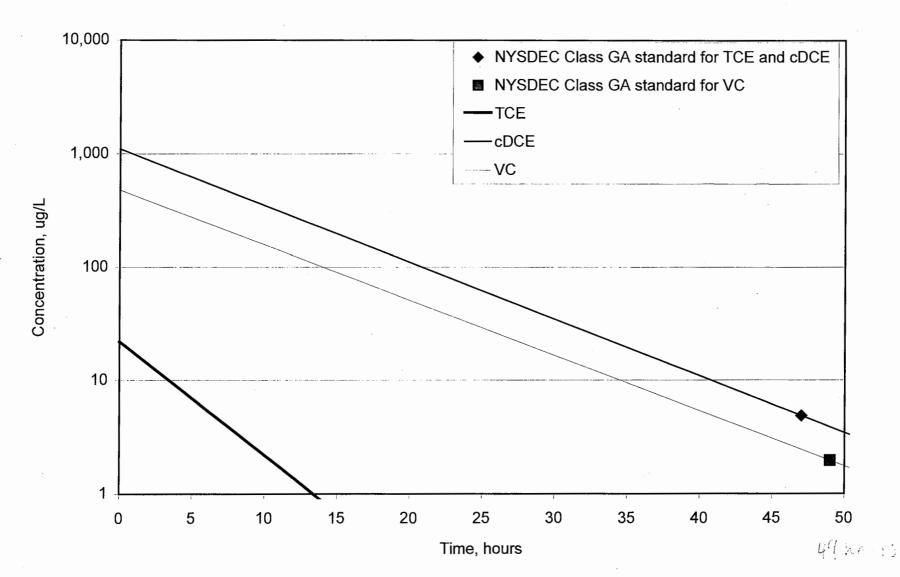
p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\residence time




TCE, cDCE, and VC Degradation vs. Time for PT-12, September 1998

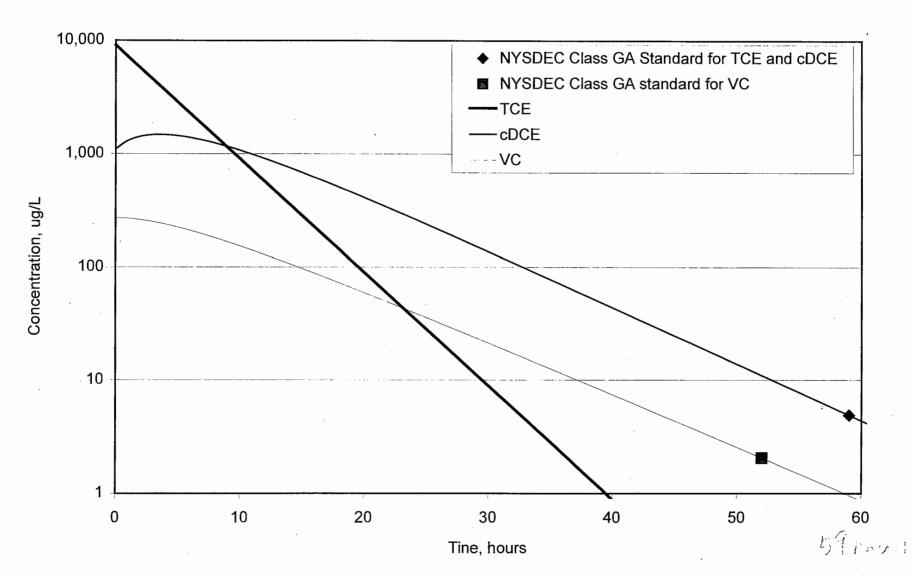
p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\PT-12ASep98




# TCE, cDCE, and VC Degradation vs. Time for PT-12, June 1997

p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\PT-12Jun97

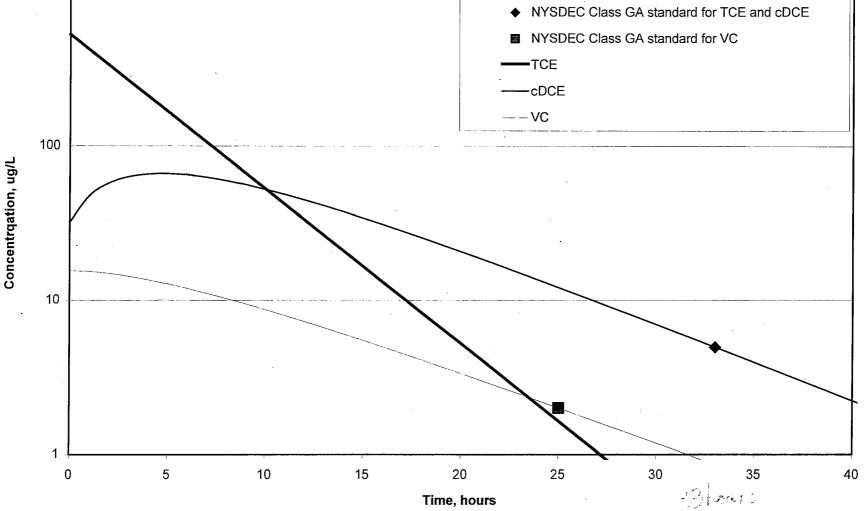



TCE, cDCE, and VC Degradation vs. Time for MW-44A, October 1999

p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\MW-44AOct99



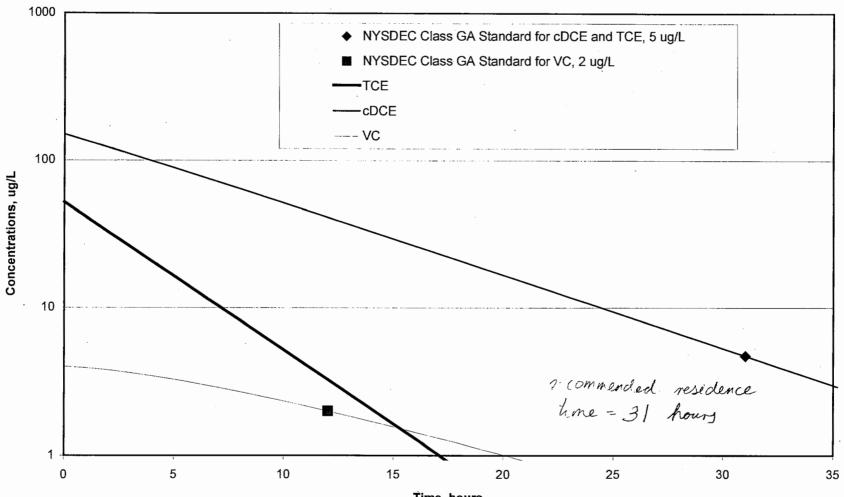
TCE, cDCE, and VC Degradation vs. Time for MW-44A, September 1998


p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\MW-44ASep98



TCE, cDCE, and VC Degradation vs. Time for PT-18, October 1999

p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\PT-18


◆ NYSDEC Class GA standard for TCE and cDC



TCE,cDCE, and VC Degradation vs. Time for MWT-7, June 1999

p:\pit\projects\seneca\irontrnc\draftmemo\design.xls\MWT-7

1,000



# TCE, cDCE, and VC Concentrations vs. Time for MWT-9, June 1999

Time, hours

### Appendix G

Cost Estimation for Focused Groundwater Remediation Alternatives

- Cost Calculations
  - Table G-1Calculation of Recommended Thicknesses for Proposed Reactive<br/>WallsTable G-2Dimensions of Groundwater Treatment Systems
  - Table G-3Iron Quantity and Price Calculations

Table G-4Monitoring Well Installation Costs

- Table G-5Groundwater Monitoring Costs
- Table G-6Cost calculations of TCLP testing, soil stockpiling, and soil<br/>disposal costs during installation of reactive walls
- Table G-7Calculation of Costs for Application of Vegetable Oil as Part of<br/>Alternative 2
- Table G-8
   Costs of Groundwater Treatment Alternatives at the Ash Landfill

Price Quotes

Peerless Metal Powders & Abrasive, November, 9 1998 Diverse Solutions, April 14, 2000

## Table G-1 Calculation of Recommended Thicknesses for Proposed Reactive Walls Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

|             |                        | Recommended            |                            | Recommended      | Recommended            |
|-------------|------------------------|------------------------|----------------------------|------------------|------------------------|
|             | Well(s) Considered for | Residence              | Maximum Expected           | Thickness for    | Thickness for Proposed |
| Design      | Estimation of Influent | Time, t <sub>rec</sub> | Velocity, v <sub>max</sub> | Porposed Wall, h | Wall, h, SF=2          |
|             | Concentrations         | hours                  | ft/day                     | ft               | ft .                   |
|             | PT-12A, MW-44A,        |                        |                            |                  |                        |
| Source Wall | PT-18A                 | 59                     | 0.4 2                      | 1.1              | 2.1                    |
| Middle Wall | MWT-7                  | 33                     | 0.4 <sup>2</sup>           | 0.6              | 1.2                    |
| Compliance  |                        |                        |                            |                  |                        |
| Wall        | MWT-8, MWT-9           | 21                     | 1.2 <sup>3</sup>           | . <b>1.1</b>     | 2.1                    |

1 Residence time calculated in Appendix F. See Summary of Degradation Model table in Appendix F.

2  $v_{max}$ =0.43 ft/day. Maximum velocity used for conservative assumptions;  $v_{max}$  estimated from  $v_{ave}$  using following equation:

$$v_{\max} = v_{ave} x \frac{K_{\max}}{K_{ave}} = 0.2 ft / day x \frac{2.2 lft / day}{1.03 ft / day}$$

K<sub>max</sub>=2.21 ft/day is maximum hydraulic conductivity, at Ash Landfill not including reactive wall area.

See Appendix D

 $v_{ave}$ =0.2 ft/day velocity used for design of existing reactive wall.

 $K_{ave}$ =1.03 ft/day is hydraulic conductivity used for design of existing wall. See Appendix D

3 v<sub>max</sub>=Maximum velocity calculated in Table 6-2

4  $h=(v_{max})(t_{rec})$ 

5 tree determined using ETT's Scientist® for Windows Version 2.0

6 For the design of the Compliance wall, residence time of 21 hours was used, which is the degradation time for concentrations measured in MWT-8 in June 1999 since over time, residual TCE and cDCE will flush out and Complinace wall will only have to treat effluent of Boundary wall. With a safety factor of 2, the Boundary wall has a residence time of 42 hours which should still be able to reduce these residual concentrations. The highest concentration was observed in MWT-9 in June 1999 requiring a minimum residence time of 31 hours.

## Table G-2 Dimensions of Groundwater Treatment Systems Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

|                           | Wall Thickness, |                |               | Volume of        |                     | Total weight of   | i i izi in a walling i bit at it. |
|---------------------------|-----------------|----------------|---------------|------------------|---------------------|-------------------|-----------------------------------|
| Configuration type        | h               | Wall length, 1 | Wall Depth, d | Iron, V          | Volume of Iron, V   | iron, w           | Surface Area of Wall,             |
| units                     | ft              | ft             | ft            | ft <sup>3</sup>  | yd <sup>3</sup>     | tons              | ft <sup>2</sup>                   |
| Boundary (Exisiting) wall | 1.2             | 645            |               |                  |                     |                   | 0                                 |
| Compliance wall           | 2.1             | 645            | 8             | 10,836           | 401                 | 704               | 5,160                             |
| Source wall               | 2.1             | 820            | 11            | 19,025           | 705                 | 1,237             | 9,020                             |
| Middle wall               | 1.2             | 700            | 9             | 7,432            | 275                 | 483               | 6,300                             |
|                           |                 |                | Total fo      | or Alternative 1 | 401 5)              | 704 <sup>6)</sup> | 5,160 7)                          |
|                           |                 |                | Total fo      | or Alternative 2 | 1,381 <sup>5)</sup> | 2,424 6)          | 20,480 7)                         |

Notes:

1) Wall depths are taken from Figures 3-9 through 3-12 from the Remedial Investigation report (Parsons, 1994). These are approximate depths to competent shale at proposed location of continuous wall. Actual depths will be determined through excavation of test pits during construction.

2) A=(h)(l)

3) V=(h)(l)(d)

4) 
$$w = 130 \frac{lb}{ft^3} x \frac{V}{2000 \frac{lb}{ton}}$$

- 5) Total installation volume for Alternative 1 includes volume of compliance wall only, for Alternative 2 total installation volume includes volume of compliance wall, source wall, and middle wall.
- 6) Total installation weight for Alternative 1 includes weight of compliance wall only, for Alternative 2 total installation weight includes weight of compliance wall, source wall, and middle wall.
- 7) Total surface area of walls is calculated so that maintenance costs of iron walls can be estimated. Total surface area for Alternative 1 includes surface area of boundary wall and compliance wall. For Alternative 2 total surface area includes surface area of boundary wall, compliance wall, source wall, and middle wall.

p:\pit\projects\seneca\irontrnc\draftmemo\ironcost2.xls\Table G-2

### Table G-3

## Iron quantity and price calculations Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

#### Alternative 1

Alternative 2

| Iron Quantity, | Iron for upgradient aquifer             |           | 1,72     |
|----------------|-----------------------------------------|-----------|----------|
| tons           | iron for effluent of existing wall      | 704       | 70       |
| tons           | Total installation weight               | 704       | 242      |
|                | iron + packaging                        | \$235,440 | \$794,61 |
| Iron Cost      | delivery                                | \$25,760  | \$86,94  |
|                | total iron cost                         | \$261,200 | \$881,55 |
| Tota           | l surface area of iron, ft <sup>2</sup> | 2107      | 4662     |
| Cost           | of maintenance of wall(s)               | \$1,475   | \$3,26   |

Notes:

- 1) Prices include unit cost of iron (\$313), unit cost of packaging (\$14), and cost of delivery, (\$805 for each 22.5ton). Prices provided by Peerless Metal Powders and Abrasives. See Appendix G
- 2) Maintenance cost is cost of agitation of iron in the upgradient aquifer/iron interface with a hollow stem auger. Cost includes mobilization, demobilization to site, drilling rig, and 1 feet augering that overlap. Overall it is \$7/square feet every 10 years. Method recommended by ETI in Memo of April 20, 2000 See Appendix D.

#### Table G-4 Monitoring Well Installation Costs Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

|                   |                                                       |           | Altern    | ative 1           | Alternative 2 |            |  |
|-------------------|-------------------------------------------------------|-----------|-----------|-------------------|---------------|------------|--|
|                   | Installation of Monitoring Wells at Ash Landfill-     |           | Estimated |                   | Estimated     |            |  |
| Item              | Description of Services                               | Unit Cost | Quantity  | <b>Total Cost</b> | Quantity      | Total Cost |  |
| 1.                | Mob./Demob. a truck mounted drilling rig              | \$300     | 2         | \$600             | 4             | \$1,200    |  |
| Mobilization/     | to the site in Romulus, NY. Include security          | per event |           | ]                 |               |            |  |
| Demobilization    | requirements to enter the base.                       |           |           |                   |               |            |  |
| 3.                | Construct and remove a temporary decon. pad,          | \$150     | 1         | \$150             | 1             | \$150      |  |
| Construct a       | on-site, to perform all decon. of drilling equipment. | per pad   |           |                   |               |            |  |
| Decon. Pad        | Pad will collect all decon, water.                    |           |           | · ·               |               |            |  |
| 4.                | Provide an hourly rate to steam decon. drilling       | \$125     | 5         | \$625             | 15            | \$1,875    |  |
| Decon. Time       | equipment; include decon. equipment rental.           | per hour  |           |                   |               |            |  |
| 5.                | Provide a cost to supply a DOT approved               | \$40      | 5         | \$200             | 15            | \$600      |  |
| Provide Empty     | steel drum, with covers, to contain all drilling      | per drum  |           |                   |               |            |  |
| Drums             | wastes, including decon. water.                       | 1         |           |                   |               |            |  |
| 6.                | Provide a cost to move a drum, 3/4 full, a            | \$25      | 7         | \$175             | 13            | \$325      |  |
| Move Drums        | distance of 100 ft to a central storage location      | per drum  |           |                   |               |            |  |
| 7.                | Provide cost to perform Hollow Stem                   | \$18      | 90        | \$1,620           | 150           | \$2,700    |  |
| Hollow Stem       | Augering using a 6.25" auger with a plug.             | per foot  |           |                   |               |            |  |
| Augering          | @ 15 feet depth                                       | T         |           |                   |               |            |  |
| 8.                | Provide a cost for the drilling crew to standby       | \$125     | 7         | \$875             | 14            | \$1,750    |  |
| Standby Time      | during completion of an activity.                     | per hour  |           |                   |               |            |  |
| 9                 | Provide a cost, including materials, to install       | \$225     | 6         | \$1,350           | 10            | \$2,25     |  |
| Installation of   | a 15' overburden monitoring well.                     | per well  |           |                   |               |            |  |
| Monitoring Wells  | -                                                     |           |           |                   |               |            |  |
| 10                | Provide a cost, including materials, to install       | \$250     | 1         | \$250             | 3             | \$75       |  |
| Installation of   | a 6' to 12' overburden well point.                    | per well  |           |                   |               |            |  |
| Wel Points *      |                                                       | point     |           |                   |               |            |  |
| 11.               | Provide a cost, including materials, to install       | \$60      | 7         | \$420             | 15            | 5 \$90     |  |
| Ballards          | three (3) ballards around each monit. well/point      | per well  |           |                   |               | 1          |  |
| 12.               | Provide a cost, including materials, to install       | \$50      | 7         | \$350             | 1.            | 5 \$75     |  |
| Concrete Collar   | a concrete collar around each monitoring well         | per well  |           |                   |               |            |  |
| 13.               | Provide a cost, including materials, to install a     | \$70      | 6         | \$420             | 12            | 2 \$84     |  |
| Steel Casing      | 4" steel casing, with a cap & a weep hole.            | per well  |           |                   |               |            |  |
| 14.               | Provide a cost to supply a brass, weather             | \$25      | 7         | \$175             | 1             | 5 \$37     |  |
| Brass Locks       | resistant, lock for each well.                        | per well  |           |                   |               |            |  |
| 15.               | Provide a cost for the drill crew to upgrade          | \$35      | 2         | \$70              |               | \$14       |  |
| Level C Surcharge | to Level C, including support equipment.              | per hour  |           |                   |               |            |  |
|                   | Total subcontractor costs:                            |           |           | \$7,280           | )             | \$14,60    |  |

tal subcontractor costs

| Parsons labor costs              | \$4,254.50      | \$8,509          |
|----------------------------------|-----------------|------------------|
| Parsons materials                | \$2,257         | \$2,257          |
| Parsons travel                   | <b>\$2,3</b> 53 | \$2,353          |
| Parsons equipment rental, others | \$1,560         | \$1,560          |
| Total other costs:               | \$10,425        | \$14,679         |
| TOTAL COST:                      | \$17,705        | <b>\$</b> 29.284 |

\* Well points will be installed once iron walls are in the ground. For Alternative 2, mobilization/demobilization is necessary again when well points are installed.

### Table G-5

## Groundwater Monitoring Costs Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

|                       | Alternative 1 | Alternative 2 |
|-----------------------|---------------|---------------|
| First Year            |               |               |
| gw sampling           | \$28,029.75   | \$37,373      |
| chemical analysis     | \$10,852.50   | \$14,470      |
| prepare report        | \$11,243      | \$14,991      |
| interim letter report | \$2,017       | \$2,017       |
| project management    | \$9,020       | \$12,026      |
|                       | \$61,162      | \$80,877      |
| Every 5 Years         |               |               |
| gw sampling           | \$100,926     | \$108,790     |
| chemical analysis     | \$29,269      | \$31,550      |
| prepare report        | \$26,560      | \$26,560      |
| interim letter report | \$2,017       | \$2,017       |
| project management    | \$7,702       | \$7,702       |
|                       | \$166,474     | \$176,619     |
| Annual                |               |               |
| gw sampling           | \$10,261      | \$11,180      |
| chemical analysis     | \$3,430       | \$3,737       |
| prepare report        | \$4,095       | \$4,095       |
| interim letter report | \$2,017       | \$2,017       |
| project management    | \$7,702       | \$7,702       |
|                       | \$27,505      | \$28,731      |
| AVERAGE ANNUAL        | \$55,299      | \$58,309      |

\* Average annual cost = (4 \* Annual Cost + Cost of sampling every 5 years )/5

p:\pit\projects\seneca\irontrnc\draftmemo\final\ironcost2.xls\Table G-5

### Table G-6 Cost calculations of TCLP testing, soil stockpiling, and soil disposal costs during installation of reactive walls Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

|               |                |           | # of piles |               |              |              |                 |            |                  | cost of      | cost of       |          |
|---------------|----------------|-----------|------------|---------------|--------------|--------------|-----------------|------------|------------------|--------------|---------------|----------|
|               |                |           | (samples   |               |              | # of samples | amount taken to | amount     |                  | polyethylene | polyethylene  |          |
|               | in-situ volume | ex-situ   | tested for | area of piles | cost of TCLP | expected to  | hazwaste        | staying on |                  | lining on    | lining on top |          |
|               | 1)             | volume 2) | TCLP) 3)   | 4)            | test 5)      | fail test 6) | landfill 6)     | site 6)    | disposal cost 7) | bottom 8)    | 8)            | TOTAL    |
|               | су             | cy        |            | . sf          |              |              | ton             | ton        |                  |              |               |          |
| Alternative 1 | 401            | 522       | 4          | 34,782        | \$700        | 0            | 0               | 602        | \$0              | \$2,783      | \$4,174       | \$7,656  |
| Alternative 2 | 1,381          | 1,796     | 12         | 119,709       | \$2,100      | 1            | 207             | 1,865      | \$24,241         | \$9,577      | \$14,365      | \$50,283 |

#### Notes

1) Volume calculated in Table G-2.

2) Assumed that ex-situ volume is 30% greater than in-situ volume.

3) Excavated soil stored in 150 cy piles. One sample from each pile will be tested for TCLP-VOC's.

4) It is assumed that each pile will be 100 ft x 100 ft large.

5) Cost TCLP test is \$175/sample.

6) For Alternative 1 it is assumed that none of the samples will fail the TCLP test, since no samples collected from the excavation of the boundary wall have failed it. Compliance wall, downgradient from it should have even lower VOC concentrations. For Alternative 2, it is assumed that about 1/5 of the excavated soil will fail the TCLP test. Estimate is based on VOC concentrations of groundwater in October 1999, and January 2000. Non-hazardous soil will remain on-site in the same pile where the excavation material from the border wall trench has been stored.

7) Disposal off-site costs \$117/ton which includes stabilization and hazardous waste tax of 6%.

8) Polyethylene lining costs \$0.08/ft2. Area of top lining is 1.5 x area of bottom lining.

### Table G-7

## Calculation of Costs for Application of Vegetable Oil As Part of Alternative 2 Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

| Oil Volume Addition Calculations Us | ing Assumptions of DDHU project (Parsons, 2000) | Soil Volume Calculati | ons      |
|-------------------------------------|-------------------------------------------------|-----------------------|----------|
| Barrier Depth:                      | 10 feet                                         | depth of trench       | 10 feet  |
| Radius of Influence                 | 5 below ground surface                          | length of trench      | 20 feet  |
| Porosity                            | 0.15 feet                                       | width of trench       | 3 feet   |
| Number of trenches                  | 10                                              |                       |          |
| Emulsion Oil in Water               | 50% percent                                     | volume of one trench  | 600 cf   |
| Single Point Void (Oil) Volume:     | 59 cu.ft.                                       |                       |          |
|                                     | 441 gal                                         | Total Volume soil:    | 6,000 cf |
| Total Volume Oil:                   | 4,406 gal                                       |                       | 222 cy   |
|                                     | 80 -55gal oil barrels                           | Weight of soil        | 333 ton  |
| Oil Specific Gravity:               | 0.919                                           |                       |          |
| Tetel Mere Oile                     | 22770 14                                        |                       |          |
| Total Mass Oil:                     | 33770 lb                                        |                       |          |
|                                     | 16.89 ton                                       |                       |          |

### COST ESTIMATE FOR VEGOIL ADDITION

| Item                                | Units | Quantity | Unit Cost | Total Cost | =                          |
|-------------------------------------|-------|----------|-----------|------------|----------------------------|
| VegOil                              | lb    | 33,770   | \$0.38    | \$12,833   |                            |
| Oil Transport                       | load  | 2        | \$500.00  | \$1,000    | 10 tons/load               |
| excavator rental (excav & backfill) | day   | 10       | \$800.00  | \$8,000    |                            |
| TCLP test for excavated soil        | test  | 3        | \$175.00  | \$525      |                            |
| Crew                                | day   | 20       | \$366.80  | \$7,336    | 20-10hr days, for 2 people |
| Constr. Mgmt.                       | day   | 5        | \$322.10  |            | 5-10hr days for 1 person   |
| Engineering                         | hours | 40       | \$25.53   | \$1,021    |                            |
| project management                  | hours | 8        | \$48.77   | \$390      |                            |
|                                     |       |          | TOTAL     | \$32,716   |                            |

p:\pit\projects\seneca\irontrnc\draftmemo\final\ironcost2.xls\Table I-7

### Table G-8 Costs of Groundwater Treatment Alternatives at the Ash Landfill Ash Landfill Feasibility Memorandum Seneca Army Depot Activity, Romulus, NY

| Item                                                                              | <b>ALTERNATIVE 1</b>   | ALTERNATIVE 2 |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------------|---------------|--|--|--|--|--|--|--|
| CAPITAL COSTS .                                                                   |                        |               |  |  |  |  |  |  |  |
| Site visit records review                                                         | \$5,923 9              | \$5,923 9     |  |  |  |  |  |  |  |
| Prepare workplan for implementation of design                                     | \$37,610 9             | \$50,146      |  |  |  |  |  |  |  |
| Preconstruction sampling (VOC analyses, and slug tests)                           | \$17,140 9             | \$17,140      |  |  |  |  |  |  |  |
| Monitoring well installation and development                                      | \$17,705 5             | \$29,284      |  |  |  |  |  |  |  |
| Installation of iron wall(s)                                                      |                        |               |  |  |  |  |  |  |  |
| Mobilization/Demobilization                                                       | \$38,000               | \$38,000      |  |  |  |  |  |  |  |
| Trench Excavation                                                                 | \$82,500 1             | \$240,000     |  |  |  |  |  |  |  |
| Backfilling of excavated material, grading and revegetation                       | \$9,000 1              | \$9,000       |  |  |  |  |  |  |  |
| iron                                                                              | \$235,440 <sup>2</sup> | \$794,610     |  |  |  |  |  |  |  |
| iron shipment                                                                     | \$25,760 <sup>2</sup>  | \$86,940      |  |  |  |  |  |  |  |
| Construction supervision                                                          | \$11,423 9             | \$22,846      |  |  |  |  |  |  |  |
| TCLP testing, soil stockpiling, disposal to hazwaste landfill (Alt 2)             | \$7,656 <sup>6</sup>   | \$50,283      |  |  |  |  |  |  |  |
| Surveying of newly installed wall(s) and monitoring wells                         | \$2,087 4              | \$6,260       |  |  |  |  |  |  |  |
| Vegetable oil addition                                                            |                        | \$32,716      |  |  |  |  |  |  |  |
| First year GW monitoring (sampling + analysis + prepare report + interim letter + |                        |               |  |  |  |  |  |  |  |
| project management)                                                               | \$61,162 3             | \$80,877      |  |  |  |  |  |  |  |
| sub total                                                                         | \$551,405              | \$1,464,024   |  |  |  |  |  |  |  |
| contingency 20%                                                                   | \$110,281              | \$292,805     |  |  |  |  |  |  |  |
| engineering/oversight 20%                                                         | \$110,281              | \$292,805     |  |  |  |  |  |  |  |
| total capital (subtotal + contingency + engineering/oversight)                    | \$771,967              | \$2,049,634   |  |  |  |  |  |  |  |

| OPERATIONS AND MAINTENANCE COSTS                             |                       |           |  |  |
|--------------------------------------------------------------|-----------------------|-----------|--|--|
| groundwater monitoring                                       | \$55,299 <sup>3</sup> | \$58,309  |  |  |
| maintenance of iron wall(s)                                  | \$1,475 *             | \$3,264   |  |  |
| sub total                                                    | \$56,774              | \$61,572  |  |  |
| contingency 20%                                              | \$11,355              | \$12,314  |  |  |
| engineering/oversight 20%                                    | \$11,355              | \$12,314  |  |  |
| total O & M (subtotal + contingency + engineering/oversight) | \$79,483              | \$86,201  |  |  |
| interest                                                     | 10%                   | 10%       |  |  |
| years of operation                                           | 60                    | 15        |  |  |
| present worth O & M                                          | \$792,224             | \$655,655 |  |  |

| TOTAL PRESENT WORTH COST (total capital + present |             |             |
|---------------------------------------------------|-------------|-------------|
| worth O/M)                                        | \$1,564,191 | \$2,705,289 |

#### Notes

1 Mobilization/demobilization, trench excavation, installation of iron into trench, backfilling, grading and revegetation costs provided by Diverse Solutions April 14, 2000.

2 Unit costs provided by Peerless Metal Powders and Abrasive. See iron quantity calculations in Table G-3.

3 See Table G-5 for costs of groundwater monitoring.

4 Estimated based on actual cost of surveying of Boundary wall (existing wall) and wells around Boundary wall.

5 See Table G-4 costs of installation of monitoring wells.

6 See Table G-6 for costs of TCLP testing, soil stockpiling, disposal to hazwaste landfill (Alt 2)

7 See Table G-7 for installation of vegetable oil

8 Maintenance cost is cost of agitation of iron in the upgradient aquifer/iron interface with a hollow stem auger. Cost includes mobilization, demobilization to site, drilling rig, and 1 feet augering that overlap. Overall it is \$7/square feet every 10 years. See Table G-3

9 Estimate based on expected labor hours for task



November 9, 1998

FAX: 781-401-2043

Jackie Travers Parsons Engineering Science 30 Dan Road Canton, NA 02021

Dear Jackie:

Per your conversation with Norman today, I understand that you would like to increase the tonnage to 225 tons (10 full truckloads) of Iron Aggregate so I have refigured the dollars as follows:

Iron Aggregate Size ETI 8/50-----\$313/per net ton

225 net ton @ \$313/NT-----\$70,425.00

Prices are FOB Detroit, MI. Freight is \$700 per truckload on flatbed truck or \$31.12/per net ton based on 22.5 tons.

Grand total for delivered price of 225 tons is------\$81,625.00

Terms are Net 30 Days. If we receive your order within the next couple of days we would be able to meet your required delivery schedule of 12/7 thru 12/9/98.

I have contacted the freight company and the drivers will be not be able to unload the trucks for you; however, the freight company could call the site several hours in advance and you could arrange for someone to be available at that time.

We look forward to supplying you with our iron.

Very truly yours,

ou

Paul W. Tousley President & CEO

Norden P. Warrens

Sales Associate

PWT/npw

Peerless Metal Powders & Abrasive

124 South Military • Detroit, Michigan 48209 (313) 841-5400 Fax (313) 841-0240

# DIVERSE SOLUTIONS Tel: 775-853-9447 Fax: 775-853-9448

# FACSIMILE COVER PAGE

To: Jacqueline Travers

Fax #: 1-781-4012575

From: Dan Oakley Fax #: 775-853-9448

Company: Parsons Engineering Inc.

Tel #: 775-853-9447

Subject: Iron Filing Wall Installation Estimate

Sent: 4/14/00 at 12:59:36 PM

Pages: 6 (including cover)

# MESSAGE:

Attached is the budgetary estimate you requested. If you need anything else, please call. Thanks for requesting this information. Have a great weekend!

Dan

## DEWIND DEWATERING INC. PRELIMINARY TECHNICAL PROPOSAL FOR CONSTRUCTION OF PERMEABLE TREATMENT WALLS PARSONS ENGINEERING SENECA ARMY DEPOT ROMULUS, NEW YORK April 14, 2000

### Introduction

DeWind Dewatering Incorporated is a specialty construction company based in Holland, Michigan with an additional construction office located in Edgewater, Florida. With our custom-made one-pass trenching machines DeWind provides services such as construction of collection trenches, slurry walls, and permeable treatment walls for groundwater containment and/or treatment.

With our customized one-pass trenching equipment, DeWind offers a rapid and cost-effective method of installing Iron Filing Permeable Treatment Walls. Advantages of our installation method over other excavation and placement techniques include:

- The ability to excavate and backfill nominal fixed-width trenches to depths of 25 ft below the working platform. This ensures that minimal cuttings are generated and, consequently, minimal waste of iron filing.
- No large and open holes minimizes health and safety concerns.
- Rapid installation rates of 100-400 ft/day depending on site lithology.
- During excavation and placement de-watering is not typically required.

Parsons Engineering has requested preliminary technical and budgetary cost proposals for installing two Permeable Treatment Walls at the Seneca Army Depot in Romulus, New York. DeWind offers the following preliminary proposal in response to this request.

#### Job Requirements

The site geology consists glacial till overlying a fractured shale bedrock overlying a competent shall bedrock. The depth to bedrock is expected to vary from 7 to 12-ft bls.

Two permeable treatment walls will be installed. The first wall is located near the source and will be approximately 700 ft long and 2-ft wide. The second wall is located between the source and the existing iron filing wall. This wall will be approximately 700 ft long and 1-ft wide.

## DEWIND DEWATERING INC. PRELIMINARY TECHNICAL PROPOSAL FOR CONSTRUCTION OF PERMEABLE TREATMENT WALLS PARSONS ENGINEERING SENECA ARMY DEPOT ROMULUS, NEW YORK April 14, 2000

### Introduction

DeWind Dewatering Incorporated is a specialty construction company based in Holland, Michigan with an additional construction office located in Edgewater, Florida. With our custom-made one-pass trenching machines DeWind provides services such as construction of collection trenches, slurry walls, and permeable treatment walls for groundwater containment and/or treatment.

With our customized one-pass trenching equipment, DeWind offers a rapid and cost-effective method of installing Iron Filing Permeable Treatment Walls. Advantages of our installation method over other excavation and placement techniques include:

- The ability to excavate and backfill nominal fixed-width trenches to depths of 25 ft below the working platform. This ensures that minimal outtings are generated and, consequently, minimal waste of iron filing.
- No large and open holes minimizes health and safety concerns.
- Rapid installation rates of 100-400 ft/day depending on site lithology.
- During excavation and placement de-watering is not typically required.

Parsons Engineering has requested preliminary technical and budgetary cost proposals for installing two Permeable Treatment Walls at the Seneca Army Depot in Romulus, New York. DeWind offers the following preliminary proposal in response to this request.

#### Job Requirements

The site geology consists glacial till overlying a fractured shale bedrock overlying a competent shall bedrock. The depth to bedrock is expected to vary from 7 to 12-ft bls.

Two permeable treatment walls will be installed. The first wall is located near the source and will be approximately 700 ft long and 2-ft wide. The second wall is located between the source and the existing iron filing wall. This wall will be approximately 700 ft long and 1-ft wide.

1

The iron filings will be installed from 1-ft below land surface to the top of the competent shale bedrock. Our one-pass trenching machine will be set up to install 12-inch wide iron filing walls. For the 2-ft thick permeable treatment wall we propose installing two 12-inch wide iron filing walls that will be parallel to each other and approximately 10-ft apart.

#### Installation Procedure

Our trenchers are custom-built in Michigan using both standard and proprietary components. The trencher is a track mounted vehicle that has a cutting boom that resembles a large chain saw. To our knowledge these are the most powerful unconsolidated soil trenchers available in the North America with the trenchers being powered by 600-800 hp motors generating up to 200,000 ft/lbs of torque. The trenching and delivery operation cuts a nominal 14-inch or 20-inch wide trench and in one-pass continuously backfills the trench with the iron filings to create a Permeable Treatment Wall. There are no large and open trenches and de-watering is not typically required for installation.

The trenching machine will be readied for installation by attaching the cutting boom and iron filing delivery system. The cutting boom will excavate a trench by rotating the cutting chain until the boom and delivery system has cut into a vertical position relative to ground surface. At this point the delivery system will be loaded with the iron filings and a back slide plate on the delivery system will be removed. The back slide plate minimizes the waste of iron filings during the initial cut-in phase. The trencher will begin a forward motion while simultaneously cutting the trench, placing the cuttings adjacent to the trench via a conveyor system, and backfilling the trench with the iron filings from near ground surface to the total depth. Installation proceeds until the design length of the Permeable Treatment Wall has been installed. The installation procedure will be repeated for the additional walls.

A laser-guided control system will be used to control the depth of installation. This system enables DeWind to install the permeable treatment walls with a depth accuracy of plus or minus 0.1 ft.

#### <u>Schedule</u>

We can typically mobilize to a site within 30 days of contract award. Our preliminary schedule is as follows:

Mobilization - 2 Days Equipment Assembly - 1 Day Installation - 8 Days Equipment Disassembly - 1 Day Demobilization - 2 Days

### **Clarifications and Exclusions**

The budgetary cost proposal is based on the following assumptions:

- The client will provide health and safety monitoring during construction.
- There are no underground utilities in the path of the treatment walls.
- The trenching machine will require approximately 20-ft overhead clearance along the installation path.
- DeWind is not responsible for the ultimate disposal of any water and soils generated as part of the installation or equipment decontamination processes.
- The client will supply the iron filings in 3000-lb bags.
- The client will perform any pavement removal or repair required for installation.
- Soils generated during installation will be placed within 100-ft of the permeable treatment walls.

### DEWIND DEWATERING INC. BUDGETARY COST PROPOSAL PARSONS ENGINEERING PERMEABLE TREATMENT WALL 2100 FT LONG AND 12-INCHES WIDE SENECA ARMY DEPOT April 14, 2000

| ITEM                                                                               | QUANTITY | UNITS | COST/UNIT | COST      |
|------------------------------------------------------------------------------------|----------|-------|-----------|-----------|
| Mobilization                                                                       | 1        | L.S.  | \$20,000  | \$20,000  |
| Excavate 12-inch wide trench<br>up to 12 ft deep and backfill<br>with iron filings | 2100     | LF    | \$75      | \$157,500 |
| Site Restoration with reseeding                                                    | 1        | LS    | \$9,000   | \$9,000   |
| Demobilization                                                                     | 1        | LS    | \$18,000  | \$18,000  |
|                                                                                    |          |       | TOTAL     | \$204,500 |

File: seneca depot 2 bid