

US Army, Engineering & Support Center Huntsville, AL

00667

32

Seneca Army Depot Activity

ANNUAL REPORT AND YEAR 8 REVIEW

ASH LANDFILL OPERABLE UNIT SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0015

EPA Site ID# NY0213820830 NY Site ID# 8-50-006 PARSONS AUGUST 2015

US Army, Engineering & Support Center Huntsville, AL

Seneca Army Depot Activity Romulus, NY

DRAFT ANNUAL REPORT AND YEAR 8 REVIEW

ASH LANDFILL OPERABLE UNIT SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS

August 2015

DRAFT

ANNUAL REPORT AND YEAR 8 REVIEW

FOR THE

ASH LANDFILL OPERABLE UNIT SENECA ARMY DEPOT ACTIVITY, ROMULUS, NEW YORK

Prepared for:

U.S. ARMY CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER HUNTSVILLE, ALABAMA

U.S. ARMY, CORPS OF ENGINEERS, NEW YORK DISTRICT NEW YORK, NEW YORK

and

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared by:

PARSONS 100 High Street Boston, MA 02110

Contract Number W912DY-08-D-0003 Task Order No. 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

TABLE OF CONTENTS

List of	Tables		ii
List of	Figure:	s	iii
List of	Appen	dices	iv
	11		
1.0		RODUCTION	
	1.1	Long-Term Groundwater Monitoring Objectives	2
2.0	SITE	BACKGROUND	4
	2.1	Site Description	4
	2.2	Site Geology/Hydrogeology	5
	2.3	Soil and Groundwater Impacts	5
		2.3.1 Soil	6
		2.3.2 Groundwater	6
	2.4	Summary of the Remedial Action	
		2.4.1 Biowalls	
		2.4.2 Incinerator Cooling Water Pond	
		2.4.3 Ash Landfill and NCFL Vegetative Cover	
		2.4.4 Debris Pile Removal	
	2.5	Description of Technology Used in Biowalls	7
3.0	LONG	G-TERM MONITORING DATA ANALYSIS AND GROUNDWATER	
	REM	EDY EVALUATION	9
	3.1	Sample Collection	9
	3.2	Groundwater Elevations	. 10
	3.3	Geochemical Data	
	3.4	Chemical Data Analysis and Groundwater Remedy Evaluation	
	3.5	Biowall Recharge Evaluation	
	3.6	Soil Remedy Evaluation	
	3.7	Land Use Controls (LUCs)	
	3.8	Operating Properly and Successfully	. 23
4.0	LONG	G-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS	. 25
	4.1	Conclusions	. 25
	4.2	Recommendations	. 25
5.0	REFE	CRENCES	. 27

LIST OF EXHIBITS

Exhibit 1.1	Annual Report List
Exhibit 3.1	LTM Sampling Dates
Exhibit 3.5A	Geochemical Parameters at MWT-27
Exhibit 3.5B	Geochemical Parameters at MWT-28
Exhibit 3.5C	Geochemical Parameters at MWT-23
Exhibit 3.5D	Biowall Analytical Data

LIST OF TABLES

Table 1	Groundwater Sample Collection
Table 2	Groundwater Elevations
Table 3	Groundwater Geochemical Data
Table 4	Chlorinated Organics in Groundwater
Table 5	Groundwater Trends

August 2015
P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Yr 8 Annual Report\Draft\Text\Ash Annual Report Yr8.docx Page ii

LIST OF FIGURES

Figure 1	Ash Landfill Location at SEDA
Figure 2	Ash Landfill Site Plan
Figure 3	Ash Landfill Historic Site Map
Figure 4	Location of Farmhouse
Figure 5	Reductive Dechlorination of Chlorinated Ethenes
Figure 6	Chlorinated Ethenes Concentrations in Groundwater
Figure 7	Groundwater Elevations
Figure 8	Groundwater Contours & Groundwater Flow Direction Dec. 2014
Figure 9A	Concentrations of VOCs Along the Biowalls - Quarter 1, 2007
Figure 9B	Concentrations of VOCs Along the Biowalls - Quarter 2, 2007
Figure 9C	Concentrations of VOCs Along the Biowalls - Quarter 3, 2007
Figure 9D	Concentrations of VOCs Along the Biowalls - Quarter 4, 2007
Figure 9E	Concentrations of VOCs Along the Biowalls - Round 5, 2008
Figure 9F	Concentrations of VOCs Along the Biowalls - Round 6, 2008
Figure 9G	Concentrations of VOCs Along the Biowalls - Round 7, 2009
Figure 9H	Concentrations of VOCs Along the Biowalls - Round 8, 2009
Figure 9I	Concentrations of VOCs Along the Biowalls - Round 9, 2010
Figure 9J	Concentrations of VOCs Along the Biowalls - Round 10, 2010
Figure 9K	Concentrations of VOCs Along the Biowalls - Round 11, 2011
Figure 9L	Concentrations of VOCs Along the Biowalls - Round 12, 2011
Figure 9M	Concentrations of VOCs Along the Biowalls - Round 13, 2012
Figure 9N	Concentrations of VOCs Along the Biowalls - Round 14, 2012
Figure 9O	Concentrations of VOCs Along the Biowalls - Round 15, 2013
Figure 9P	Concentrations of VOCs Along the Biowalls - Round 16, 2013
Figure 9Q	Concentrations of VOCs Along the Biowalls - Round 17, 2014
Figure 9R	Concentrations of VOCs Along the Biowalls - Round 18, 2014
Figure 10A	Concentrations of Chlorinated Organics Over Time at MWT-25
Figure 10B	Concentrations of Chlorinated Organics Over Time at MWT-26
Figure 10C	Concentrations of Chlorinated Organics Over Time at MWT-27
Figure 10D	Concentrations of Chlorinated Organics Over Time at MWT-28
Figure 10E	Concentrations of Chlorinated Organics Over Time at MWT-29
Figure 10F	Concentrations of Chlorinated Organics Over Time at MWT-22
Figure 10G	Concentrations of Chlorinated Organics Over Time at PT-22
Figure 10H	Concentrations of Chlorinated Organics Over Time at MWT-23
Figure 10I	Concentrations of Chlorinated Organics Over Time at MWT-24
Figure 10J	Concentrations of Chlorinated Organics Over Time at PT-24
Figure 11A	Historic Concentrations of Chlorinated Organics at PT-18A
Figure 11B	Historic Concentrations of Chlorinated Organics at PT-17

Figure 11C Historic Concentrations of Chlorinated Organics at MWT-7

Figure 12 Decision Diagram

LIST OF APPENDICES

Appendix A Field Forms for 17R2014 and 18R2014

Appendix B Complete Groundwater Data

Appendix C Regression Plots

1.0 INTRODUCTION

This Annual Report is for the Ash Landfill Operable Unit (OU), located at the Seneca Army Depot Activity (SEDA or the Depot) in Romulus, New York (Figure 1). This report provides a review of the eighth year of long-term groundwater monitoring (LTM) of the full-scale biowall system installed in 2006 and provides recommendations for future long-term monitoring at the site. This report is based on an annual review of the effectiveness of the remedy implemented in 2006 and includes the following:

- A comparison of the groundwater data to the LTM objectives (Section 1.1);
- An evaluation of the need to recharge (i.e., add substrate) the biowalls as outlined in the Remedial Design Report (RDR) (Parsons, 2006c) (Section 3.5); and
- An assessment of the remedy's compliance with the United States Environmental Protection Agency's (USEPA) "Guidance for Evaluation of Federal Agency Demonstrations (Section 12(h)(s))."

A remedial action (RA) was completed in October and November 2006 in accordance with the Record of Decision (ROD) for the Ash Landfill OU (Parsons, 2004), the Remedial Design Work Plan (Parsons, 2006b), and the RDR (Parsons, 2006c). The RA involved the following:

- Installation of three dual biowall systems, A1/A2, B1/B2, and C1/C2, to address volatile organic compounds (VOCs) in groundwater that exceed New York State Department of Environmental Conservation's (NYSDEC) Class GA groundwater standards;
- Construction and establishment of a 12-inch vegetative cover over the Ash Landfill and the Non-Combustible Fill Landfill (NCFL) to prevent ecological receptors from coming into direct contact with the underlying soils that are contaminated with metals and polycyclic aromatic hydrocarbons (PAHs);
- Excavation and disposal of Debris Piles A, B, and C; and
- Re-grading of the Incinerator Cooling Water Pond to promote positive drainage.

As part of the RA at the Ash Landfill OU, post-closure operations include LTM. Groundwater monitoring is required as part of the remedial design, which was formulated to comply with the ROD. The first four rounds of groundwater sampling were performed in the first year of LTM and were completed in January 2007, March 2007, June 2007, and November 2007.

The analytical and geochemical results were presented in four letter reports. The results of the Year 1 LTM were reported and evaluated in the "Annual Report and One-Year Review for the Ash Landfill Operable Unit, Seneca Army Depot Activity" (Parsons, 2008a). As part of the Year 1 report, the Army recommended that the frequency of LTM events at the Ash Landfill OU be reduced from quarterly to semi-annually; this recommendation was approved by the USEPA and NYSDEC.

Exhibit 1.1 presents the sampling dates and annual report titles since the initiation of LTM at the Ash Landfill OU. A separate semiannual letter report was generated for each sampling round except for Round 16. The results of Round 18 are provided within this Annual Report.

August 2015 Page 1

Exhibit 1.1 - Annual Report List

Round Number	Sample Date	Report Title					
Quarter 1	January 2007						
Quarter 2	March 2007	FINAL Annual Report and One-Year Review For The Ash Landfill Operable Unit					
Quarter 3	June 2007	Seneca Army Depot Activity – (Parsons, 2008a)					
Quarter 4	November 2007						
Round 5	June 2008	FINAL Annual Report and Year Two Review For The Ash Landfill Operable Unit					
Round 6	December 2008	Seneca Army Depot Activity – (Parsons, 2009)					
Round 7	June 2009	FINAL Annual Report and Year Three Review For The Ash Landfill Operable Unit					
Round 8	December 2009	Seneca Army Depot Activity – (Parsons, 2010)					
Round 9	June 2010	FINAL Annual Report and Year 4 Review Ash Landfill Operable Unit					
Round 10	December 2010	Seneca Army Depot Activity – (Parsons, 2011)					
Round 11	July 2011	DRAFT Annual Report and Year 5 Review Ash Landfill Operable Unit					
Round 12	December 2011	Seneca Army Depot Activity – (Parsons, 2012)					
Round 13	June 2012	FINAL Annual Report and Year 6 Review					
Round 14	December 2012	Ash Landfill Operable Unit Seneca Army Depot Activity – (Parsons, 2014a)					
Round 15	July 2013	DRAFT Annual Report and Year 7 Review					
Round 16	December 2013	Ash Landfill Operable Unit Seneca Army Depot Activity – (Parsons, 2014b)					
Round 17	June 2014	DRAFT Annual Report and Year 8 Review					
Round 18	December 2014	Ash Landfill Operable Unit Seneca Army Depot Activity					

This Annual Report reviews the results of the eighth year of the LTM program as part of the ongoing evaluation of the remedy and provides conclusions and recommendations about the effectiveness of the remedial action, including the groundwater remedy and the vegetative landfill covers.

1.1 Long-Term Groundwater Monitoring Objectives

Three types of long-term groundwater monitoring are being performed: 1) plume performance monitoring, 2) biowall process monitoring, and 3) off-site compliance monitoring. On-site performance monitoring is being conducted to measure groundwater contaminant concentrations and to evaluate the effectiveness of the biowall remedy for the Ash Landfill OU. The objectives of performance and compliance monitoring are as follows:

August 2015
Page 2
P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Yr 8 Annual Report\Draft\Text\Ash Annual Report Yr8.docx

- Confirm that there are no exceedances of groundwater standards for contaminants of concern (COCs) at the off-site compliance monitoring well MW-56;
- Document the effectiveness of the biowalls to remediate and attenuate the chlorinated ethene plume; and
- Confirm that groundwater concentrations throughout the plume are decreasing to eventually meet
 NYSDEC Class GA groundwater standards.

Biowall process monitoring is being conducted at two locations to determine if, and when, any biowall maintenance activities should be performed. The first location is within Biowalls B1/B2 (MWT-27 and MWT-28) in the segment that runs along the pilot-scale biowalls that were installed in July 2005 (**Figure 2**). The second location is within Biowall C2 (MWT-23), the furthest downgradient biowall. The objectives of biowall process monitoring for operations and maintenance (O&M) activities are as follows:

- Monitor the long-term performance and sustainability of the biowalls;
- Monitor substrate depletion and geochemical conditions under which the effectiveness of the biowalls may decline; and
- Determine if, and when, the biowalls need maintenance (i.e., need to be recharge with additional organic substrate).

2.0 SITE BACKGROUND

2.1 Site Description

SEDA is a 10,587-acre former military facility located in Seneca County near Romulus, New York, that was owned by the United States Government and operated by the Department of the Army from 1941 until 2000. In 2000, the Army assumed a caretaker role at the SEDA, and since this time more than 8,500 acres of the property were transferred to other parties. SEDA is located between Seneca Lake and Cayuga Lake and is bordered by New York State Highway 96 to the east, New York State Highway 96A to the west, and sparsely populated farmland to the north and south.

The location of the Ash Landfill OU, also referred to as the Ash Landfill, is composed of five historic solid waste management units (SWMUs). The five SWMUs that comprise the Ash Landfill OU are the Incinerator Cooling Water Pond (SEAD-3), the Ash Landfill (SEAD-6), the NCFL (SEAD-8), the former Debris Piles (SEAD-14), and the former Abandoned Solid Waste Incinerator Building (SEAD-15) (Figure 3).

Prior to the Army's purchase of land for construction of the SEDA, the area of the Ash Landfill OU was used for farming. From 1941 (the date SEDA was constructed) to 1974, uncontaminated trash was burned in a series of burn pits located near the former abandoned incinerator building (Building 2207). According to the U.S. Army Environmental Hygiene Agency (USAEHA) Interim Final Report, Groundwater Contamination Survey No. 38-26-0868-88 (July 1987), the ash from the refuse burning pits was buried in the Ash Landfill (SEAD-6) from date of inception until the late 1950s or early 1960s.

The incinerator was built in 1974. Between 1974 and 1979, materials intended for disposal were transported to the incinerator. Each week the Depot generated approximately 18 tons of refuse, the majority of which was incinerated. The source for the refuse was domestic waste from Depot activities and family housing. Large items that could not be burned were disposed at the NCFL (SEAD-8). The NCFL encompasses approximately three acres located southeast of the former incinerator building, immediately south of a SEDA railroad line. The NCFL was used as a disposal site for non-combustible materials, including construction debris, from 1969 until 1977.

Ash and other residue from the former incinerator were temporarily disposed in an unlined cooling pond immediately north of the incinerator building. The cooling pond consisted of an unlined depression approximately 50 feet in diameter and approximately 6 to 8 feet deep. When the pond filled, the fly ash and residues were removed, transported, and buried in the adjacent ash landfill east of the cooling pond. The refuse was dumped in piles and occasionally spread and compacted. No daily or final cover was applied during operation. According to an undated aerial photograph of the incinerator during operation, the active area of the Ash Landfill extended at least 500 feet north of the incinerator building, near a bend in a dirt road. A fire destroyed the incinerator on May 8, 1979, and the landfill was subsequently closed. Post-closure the landfill was apparently covered with native soil of various thicknesses, but was not closed with an engineered cover or cap. Other areas at the site were used as a grease pit and for burning debris.

Site Geology/Hydrogeology 2.2

The site is underlain by a broad north-to-south trending series of rock terraces covered by a mantle of glacial till. As part of the Appalachian Plateau, the region is underlain by a tectonically undisturbed sequence of Paleozoic rocks consisting of shale, sandstone, conglomerate, limestone and dolostone. At the Ash Landfill site, these rocks (the Ludlowville Formation) are characterized by gray, calcareous shale and mudstone and thin limestone with numerous zones of abundant invertebrate fossils. Locally, the shale is soft, gray, and fissile. The shale, which has a thin weathered zone at the top, is overlain by 2 to 3 feet of Pleistocene-age 1 till deposits. The till matrix varies locally, but generally consists of unsorted silt, clay, sand, and gravel (Brett et al., 1995).

The thickness of the till at the Ash Landfill OU generally ranges from 4 to 15 feet. At the location of the biowalls, the thickness of the till and weathered shale is approximately 10 to 15 feet. Groundwater is present in both the shallow till/weathered shale layer and in the deeper competent shale layer. In both water-bearing units, the predominant direction of groundwater flow is to the west, toward Seneca Lake. Based on the historical data, the wells at the Ash Landfill site exhibit rhythmic and seasonal fluctuations in the water table and the saturated thickness. Historic data at the Ash Landfill OU indicate that the saturated interval is thin (generally between 1 and 3 feet thick) in the month of September and is thickest (generally between 6 and 8.5 feet thick) between December and March (Parsons Engineering Science Inc., 1994).

The average linear velocity of the groundwater in the till/weathered shale layer was calculated during the Remedial Investigation (RI) in 1994 using the following parameters: 1) average hydraulic conductivity of 4.5 x 10⁻⁴ centimeters per second (cm/sec) (1.28 feet per day [ft/day]), 2) estimated effective porosity of 15% to 20%, and 3) groundwater gradient of 1.95 x 10⁻² feet per foot (ft/ft) (Parsons Engineering Science, Inc., 1994). The average linear velocity was calculated as 0.166 ft/day or 60.7 feet per year (ft/yr) at 15% effective porosity and 0.125 ft/day or 45.5 ft/yr at 20% effective porosity. The actual velocity of on-site groundwater may be locally influenced by zones of higher-than-average permeability; these zones are possibly associated with variations in the porosity of the till/weathered shale.

2.3 Soil and Groundwater Impacts

The nature and extent of the COCs at the Ash Landfill OU were evaluated through a comprehensive RI program. It was determined that surface water and sediment were not media of concern and did not require remediation. A groundwater contaminant plume that emanated from the northern end of the Ash Landfill was delineated during the RI. The primary COCs in groundwater at the Ash Landfill are VOCs; the primary COCs in soil at the Ash Landfill are chlorinated and aromatic compounds, semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), and, to a lesser degree, metals. Release of the COCs is believed to have occurred during the former activities at the Ash Landfill OU (described in Section 2.1).

¹ The Pleistocene Age occurred 11,700 to 2.588 million years before present.

2.3.1 Soil

VOCs, specifically trichloroethene (TCE), were detected in the soil in the "Bend in the Road" area near well MW-44A and the northwest corner of the Ash Landfill (Figure 2). Located northwest of the Ash Landfill, this area is believed to be the source of the groundwater plume. Between 1994 and 1995, the Army conducted a Non-Time Critical Removal Action (NTCRA), also known as an Interim Removal Measure (IRM), to address VOC and PAH contamination in soil near the "Bend in the Road." The excavation limits of the NTCRA are shown on Figure 3. The NTCRA successfully reduced the risk associated with potential exposure to contaminated soil, and prevented continued leaching of VOCs to groundwater. Since the NTCRA, concentrations of VOCs in groundwater near the original source area have decreased by two orders of magnitude. Further remediation for VOCs in the soil at the "Bend in the Road" was not required.

The other COCs detected in the soil were PAHs and metals. PAHs were detected at concentrations above NYSDEC's Technical and Administrative Guidance Memorandum (TAGM #4046) values in the NCFL and the Debris Piles present around the former Ash Landfill. In general, the highest PAH concentrations were detected in the NCFL and small Debris Pile surface soils. The metals that were detected at elevated concentrations above the TAGM values in soils were copper, lead, mercury, and zinc. These elevated concentrations were found in the Ash Landfill, the NCFL, and the Debris Piles, with the highest concentrations of metals detected at the surface of the Debris Piles. These piles were small, localized, surface features that were visibly discernible and did not extend into the subsurface. The former debris piles were excavated and disposed offsite during the RA in 2006.

2.3.2 Groundwater

The primary potential impact to human health and the environment is a groundwater contaminant plume containing dissolved chlorinated solvents, primarily TCE, isomers of dichloroethene (DCE), and vinyl chloride (VC). The plume originates in the "Bend in the Road" area near the northwestern edge of the Ash Landfill and is approximately 1,100 feet long by 625 feet wide. The nearest exposure points for groundwater are three farmhouse wells located approximately 1,250 feet from the leading edge of the plume near the farmhouse. The location of the farmhouse relative to the plume at the Ash Landfill is shown on **Figure 4**. Two of the farmhouse wells draw water from the till/weathered shale aquifer and the remaining well draws water from the bedrock aquifer. As discussed in Section 4.4 of the RI (Parsons, 1994), plume profiles were constructed for geologic cross sections at the Ash Landfill; based on these profiles it was determined that the plume is vertically restricted to the upper till/weathered shale aquifer and is not present in the deeper competent shale aquifer. As noted in Section 2.3.1, the source area of the plume was removed by the NTCRA.

2.4 Summary of the Remedial Action

2.4.1 Biowalls

Three biowall pairs were installed to address groundwater contamination on-site and were documented in the Construction Completion Report (Parsons, 2007). The biowalls were constructed by excavating a linear trench to competent bedrock then backfilling the trench to the ground surface with a mixture of mulch and sand.

Biowalls A1/A2, B1/B2, and C1/C2 were constructed perpendicular to the chlorinated solvent plume at the locations prescribed in the RDR (**Figure 2**). The entire length of Biowalls A1/A2 and the northern portion of B1/B2 were combined into a single double-width trench (minimum of 6 feet in width) due to unstable soil conditions that caused trench widening. Approximately 2,840 linear feet (lf) of biowalls were constructed in the areas downgradient of the Ash Landfill at depths ranging from 7 feet below ground surface (bgs) to 18.5 feet bgs.

A 12-inch soil cover was placed over the entire length of the biowalls to impede surface water from preferentially flowing into the biowall trenches. Trench spoils were used as the cover material and were compacted with a backhoe. A site visit in December 2014 confirmed that the mulch backfill in the trenches has settled to a level approximately equal to the surrounding ground surface.

2.4.2 Incinerator Cooling Water Pond

As specified in the RDR, the Incinerator Cooling Water Pond (ICWP) was re-graded to meet the surrounding grade to prevent the accumulation of water in this inactive pond. Prior to re-grading, the vegetation on the berms surrounding the ICWP was removed with an excavator. The soil berm was then regraded with a dozer to match the surrounding grade. The ICWP was seeded with a standard meadow mix to promote vegetation and to prevent erosion.

2.4.3 Ash Landfill and NCFL Vegetative Cover

A soil cover comprised of mulch, biowall trench spoils that met the site cleanup criteria, and off-site topsoil was placed over the 2.2 acres of the Ash Landfill. The Ash Landfill was covered with 4,380 cubic yards (cy) of fill to achieve a minimum cover thickness of 12 inches. Biowall trench spoils that met the site cleanup criteria and off-site topsoil were placed over the 3.4 acre NCFL. The NCFL was covered with 6,015 cy of fill to achieve a minimum cover thickness of 12 inches. The purpose of the covers is to prevent terrestrial wildlife from directly contacting or incidentally ingesting metal-impacted soils.

2.4.4 Debris Pile Removal

During the RA, approximately 200 cy of debris was removed from Debris Piles B and C. Approximately 1,000 cy of debris was removed from within and beyond the staked limits of Debris Pile A (**Figure 3**). The total volume of debris removed was approximately 1,200 cy (1,548 tons).

2.5 Description of Technology Used in Biowalls

Reductive dechlorination is the most important process for natural biodegradation of highly chlorinated solvents (USEPA, 1998) (**Figure 5**). Complete dechlorination of TCE and other chlorinated solvents is the goal of anaerobic biodegradation via mulch biowall technology.

Biodegradation causes measurable changes in groundwater geochemistry that can be used to evaluate the effectiveness of substrate addition in stimulating biodegradation. For anaerobic reductive dechlorination to be an effective process, generally groundwater must be sulfate-reducing or methanogenic. Thus,

groundwater in which anaerobic reductive dechlorination is occurring should have the following geochemical signature:

- Depleted concentrations of dissolved oxygen (DO), nitrate, and sulfate;
- Elevated concentrations of manganese, ferrous iron, methane, carbon dioxide, chloride, and alkalinity; and
- Reduced oxidation reduction potential (ORP).

Treatment of chlorinated ethenes in groundwater using a biowall relies on the flow of groundwater under a natural hydraulic gradient through the biowall to promote contact with slowly-soluble organic matter. As the groundwater flows through the organic matter in the biowall, an anaerobic treatment zone is established in the biowall. The treatment zone may also be established downgradient of the biowall as soluble organic matter migrates with groundwater and stimulates microbial processes.

Solid-phase organic substrates used to stimulate anaerobic biodegradation of chlorinated ethenes include plant mulch and compost. To enhance microbial activity, the mulch may be composted prior to emplacement to more readily degraded material, or mulch may be mixed with an outside source of compost. Mulch is primarily composed of cellulose and lignin, and contains "green" plant material that provides nitrogen and nutrients for microbial growth. These substrates are mixed with coarse sand and placed in a trench or excavation in a permeable reactive biowall configuration. Biodegradable vegetable oil may be added to the mulch mixture to increase the availability of soluble organic carbon.

Degradation of the organic substrate by microbial processes in the subsurface provides a number of breakdown products, including metabolic acids (e.g., butyric and acetic acids). The breakdown products and acids produced by degradation of mulch in a saturated subsurface environment provide secondary fermentable substrates for the generation of molecular hydrogen, which is the primary electron donor utilized in anaerobic reductive dechlorination of chlorinated ethenes. Thus, a mulch biowall has the potential to stimulate reductive dechlorination of chlorinated ethenes for many years. If necessary, mulch biowalls can be periodically recharged with liquid substrates (e.g., emulsified vegetable oils) to extend the life of the biowall. Vegetable oil is a substrate that is readily available to microorganisms as a carbon source that helps establish and continually develop the microbial population. Used in combination with mulch, vegetable oil has the potential to enhance and extend the duration of organic carbon release.

3.0 LONG-TERM MONITORING DATA ANALYSIS AND GROUNDWATER REMEDY EVALUATION

3.1 Sample Collection

Exhibit 3.1 below presents the sample collection dates for the eight years of LTM. The first year of sampling was quarterly, and at that time, the sampling rounds were identified as xQyyyy, where "x" is the round number, and "yyyy" is the 4 digit year. After the first year, the sample frequency was modified to semiannual. An "R" was used to replace the "Q" to denote the round. The round number has been used sequentially since the first quarterly round.

Exhibit 3.1 – LTM Sampling Dates

LTM Year	Round Name	Sampling Dates
	1Q2007	January 3, 2007 – January 4, 2007
Year 1	2Q2007	March 15, 2007 – March 17, 2007
rear i	3Q2007	June 5, 2007 – June 7, 2007
	4Q2007	November 13, 2007 – November 15, 2007
Voca 2	5R2008	June 24, 2008 – June 26, 2008
Year 2	6R2008	December 11, 2008 – December 15, 2008
V2	7R2009	June 1, 2009 – June 4, 2009
Year 3	8R2009	December 14, 2009 – December 18, 2009
V4	9R2010	June 28, 2010 – July 2, 2010
Year 4	10R2010	December 14, 2010 – December 19, 2010
V5	11R2011	July 18, 2011 – July 22, 2011
Year 5	12R2011	December 12, 20111 – December 15, 2011
Vacant	13R2012	June 18, 2012 – June 22, 2012
Year 6	14R2012	December 10, 2012 – December 14, 2012
V7	15R2013	July 8, 2013 – July 11, 2013
Year 7	16R2013	December 9, 2013 – December 14, 2013
V0	17R2014	June 17, 2014 – June 22, 2014
Year 8	18R2014	December 15, 2014 – December 19, 2014

Fourteen monitoring wells were sampled and classified into three groups (listed in **Table 1**): eleven onsite plume performance monitoring wells, one off-site compliance monitoring well, and five biowall process monitoring wells. The off-site performance monitoring well, MW-56, is monitored on a semi-annual basis, and was monitored in January 2007, June 2007, June 2008, December 2008, June 2009, December 2010, December 2010, October 2011, December 2011, June 2012, December 2012, July 2013, December 2013, June 2014, and December 2014. The well locations are shown on **Figure 6**.

Three of the plume performance wells are also biowall process monitoring wells (MWT-23, MWT-27, and MWT-28). The five biowalls process monitoring wells are either within or immediately upgradient or downgradient of the biowalls and are used to assess if, and when, the biowalls may require additional substrate. The Annual Report – Year 1 recommended that groundwater samples collected from monitoring wells PT-17 and MWT-7 be analyzed for additional geochemical parameters that are included for the process monitoring wells to better monitor the progress of the treatment zone.

Samples were submitted to Test America Laboratories, Inc. in Buffalo, New York for Rounds 1 through 8 and to Test America Laboratories, Inc. in Savannah, Georgia for Rounds 9 through 18 to be analyzed for VOCs by USEPA SW846 Method 8260B. As indicated in **Table 1**, samples from the wells in the biowall process monitoring group (MWT-23, MWT-26, MWT-27, MWT-28, and MWT-29) and from two wells from the on-site plume performance group (PT-17 and MWT-7) were also submitted to Test America for analysis of the following:

- Sulfate by USEPA Method 300.1
- Total organic carbon (TOC) by USEPA SW846 Method 9060A

Samples from these wells were also submitted to Microseeps, Inc. located in Pittsburgh, Pennsylvania for analysis for methane, ethane, and ethene (MEE) by Method RSK 175.

During field sampling, the following geochemical parameters were recorded for the duration of low-flow sampling for each groundwater sample:

- pH, ORP, and conductivity were measured with a Horiba U-52 multi-parameter instrument;
- DO and temperature were measured with a YSI 85 meter; and
- Turbidity was measured with a Lamotte 2020, or similar, turbidity meter.

In addition, a HACH® DR/850 Colorimeter was used in the field to measure manganese and ferrous iron at PT-17, MWT-7, MWT-23, MWT-26, MWT-27, MWT-28, and MWT-29. Manganese and ferrous iron were measured by USEPA Method 8034 and USEPA Method 8146, respectively. A summary of the samples collected is presented in **Table 1**.

Groundwater samples were collected using low flow sampling techniques during each of the 2014 sampling rounds. Bladder pumps were used to purge the wells and collect the samples during these rounds. Sampling procedures, sample handling and custody, holding times, and collection of field parameters were conducted in accordance with the "Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP)" (Parsons, 2006a). Field forms for Rounds 17 and 18 are included in **Appendix A** on a CD.

3.2 Groundwater Elevations

Historic groundwater elevations and groundwater elevations from the eight years of LTM rounds are presented in **Figure 7** and **Table 2**. The groundwater elevations were higher during Round 18 than levels observed during Round 17 (**Figure 7**). Groundwater contours and groundwater flow direction based on Round 18 measurements taken on December 15, 2014 are provided in **Figure 8**.

Geochemical Data 3.3

Biodegradation causes measurable changes in groundwater geochemistry that can be used to evaluate the effectiveness of substrate addition in stimulating biodegradation. Groundwater conditions that are sulfatereducing or methanogenic improve the overall effectiveness of anaerobic reductive dechlorination. As mentioned in Section 3.1, geochemical parameters measured in the field that also serve as water quality indicators (i.e., pH, ORP, DO, conductivity, and temperature) were recorded for all wells in the LTM program. Analysis for the additional geochemical parameters of TOC, sulfate, and MEE, and field tests for ferrous iron and manganese were completed at PT-17, MWT-7, MWT-23, MWT-26, MWT-27, MWT-28, and MWT-29. According to USEPA (1998) guidance on natural attenuation of chlorinated solvents, conditions are conducive for anaerobic reductive dechlorination to occur if the following geochemical signatures are identified:

- Depleted concentrations of DO and sulfate;
- Elevated concentrations of methane;
- Reduced ORP;
- Elevated concentrations of soluble organic substrate as defined by TOC in groundwater; and
- An increase in the concentrations of ferrous iron and manganese relative to background conditions.

Geochemical parameter results are shown in Table 3, organized with the most upgradient well listed first and the most downgradient well listed last. A comparison of the geochemical parameters for wells MWT-26 (upgradient of Biowall B1) to MWT-28 (in Biowall B2) for Year 8, summarized below, demonstrates the change in geochemistry across the B1/B2 Biowalls.

Dissolved Oxygen

DO is the most favored electron acceptor (i.e., yields the most energy) used by microbes during biodegradation of organic carbon, and its presence can inhibit the anaerobic degradation of chlorinated ethenes. In the wells sampled within Biowalls B1/B2 and Biowall C2, DO levels are depleted (less than 1.0 milligrams per liter [mg/L]) in both Year 8 events (Table 3). DO is depleted due to the biological activity encouraged by the biowall substrate. The depletion of DO enhances the potential for anaerobic degradation of chlorinated ethenes in groundwater.

Sulfate

Sulfate is used as an electron acceptor during sulfate reduction, competing with anaerobic reductive dechlorination for available substrate/electron donor. Sulfate levels lower than 20 mg/L are desired to prevent inhibition of reductive dechlorination of chlorinated ethenes (USEPA, 1998). In Year 8, Round 17 concentrations were less than 20 mg/L in Biowall B1 (MWT-27), Biowall B2 (MWT-28) and Biowall C2 (MWT-23). In Year 8, Round 18 sulfate concentrations were less than 20 mg/L in Biowall B2 (MWT-28) and Biowall C2 (MWT-23). At Biowall B1 (MWT-27), the sulfate level was above 20 mg/L with a concentration of 36.5 mg/L; note that this sulfate level was orders of magnitude lower than the concentration of sulfate detected upgradient of Biowalls B1/B2 at MWT-26 (250 - 1060 mg/L) (Table 3).

Page 11

These conditions indicate that sulfate continues to be depleted and that sulfate should not inhibit anaerobic dechlorination within the biowalls.

Methane

The presence of methane in groundwater is indicative of strongly reducing methanogenic conditions. An increase in the concentrations of methane indicates that reducing conditions are optimal for anaerobic reductive dechlorination to occur. Methane was detected in the well upgradient of Biowall B1/B2 (MWT-26) at a concentration of 240 micrograms per liter (μg/L) in Round 17 and at a concentration of 60 μg/L in Round 18. Compared to these concentrations, at the process wells located within biowalls B1, B2, and C2, methane concentrations were orders of magnitude greater and ranged from 12,000 µg/L to 16,500 μg/L (Table 3). These data demonstrate that there is an increase in the level of methanogenic activity within the biowalls and in downgradient areas, compared to upgradient locations.

Oxidation-Reduction Potential

ORP indicates the level of electron activity in groundwater and the tendency of groundwater to accept or transfer electrons. Low ORP, considered to be less than -100 millivolts (mV), is conducive for anaerobic reductive dechlorination to occur; however, reductive pathways are still possible at ORP levels up to 50 mV (USEPA, 1998). During Rounds 17 and 18, ORP values upgradient of Biowall B1/B2 were higher than ORP values within the biowall wells. The ORP value upgradient of the biowalls at MWT-26 ranged from 61 mV to 154 mV in 2014, whereas the ORP levels within Biowalls B1/B2 ranged from -105 mV to -77 mV (Table 3). A similar trend occurs upgradient and within Biowall C2 (Table 3).

The ORP values are outside the benchmark value in some sampling events; however, there is strong evidence of methanogenesis occurring within the biowalls, indicating continued supportive conditions for reductive dechlorination to occur. Methanogenesis is a fermentation reaction, and does not influence ORP. If concentrations of sulfate and reducible iron are depleted within the biowalls, it is conceivable that the ORP measurements will increase, even though conditions remain reducing which is evident by methanogenesis acting as the predominate reaction. ORP values remain lower than the upgradient values indicating a change in conditions within the biowalls compared to the upgradient conditions. Since the ORP levels are still within the range where reduction is possible, it remains that the environment in the biowalls is still conducive to anaerobic reductive dechlorination. The ORP data alone may be inconclusive when compared to the benchmark and will result in relying on the other lines of evidence (e.g., other geochemical parameters and chemistry) in the analysis of the effective operation of the biowall system.

Total Organic Carbon

The presence of organic substrate is necessary to stimulate and sustain anaerobic degradation processes. In biowalls, organic carbon acts as an energy source for anaerobic bacteria and drives reductive dechlorination. Concentrations of TOC greater than 20 mg/L are sufficient to maintain sulfate reducing and methanogenic conditions (USEPA, 1998). TOC concentrations in Biowalls B1/B2 were greater than the TOC concentrations upgradient of the biowalls and are equivalent or better than the benchmark value

August 2015 Page 12 (**Table 3**). In Biowall C2, the TOC concentration has decreased below the threshold value of 20 mg/L, but remained equivalent to the concentration at upgradient wells MWT-26 and MWT-29.

A decrease in the concentration of TOC occurs as readily degraded organics (i.e., vegetable oil and cellulose) in the mulch mixture are consumed; however, TOC concentrations on-site remain sufficiently high enough to serve as an energy source for anaerobic bacteria in the biowalls. As discussed below, the change in TOC concentrations has little impact on the efficiency at which chlorinated organics are degraded within the biowalls and does not indicate that the biowalls need to be recharged at this time. Since the TOC concentrations are lower, a conclusion on the continuing effectiveness of the biowalls will be made relying on the other lines of evidence (e.g., other geochemical parameters and chemistry) in the analysis of the effective operation of the biowall system.

Ferrous Iron and Manganese

As described in USEPA (1998), Iron III (ferric iron) is an electron acceptor used by iron-reducing bacteria under anaerobic conditions; Iron II (ferrous iron) is the product. Iron III is relatively insoluble in groundwater relative to Iron II. Therefore, an increase in concentrations of Iron II in groundwater is a clear indication that anaerobic iron reduction is occurring. Similarly, USEPA (1998) states that manganese (IV) is an electron acceptor used by manganese-reducing bacteria under anaerobic environments; soluble manganese (II) is the product. Under anaerobic conditions like those at the Ash Landfill, the presence of manganese and ferrous iron in the biowalls at concentrations above those found at upgradient locations, or locations unaffected by the biowalls, demonstrates that manganese and iron reduction are occurring at the site. For example, Year 8 ferrous iron and soluble manganese concentrations continue to be higher within biowall wells MWT-27 and MWT-28 compared to the upgradient well MWT-26 (Table 3).

During the Round 17 and 18 sampling events, ferrous iron and manganese concentrations were collected from an upgradient well, MW-40, to delineate background concentrations. The average ferrous iron and manganese concentrations collected from these two events were 0.04 mg/L and 0.55 mg/L, respectively. The background values are lower than the ferrous iron and manganese values measured in the biowalls thus supporting the conclusion that conditions within the biowalls are anaerobic and conducive to the degradation of chlorinated ethenes.

Summary

Monitoring data for wells within the biowalls during the eighth year of LTM indicate the following:

- DO remains below 1.0 mg/L at Biowalls B1/B2 and Biowall C2;
- Concentrations of TOC remain elevated (4.7 mg/L to 39 mg/L) in the biowalls, and greater than or equivalent to the upgradient well;
- ORP values ranged from -105 mV to -56 mV;
- Sulfate concentrations are a magnitude lower within the biowalls than in upgradient wells;
- Methane concentrations ranged from 12,000 μg/L to 16,500 μg/L; and

Ferrous iron and manganese concentrations are elevated (2.13 μg/L to >3.3 μg/L and 4.0 μg/L to >22 µg/L, respectively) in the biowalls in comparison to upgradient and background wells (0.00 μ g/L to 0.04 μ g/L and 0.0 μ g/L to 1.2 μ g/L, respectively).

The bulleted observations indicate that the environment within the biowalls is conducive to the degradation of chlorinated ethenes.

By using a lines-of-evidence approach to evaluate geochemical parameters together with the analytical data, it can be determined if conditions in the biowalls are sufficient to support anaerobic degradation processes. The geochemical parameters outlined above suggest that the substrate in the biowalls has not been depleted and biodegradation continues to occur within the biowalls. Additionally, the appropriate levels of DO, organic carbon, ORP, sulfate, and methane continue to be maintained to sustain an anaerobic environment. These conditions have persisted within the biowalls since their installation providing an effective means to support anaerobic degradation of chlorinated ethenes.

3.4 Chemical Data Analysis and Groundwater Remedy Evaluation

Table 4 summarizes the concentrations of chlorinated ethenes detected in groundwater during each round of LTM. Table 4 is organized with the most upgradient well listed first and the most downgradient well listed last. A complete presentation of the groundwater data is provided in Appendix B. Figure 6 shows the concentrations of TCE, cis-DCE and VC for each round of LTM. The discussion below focuses on data collected during Year 8 (Rounds 17 and 18) of the LTM program, and addresses how the remedial action objectives are being achieved.

Achievement of first performance monitoring objective:

 Confirm that there are no exceedances of groundwater standards for contaminants of concern (COC) at the off-site trigger monitoring well MW-56.

Concentrations of chlorinated ethenes at off-site well MW-56 remain low or non-detect (ND) with concentrations of TCE, cis-DCE, and VC below regulatory standards. The past year of LTM confirmed that there were no exceedances of COC groundwater standards at MW-56 (Table 4). VC and TCE were not detected in either of the last two rounds at MW-56. Estimated concentrations of cis-DCE were detected (0.98 J and 0.89 J µg/L) at MW-56, but were well below its Class GA groundwater standard (5 $\mu g/L$).

Achievement of second performance monitoring objective:

Document the effectiveness of the biowalls to remediate and attenuate the chlorinated ethene plume.

TCE remains above the Class GA groundwater standard (5 µg/L) at PT-18A (upgradient of biowalls) (Figure 6). Since LTM began in 2007, TCE concentrations at PT-18A have fluctuated and ranged from below the detection limit to 3,800 μg/L (Table 4). Concentrations of TCE at well MWT-25 (upgradient of Biowall A1/A2) have decreased from 50 µg/L in the first quarter to below the Class GA groundwater standard at a concentration of 2.5 µg/L in Round 18.

Concentrations of TCE and cis-DCE within the biowalls at MWT-27 (in Biowall B1), MWT-28 (in Biowall B2), and MWT-23 (in Biowall C2) remain below Class GA standards, which is an expected performance measure (**Figure 6**). TCE was reported below Class GA standards in the biowalls in all rounds and cis-DCE has been below Class GA standards in every round since Quarter 2. In Rounds 17 and 18, concentrations of VC within the biowall wells (MWT-27, MWT-28, and MWT-23) were below the Class GA standards. However, in the previous two rounds (R15 and R16), the VC concentrations (2.9 µg/L and 2.5 µg/L) within the C2 biowall at well MWT-23 were above the Class GA standard (2 µg/L). The 2014 data for MWT-23 supports the absence of a trend of increasing VC concentrations with concentrations in R17 and R18 that are non-detect and below the Class GA Standard. Continued sampling will further confirm the trend for VC at MWT-23 in subsequent monitoring events.

The reduction in concentrations of TCE and cis-DCE within the biowall wells versus upgradient concentrations suggests that complete mineralization of chlorinated ethenes is occurring. Therefore, the biowalls are operating as expected with no observed loss of performance.

Evidence of ethene (a final product of reductive dechlorination) production within the biowalls suggests that multiple anaerobic degradation processes may be occurring (**Table 3**). For example, ethene is not produced by anaerobic oxidation of cis-DCE or VC or by abiotic transformation of chlorinated ethenes by reduced iron sulfides. The concentrations of ethene may be low within the biowalls since ethene can be further reduced under highly anaerobic conditions or can off-gas with carbon dioxide or methane since it is volatile.

The overall trend in the concentrations of TCE, cis-DCE, and VC at well MWT-26 (between Biowalls A1/A2 and Biowalls B1/B2) is decreasing over time (Appendix C-2). Since the eleventh round, some seasonal variation is evident in the concentrations measured at well MWT-26 with cis-DCE and VC exhibiting higher concentrations in the summer sampling events and lower concentrations in the winter (Figure 6). Since the ninth round, TCE concentrations in well MWT-26 have been below its Class GA standard with a limited range in concentration between 0.83 µg/L and 4.2 µg/L (Table 4). During the same time period, cis-DCE has ranged in concentration between 1.1 µg/L and 12 µg/L with an average concentration (5.9 µg/L) approximately equal to its Class GA standard. Similarly, VC has a limited range in concentration of between 0.47 J µg/L and 7.6 µg/L with an average concentration (2.3 µg/L) approximately equal to its Class GA standard. The area downgradient of MWT-26 is bounded by Biowalls B1/B2 in which the concentrations of TCE, cis-DCE, and VC are non-detect or below their respective Class GA standards. The Army will continue to monitor well MWT-26 to see if a trend in decreasing concentrations persists.

Cis-DCE and VC concentrations at MWT-24 (downgradient of Biowall C2) show an overall decline over time (**Appendix C-9**). Cis-DCE concentrations have declined by an order of magnitude since Quarter 1 and have been in continuous decline since round 13 (**Table 4**). VC concentrations have declined from a maximum in Quarter 2 to below, or approximately equal to, the Class GA standard in the last two rounds (**Figure 6**). TCE concentrations have been at or below the Class GA groundwater standard (5 μ g/L) at MWT-24 in all rounds, with the exceptions of 6.0 μ g/L in Round 6 and 5.6 μ g/L in Round 11, which were

likely due to precipitation fluctuations (i.e., the effects of desorption during a period with frequent precipitation and subsequent high water levels).

Within the biowalls, the concentrations of TCE, cis-DCE, and VC in groundwater are reduced to concentrations near or below detection limits. Downgradient of the C1/C2 biowall, the concentrations of TCE and its daughter compounds rebounds with distance. Figures 9A through 9R depict these trends for Rounds 1 through 18. These increases may be due to residual TCE in the unsaturated zone, in the form of an absorbed or vapor phase, that is desorbing or diffusing out of low permeability soils when elevated groundwater levels are introduced into soils that are typically unsaturated. These localized conditions and the effect of desorption on the groundwater concentrations observed during periods of high groundwater level may drive the actual time required to reach compliance. The fluctuations in COC concentrations are not an indicator of weakened biowall effectiveness. The results discussed above indicate that the biowalls are effectively treating the passing groundwater and creating a measurable improvement in downgradient water quality.

Anaerobic degradation of TCE may also occur in areas of the aquifer formation that are downgradient of the biowalls. The zone of influence for reductive dechlorination processes downgradient of the biowalls is likely supported through the presence of soluble organic carbon entrained within groundwater transiting through the biowalls. In these downgradient areas, the concentrations of cis-DCE and VC are higher than they are within the biowalls. This suggests that sequential biotic reductive dechlorination of chlorinated organics is the primary degradation process in the downgradient reaction zones, with the presence of low concentrations of TCE being due to desorption from the aquifer matrix or from back diffusion of contaminated groundwater from low permeability soils. Elevated concentrations of ethene, such as 6.6 μg/L and 45 μg/L observed at MWT-29 in Rounds 15 and 17 respectively, as compared to the upgradient concentrations of 0.54 µg/L and 0.15 J µg/L at MWT-26, also indicates that downgradient biotic reductive dechlorination is occurring (Table 3).

Achievement of third performance monitoring objective:

Confirm that groundwater concentrations throughout the plume are decreasing to eventually meet GA standards.

Concentrations of TCE, cis-DCE, and VC decreased over the eighteen sampling events at the wells within and downgradient of the biowalls. Time plots for monitoring wells MWT-25, MWT-26, MWT-27, MWT-28, MWT-29, MWT-22, PT-22, MWT-23, MWT-24, and PT-24 are presented in Figures 10A through 10J, respectively. These plots show an overall decreasing trend for the COCs. Figures 10E, 10F, and 10G show that the concentrations at MWT-29, MWT-22, and PT-22, respectively, which are located downgradient of Biowalls B1/B2, show an overall decrease compared to previous years. Note the exception during Year 7 of LTM where COC concentrations are elevated during a period of unseasonably high summer groundwater elevation (Figure 7). According to the National Climatic Data Center and the National Oceanic and Atmospheric Administration (NOAA), recordings from a weather station in Aurora, NY, approximately eleven miles east of the Ash Landfill, showed that June precipitation totals preceding the Year 7 summer sampling event were greater than that of any other June during the duration of LTM. A total precipitation of 6.38 inches was observed, which was more than one inch greater than the second

Page 16 August 2015

highest observed value of any other subsequent month leading up to a summer groundwater sampling event (NOAA, 2014). This confirms that the higher concentrations that were observed during the winter monitoring events and the most recent summer event were likely due to limiting factors such as desorption and back diffusion from low permeability soils, as well as the effect of desorption on the groundwater concentrations observed when groundwater levels were elevated. These factors may drive the actual time required to reach compliance, but do not indicate weakened biowall effectiveness. Elevated water levels were also observed during the winter sampling event in Year 8 (Figure 7).

An exponential regression, which models first-order decay typical in biological processes, was calculated for each monitoring well. The regression serves as a means of estimating the time required for the concentrations of chlorinated organics to meet their respective GA groundwater standards under the assumption that the historical trend of the data will continue throughout the predicted lifetime of the source. The software SourceDK was used as a screening model for estimating the groundwater remediation timeframe and the uncertainties associated with the estimated timeframe (SourceDK, 2011). Using the Tier 1 Extrapolation tool, which compares records of concentration versus time, the log concentration versus time is plotted and then extrapolated to estimate how long it will take to achieve a cleanup goal. The cleanup goals selected are the NYS Class GA groundwater standards (5 µg/L for TCE and cis-DCE and 2 µg/L for VC). The software also provides the 95% confidence level in the estimation of the time to achieve the cleanup goal. The regression plots continue to indicate that there are no trends for some COC concentrations at PT-17 and MWT-22.

Table 5 summarizes the predicted remedial timeframes and their 95% upper and lower confidence limits. Remediation time estimates were calculated by solving the regression equations for when each COC would achieve its respective Class GA standard. If the regression curve displayed an increasing trend, the determination of an expected remedial timeframe could not be calculated. With the exception of the wells with increasing concentration trends, all wells are expected to reach Class GA groundwater standards for 1) TCE by 2040; 2) cis-DCE by 2071; and 3) VC by 2023 (the MWT-22 VC trendline was excluded due to extremely poor fit). Due to variations in data, some of the regression curves show stronger correlations (as indicated by the R² values shown on the Appendix C figures) than others. The COCs for which MWT-22, PT-22, PT-17 and MWT-7 are not expected to comply with Class GA groundwater standards by 2074 tend to exhibit very poor correlation (e.g., $R^2 < 0.1$). Additional data at these well locations will need to be collected to establish COC trends.

Time plots of the concentration of TCE, cis-DCE, and VC for wells PT-18A, PT-17, and MWT-7 are provided in Figures 11A, 11B, and 11C, respectively; these plots include historic data prior to the installation of the biowalls. TCE, cis-DCE, and VC concentrations exhibit an overall decreasing trend at well PT-18A (Figure 11A). Since PT-18A is located in the Ash Landfill source area upgradient of all biowalls, decreasing trends at this location reflect natural attenuation processes. TCE concentrations at well PT-17 are stable since biowall installation (Figure 11B). There is no trend for cis-DCE or VC at PT-17 and MWT-7 (Figures 11B and 11C). At MWT-7, there is a decreasing trend for TCE (Figure 11C).

PT-17 and MWT-7 are located 150 ft and 310 ft from Biowalls C1/C2, respectively. As such, it is possible that treatment zones have not been established this far downgradient of the biowalls.

Page 17

Nevertheless, an increasing trend for cis-DCE paired with a decreasing trend for TCE may indicate that reductive dechlorination is occurring at these locations. To date, concentrations at these wells are within historic levels and the Army will continue to evaluate any impacts of the biowalls on this portion of the plume.

Other Compounds

Tetrachloroethene (PCE) was detected once in Round 17 in well MWT-23 at an estimated concentration of 0.21 J μg/L and once in Round 18 (27 μg/L) above its Class GA standard (5 μg/L). PCE is not a historic site COC and is not assumed to be related to past site uses. Future rounds of groundwater sampling will continue to monitor this analyte. Other non-chlorinated organics were detected in the groundwater at the Ash Landfill OU and the data are presented in **Appendix B**. In Round 17, chloroform was detected once in one well (PT-18A) at a concentration (8.5 μg/L) slightly above its respective Class GA standard (7 μg/L). During Round 18, three non-chlorinated organics were detected. Benzene was detected in one well with an estimated concentration below its respective Class GA standard. Chloroform was detected in two wells (MWT-7 and PT-18A) and exceeded its Class GA standard in well PT-18A (15 μg/L vs. 7 μg/L). Toluene, was detected at a concentration slightly above its respective Class GA standards (5 μg/L). Toluene was detected at MWT-7 at a concentration of 7.1 J μg/L. None of these detected compounds are historical COCs, and their detections are not believed to be associated with historic site operations.

3.5 Biowall Recharge Evaluation

The RDR calls for a recharge evaluation at the end of each year of monitoring. The evaluations completed at the end of Years 1 through 7 concluded that recharge was not required and that a recharge evaluation would be performed again at the end of Year 8.

Recharge Evaluation Process

A recharge evaluation, defined on **Figure 12** (also shown on Figure 7-3 of the RDR) and described below, is the determination of the need to recharge a biowall segment. The evaluation consists of the following:

- Determining the need to recharge a biowall segment requires a review of chemical concentrations and geochemical parameters by an experienced professional. A specific, absolute set of conditions or parameter values are not appropriate to determine the need to recharge. Rather, a lines-of-evidence approach will be used to correlate a decrease in the efficiency of the system to degrade chloroethenes with geochemical evidence that indicates the cause is due to substrate depletion. No single criteria should be used to determine the efficacy of the biowall, thus influencing the decision of whether recharge is required.
- The following parameters will be evaluated annually using at least two consecutive rounds of sampling data in order to determine if recharge of the biowalls is necessary:
 - COC concentrations in the biowalls (e.g., MWT-27, MWT-28, and MWT-23). Detected COC concentrations that have increased above Class GA standards in consecutive rounds indicate

that recharge may need to be considered. Concentrations within the biowalls, not at downgradient locations, will be used to make this evaluation so that the effectiveness of the wall itself is being measured without the interference of effects such as desorption and mixing.

- Geochemical parameters, specifically ORP, TOC, and DO, in the biowalls (e.g., at MWT-27, MWT-28, and MWT-23). Benchmark values will be used initially to evaluate anaerobic conditions in the groundwater. The benchmarks are:
 - ORP < -100 mV
 - \circ TOC > 20 mg/L
 - \circ DO < 1.0 mg/L

Parameters described in the bullets above are guidelines and will be considered in evaluating if, and when, a depletion of bioavailable organic substrate results in a rebound in geochemical redox conditions under which effective anaerobic degradation of chlorinated ethenes does not occur.

Recharge Evaluation for Year 8

The recharge evaluation for Year 8 indicates that recharging the biowalls is not necessary at this time.

Section 3.2 presents the geochemical data for Year 8. The values of geochemical parameters measured in Year 7 support the interpretation that reductive dechlorination is occurring in Biowalls A1/A2, B1/B2, and C1/C2. Exhibits 3.5A, 3.5B, and 3.5C below show that the geochemical parameters for the wells within the biowalls meet or are close to the benchmark values and that groundwater conditions remain highly reducing.

Exhibit 3.5A – Geochemical Parameters at MWT-27

Parameter	Benchmark Value		MWT-27 (Biowall B1)																
		Q1	Q2	Q3	Q4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18
ORP (mV)	<-100	-158	-145	-141	-166	-133	-126	-128	-102	-121	-111	-109	-71	-82	-120	-33	-66	-77	-105
TOC (mg/L)	> 20	2,050	1,350	755	167	89	54	82	50	61	32	42	35	28	35	41	37	39	38
DO (mg/L)	< 1.0	0.25	0.08	0	0.06	0.18	0.13	0.06	0.15	0.05	0.05	0.01	0.08	0.03	0.03	0.04	0.22	0.52	0.08

Exhibit 3.5B - Geochemical Parameters at MWT-28

Parameter	Benchmark Value		MWT-28 (Biowall B2)																
		Q1	Q2	Q3	Q4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18
ORP (mV)	< -100	-150	-113	-131	-151	-91	-95	-135	-148	-104	-100	-135	-126	-76	-73	-41	-49	-87	-88
TOC (mg/L)	> 20	1,775	171	309	92	49	28	28	26	21	12	17	12	18	25	25	24	19	18
DO (mg/L)	< 1.0	0.16	0.09	0	0.08	0.15	0.10	0.18	0.29	0.06	0.07	0.28	0.02	0.06	0.07	0.04	0.21	0.71	0.02

Table 3.5C – Geochemical Parameters at MWT-23

Parameter	Benchmark Value	MWT-23 (Biowall C2)																	
		Q1	Q2	Q3	Q4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18
ORP (mV)	<-100	-122	-109	-87	-144	-129	-104	-117	-90	-115	-103	-136	-104	-71	-91	-102	-16	-56	-77
TOC (mg/L)	> 20	260	210	303	151	29	20	16	18	11	5.9	1.5	6.3	4.8	11	4.1	5.5	4.7	5.6
DO (mg/L)	< 1.0	0.26	0.35	0	0.12	0.15	0.2	0.07	0.63	0.04	0.29	0.85	0.08	0.08	0.11	0.18	0.24	0.18	0.07

Section 3.3 presents the analytical data for Year 8. As shown in Exhibit 3.5D below, concentrations of TCE and cis-DCE in the biowalls remain below their respective Class GA Standards and have not exceeded their screening criteria since the second round of sampling (e.g., 11 μg/L, cis-DCE in MWT-23). VC is typically non-detect in Biowall B1 and B2; however, it has exceeded the Class GA Standard in Biowalls B1 and C2. A trend in the exceedances is not evident and the results are interspersed with non-detects or detections below the GA Standard. The ability of the biowalls to sustain a high degree of reductive dechlorination is well established.

Exhibit 3.5D - Biowall Analytical Data

	MW'	Γ-27 (Biowa	ll B1)	MW	T-28 (Biowa	all B2)	MWT-23 (Biowall C2)				
	TCE (µg/L)	Cis-DCE (µg/L)	VC (μg/L)	TCE (µg/L)	Cis-DCE (µg/L)	VC (μg/L)	TCE (µg/L)	Cis-DCE (µg/L)	VC (μg/L)		
Q1	ND	ND	ND	ND	ND	ND	ND	60	23		
Q2	ND	ND	ND	ND	ND	ND	ND	11	4.8		
Q3	ND	ND	ND	ND	ND	ND	ND	3.1	ND		
Q4	ND	ND	ND	ND	ND	ND	ND	ND 3.6 J			
R5	ND	ND	ND	ND	ND	ND	ND ND		ND		
R6	ND	ND	ND	ND	ND ND		0.4 2.4		2.8		
R7	ND	ND	ND	ND ND		ND	ND	0.42 J	ND		
R8	ND	ND	3.1 J	ND	ND	ND	ND	0.47 J	ND		
R9	ND	0.18 J	ND	ND	ND	ND	ND	0.41 J	ND		
R10	0.51 J	1.1	2.1	ND	0.51 J	0.64 J	0.29 J	4.6	5.3		
R11	ND	0.21 J	ND	ND	ND	ND	ND	0.57 J	0.33 J		
R12	ND	1.4	3.0	ND	0.28 J	0.56 J	0.18 J	2.0	1.8		
R13	ND	0.42 J	0.61 J	ND	ND	ND	ND	0.55 J	0.33 J		
R14	ND	ND	ND	ND	ND	0.31 J	ND	1.9	1.65		
R15	ND	ND	ND	ND	ND	ND	ND	3.3	2.9		
R16	ND	0.48 J	0.84 J	ND 0.37 J		ND	ND	2.6	2.5		
R17	ND	0.83 J	1.0	ND	ND	ND	ND	0.45 J	0.37 Ј		
R18	ND	0.70 J	1.2	ND	0.19 J	ND	0.19 J	2.7	ND		

Notes:

^{1.} ND = Not detected at the reporting limit

^{2.} NYSDEC Class GA Groundwater Standards: TCE = 5 μg/L; cis-DCE = 5 μg/L; VC = 2 μg/L

TCE, and its daughter product cis-DCE, are either not detected or below the GA Standard in the biowalls. VC, which requires anaerobic conditions to fully degrade, has decreased within the biowalls, varying in concentrations between ND and just above the GA Standard.

Overall, the multiple lines-of-evidence approach that evaluates geochemical parameters together with the chemical analytical data indicates that conditions in the biowalls are sufficiently anaerobic to support reductive chlorination of chlorinated ethenes. Substrate in the biowalls has not been significantly depleted and biodegradation continues to occur. Although TOC levels are below the benchmark value at MWT-23 and MWT-28, they remain high enough to support reductive chlorination. Low DO concentrations and negative ORPs indicate reducing conditions are being maintained with the current levels of TOC. Reductions in sulfate and the production of methane further indicate that highly anaerobic conditions are being sustained. There is no singular value that can be specified for any one parameter, in this case TOC, where crossing that value would indicate the need to recharge. Both an increasing trend in VOC concentrations and consistent negative trends in multiple geochemical parameters would need to be observed to consider that recharge is required.

Some geochemical parameters were below benchmark values in the last couple of monitoring rounds. Additionally, some low variations in VOC concentrations were measured. However, recharge should be considered when conditions are such that consistent trends develop that show the geochemical parameters continue to weaken and that concentrations of TCE and cis-DCE are increasing above the GA standard over multiple events.

Based on the review of the analytical and geochemical data, the biowalls do not need to be recharged at this time, and the biowall system continues to meet the long-term monitoring objectives established in the RDR (Parsons, 2006).

3.6 Soil Remedy Evaluation

Part of the remedial action was installing a 12-inch vegetative cover over the Ash Landfill and the NCFL. The covers were inspected and field observations from Year 8 note that the landfills are vegetated with grass and clover. At the NCFL, visual observations noted a small burrow and the presence of deer trails; however, the erosion and the trails cut less than 6 inches into the cover. Therefore, underlying soil has not been exposed to the environment and corrective action is not required. The Army will continue to monitor the integrity of the covers and ensure that the vegetative covers have not been breached and that the underlying soil is not exposed.

3.7 Land Use Controls (LUCs)

The remedy for the Ash Landfill OU requires the implementation and maintenance of land use controls (LUCs). The LUC requirements are detailed in the "Land Use Control Remedial Design for SEAD-27, 66, and 64A, *Addendum 3*" (2008b). The selected LUCs for the Ash Landfill OU are as follows:

- Prevent access to or use of the groundwater until cleanup levels are met;
- Maintain the integrity of any current or future remedial or monitoring system, such as monitoring wells and permeable reactive barriers;

August 2015 Page 22

- Prohibit excavation of the soil or construction of inhabitable structures (temporary or permanent) above the area of the existing groundwater plume; and
- Maintain the vegetative soil layer over the ash fill areas and the NCFL to limit ecological contact.

As part of the LTM program, the Army inspected the site to determine that the LUCs are being maintained. While performing the groundwater sampling, it was confirmed that no prohibited facilities have been constructed and no access to or use of groundwater was evident other than that needed for monitoring. As discussed in **Section 3.6**, the vegetative covers are limiting ecological contact with the underlying soil.

During Rounds 17 and 18, groundwater monitoring wells were inspected by field personnel. The integrity of all wells at the Ash Landfill is intact and each well is viable for groundwater elevation readings and groundwater sampling, where appropriate. Monitoring wells not required as part of the LTM were decommissioned between September 2010 and January 2011 (Parsons, 2013).

3.8 Operating Properly and Successfully

The implemented design has met the requirements for "operating properly and successfully" (OPS) as outlined in Section 12(h)(s) of the USEPA "Guidance for Evaluation of Federal Agency Demonstrations" (USEPA, 1996). Parsons submitted a letter on behalf of the Army to USEPA, dated June 6, 2008, declaring that the Army had determined that the remedy met the OPS requirements. The Army submitted a letter under separate cover on February 26, 2009 further certifying that the "information, data and analysis provided in Parsons' June 6, 2008 letter was true and accurate." On March 11, 2009, the USEPA transmitted a letter to the Army approving the Army's OPS demonstration. The data for Year 8 of the LTM program are consistent with the data for Years 1 through 7 and demonstrate that the remedy is OPS, as described below.

The remedial action is operating "properly."

The USEPA guidance describes that "a remedial action is operating 'properly' if it is operating as designed." The Construction Completion Report (CCR) (Parsons, 2007) details that the vegetative covers were installed as designed, meeting or exceeding the 12-inch of soil cover requirement. Section 3.6 describes that the covers are intact and effectively prevent ecological contact with the underlying soil; therefore, the vegetative covers are operating properly.

The CCR also details the construction of the biowalls. Deviation from the intended design resulted in wider-than-intended biowalls that required the emplacement of additional mulch; since this is an enhancement of the design, it is fair to say that the biowalls were constructed as designed. The geochemical data presented and discussed in **Section 3.3** indicate that conditions that are favorable to anaerobic reductive dechlorination have been established within and near the biowalls, which was the expectation of the design of the biowall system.

The remedial action is operating "successfully."

A remedial action may receive the USEPA's designation of "operating successfully" (1) if "a system will achieve the cleanup levels or performance goals delineated in the decision document" and (2) if "the

remedy is protective of human health and the environment." The data presented in Section 3.4 demonstrate that concentrations of VOCs are decreasing and will eventually meet the Class GA groundwater standards. The time plots presented in Figures 10A through 10J show a decreasing trend for the COCs at the Ash Landfill OU; Table 5 summarizes the trends in concentrations of COCs over time, demonstrating that the concentrations in groundwater will eventually meet the groundwater standards.

Recent inspection of the vegetative covers at the Ash Landfill and the NCFL continue to indicate that the covers are preventing ecological receptors from contacting the underlying soil; therefore, there is no risk to the environment. The LUCs have been maintained and no one is accessing the groundwater; therefore, there is no risk to human health. Based on a review of the site data, an inspection of the condition of the vegetative covers, and a confirmation that the LUCs are being maintained, the Army believes that the remedial action is operating successfully.

Based on an assessment of the design and construction of the remedial action, and an evaluation of the geochemical and analytical data from the eight years of groundwater monitoring, the Army believes that the remedial action at the Ash Landfill meets the requirements to be designated as "operating properly and successfully."

LONG-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS 4.0

4.1 Conclusions

Based on the results of the long-term monitoring at the Ash Landfill since the installation of the full-scale biowalls, the Army has made the following conclusions:

- TCE within the biowalls remains below or close to detection limits;
- TCE, cis-DCE, and VC are present in the groundwater at the site at concentrations above respective Class GA groundwater standards;
- Chemical results indicate that the concentrations of chlorinated ethenes are decreasing as they pass through the biowall systems;
- Geochemical parameters indicate that groundwater redox conditions are conducive for reductive dechlorination to occur within the biowalls;
- Concentrations of chlorinated ethenes at off-site well MW-56 are below Class GA groundwater standards;
- Continued monitoring is required to determine trends in concentrations of COCs at MWT-22, PT-22, PT-17, and MWT-7;
- Recharge of the biowalls is not necessary at this time;
- The remedial action continues to meets the requirements of the USEPA's "operating properly and successfully" designation; and
- The Army will continue to monitor the performance of the biowall system, including semi-annual periodic evaluations of the potential need to recharge the biowalls.

4.2 Recommendations

Based on the first eight years of long-term monitoring at the Ash Landfill OU, the Army recommends continuing the semi-annual frequency of monitoring based on the process shown in Figure 12 (which is also Figure 7-3 of the RDR). The recommendations for LTM during year eight of monitoring are as follows:

Biowall process monitoring wells (MWT-26, MWT-27, MWT-28, MWT-29, and MWT-23) will be monitored on a semi-annual basis. Each year a recharge evaluation will be completed. As stated in the RDR (Parsons, 2006b), if a recharge is conducted, MWT-26, MWT-27, and MWT-29 would be excluded from the LTM program, as detailed in Figure 12. MWT-28 and MWT-23 will continue to be monitored as part of the performance monitoring wells to supplement data that will be used to determine whether additional biowall recharge is required. The recharge evaluation(s) conducted each year after the first biowall recharge would review the chemical and geochemical data at MWT-28 and MWT-23, and determine if the contaminant increase is a result of poor biowall performance or due to other issues such as seasonal variations in groundwater levels, unusual precipitation events, or desorption and back diffusion;

- Performance monitoring wells (PT-17, PT-18A, PT-22, PT-24, MWT-7, MWT-22, MWT-24, and MWT-25) will continue to be monitored on a semi-annual basis in a manner consistent with the Year 3 LTM program. In the eight years of LTM events at the Ash Landfill OU, the concentrations of COCs in the wells downgradient of the source area (near PT-18A) have decreased;
- The off-site performance monitoring well (MW-56) will continue to be monitored on a semiannual basis;
- The vegetative covers at the Ash Landfill and the NCFL will be inspected annually to ensure that they remain intact and protective of ecological receptors; and
- The frequency of monitoring and the need to recharge the biowalls will be reviewed in the annual
 report submitted after the completion of the eighth year of LTM, based on the process outlined in
 Figure 12.

5.0 REFERENCES

- Brett, C., Baird, G., and Fakundiny, R.H. 1995. Draft Bedrock Geologic Map of the South Onondaga 7.5 Minute Quadrangle, Onondaga County, NY; with engineering geology, groundwater characteristics, and economic potential of bedrock units by Robert H. Fickies. NYSGS Open-file no. 1g1104.
- Kampbell, D.H. and J.T. Wilson, 1998. Analysis of dissolved methane, ethane, ethene in groundwater by a standard gas chromatographic technique. Journal of Chromatography, Vol. 36:253-256.
- NOAA, 2014. Monthly Climatological Summary, Station: Aurora Research Farm, NY US, National Oceanic & Atmoshperic Administration. http://www.ncdc.noaa.gov/data-access/land-basedstation-data. April 2014.
- Parsons Engineering Science Inc., 1994. Remedial Investigation Report at the Ash Landfill Site, Final, July 1994.
- Parsons, 2004. Record of Decision for the Ash Landfill Operable Unit, Final, July 2004.
- Parsons, 2006a. Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP), October 2006.
- Parsons, 2006b. Remedial Design Work Plan for the Ash Landfill Site at Seneca Army Depot Activity, July 2006.
- Parsons, 2006c. Remedial Design Report for the Ash Landfill Operable Unit, August 2006.
- Parsons, 2007. Draft Final Construction Completion Report for the Ash Landfill Operable Unit, Seneca Army Depot Activity. April 2007
- Parsons, 2008a. Final Annual Report and One-Year Review for the Ash Landfill Operable Unit, Seneca Army Depot Activity. May 2008.
- Parsons, 2008b. Land Use Control Remedial Design for SEAD-27, 66, and 64A, Addendum 3, 2008.
- Parsons, 2009. Final Annual Report and Year Two Review for the Ash Landfill Operable Unit, Seneca Army Depot Activity. August 2009.
- Parsons, 2010. Final Annual Report and Year Three Review for the Ash Landfill Operable Unit, Seneca Army Depot Activity. August 2010.
- Parsons, 2011. Final Annual Report and Year 4 Review, Ash Landfill Operable Unit, Seneca Army Depot Activity. September 2011.
- Parsons, 2012. Draft Annual Report and Year 5 Review, Ash Landfill Operable Unit, Seneca Army Depot Activity. November 2012.
- Parsons, 2013. Final Well Decommissioning Report, Ash Landfill Operable Unit, SEAD-4, SEAD-5, SEAD-11, SEAD12, SEAD-13, SEAD-24, SEAD-25, SEAD-26, SEAD-27, SEAD-48, SEAD-59, SEAD-63, SEAD-67, SEAD-70, SEAD-71, SEAD-119B, SEAD-121C, & SEAD-122B, Seneca Army Depot. March 2013.
- Parsons, 2014a. Final Annual Report and Year 6 Review, Ash Landfill Operable Unit, Seneca Army Depot Activity. April 2014.
- Parsons, 2014b. Draft Annual Report and Year 7 Review, Ash Landfill Operable Unit, Seneca Army Depot Activity. April 2014.
- SourceDK, 2011. SourceDK Remediation Timeframe Decision Support System, Version 2.0. August, 2011, S.K. Farhat, Ph.D., P.C. de Blanc, Ph.D., P.E., and C.J. Newell, Ph.D., P.E., DEE, GSI Environmental Inc. Houston, TX. James R. Gonzales, Air Force Center for Engineering and Environment, Brooks AFB, Texas.

Page 27

- US Army Environmental Hygiene Agency (USAEHA), 1987. Interim Final Report, Groundwater Contamination Survey No. 38-26-0868-88, July 1987.
- USEPA, 1996. Guidance for Evaluation of Federal Agency Demonstrations that Remedial Actions are Operating Properly and Successfully, Interim, August 1996.
- USEPA, 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128, September 1998.

TABLES

Table 1	Groundwater Sample Collection
Table 2	Groundwater Elevations
Table 3	Groundwater Geochemical Data
Table 4	Chlorinated Organics in Groundwater
Table 5	Groundwater Trends

Table 1 Groundwater Sample Collection Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

	N	Ionitoring Well Gr	oup		Laborator	y Analysis		Field	l Test
	On-Site Plume		Off-Site	VOC	TOC	MEE	Sulfate	Ferrous	Manganese
	Performance	Biowall Process	Performance					Iron	
Monitoring Wells	Monitoring	Monitoring	Monitoring	8260B	9060A	RSK-175	EPA 300.1	(mg/L)	(mg/L)
PT-18A	X			X					
MWT-25	X			X					
MWT-26		X		X	X	X	X	X	X
MWT-27		X		X	X	X	X	X	X
MWT-28	X	X		X	X	X	X	X	X
MWT-29	X	X		X	X	X	X	X	X
MWT-22	X			X					
PT-22	X			X					
MWT-23	X	X		X	X	X	X	X	X
MWT-24	X			X					
PT-17	X			X	X	X	X	X	X
MWT-7	X			X	X	X	X	X	X
PT-24	X			X					
MW-56			X	X					

Notes:

^{1.} All samples were analyzed for field parameters including pH, ORP, dissolved oxygen, conductivity, temperature and turbidity.

^{2.} All samples were collected in Round 17 between June 19, 2014 and June 22, 2014 and in Round 18 between December 16, 2014 and December 19, 2014.

Table 2 Groundwater Elevation Data Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

	Well Den			LTMR	17 - June 2014			LTM R18	- December 2014		I	listorical Data	R
Monitoring	Top of Riser	Well Depth (rel. TOC)	Date	Saturated	Depth to Groundwater	Water Level	Date	Saturated	Depth to Groundwater	Water Level	Ground	dwater Elevat	ion (ft)
Well	Elevation (ft)	(ft)	Measured	Thickness (ft)	(ft)	Elevation (ft)	Measured	Thickness (ft)	(ft)	Elevation (ft)	Maximum	Minimum	Range
PT-18A	659.05	12.85	6/17/2014	4.41	8.44	650.61	12/15/2014	4.10	8.75	650,30	653.25	649.65	3.60
MWT-25	654.51	13.25	6/17/2014	5.70	7.55	646.96	12/15/2014	9.17	4.08	650.43	650,65	645.93	4.72
MWT-26	652.19	13.22	6/17/2014	5.89	7.33	644.86	12/15/2014	9.95	3.27	648.92	648.92	644.58	4.34
MWT-27	652,99	12.90	6/17/2014	4.78	8.12	644.87	12/15/2014	6.70	6.20	646.79	648.60	644.27	4.33
MWT-28	652.69	12.85	6/17/2014	4.73	8.12	644.57	12/15/2014	5.99	6.86	645.83	648.31	644.20	4.11
MWT-29	651.82	13.10	6/17/2014	4.79	8.31	643.51	12/15/2014	8.08	5.02	646.80	647.83	643.18	4.65
MWT-22	650.66	14.90	6/17/2014	7.05	7.85	642.81	12/15/2014	9.06	5.84	644.82	648.13	642.29	5.84
PT-22	648.61	11.81	6/17/2014	2.68	9.13	639.48	12/15/2014	4.23	7.58	641.03	644.30	637.47	6.83
MWT-23	646.77	13.70	6/17/2014	4.22	9.48	637.29	12/15/2014	5.31	8.39	638.38	640.61	636.40	4.21
MWT-24	641.56	13.00	6/17/2014	5.02	7.98	633.58	12/15/2014	5.63	7.37	634.19	635.84	632.11	3.73
PT-17	640.14	11.65	6/17/2014	5.91	5.74	634.40	12/15/2014	8.20	3,45	636.69	637.50	632.74	4.76
MWT-7	638.34	13.64	6/17/2014	7.49	6.15	632.19	12/15/2014	7.77	5.87	632.47	633.58	626.58	7.00
PT-24	636.40	11.88	6/17/2014	6.64	5.24	631.16	12/15/2014	7.00	4.88	631.52	632.76	627.80	4.96
MW-56	630.51	6.88	6/17/2014	2.76	4.12	626.39	12/15/2014	3.46	3.42	627.09	627.58	624.39	3.19

Table 3 Groundwater Geochemical Data Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Well ID	Location Description	Sample ID	Sample Round	pН	Turbidity (NTU)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	TOC (mg/L)	Sulfate (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Methane (ug/L)	Manganese (ug/L)	Ferrous Iron (ug/L)
PT-18A	Upgradient of	ALBW20059 ALBW20074	1Q2007 2Q2007	6.63 6.44	141 110	1.69 2.87	1.33 0.76	93 -177							
	walls	ALBW20074 ALBW20088	3Q2007	6.71	5	1.66	0.70	-23							
		ALBW20103	4Q2007	6.41	0.0	1.25	0.04	-5							
		ALBW20117 ALBW20132	5R2008 6R2008	6.36 6.58	1.9 0.56	1.75 2,04	0.22	-10 83						8.2	> 3.3
		ALBW20147	7R2009	6.77	0.45	2.01	0.12	66							
		ALBW20162	8R2009	6.71	0.00	2.04	0.62	154							0.15
		ALBW02177 ALBW20192	9R2010 10R2010	6.7 6.66	1.00	2.05 1.25	0.1	62 84		ļ				1.5	0.15
[ALBW20192 ALBW20207	11R2011	6.62	3.30	1.27	0.10	-17							-
		ALBW20222	12R2011	6.62	0.40	1.75	0.09	59.9							
	i	ALBW20237	13R2012	6.80	4.25	1.06	0.12	78 74							
1		ALBW20252 ALBW20265	14R2012 15R2013	6.84	1.83 2.49	1.33 1.46	4.22 0.13	199							
		ALBW20280	16R2013	6.76	0.92	1.11	1.18	201	1						
		ALBW20296	17R2014	6.95	0.77	1.20	0.15	76]	
MWT-25	Upgradient of	ALBW20312 ALBW20064	18R2014 1Q2007	7.07	9.6	0.29	2.99	63	_	-					-
WW 1-23	Biowall A	ALBW20079	2Q2007	7.27	14	2.20	2.8	52							
		ALBW20093	3Q2007	7.36	6.2	2.43	4.14	100	ĺ						
		ALBW20108 ALBW20123	4Q2007 5R2008	6.9 6.91	0 0.52	1.20 1.47	0.21 0.15	65 -41						1.4	0.75
		ALBW20123 ALBW20138	6R2008	6.69	1.32	1.36	2.91	90				-			
		ALBW20153	7R2009	7.03	1.6	1.46	0.1	-31							
		ALBW20168	8R2009	7.21	0	0.79	3.35 0.2	98							
		ALBW20183 ALBW20198	9R2010 10R2010	7.06 7.11	0.7 2.59	1.48 1.23	0.48	-116 -94							
1		ALBW20213	11R2011	6.72	13	1.13	0.03	13					-		1
		ALBW20228	12R2011	7	5.2	1.50	1.5	-54.9					ĺ	1	1
		ALBW20243 ALBW20258	13R2012 14R2012	7.13 7.5	1.7I 3.08	0.93 0.88	0.01	18 32	İ				ŀ		
		ALBW20271	15R2013	6.93	1.74	1.11	0.08	-5							
		ALBW20286	16R2013	7.49	2.44	1.00	2.77	185]			ĺ			
		ALBW20302 ALBW20318	17R2014 18R2014	7.36 7.57	0.92 1.71	1.46 1.22	0.09 4.7	-19 87	İ					ĺ	
MWT-26	Upgradient of	ALBW20066	1Q2007	6.89	10	2.01	1.84	-3	3.9 J	958	ND	ND	ND		
	Biowalls B1/B2	ALBW20081	2Q2007	7.26	9	1.90	0.48	-135	15.2	738	0.4	7.8	210	2.1	> 3.3
		ALBW20095 ALBW20111	3Q2007 4Q2007	6.89 7.08	2.2 50	1.94 1.90	0.21	-170 -40	10.3	473 1060	0.16	13 0.4	390 44	3.1 0.0	> 3.3
		ALBW20111	5R2008	7.05	0.67	1.88	0.31	-71	5.6	600	0.82	2.9	210	1.3	0.81
		ALBW20141	6R2008	7.01	28.7	1.58	3.54	60	4.4	541	0.046	0.028	10	0.6	0.22
		ALBW20156	7R2009	6.95 7.01	2.7 10	1.75 2.45	0.34 4.66	-11 71	6.9 5.6	570 912	3.2 2.2	2.7 1.8	1,100 610	0.5 0.7	0.71
		ALBW20171 ALBW20186	8R2009 9R2010	6.99	1.4	2.43	0.14	-81	4.6	680	2.2	0.71	740	1.7	2.67
		ALBW20202	10R2010	6.77	0.6	1.71	0.5	109	5.5	690	3.7	3.3	1600	0	0.13
		ALBW20216	11R2011	6.64	2.4	1.67	0.07	-31	6.3	510	4.5 0.23	ND	960 39	6.3 0.5	0.89
		ALBW20232 ALBW20246	12R2011 13R2012	7.05 7.26	2.2 8.72	1.87 1.02	0.54	12.1 2	4.5 4.4	860 640	1	0.5	230	0.6	0.09
		ALBW20262	14R2012	7.37	1.5	0.91	5.47	103	4.5	430	0.096	0.069	9.4	0	0.01
		ALBW20274	15R2013	6.91	1.24	0.83	0.13	24	4.1	250	0.69	0.54	130	1.0	0.02
	l	ALBW20289 ALBW20306	16R2013 17R2014	7.42 6.80	3.89 17.5	1.40 1.72	2.88 0.36	140 61	5.4 4.7	610 680	0.52	0.2 0.15 J	61 240	0.3	0.00
		ALBW20300	18R2014	7.31	1.47	1.16	5.5	154	4.4	460	0.62	0.24	60	0	0
MWT-27	In Biowall B1	ALBW20067	IQ2007	6.34	120	5.31	0.25	-158	2,050 J	ND	ND	ND		- 22	
		ALBW20082 ALBW20096	2Q2007	6.65	87 154	4.37 3.35	0.08	-145 -141	1350 755	ND 1.9 J	0.15	2.7 0.33	15,000	> 22 > 22	> 3.3
1		ALBW20096 ALBW20112	3Q2007 4Q2007	6.43	58	5.76	0.06	-166	167	31.7	ND	0.014 J	13,000	> 22	2.19
		ALBW20127	5R2008	6.49	40	3.07	0.18	-133	88.9	ND	2.3	0.049	13,000	> 22	3.23
		ALBW20142	6R2008	5.95	24.5	2.59	0.13	-126 -128	53.5 81.7	24 0.93 J	1.6 5.1	0.13 0.15	15,000	> 22 22	3.05 1.88
		ALBW20157 ALBW20172/73	7R2009 8R2009	6.68	38 5.1	2.99 2.38	0.06	-102	50.0	14.0	4.35	1.2	15,500	9	1.26
		ALBW20187	9R2010	6.52	1.4	2.55	0.05	-121	61	0.95 J	3.8	0.12	13,000	> 22	2.54
	1 1	ALBW20203	10R2010	6.42	8.91	2.22	0.05	-111	32	25.0	3	0.88	18,000	48 >22	3.30
		ALBW20217/18 ALBW20233	11R2011 12R2011	6.3 5.55	3.2 16	1.75 1.98	0.01	-109 -71	42 35	0.69 J 19.0	6.2	0.077 1.6	14,000 16,000	>22	1.23
		ALBW20247	13R2012	6.68	15.3	1.81	0.03	-82	28	1.4	8.4	0.68	14,000	22	1.80
		ALBW20263	14R2012	6.62	15.6	2.26	0.03	-120	35	2.5	0.88	0.051	13,000	47.5	2.17
		ALBW20275/76 ALBW20290	15R2013 16R2013	6.59 6.43	9.33 15.0	2.14 1.85	0.04	-33 -66	41 37 J	4.1 5.2	2.15 1.4	ND 0.16 J	12,500 20,000	>47.5 19.2	2.63
		ALBW 20290	17R2014	6.53	18.5	2.09	0.52	-77	39	6.6	5.3	0.79	16,000	>22	>3.3
		ALBW20322/23	18R2014	6.79	8.29	1.77	0.08	-105	38	36.5	2.2	0.335	12,000	>22	>3.3
MWT-28	In Biowall B2	ALBW20068	1Q2007 2Q2007	7.5 6.6	163 21	0.61 2.30	0.16	-150 -113	1,775 J 171	1.7 ND	ND 0.67	ND 0.48	12,500 J 19,000	7.5	> 3.3
		ALBW20083 ALBW20098	3Q2007	6.56	100	2.74	0.09	-131	309	ND	0.07 0.01 J	0.057	11,000	> 22	> 3.3
		ALBW20113	4Q2007	6.48	10	1.72	0.08	-151	92	ND	0.014 J	ND	11,000	> 22	2.15
		ALBW20128	5R2008	6.31	14	2.16	0.15	-91	49.2	ND 49.1	0.65	0.044	12,000	> 22 5.3	> 3.3 1.98
l		ALBW20144 ALBW20158/59	6R2008 7R2009	5.76 6.49	17 8.5	1.58	0.10	-95 -135	27.9 28.2	48.3 ND	1.8	0.12 0.064	19,000 13,000	20.8	2.87
		ALBW20138/39 ALBW20174	8R2009	6.4	10.8	1.88	0.18	-148	25.5	3.16	1.6	0.12	15,000	6.5	2.15
		ALBW20188/89	9R2010	6.36	5.5	1.62	0.06	-104	21	ND	1.55	0.059	13,500	18.6	0.57
		ALBW20204	10R2010	6.28	4.5	0.80	0.07	-100	12 17	0.63.1	0.9	0.17 0.0085 J	12,000 8,800	5.8 8.9	2.58 >3.3
		ALBW20219 ALBW20234	11R2011 12R2011	6.14 5.76	3.93 6.2	1.44 0.77	0.28	-135 -125.9	17	0.63 J 19	1.6	0.0085 J	12,000	1.1	0.48
		ALBW20248/49	13R2012	6.46	7.41	1.16	0.06	-76	18	0.58	3.1	0.069	14,000	16.4	1.65
		ALBW20264	14R2012	6.27	16.3	1.38	0.07	-73	25	1.1	0.38	0.074	11,000	36	2.79
		ALBW20277	15R2013 16R2013	6.27 6.37	6.33 7.01	1.33 1.42	0.04	-41 -49	25 24 J	1.1 J 2.5 U	1.6	ND 0.24 J	14,000	>47.5 4.3	>3.3
1		ALBW20291/92	1082013								2.8	0.0068 J			>3.3
		ALBW20308	17R2014	6.28	11.5	1.22	0.71	-87	19	1.3 U	1 2.0	0.0009.1	15,000	17.5	2.13

Table 3 Groundwater Geochemical Data Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Well ID	Location Description	Sample ID	Sample Round	рН	Turbidity (NTU)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	TOC (mg/L)	Sulfate (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Methane (ug/L)	Manganese (ug/L)	Ferrous Iron (ug/L)
MWT-29	Downgradient	ALBW20070	IQ2007	6.49	7.2	2.10	0.33	-76	25.1 J 36.1	113 173	ND 25	ND 150	ND 8,100	7.5	> 3.3
	of Biowall B2	ALBW20084/5 ALBW20099	2Q2007 3Q2007	6.8 6.64	1.7	2.21 1.68	0.39	-53 -79	15.7	151	13	160	2,800	8.1	2.84
		ALBW20114	4Q2007	7.04	12.2	1.88	0.21	-101	20.5	289	19	200	2,600	8.6	> 3.3
	ļ	ALBW20129/30	5R2008	6,44	2.7	1.85	0.17	-115	14.1	174	14.5	140	3,100	0.0	> 3.3
		ALBW20145	6R2008 7R2009	6.57	3.69 1.9	1.58 1.80	1.32 0.15	67 -105	13.6 11.8	312 300	14 10	19 47	2,700 3,000	3.3 6.8	0.20 2.97
		ALBW20160 ALBW20175	8R2009	6.8 6.87	0	2.05	0.13	-75	8.2	644	6.7	12	1,500	6.3	0.96
		ALBW20190	9R2010	6.77	2	1.74	0.06	-86	10	170	18	88	5,400	9.1	2.54
		ALBW20205	10R2010	6.71	1.07	1.31	0.56	22	7.4	300	5.1	7.9	3,100	6.4	2.60
		ALBW20220	11R2011	6.55	2.8	1.37	0.05	-90	7.7	170 210	8.3 1.7	7.3	3,100 760	12.1 1	0.03
		ALBW20235 ALBW20250	12R2011 13R2012	6.26 6.78	1.9 1.05	0.90 1.05	0.29 0.07	-30.2 -29	4.9 8.2	95	10	38	5,200	19.6	2.88
		ALBW20265	14R2012	6.96	1.58	0.61	4.99	312	4.8	130	0.58	0.8	180	1.2	0.00
	\	ALBW20278	15R2013	6.65	1.72	0.96	0.07	25	5.8	84	2.9	6.6	2,500	0.09	0.93
		ALBW20293	16R2013	6.91	4.46 0.96	0.84 1.60	3.43 0.13	54 -28	6.2 5.7	130 97	1.5 9.1	3.8 45	1,700 6,100	2.0 7.9	0.05 >3.3
		ALBW20309 ALBW20325	17R2014	6.59 7.15	1.67	0.71	7.55	81	4.7	120	0.34	0.87	160	0.7	0.11
MWT-22	Downgradient of	ALBW20071	1Q2007	7.7	4.5	0.13	0.09	-80							
	Biowall B2	ALBW20075	2Q2007	6.72	41	2.16	0.3	-65							
		ALBW20100	3Q2007	6.45	2.7	2.03	0.05	-107	1						
		ALBW20115 ALBW20121	4Q2007 5R2008	6.53	7.5 14	1.81 2.21	0.18	-132 -34					ļ	18.2	> 3.3
		ALBW20136	6R2008	6.44	8.17	1.86	0.57	-19	l				Ì		
		ALBW20151	7R2009	6.59	13	2,14	0.31	-91							
	1	ALBW20166	8R2009	6.5	15	0.90	0.34	-65	1					}	
		ALBW20181	9R2010 10R2010	6.52 6.39	16.8 6.8	2.20 1.34	0.22 0.07	-63 -58							
		ALBW20196 ALBW20211	11R2011	6.39	3.6	1.34	0.07	-38 -71					l		
		ALBW20226	12R2011	5.65	7.7	1.81	0.05	10					1		
		ALBW20241	13R2012	6.41	8.78	1.37	0.17	-27							
		ALBW20256	14R2012	6.54	12	1.53	0.11 0.47	-55 -11							
		ALBW20269 ALBW20281	15R2013 16R2013	6.48 6.47	4.63 20.4	1.32 1.55	0.47	-21			ĺ				
		ALBW20300	17R2014	6.58	8.99	1.35	0.32	-33		1					1
		ALBW20316	18R2014	7.33	10.7	1.36	0.17	-46	<u> </u>						
PT-22	Between	ALBW20060	1Q2007	7.70	4.5	0.13	0.09	-80				l			
	Biowalls B and C	ALBW20086 ALBW20089	2Q2007 3Q2007	6.78	7 0	1.18 1.44	0.78	-54 -97	1						l
	B aixi C	ALBW20104	4Q2007	6.73	5.1	1.26	0.17	-166				1			
	}	ALBW20118	5R2008	6.69	7.4	1.38	0.29	-119	l	1				0.3	1.38
		ALBW20133	6R2008	6.79	1.96	1.20	0.69	-37				ŀ	1		
		ALBW20148 ALBW20163	7R2009 8R2009	6.76	6.3	1.53 1.45	1.0	-123 -73	1				1		
		ALBW20103 ALBW20178	9R2010	6.87	3.6	1.39	0.4	-75							
		ALBW20193	10R2010	6.75	0.8	1.14	0.18	15	ļ						
l		ALBW20208	11R2011	6.65	2	0.88	0.39	-62					ļ		
	i	ALBW20223 ALBW20238	12R2011 13R2012	5.95 6.74	0.38 8.4	1.57 0.90	0.27 2.50	205.8	ļ						
		ALBW20253	14R2012	6.98	1.44	0.73	5.36	201				l	1		
		ALBW20266	15R2013	6.77	0.82	0.93	0.08	82							i
l		ALBW20284	16R2013	6.62	0.38	0.94	1.54	203							1
		ALBW20297	17R2014 18R2014	6.74 7.07	2.42 2.83	1.05 0.921	1.48 6.66	61 134	İ	1			-		
MWT-23	In Biowall C2	ALBW20313 ALBW20065	1Q2007	7.07	5	0.20	0.26	-122	260 J	ND	ND	ND	12,000		
MW 1-23	In biomain C2	ALBW20080	2Q2007	6.51	30	1.80	0.35	-109	210	ND	45	5.9	23,000	5.4	2.73
l		ALBW20094	3Q2007	6.3	69.3	1.82	0	-87	303	ND	4.1	0.28	18,000	> 22	2.99
	1	ALBW20109	4Q2007 5R2008	6.32	21 29	2.21 1.54	0.12	-144 -129	151 28.4	2.8 ND	0.58	0.35	16,000 18,000	> 22 > 22	2.32 > 3.3
		ALBW20125 ALBW20140	6R2008	6.44	32	1.86	0.13	-104	20.1	6.3	4.6	1.2	19,000	> 22	2.75
		ALBW20155	7R2009	7.72	16	1.50	0.07	-117	15.6	ND	1.6	0.16	21,000	22	2.08
		ALBW20170	8R2009	6.78	10	2,10	0.63	-90	17.4	ND	1	0.058	18,000	7	3.3
		ALBW20185	9R2010 10R2010	6.38 6.41	9 2,8	1.57 1.07	0.04	-115 -103	11 5.9	ND 16	2.4 16	0.038 2.85	18,000 16,000	>22	1.71 > 3.3
		ALBW20200/201 ALBW20215	11R2011	6.21	5.97	1.07	0.85	-136	6.2	1.5	2.3	0.1	15,000	8	>3.3
l		ALBW20230/231	12R2011	5.64	6.7	1.00	0.08	-104.1	6.3	14	8.9	1.2	16,000	12.6	1.17
		ALBW20245	13R2012	6.52	6.14	0.92	0.08	-71	4.8	1.5	5	0.26	18,000	31.1	3.3
l		ALBW20260	14R2012 15R2013	6.33	8.56 6.81	1.07 0.93	0.11	-91 -102	11 4.1	13 15	2.5 7.0	0.63 2.6	15,500 14,000	46.1 8.7	2.18 >3.3
		ALBW20273 ALBW20288	15R2013 16R2013	6.60	5.23	1.05	0.18	-102	5.5	10	7.0	1.7	15,000	15.3	>3.3
l		ALBW20304/05	17R2014	6.40	3.17	1.25	0.18	-56	4.7	1.4 J	11 J	0.13 J	16,500	4.0	>3.3
		ALBW20320	18R2014	6.69	7.93	1.21	0.07	-77	5.6	98	5.4	2.2	13,000	4.8	3.21
MWT-24	Downgradient of Biowalls C1/C2	ALBW20063	1Q2007	7.02	10	0.76 1.08	0.27	-160 -146			1	1			
l	Biowans CI/C2	ALBW20078 ALBW20092	2Q2007 3Q2007	6.91 6.8	59 5.4	1.08	0.32	-146							
		ALBW20107	4Q2007	6.81	134	1.32	0.41	-114	1			1			1
	1	ALBW20122	5R2008	6.65	45	1.21	0.35	-43				1	1	9.1	1.54
ı		ALBW20137	6R2008	6.40	10	1.31	0.09	40				l			
	1	ALBW20152	7R2009	6.81	6.7	1.34 0.56	0.11	-20 59		1			1		
		ALBW20164	8R2009	6.61	6.8	1.45	0.06	-21				1			
		ALBW20182	982010		1 0.0	0.92	0.14	10	1	1	1	I	1	l .	1
		ALBW20182 ALBW20197	9R2010 10R2010	6.78	8.9	0.92							1	1	
		ALBW20197 ALBW20212	10R2010 11R2011	6.78 6.67	75	0.74	0.39	27	1	ļ					
		ALBW20197 ALBW20212 ALBW20227	10R2010 11R2011 12R2011	6.78 6.67 6.56	75 8.67	0.74 0.63	0.10	46.2							
		ALBW20197 ALBW20212 ALBW20227 ALBW20242	10R2010 11R2011 12R2011 13R2012	6.78 6.67 6.56 7.22	75 8.67 10.2	0.74 0.63 0.75	0.10 0.11	46.2 3							
		ALBW20197 ALBW20212 ALBW20227	10R2010 11R2011 12R2011	6.78 6.67 6.56	75 8.67	0.74 0.63	0.10	46.2		i.					
		ALBW20197 ALBW20212 ALBW20227 ALBW20242 ALBW20257	10R2010 11R2011 12R2011 13R2012 14R2012	6.78 6.67 6.56 7.22 6.69	75 8.67 10.2 9.47	0.74 0.63 0.75 0.69	0.10 0.11 0.55	46.2 3 181							

Table 3 Groundwater Geochemical Data Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Well ID	Location Description	Sample ID	Sample Round	рН	Turbidity (NTU)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	TOC (mg/L)	Sulfate (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Methane (ug/L)	Manganese (ug/L)	Ferrous Iron (ug/L)
PT-17 ¹	Downgradient of	ALBW20058	1Q2007	8	3.8	92.00	0.23	-111							
li	biowalls	ALBW20073	2Q2007	7.1	14	0.73	0.76	-151				İ			ĺ
		ALBW20087 ALBW20102	3Q2007 4Q2007	6.99 7.12	0.4 8.7	0.73 2.00	0.9 NS	-157 -24		ļ	1				
		ALBW20116	5R2008	/2	70	2.00	0.24		6	15.2	98	66	5700		1
1		ALBW20131	6R2008	6.68	0.85	0.80	0.30	26	2.6	45.8	6.9	6.6	380	2.8	0.43
		ALBW20146	7R2009	7.19	0.2	1,00	0.30	-20	4.9	28	50	56	8300	7.5	0.53
		ALBW20161	8R2009	6.75	4	0.35	0.58	-52	2.4	46.2	9.9	5	1,500	2.1	0.07
		ALBW20176	9R2010	6.73	0.9	0.82	0.11	-13 42	2.4 1.5	36 31	16 4.8	20 3.5	4,300 900	5.8 4.0	0.29
		ALBW20191 ALBW20206	10R2010 11R2011	6.72 6.57	0.45	0.62 0.57	0.21	-22	3.4	24	1.8	3.8	780	>22	0.64
		ALBW20221	12R2011	6.73	3.03	0.69	2.63	91	1.6	27	1.7	2.4	810	0.6	0.01
		ALBW20236	13R2012	7.09	2.8	0.69	0.17	28	2.8	25	10	12	8,200	4.6	0
		ALBW20251	14R2012	6.74	0.51	0.57	3.44	52	1.7	35	2.2	2.4	810	2.2	0.08
	ļ	ALBW20264	15R2013	6.94	1.36	0.68	0.24	74	1.2	27	1.1	0.69	780	3.4	0.0
	l	ALBW20279 ALBW20295	16R2013 17R2014	6.83 6.18	0.64 0.55	0.66 0.91	0.75	62 35	2.0	31 20	1.5 4.5	1.4 6.5	960 5,700	2.6 4.5	0.10
		ALBW20293	17R2014	6.87	0.55	0.687	0.07	28	1.7	29	2.5	2.0	1,600	6.5	0.14
MWT-7	Immediately	ALBW20062	1Q2007	6.8	19.6	0.58	0.01	62							
	upgradient of	ALBW20077	2Q2007	6.95	8	0.76	0.76	52		1		1			1
	ZVI wall	ALBW20091	3Q2007	6.91	4	0.59	0.19	22	ĺ						1
1 1		ABLW20106	4Q2007	6.88	0	0.90	0.16	14		20.		2	400	0.2	0.09
		ALBW20120 ALBW20135	5R2008 6R2008	6.85 6.85	15 7.37	0.97 0.86	0.43	37 66	2.3 29.1	29.1	6.7	0.27	670	0.2	0.09
		ALBW20150	7R2009	7.61	2.6	0.79	0.05	16	3.1	27	7.8	0.76	1100	0	0.05
		ALBW20165	8R2009	7.12	0.9	0.56	0.46	32	4.5	29.3	17	0.52	2,900	0.01	0.14
		ALBW20180	9R2010	6.85	1.35	1.04	0.02	-21	1.5	29	9	0.55	1,700	0.2	0.19
		ALBW20195	10R2010	6.85	3,3	0.76	0.06	35	1.3	31	4.5	0,2	400	1.1	0.18
		ALBW20210	11R2011	6.7	0.85	0.78	0.08	-85	2	39	4.9	0.21 ND	1,600	0.4	0.45
	[[ALBW20225 ALBW20240	12R2011 13R2012	6.56 6.86	3.9 3.67	0.62 0.64	0.17 0.24	197 -35	1.7 1.6	26 28	0.84 3.1	0.33	1,600	0.2	0.03
		ALBW20255	14R2012	6.85	1.74	0.60	2.84	34	1.6	29	0.64	0.067	96	0	0.1
		ALBW20268	15R2013	6.82	1.88	0.66	0.34	68	0.89 J	31	0.5	ND	160	0.0	0.0
		ALBW20283	16R2013	6.95	3.63	0.83	0.32	66	2.0	26	1.2	0.18 J	1,000	0.8	0.27
		ALBW20299	17R2014	6.26	3.16	0.95	0.55	63	1.4	23	1.2	0.19 J	510	0.6	0.0
DT 24	1	ALBW20315	18R2014 1Q2007	8.1	2.35	70.00	0.61	-59	2,0	23	1.1	0.095 J	1300	0.7	0
	downgradient of ZVI wall	ALBW20061 ALBW20076	2Q2007	7.58	0	0.46	2.2	-59							
		ALBW20090	3Q2007	7.22	1.3	0.56	0.13	-80	ļ			Ī			ı
		ALBW20105	4Q2007	7.35	9.7	2.38	0.19	-46					ļ		1
	l i	ALBW20119	5R2008	6.99	4.3	0.90	0.16	-104	İ					0.5	0.55
	1	ALBW20134	6R2008	6.84	5.8	0.66	0.11	-10							
		ALBW20149 ALBW20164	7R2009 8R2009	7.14	4.1	0.68 0.41	0.05	-101 -192	1					1.9	0.2
	l i	ALBW20179	9R2010	7.07	8.3	0.78	0.19	-37							
		ALBW20194	10R2010	7.05	6.14	0.57	0.09	-29	İ						
		ALBW20208	11R2011	6.69	1.6	0.53	0.82	-16							
		ALBW20224	12R2011	6.79	0.48	0.39	0.13	26.2							ĺ
l i	1	ALBW20239	13R2012	7.47	8.9	0.55	0.14 1.19	-55 77							
		ALBW20254 ALBW20267	14R2012 15R2013	6.95 7.20	1.23 1.68	0.43 0.48	0.06	10			-				
		ALBW20282	16R2013	6.97	2.12	0.54	0.19	19					1		1
		ALBW20298	17R2014	6.93	1.12	0.94	0.05	18							
		ALBW20314	18R2014	7.84	8.65	0.008	0.15	83							
MW-56 (2)	Off-site well	ALBW20072	1Q2007	6.85	3.30	0.46	0.37	-102		1					1
]	ALBW20101 ALBW20124	3Q2007 5R2008	6.90 6.73	0.00 2.00	0.60	0.18	-65 -132						0.4	1.18
		ALBW20124 ALBW20139	6R2008	6.85	6.00	0.76	0.18	-132	[1	1		0.7	
		ALBW20154	7R2009	7.01	0.10	0.62	0.23	-186	ĺ						
		ALBW20169	8R2009	6.59	7.30	0.31	1.86	-149							
		ALBW20184	9R2010	6.85	3,19	0.40	0.16	-131							
		ALBW20199	10R2010	6.88	1.26	0.66	0.32	-105]
		ALBW20214	11R2011	6.89	4.80 5.50	0.66 0.42	0.21	-105 -74.2					1		1
		ALBW20229 ALBW20244	12R2011 13R2012	7.15 7.00	1.20	0.42	0.43	-74.2							
		ALBW20259	14R2012	6.95	3.16	0.50	0.23	-69							
		ALBW20272	15R2013	7.00	1.65	0.51	0.42	-192	ĺ						i
		ALBW20287	16R2013	6.86	1.49	0.53	0.38	-77							1
		ALBW20303	17R2014	7.00	1.33	0.70	0.44	-99	1	.			ĺ		1
		ALBW20319	18R2014	7.11	3.03	0.687	0.52	-119	1		l			I	

>= The concentration exceeded the range of the Hach DR/850 Colorimeter field kit.

J = the reported value is an estimated concentration.

ND = Non-detect.

NS = Not sampled; water level was below the indicator probe.
1Q2007 - First round of LTM (January 2007)
2Q2007 - Second round of LTM (March 2007)
3Q2007 - Third round of LTM (June 2007) 7R2009 - Seventh Round of LTM (June 2009) 4Q2007 - Fourth round of LTM (November 2007) 5R2008 - Fifth Round of LTM (June 2008) 6R2008 - Sixth Round of LTM (December 2008)

8R2009 - Eighth Round of LTM (December 2009) 9R2010 - Ninth Round of LTM (June 2010) 10R2010 - Tenth Round of LTM (December 2010) 11R2011 - Eleventh Round of LTM (July 2011) 12R2011 - Twelfth Round of LTM (December 2011) 13R2012 - Thirteenth Round of LTM (June 2012) 14R2012 - Fourteenth Round of LTM (December 2012) 15R2013 - Fifteenth Round of LTM (July 2013) 16R2013 - Fifteenth Round of LTM (July 2015) 16R2013 - Sixteenth Round of LTM (December 2013) 17R2014 - Seventeenth Round of LTM (June 2014) 18R2014 - Eighteenth Round of LTM (December 2014)

Empty cells indicate that the specified analysis was not completed for that well. The bolded wells are the five wells included in the biowall process monitoring group.

Analysis of TOC, sulfate, methane, ethane, and ethene were completed for the biowall process wells only.

1. During the 5R2008 event the water level in PT-17 was extremely low and water quality readings were not collected.

2. During the 11R2011 event, data was collected at MW-56 in October 2011.

Table 4 Chlorinated Organics in Groundwater Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

	Sample Identification		Round Class GA	Sample Date Standard (ug/L)	PCE (ug/L) 5	TCE (ug/L) 5	1,1-DCE (ug/L) 5	cis-DCE (ug/L)	trans-DCE (ug/L) 5	VC (ug/L) 2	1,1-DCA (ug/L) 5	1,2-DCA (ug/L) 0.6
Upgradient	PT-18A	Upgradient of	1	3-Jan-07	1 U	2000	0.64 J	220	1.6	2.4	1 U	1 U
1		walls	3	17-Mar-07 5-Jun-07	1 U 1 U	1000 1100	0.73 J 1.4	170 430	1.4 3.3	2.9 3.3	1 U 1 U	1 U 1 U
1	1		4	15-Nov-07	1 U	2700	2.1	720	3.4	8.2	1 U	1 U
	i		5	24-Jun-08	1 U	220	1 U	200	0.9 J	1.4	I U	1 U
	l		6	12-Dec-08	0.36 U	1400	1.3	510	2.4	4.6	0.75 U	0.21 U
			7	4-Jun-09	0.36 U	810 J	0.8 J	260	1.8	2.6	0.75 U	0.21 U
-			8 9	17-Dec-09 1-Jul-10	1.5 U 0.15 U	2100 120	1.5 U 0.11 U	630 28	3.5 J 0.2 U	7.1 0.18 U	2 J 0.25 U	0.86 U 0.1 U
- 1	ŀ		10	19-Dec-10	0.15 U	6.3	0.11 U	0.54 J	0.2 U	0.18 U	0.25 U	0.1 U
	l		11	22-Jul-11	1 U	0.13 U	1.5	15	0.2 U	120	62	0.1 U
			12	15-Dec-11	0.15 U	7.3	0.11 U	0.53 J	0.2 U	0.18 U	0.25 U	0.1 U
	1		13	21-Jun-12	0.15 U	3800	2.6	820	4.7	10	0.25 U	0.1 UJ
	ļ		14 15	12-Dec-12 11-Jul-13	0.15 U 0.15 U	8 47	0.11 U 0.11 U	0.8 J 8.1	0.2 U 0.2 U	0.18 U 0.18 U	0.25 U 0.25 U	0.1 U 0.1 U
			16	13-Dec-13	0.15 U	9.4	0.11 U	1.4	0.2 U	0.18 U	0.25 U	0.1 U
			17	21-Jun-14	0.15 U	1200	0.77 J	240	1.2	2.2	0.25 U	0.1 U
			18	19-Dec-14	27	1300	2.2 U	420	5 J	3.6 U	5 U	2 U
	MWT-25	Upgradient of	1	3-Jan-07	1 U	50	1 U	41	0.56 J	1.6 9.6	1 U 1 U	1 U 1 U
		Biowall A	3	17-Mar-07 6-Jun-07	1 U 1 U	55 28	1 U 1 U	84 36	1.2 0.5 J	2.1	I U	1 U
			4	15-Nov-07	1 U	26	1 U	17	1 U	0.64 J	1 U	1 U
	1		5	24-Jun-08	1 U	19	1 U	17	1 U	1 U	1 U	1 U
			6	15-Dec-08	0.36 U	3.2	0.29 U	0.63 J	0.13 U	0.24 U	0.75 U	0.21 U
			7	3-Jun-09	0.36 U	12	0.29 U	10	0.13 U	0.24 U 0.24 U	0.75 U 0.29 U	0.21 U 0.21 U
	1		8 9	17-Dec-09 30-Jun-10	0.36 U 0.15 U	4.2 7.7	0.38 U 0.11 U	3.3 13	0.42 U 0.49 J	0.24 U	0.29 U	0.1 U
	1		10	19-Dec-10	0.15 U	1.9	0.11 U	0.97 J	0.2 U	0.18 U	0.25 U	0.1 U
			11	20-Jul-11	0.15 U	4.4	0.11 U	14	0.45 J	0.72 J	0.25 U	0.1 U
		1	12	15-Dec-11	0.15 U	1.6	0.11 U	0.30 J	0.20 U	0.18 U	0.25 U	0.1 U
			13	21-Jun-12	0.15 U	6.1	0.11 U	6.80	0.20 U	0.18 U	0.25 U	0.1 UJ
	1		14	12-Dec-12 11-Jul-13	0.15 U 0.15 U	1.3 8.3	0.11 U 0.11 U	0.39 J 5.8	0.20 U 0.2 U	0.18 U 0.18 U	0.25 U 0.25 U	0.1 U 0.1 U
			16	13-Dec-13	0.15 U	4.6	0.11 U	3.3	0.2 U	0.47 J	0.25 U	0.1 U
	l		17	21-Jun-14	0.15 U	24	0.11 U	21	0.42 J	2.6	0.25 U	0.1 U
	 		18	19-Dec-14	0.15 U	2.5	0.11 U	1.7	0.2 U	0.18 U	0.25 U	0.1 U
	MWT-26	Upgradient of	1	3-Jan-07	1 U	10	1 U 1 U	19 17	0.6 J 1	2 6.1	1 U 1 U	1 U 1 U
)	Biowalls B1/B2	2 3	17-Mar-07 5-Jun-07	1 U 1 U	11 3.2	1 U	11	0.7 J	4.4	1 U	1 U
		1	4	15-Nov-07	1 U	2.8	1 U	2.8	1 U	1 U	1 U	1 U
İ	Ì		5	24-Jun-08	1 U	1.7	1 U	3.3	1 U	1 U	1 U	l U
	i		6	15-Dec-08	0.36 U	1.9	0.29 U	1	0.13 U	0.24 U	0.75 U	0.21 U
			7	3-Jun-09	0.36 U	3.6	0.29 U 0.38 U	6 8.1	0.13 U 0.42 U	3.5 4.2	0.75 U 0.29 U	0.21 U 0.21 U
ļ	1		8	17-Dec-09 29-Jun-10	0.36 U 0.15 U	5.8 1.7	0.38 U	5.5	0.42 U 0.37 J	0.18 U	0.25 U	0.1 U
			10	19-Dec-10	0.15 U	4.2	0.11 U	12	0.67 J	7.6	0.25 U	0.1 U
			11	20-Jul-11	0.15 U	1.6	0.11 U	9.8	0.81 J	4.4	0.25 U	0.1 U
			12	15-Dec-11	0.15 U	1.2	0.11 U	1.1	0.2 U	0.47 J	0.25 U	0.1 U
			13	20-Jun-12 14-Dec-12	0.15 U 0.15 U	1.6 2.1	0.11 U 0.11 U	4.4 3.1	0.24 J 0.2 U	1.1 0.56 J	0.25 U 0.25 U	0.1 UJ 0.1 U
	1	İ	15	11-Jul-13	0.15 U	2.1	0.11 U	5.8	0.2 U	1.6	0.25 U	0.1 U
			16	14-Dec-13	0.15 U	1.3	0.11 U	2.8	0.2 U	1	0.25 U	0.1 U
			17	19-Jun-14	0.15 U	0.83 J	0.11 U	4.5	0.4 J	1.1	0.25 U	0.1 U
			18	17-Dec-14	0.15 U	2.1	0.11 U 20 UJ	9.7 49 J	0.2 U 20 UJ	3.3 20 UJ	0.25 U 20 UJ	0.1 U 20 UJ
	MWT-27	In Biowall B1	1 2	3-Jan-07 16-Mar-07	20 U 20 U	20 UJ 20 U	20 U	20 U	20 U	20 U	20 U	20 U
1]	3	5-Jun-07	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
			4	15-Nov-07	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
			5	24-Jun-08	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
			6	15-Dec-08	3.6 U	1.8 U	2.9 U	1.6 U 1.6 U	1.3 U 1.3 U	2.4 U 2.4 U	7.5 U 7.5 U	2.1 U 2.1 U
			8	3-Jun-09 16-Dec-09	3,6 U 1,8 U	1.8 U 2.3 U	2.9 U 1.9 U	1.0 U	2.1 U	3.1 J	1.5 U	1.1 U
			9	29-Jun-10	0.15 U	0.13 U	0.11 U	0.18 J	0.2 U	0.18 U	0.25 U	0.1 U
	1		10	20-Dec-10	0.15 U	0.51 J	0.11 U	1.1	0.2 U	2.1	0.25 U	0.1 U
	1		11	20-Jul-11	0.15 U	0.13 U	0.11 U	0.21 J	0.28 J	0.18 U	0.25 U	0.1 U
	1		12	14-Dec-11	0.15 UJ	0.13 U	0.11 U	1,4	0.2 U	3.0	0.25 U	0.1 U
		1	13 14	20-Jun-12 13-Dec-12	0.15 U 0.15 U	0.13 U 0.13 U	0.11 U 0.11 U	0.42 J 0.15 U	0.2 U 0.2 U	0.61 J 0.18 U	0.25 U 0.25 U	0.1 UJ 0.1 U
		1	15	13-Dec-12 11-Jul-13	0.15 U	0.13 U	0.11 U	0.15 U	0.2 U	0.18 U	0.25 U	0.1 U
	I	1	16	12-Dec-13	0.15 U	0.13 U	0.11 U	0.48 J	0.2 U	0.84 J	0.25 U	0.1 U
\downarrow		1	17	19-Jun-14	0.15 U	0.13 U	0.11 U	0.83 J	0.27 J	1	0.25 U	0.1 U
Downgradient	L	1	18	17-Dec-14	0.15 U	0.13 U	0.11 U	0.70 J	0.2 U	1.2	0.25 U	0.1 U

Table 4 Chlorinated Organics in Groundwater Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Sample Identification		Round Class GA	Sample Date	PCE (ug/L) 5	TCE (ug/L) 5	1,1-DCE (ug/L) 5	cis-DCE (ug/L) 5	trans-DCE (ug/L) 5	VC (ug/L) 2	1,1-DCA (ug/L) 5	1,2-DCA (ug/L) 0.6
MWT-28	In Biowall B2	1	3-Jan-07	20 U	20 UJ	20 UJ	20 UJ	20 UJ	20 UJ	20 UJ	20 U
		2	16-Mar-07	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
		3	5-Jun-07	20 U	20 U	20 U	20 U 5 U	20 U 5 U	20 U 5 U	20 U 5 U	20 U 5 U
		5	15-Nov-07 25-Jun-08	5 U 4 U	5 U 4 U	5 U 4 U	4 U	4 U	4 U	4 U	4 U
i		6	15-Dec-08	3.6 U	1.8 U	2.9 U	1.6 U	1.3 U	2.4 U	7.5 U	2.1 U
		7	3-Jun-09	0.36 U	0.18 U	0.29 U	0.16 U	0.13 U	0.24 U	0.75 U	0.21 U
		8	18-Dec-09	1.8 U	2.3 U	1.9 U	1.9 U	2.1 U	1.2 U	1.5 U	1.1 U
		9	29-Jun-10	0.15 U	0.13 U	0.11 U	0.15 U	0.2 U	0.18 U	0.25 U	0.1 U
		10	18-Dec-10	0.15 U	0.13 U	0.11 U	0.51 J	0.2 U	0.64 J	0.25 U	0.1 U
		11	19-Jul-11	0.15 U	0.13 U	0.11 U	0.15 U 0.28 J	0.2 U 0.2 U	0.18 U 0.56 J	0.25 U 0.25 U	0.1 U 0.1 U
1	1	12	14-Dec-11 20-Jun-12	0.15 UJ 0.15 U	0.13 U 0.13 U	0.11 U 0.11 U	0.15 U	0.2 U	0.30 J	0.25 U	0.1 U
		14	14-Dec-12	0.15 U	0.13 U	0.11 U	0.15 U	0.2 U	0.31 J	0.25 U	0.1 L
		15	11-Jul-13	0.15 U	0.13 U	0.11 U	0.15 U	0.2 U	0.18 U	0.25 U	0.1 L
ı		16	14-Dec-13	0.15 U	0.13 U	0.11 U	0.37 J	0.2 U	0.18 U	0.25 U	0.1 U
		17	19-Jun-14	0.15 U	0.13 U	0.11 U	0.15 U	0.2 U	0.18 U	0.25 U	0.1 U
		18	17-Dec-14	0.15 U	0.13 U	0.11 U	0.19 J	0.2 U	0.18 U	0.25 U	0.1 U
MWT-29	Downgradient	1	3-Jan-07	2 U	22	2 U	280	6.5	140	2 U 4.5 U	2 L 5 L
	of Biowall B2	2	16-Mar-07	4 U	19	4.5 U 2 U	220 100	7.75 2.1	165 81	4.5 U	2 U
	1	3 4	5-Jun-07 14-Nov-07	2 U 1 U	7.6 4.4	1 U	96	0.83 J	74	1 U	11
		5	25-Jun-08	1 U	3.3	1 U	84	0.65 J	74	I U	1 L
		6	15-Dec-08	0.36 U	6.6	0.29 U	91	0.6 J	80	0.75 U	0.21 L
1	ļ	7	3-Jun-09	0.36 U	4.5	0.29 U	61	0.67 J	43	0.75 U	0.21 L
		8	16-Dec-09	0.36 U	3.5	0.38 U	37	0.65 J	29	0.29 U	0.21 U
	1	9	30-Jun-10	0.15 U	1.3	0.26 J	78	1.1	69	0.25 U	0.1 L
l		10	19-Dec-10	0.15 U	2.1	0.4 J	38	0.77 J	27	0.25 U 0.25 U	0.1 L 0.1 L
		11	20-Jul-11	0.15 U	0.79 J 2.4	0.11 U 0.11 U	33 8.5	1.6 0.26 J	43 5.9	0.25 U	0.1 U
		12	14-Dec-11 20-Jun-12	0.15 UJ 0.15 U	0.69 J	0.11 U	36	0.59 J	49	0.25 U	0.1 U
1		14	14-Dec-12	0.15 U	3.3	0.11 U	25	0.44 J	11	0.25 U	0.1 U
	1	15	10-Jul-13	0.15 U	3.7	0.11 U	80	1.1	32	0.25 U	0.1 U
ļ		16	12-Dec-13	0.15 U	2.1	0.11 U	28	0.42 J	20	0.25 U	0.1 L
		17	19-Jun-14	0.15 U	0.71 J	0.13 J	49	1.1	130	0.25 U	0.1 U
		18	17-Dec-14	0.15 U	2.3	0.11 U	1.8	0.2 U	7.5 98	0.25 U 2 U	0.1 U
MWT-22	Downgradient of		3-Jan-07 17-Mar-07	2. U 4 U	5.2 3.8 J	2 U 4 U	1=0 90	2.7 4 U	64	4 U	4 L
	Biowall B2	3	6-Jun-07	1 U	6.5	1 U	120	3.2	81	i U	1 (
		4	14-Nov-07	iŭ	2.6	1 U	99	0.85 J	180	1 U	11
1		5	25-Jun-08	5 U	3 J	5 U	68	5 U	42	5 U	5 U
	i	6	15-Dec-08	1.8 U	5.9	1.4 U	160	0.65 U	140	3.8 U	1 (
1		7	3-Jun-09	0.36 U	2.2	0.29 U	66	0.77 J	89	0.75 U	0.21 [
1		8	16-Dec-09	1.8 U	2.3 U	1.9 U	57	2.1 U	52	1.5 U 0.25 U	1.1 0
1		9	1-Jul-10	0.15 U	0.6 J	0.12 J	41	1.3 2.8	57 98	0.25 U	0.1 U 0.25 J
		10	17-Dec-10	0.15 U	1.8 0.32 J	0.66 J 0.11 U	130 23	2.0	59	0.25 U	0.23 J
1		11 12	20-Jul-11 14-Dec-11	0.15 U 0.15 UJ	2.3	0.11 U	140	3.9	83	0.25 U	0.29 J
		13	21-Jun-12	0.15 U	0.48 J	0.11 U	57	5.0	90	0.25 U	0.1 T
		14	12-Dec-12	0.15 U	0.73 J	0.11 U	86	3.8	100	0.25 U	0.22 J
		15	10-Jul-13	0.15 U	2	0.27 J	150	6.2	84	0.25 U	0.28
1		16	12-Dec-13	0.15 U	0.88 J	0.14 J	100	7.1	120	0.25 U	0.25 J
1		17	21-Jun-14	0.15 U	0.19 J	0.11 U	19	2.8	65	0.25 U 0.25 U	0.11 J 0.1 t
200		18	18-Dec-14	0.15 U	0.21 J	0.11 U	32	3.6 0.86 J	22	1 U	3.3
PT-22	Between	1 2	3-Jan-07 15-Mar-07	1 U	11 16	1 U 1 U	57 41	0.80 J 0.51 J	13	1 U	2.4
1	Biowalls B and C	3	5-Jun-07	1 U	8.5	1 U	61	0.72 J	32	1 U	5.6
1	D and C	4	14-Nov-07	1 U	9.7	1 U	30	0.67 J	11	1 U	5
1		5	26-Jun-08	iU	4.1	1 U	26	0.57 J	13	1 U	3.9
		6	15-Dec-08	0.36 U	35	0.29 U	52	0.41 J	1.3	0.75 U	2.8
		7	2-Jun-09	0.36 U	6.9	0.29 U	41	0.81 J	11	0.75 U	4
1	1	8	16-Dec-09	0.36 U	8.7	0.38 U	29	0.42 U	9.5	0.29 U	3
1		9	30-Jun-10	0.15 U	4.6	0.11 U	43	0.75 J	11	0.25 U	3.2 1.9
1		10	17-Dec-10	0.15 U	29	0.11 U	42 42	0.48 J 0.2 U	2.1 0.18 U	0.25 U 0.25 U	0.1
I	1	11	22-Jul-11	0.15 U	31 34	0.11 U 0.11 U	42 32	0.2 U 0.37 J	0.18 U	0.25 U	1.9
1		12	14-Dec-11 21-Jun-12	0.15 UJ 0.15 U	7.9	0.11 U	31	0.37 J	4	0.25 U	2.1
1	1	14	13-Dec-12	0.15 U	28	0.11 U	26	0.2 U	0.46 J	0.25 U	1.6
1		15	9-Jul-13	0.15 U	38	0.11 U	49	0.45 J	1.6	0.25 U	2.3
1		16	12-Dec-13	0.15 U	29	0.11 U	37	0.28 J	0.68 J	0.25 U	2
1	1	17	21-Jun-14	0.15 U	23	0.11 U	52	1.3	2.9	0.25 U	3.1
1		18	18-Dec-14	0.15 U	23	0.11 U	23	0.2 U	0.18 U	0.25 U	1.2

Table 4 Chlorinated Organics in Groundwater Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Sample Identification		Round	Sample Date Standard (ug/L)	PCE (ug/L) 5	TCE (ug/L) 5	1,1-DCE (ug/L) 5	cis-DCE (ug/L) 5	(ug/L)	VC (ug/L)	1,1-DCA (ug/L) 5	1,2-DCA (ug/L) 0.6
MWT-23	In Biowall C2	1	3-Jan-07	4 U	4 U	4 U	60	4 U	23	4 U	2.3 J
		2	16-Mar-07	4 U	4 U	4 U	11	4 U	4.8	4 U	4 T
		3	6-Jun-07	2 U	2 U	2 U	3.1	2 U	2 U 3.7 J	2 U 7 U	1.6 J
		4	16-Nov-07 25-Jun-08	7 U 1 U	7 U 1 U	2.6 U 1 U	3.6 J 1 U	7 U 1 U	3.7 J	1 U	0.6
		5	12-Dec-08	0.36 U	0.41 J	0.29 U	2.4	0.13 U	2.8	0.75 U	0.6 .
		7	2-Jun-09	0.36 U	0.18 U	0.29 U	0.42 U	0.13 U	0.24 U	0.75 U	0.64
		8	15-Dec-09	0.36 U	0.46 U	0.38 U	0.47 J	0.42 U	0.24 U	0.29 U	0.21
		9	29-Jun-10	0.15 U	0.13 U	0.11 U	0.41 J	0.2 U	0.18 U	0.25 U	0.66
		10	19-Dec-10	0.15 U	0.29 J	0.11 U	4.6	0.49 J	5.3	0.52 J	1.6
	1 /	11	19-Jul-11	0.15 U	0.13 U	0.11 U	0.57 J	0.22 J	0.33 J	0.25 U	1
		12	14-Dec-11	0.15 UJ	0.16 J	0.11 U	2.0	0.35 J 0.42 J	1.8 0.33 J	0.33 J 0.25 U	0.65
		13	20-Jun-12 13-Dec-12	0.15 U 0.15 U	0.13 U 0.13 U	0.11 U 0.11 U	0.55 J 1.9	0.42 J	1.65	0.25 U	0.03
		15	10-Jul-13	0.15 U	0.13 U	0.11 U	3.3	1.4	2.9	0.5 J	1.2
	1	16	14-Dec-13	0.15 U	0.13 U	0.11 U	2.6	0.52 J	2.5	0.25 U	0.81
		17	20-Jun-14	0.14 J	0.13 U	0.11 U	0.45 J	0.47 J	0.37 J	0.43 J	0.66
		18	18-Dec-14	0.15 U	0.19 J	0.11 U	2.7	0.39 J	0.18 U	0.43 J	0.1
MWT-24	Downgradient of	1	3-Jan-07	1 U	0.94 J	1 U	210	2.1	19	0.81 J	1
	Biowalls C1/C2	2	15-Mar-07	1 U	1 U	I U	68	0.88 J	45	0.83 J	1
		3	5-Jun-07	2 U	2 U	2 U	19	2 U	22	1.1 J	2
	1	4	13-Nov-07	1 U	1.6	1 U 5 U	6.7 31	1 U 5 U	3.8 5 U	1 U 5 U	5
		5 6	26-Jun-08 12-Dec-08	5 U 0.36 U	5 U	0.29 U	52	0.13 U	3.6	0.75 U	0.21
		7	2-Jun-09	0.36 U	4.8	0.29 U	38	0.13 U	7.3	0.75 U	0.21
		8	15-Dec-09	0.36 U	4.7	0.29 U	32	0.42 U	4	0.29 U	0.21
		9	1-Jul-10	0.15 U	5	0.11 U	31	0.41 J	7.5	0.79 J	0.1
		10	17-Dec-10	0.15 U	3.3	0.11 U	23	1	4.3	0.58 J	0.1
		11	21-Jul-11	0.15 U	5.6	0.11 U	39	1.6	17	0.25 U	3.3
		12	13-Dec-11	0.15 U	3.1	0.11 U	16	0.39 J	2.3	0.44 J	0.1
		13	19-Jun-12	0.15 U	2.7	0.11 U	28	1.5	5.3	0.8 J	0.1
		14	12-Dec-12	0.15 U	4.1	0.11 U	25	0.2 U	0.31 J	0.57 J	0.1
		15	9-Jul-13	0.15 U	3.7	0.11 U	24	1.2	2.1	0.7 J	0.1
		16	11-Dec-13	0.15 U	1.9	0.11 U	21 21	1.5 1.6	2.4 3.6	0.67 J 0.25 U	0.1
		17 18	21-Jun-14 18-Dec-14	0.15 U 0.15 U	1.5	0.11 U 0.11 U	11	0.2 U	0.18 U	0.23 U	0.1
PT-17	Downgradient of	1	2-Jan-07	1 U	6	1 U	62	1 U	21	1 U	1
	biowalls	2	15-Mar-07	2 U	11	2 U	26	2 U	21	2 U	2
		3	5-Jun-07	1 U	3.4	1 U	43	0.77 J	9.9	1 U	1
		4	13-Nov-07	1 U	15	1 U	27	0.54 J	22	1 U	1
		5	26-Jun-08	ΙU	8.5	1 U	21	1 U	23	1 U	1
		6	11-Dec-08	0.36 U	9.2	0.29 U	24	0.46 J	10	0.75 U	0.21
		7	2-Jun-09	0.36 U	8	0.29 U	56	1.1	55	0.75 U 0.29 U	0.21
		8	15-Dec-09 1-Jul-10	0.36 U 0.15 U	7.8	0.38 U 0.24 J	65 81	1.8 3.2	20 53	0.29 U	0.21
		10	18-Dec-10	0.15 U	8.1	0.42 J	39	2.2	16	0.25 U	0.1
		11	21-Jul-11	1 U	4.5	0.11 U	94	7.0	56	0.25 UJ	
		12	13-Dec-11	0.15 U	11	0.11 U	25	1.8	12	0.25 U	0.1
		13	19-Jun-12	0.15 U	6.9	0.37 J	170	18.0	66	0.25 U	0.1
		14	13-Dec-12	0.15 U	12	0.18 J	68	8.3	21	0.25 U	0.1
		15	10-Jul-13	0.15 U	14	0.11 U	38	5.2	7.9	0.25 U	0.1
		16	13-Dec-13	0.15 U	8.4	0.16 J	64	11	17	0.25 U	0.1
		17	20-Jun-14	0.15 U	3.4	0.32 J	130	18	55	0.25 U	0.1
MULTI C	T	18	16-Dec-14	0.15 U	7.4	0.31 J	120	22	38 0.51 I	0.25 U	0.1
MWT-7	Immediately	1	4-Jan-07	1 U	490	1 U	35	1 U 1 U	0.51 J 9.7	1 U 1 U	1
	upgradient of	2 3	15-Mar-07 5-Jun-07	1 U 1 U	440 410	1 U 1 U	42 61	1 U	18	1 U	1
	ZVI wall	4	13-Nov-07	1 U	510	1 U	90	l U	24	1 U	1
		5	25-Jun-08	1 U	440	1 U	90	1 U	12	1 U	1
		6	15-Dec-08	0.36 U	410	0.29 U	79	0.13 U	13	0.75 U	0.21
		7	2-Jun-09	0.36 U	330	0.29 U	68	0.13 U	9.3	0.75 U	0.21
		8	15-Dec-09	0.36 U	350	0.38 U	140	0.55 J	21	0.48 J	0.21
		9	1-Jul-10	0.15 U	330	0.78 J	170	0.91 J	15	0.25 U	0.1
		10	18-Dec-10	0.15 U	310	0.98 J	120	0.75 J	15	0.25 U	0.1
		11	22-Jul-11	0.15 U	0.52 J	0.11 U	12	0.34 J	2.6	0.94 J	0.1
		12	13-Dec-11	0.15 U	2.3	0.11 U	56	0.24 J	4.3	1.2	0.1
		13	19-Jun-12	0.15 U	280	0.59 J	140	0.64 J	11	0.25 U	0.1
		14	13-Dec-12	0.15 U	280	0.5 J	100	0.33 J	5.9	0.25 U	0.1
		15	10-Jul-13	0.15 U	300	0.5 J	110	0.46 J	2.6	0.25 U	0.1
		16	13-Dec-13	0.3 U	370	0.22 U	140	0.4 U 0.73 J	9.6	0.5 U 0.25 U	0.2
		17 18	20-Jun-14 16-Dec-14	0.15 U	190 260	0.69 J	110 150	0.73 J 1.8 J	9.6 16	1.3 U	0.1
		10	10-100-14	0.75 U	200	1.8 J	130	1.0 J	10	1.5 0	0.0

Table 4 Chlorinated Organics in Groundwater Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

	Sample Identification		Round	Sample Date Standard (ug/L)	PCE (ug/L) 5	TCE (ug/L) 5	1,1-DCE (ug/L) 5	cis-DCE (ug/L) 5	trans-DCE (ug/L) 5	VC (ug/L) 2	1,1-DCA (ug/L) 5	1,2-DCA (ug/L) 0.6
ent	PT-24	Downgradient of	1	2-Jan-07	1 U	4	1 U	54	0.86 J	0.6 J	0.68 J	1 U
- 1		ZVI wall	2	15-Mar-07	1 U	2.8	1 U	38	0.81 J	1 U	1 U	1 (
- 1			3	5-Jun-07	1 U	3.1	1 U	60	1.6	2.6	0.75 J	1 U
- 1			4	13-Nov-07	1 U	3.8	1 U	39	1 U	1 U	0.56 J	1 U
- 1			5	26-Jun-08	1 U	2.4	1 U	48	1.1	1.9	0.69 J	1 (
- 1			6	12-Dec-08	0.36 U	2.2	0.29 U	34	0.36 J	0.26 J	0.75 U	0.21 L
- 1			7	2-Jun-09	0,36 U	1.7	0.29 U	32	0.83 J	2	0.75 U	0.21 U
- 1			8	15-Dec-09	0.36 U	1.7	0.38 U	28	0.61 J	1.6	0.29 U	0.21 U
- 1			9	30-Jun-10	0.15 U	0.39 J	0.11 U	33	1.1	3.8	0.54 J	0.1 L
ı			10	17-Dec-10	0.15 U	0.53 J	0.11 U	30	1.4	7.7	0.54 J	0.1 U
- 1			11	21-Jul-11	0.15 U	0.38 J	0.11 U	37	1.4	7.9	0.78 J	0.1 U
- 1		1	12	13-Dec-11	0.15 U	0.82 J	0.11 U	21	0.63 J	2.9	0.48 J	0.1 L
- 1			13	19-Jun-12	0.15 U	0.87 J	0.11 U	30	0.84 J	2.8	0.57 J	0.1 U
- [14	12-Dec-12	0.15 U	1.1	0.11 U	18	0.38 J	0.18 U	0.32 J	0.1 U
- 1			15	9-Jul-13	0.15 U	1.6	0.11 U	24	0.8 J	0.83 J	0.51 J	0.1 U
- 1			16	11-Dec-13	0.15 U	1.3	0.11 U	23	0.86 J	1.8	0.52 J	0.1 U
			17	20-Jun-14	0.15 U	1.3	0.11 U	23	1	1.7	0.25 U	0.1 U
			18	19-Dec-14	0.15 U	0.85 J	0.11 U	13	0.53 J	0.18 U	0.29 J	0.1 t
	MW-56	Off-site well	1	4-Jan-07	1 U	1 U	1 U	1.2	1 U	I U	1 U	11
			3	6-Jun-07	1 U	1 U	1 U	1.7	1 U	1 U	1 U	1 U
- 1			5	26-Jun-08	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 (
- [6	11-Dec-08	0.36 U	0.33 J	0.29 U	0.4 J	0.13 U	0.24 U	0.75 U	0.21 U
- 1			7	4-Jun-09	0.36 U	0.18 U	0.29 U	1	0.13 U	0.24 U	0.75 U	0.21 U
- 1			8	18-Dec-09	0.36 U	0.46 U	0.38 U	0.56 J	0.42 U	0.24 U	0.29 U	0.21 U
- 1			9	1-Jul-10	0.15 U	0.13 U	0.11 U	0.61 J	0.2 U	0.18 U	0.25 U	0.1 U
- 1			10	19-Dec-10	0.15 U	0.13 U	0.11 U	0.86 J	0.2 U	0.18 U	0.25 U	0.1 U
- 1			11	4-Oct-11	0.15 U	0.13 U	0.11 U	2.3	0.2 U	0.18 U	0.25 U	0.1 U
- 1			12	12-Dec-11	0.15 U	0.13 U	0.11 U	0.95 J	0.2 U	0.18 U	0.25 U	0.1 U
- 1			13	18-Jun-12	0.15 U	0.13 U	0.11 U	2.2	0.2 U	0.18 U	0.25 U	0.1 U
			14	14-Dec-12	0.15 U	0.13 U	0.11 U	0.85 J	0.2 U	0.18 U	0.25 U	0.1 U
			15	9-Jul-13	0.15 U	0.13 U	0.11 U	2.2	0.2 U	0.18 U	0.25 U	0.1 L
			16	11-Dec-13	0.15 U	0.13 U	0.11 U	1.7	0.2 U	0.18 U	0.25 U	0.1 U
			17	22-Jun-14	0.15 U	0.13 U	0.11 U	0.98 J	0.2 U	0.18 U	0.25 U	0.1 t
ient			18	19-Dec-14	0.15 U	0.13 U	0.11 U	0.89 J	0.2 U	0.18 U	0.25 U	0.1 U

^{1.} Sample duplicate pairs were collected at MWT-28 in Jan-07, June-09, June-10, June-10, June-12, and Dec-13; MWT-29 in Mar-07 and Jun-08; MWT-27 in Jun-07, Dec-08, Dec-09, July-11, July-13, Dec-14; and MWT-23 in Nov-07, Dec-10, Dec-12, June-14. If an analyte was detected in the sample but not detected in the duplicate (or vice versa) the non-detect value was taken at half the detection limit averaged with the detect in Nov-07, Dec-10, Dec-12, June-14. If an analyte was detected in the sample but not detected in the duplicate (or vice versa) the non-detect value we value.

2. Wells in bold are the biowall process monitoring wells.

3. Grey shading indicates that the concentration was detected above its Class GA groundwater standard. The Class GA Groundwater standard for TCE and cis-DCE is 5 ug/L, for VC the Class GA standard is 2 ug/L.

U = compound was not detected; detection limit abown.

J = the reported value is an estimated concentration.

UJ = the compound was not detected; the associated reporting limit is approximate.

Table 5 Groundwater Trends Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

		TC Cleanup Obje		1.011	-DCE jective: 5 ug/L	TANTON WEST	VC jective: 2 ug/L
		Predicte	d Date	Predic	ted Date	Predic	ted Date
		95% Con Lower Limit	fidence Upper Limit	95% Co Lower Limit	onfidence Upper Limit	95% Co Lower Limit	onfidence Upper Limit
Upgradient	PT-18A	201		2	017		
		2009	N/A	2008	Decreasing	Achieved	R9 (June 2010)
	MWT-25	201	12		F		24 (1)
		2008	2036	Achieved R	12 (Dec 2011)	Achieved C	24 (Nov 2007)
	MWT-26	A 1.:	(1	2	011		242 (0 - 2044)
	D. Technology	Achieved* Q3	(June 2007)	2007	Decreasing	Achieved* i	R12 (Dec 2011)
Biowall B1	MWT-27	Achieved Q1	(Jan 2007)	Achieved Q2	(March 2007)	Achieved**	Q1 (Jan 2007)
Biowall B2	MWT-28	Achieved Q1	(Jan 2007)	Achieved (Q1 (Jan 2007)	Achieved (Q1 (Jan 2007)
	MWT-29	Achieved R7	(lune 2000)	2	020	2	.023
		Acilieved K7	(June 2009)	2014	2037	2015	2067
	MWT-22	Achieved R7	(luno 2000)	2	037	1	N/A
		Acilieved K/	(June 2009)	2018	Decreasing	2052	Decreasing
	PT-22	N/	Α	2	071	Achieved**	R11 (July 2011)
			-	2028	Decreasing	Acmeved	KII (July 2011)
Biowall C2	MWT-23	Achieved Q1	(Jan 2007)	Achieved Q	3 (June 2007)	Achieved**	Q3 (June 2007)
	MWT-24		4	2	024	2	012
	72.	Achieved R7*	(June 2009)	2013	Decreasing	2009	2026
	PT-17	201	.3	N	I/A	1	N/A
		2006	2028	-	-	-	1 1 1 1 1 1
	MWT-7	2040			I/A	1	N/A
		2015	Decreasing	-	-		-
	PT-24	4.11		2	024		11/2 2015
		Achieved Q1	(Jan 2007)	2019	2034	Achieved R	14 (Dec 2012)
Downgradient	MW-56	Achieved Q1	(Jan 2007)	Achieved C	(1 (Jan 2007)	Achieved (Q1 (Jan 2007)

Notes:

- 1. The estimated remediation timeframes are calcuated from an empirical data trend extrapolation model. The model predicts remediation timeframe by determining the trend in measured concentration vs. time data from wells within the plume and then extrapolates this trend to determine how long it will take to reach the selected cleanup objective. The dates are estimates that indicate that the groundwater concentrations will eventually reach NYS GA Standards and are not intended to represent a definitive timeframe in which the NYS GA Standards will be achieved. The table will be updated annually to reflect the influence of new data.
- 2. Achieved: The NYS GA Standard was achieved in the noted Round (R) or Quarter (Q) and concentrations are consistently below the GA Standard.
- 3. Achieved*: The concentrations are consistently below the NYS GA Standard since the noted Round (R) or Quarter (Q) with the exception of one limited exceedance sometime after the noted time.
- 4. Achieved**: The concentrations are consistently below the NYS GA Standard since the noted Round (R) or Quarter (Q) with the exception of limited seasonal exceedances sometime after the noted time.
- 5. N/A: An estimated timeframe could not be calcuated because the concentration trend is increasing or no trend exists.
- 6. Decreasing indicates that the overall trend is decreasing with time or the result of a bad fit (R² value). An upper confidence limit could not be calculated because the decay rate calculated for the upper limit is negative (increasing concentration).

FIGURES

Figure 1	Ash Landfill Location at SEDA
Figure 2	Ash Landfill Site Plan
Figure 3	Ash Landfill Historic Site Map
Figure 4	Location of Farmhouse Wells
Figure 5	Reductive Dechlorination of Chlorinated Ethenes
Figure 6	Chlorinated Ethenes Concentrations in Groundwater
Figure 7	Groundwater Elevations
Figure 8	Groundwater Contours & Groundwater Flow Direction Dec. 2010
Figure 9A	Concentrations of VOCs Along the Biowalls - Quarter 1, 2007
Figure 9B	Concentrations of VOCs Along the Biowalls - Quarter 2, 2007
Figure 9C	Concentrations of VOCs Along the Biowalls - Quarter 3, 2007
Figure 9D	Concentrations of VOCs Along the Biowalls - Quarter 4, 2007
Figure 9E	Concentrations of VOCs Along the Biowalls - Round 5, 2008
Figure 9F	Concentrations of VOCs Along the Biowalls - Round 6, 2008
Figure 9G	Concentrations of VOCs Along the Biowalls - Round 7, 2009
Figure 9H	Concentrations of VOCs Along the Biowalls - Round 8, 2009
Figure 9I	Concentrations of VOCs Along the Biowalls - Round 9, 2010
Figure 9J	Concentrations of VOCs Along the Biowalls - Round 10, 2010
Figure 9K	Concentrations of VOCs Along the Biowalls - Round 11, 2011
Figure 9L	Concentrations of VOCs Along the Biowalls - Round 12, 2011
Figure 9M	Concentrations of VOCs Along the Biowalls - Round 13, 2012
Figure 9N	Concentrations of VOCs Along the Biowalls - Round 14, 2012
Figure 9O	Concentrations of VOCs Along the Biowalls - Round 15, 2013
Figure 9P	Concentrations of VOCs Along the Biowalls - Round 16, 2013
Figure 9Q	Concentrations of VOCs Along the Biowalls - Round 17, 2014
Figure 9R	Concentrations of VOCs Along the Biowalls - Round 18, 2014
Figure 10A	Concentrations of Chlorinated Organics Over Time at MWT-25
Figure 10B	Concentrations of Chlorinated Organics Over Time at MWT-26
Figure 10C	Concentrations of Chlorinated Organics Over Time at MWT-27
Figure 10D	Concentrations of Chlorinated Organics Over Time at MWT-28
Figure 10E	Concentrations of Chlorinated Organics Over Time at MWT-29
Figure 10F	Concentrations of Chlorinated Organics Over Time at MWT-22
Figure 10G	Concentrations of Chlorinated Organics Over Time at PT-22
Figure 10H	Concentrations of Chlorinated Organics Over Time at MWT-23
Figure 10I	Concentrations of Chlorinated Organics Over Time at MWT-24
Figure 10J	Concentrations of Chlorinated Organics Over Time at PT-24
Figure 11A	Historic Concentrations of Chlorinated Organics at PT-18A
Figure 11B	Historic Concentrations of Chlorinated Organics at PT-17

Figure 11C Historic Concentrations of Chlorinated Organics at MWT-7

Figure 12 Decision Diagram

•			
			·

Figure 5
Reductive Dechlorination of Chlorinated Ethenes
Ash Landfill Annual Report
Seneca Army Depot Activity

Figure 7 Groundwater Elevations Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Notes: Groundwater levels were measured on: December 12-15, 2006; Jun 4, 2007; Nov 7, 2007; Jun 23, 2008; Dec 23, 2008; Jun 1, 2009; Dec 14, 2009; Jun 28, 2010; Dec 13, 2010; Dec 12, 2011; Jun 18, 2012; Dec 10, 2012; Jul 8, 2013; Dec 9,2013; Jun 17, 2014; and Dec 15, 2014.

In Round 11, Groundwater levels were collected on July 18, 2011, and again on Oct 3, 2011 when Parsons returned to sample MW-56. Groundwater elevations were not measured at well MW-56 during 3Q2007, 4Q2007, 6R2008, or 8R2009; at PT-17 during 1Q2007 or 8R2008; or at PT-18A during 4Q2007. Groundwater levels were not recorded during 2Q2007.

	•	

Figure 9A

Concentrations of VOCs Along the Biowalls - Quarter 1, 2007

Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Figure 9B Concentrations of VOCs Along the Biowalls - Quarter 2, 2007 Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Figure 9C
Concentrations of VOCs Along the Biowalls - Quarter 3, 2007
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9D

Concentrations of VOCs Along the Biowalls - Quarter 4, 2007

Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Figure 9E
Concentrations of VOCs Along the Biowalls - Round 5, 2008
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9F
Concentrations of VOCs Along the Biowalls - Round 6, 2008
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9G
Concentrations of VOCs Along the Biowalls - Round 7, 2009
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9H
Concentrations of VOCs Along the Biowalls - Round 8, 2009
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9I
Concentrations of VOCs Along the Biowalls - Round 9, 2010
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9J
Concentrations of VOCs Along the Biowalls - Round 10, 2010
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9K
Concentrations of VOCs Along the Biowalls - Round 11, 2011
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9L Concentrations of VOCs Along the Biowalls - Round 12, 2011 Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Figure 9M
Concentrations of VOCs Along the Biowalls - Round 13, 2012
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9N

Concentrations of VOCs Along the Biowalls - Round 14, 2012

Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Figure 90
Concentrations of VOCs Along the Biowalls - Round 15, 2013
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9P
Concentrations of VOCs Along the Biowalls - Round 16, 2013
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9Q
Concentrations of VOCs Along the Biowalls - Round 17, 2014
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 9R
Concentrations of VOCs Along the Biowalls - Round 18, 2014
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 10A
Concentrations of Chlorinated Organics Over Time at MWT-25
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note: ND = not detected.

Figure 10B
Concentrations of Chlorinated Organics Over Time at MWT-26
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note: ND = not detected.

Figure 10C
Concentrations of Chlorinated Organics Over Time at MWT-27
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note:
Round 3, Round 6, Round 8, Round 11, Round 15, and Round 18 data is the average of the sample and its duplicate.
ND = not detected.

Figure 10D
Concentrations of Chlorinated Organics Over Time at MWT-28
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note:
Round 1, Round 7, Round 9, Round 13, and Round 16 data is the average of the sample and its duplicate.
ND = not detected.

Figure 10E
Concentrations of Chlorinated Organics Over Time at MWT-29
Ash Landfill Annual Report, Year 8

Note: Round 2 and Round 5 data is the average of the sample and its duplicate. cis-DCE concentrations in quater 1 and 2 were 280 and 220 ug/L, respectively.

Figure 10F
Concentrations of Chlorinated Organics Over Time at MWT-22
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure 10G
Concentrations of Chlorinated Organics Over Time at PT-22
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note: ND= not detected.

Figure 10H
Concentrations of Chlorinated Organics Over Time at MWT-23
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note:

Round 4, Round 10, Round 12, and Round 14 data is the average of the sample and its duplicate. ND = not detected.

Figure 10I

Concentrations of Chlorinated Organics Over Time at MWT-24

Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Note: cis-DCE concentration in quarter 1 was 210 ug/L. ND = not detected.

Figure 10J
Concentrations of Chlorinated Organics Over Time at PT-24
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Note:

ND = not detected.

Fig. _ 11A

Historic Concentrations of Chlorinated Organics at PT-18A

Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Figure 11B
Historic Concentrations of Chlorinated Organics at PT-17
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figu. 11C
Historic Concentrations of Chlorinated Organics at MWT-7
Ash Landfill Annual Report, Year 7
Seneca Army Depot Activity

OFF PERFORMANCE MONITORING WELL (MW-56)

Current selected path

SEE SHEET 2 FOR NOTES

ON-SIT UME PERFORMANCE N. *TORING WELLS*

(PT-17, PT-18, PT-22, PT-24, MWT-7, MWT-22, MWT-24, MWT-25. Add MWT-15 & MWT-23 after 1st recharge.)

NELLS BIOWALL PROC (MWT-26, MWT-27, mWT-28, MWT-29, MWT-23)

NOTES:

- 1. Achieving GA Stds: The condition of achieving GA standards applies to achieving groundwater standards for all COCs in all of the On-Site Plume Wells. If GA standards are achieved in the On-Site Plume Wells for two successive monitoring events, then the remedy is complete and no further monitoring is required at the site.
- 2. Decreasing Trend: After each year of sampling, the Army will review the results to determine if the chemical concentrations of the COCs are increasing, decreasing, or are unchanged. Graphical and statistical analyses will be used as the basis for this determination. For example, data points will be plotted and a best fit line (linear regression) will be graphed. The slope of the best fit line is representative of the trend in concentration; a negative slope indicates a decreasing trend in COC concentrations. A decreasing COC trend indicates that the potential for contaminants to migrate and negatively impact groundwater further downgradient is decreasing, and that the plume is being effectively managed by the remedy. Any evaluation of trends in contaminant concentrations will take into account that historic data at the Ash Landfill shows that there are seasonal fluctuations in contaminant concentrations. Semi-annual monitoring during wet and dry seasons is appropriate until it is established in which season maximum concentrations are observed. Annual monitoring would occur in the season of maximum concentrations.

3. Recharge Evaluation:

- Determining the need to recharge a biowall segment requires a review of chemical concentrations and geochemical parameters by an experienced professional. A specific, absolute set of conditions or parameter values are not appropriate to determine the need to recharge. Rather, a lines-of-evidence approach will be used that correlates a decrease in the efficiency of the system to degrade chloroethenes to geochemical evidence that indicates the cause is due to substrate depletion.
- The following parameters will be evaluated on an annual basis using at least two consecutive rounds of sampling data in order to determine if recharge of the biowalls is necessary:
 - a. COC concentrations in the wall. If COC concentrations have rebounded by greater than 50% for any single sampling event, this will indicate that recharge should be considered. Concentrations within the biowalls, not at downgradient locations, will be used to make this evaluation so that the effectiveness of the wall itself is being measured without the interference of effects such as desorption and mixing.
 - b. Geochemical parameters, specifically ORP, TOC, and DO, in the wall. Benchmark values will be used initially to evaluate anaerobic conditions in the groundwater. These benchmarks are:
 - ORP < -100 Mv
 - TOC > 20 mg/L
 - DO < 1.0 mg/L

Parameters described in a and b above are intended to be used as guidelines and will be considered in the evaluation if, and when, a depletion of bioavailable organic substrate results in a rebound in geochemical redox conditions under which effective biodegradation does not occur.

4. Indirect Recharge Evaluation: Once the biowalls are recharged the first time, an indirect recharge evaluation will be conducted if an increasing trend in COC concentrations is observed in the plume performance monitoring wells. An increasing trend is a positive slope on the best-fit line, described in *Note 2* above. Two biowall monitoring wells, MWT-15 and MWT-23, will be added to the Plume Performance Monitoring program after the first recharge is completed. The evaluation will review the chemical and geochemical data and determine if the contaminant increase is a result of poor biowall performance or due to other issues, such as seasonal variations, recent precipitation events, desorption, etc. As stated in Note 2, a rebound in concentrations of COCs of 50% in MWT-15 and MWT-23 in two consecutive monitoring rounds is a major indication that recharge is needed. Once this COC rebound is observed, the geochemical parameter concentrations at MWT-15 and MWT-23 will be reviewed. In addition, conditions at the other plume performance wells will be reviewed and compared to the conditions observed at those wells at the time that the initial recharge was required. The Army will determine if similar conditions in the well provide further proof that carbon source recharge is needed again.

APPENDICES

Field Forms for 17R2014 and 18R2014 Appendix A

Appendix B Complete Groundwater Data

Regression Plots Appendix C

		•

APPENDIX A FIELD FORMS FOR 17R2014 and 18R2014

		GRO	UNDWATE	R ELE	VATION	REPORT	
5	SENECA A	RMY DEPO	T ACTIVITY	PAI	RSONS	DATE: 6/17/	2014
PROJECT:	Ash Landfill	LTM - Round &	617			PROJECT NO:	
LOCATION:			Depot, Romulus, NY			INSPECTOR: 330	SD
MONITORI		MENT.				WATER LEVEL INDI	CATOR:
INSTRU		DECTECIOR	BGD	TIME	REMARKS	INSTRUMENT	CORRECTION FACTOR
ikajko	MICH	DECIECTOR				Pine 14643	
COMMENTS	5:						
				chedred	3 times		
	Well Depth	Depth to	Well Depth - Time at	Well Condition		Well Status / Comments	3
Monitoring	(rel. TOC)	Water (rel.	(rel. TOC) Check	(Fair / Bad)	1	ace Disturbance?, Riser mar	,
Well	(ft)	TOC) (ft)	(ft) (military)	[circle]	1 1	concrete, protective casing, e	
PT-12A	13.38	7,49	12.63 1041	F/ B	Lock true	to open, so	uell cap
PT-16 PT-17	11.04 11.65	5,74	2.54 112	F/B	1 6 . 11	0 1-	n on flush val
PT-18A	12.85	8.44	12.79 1056	(F)/ B	Aus made	cap, Mank grav	Ay an at tugit val
PT-19	11.70	5.49	11.15 901	F/B	Lack rusta &	I al lasak v	rast .
PT-20	11.80	7.89	11.78 1017	(F)/ B	that next	call Car Bookle	aroud well
PT-22	11.81	9.13	11.97 1013	(F) / B	fella Dox. L	och rusted to	id hotes
PT-24	11.88	5.24	11.85 131	F/ B	Non-Master	Lock	
MW-27	10.54	6.96	10.50 942	(F) / B	Bash Tree	socueth, graph	+
MW-29	10.54	5.99	10.50 921	(F) / B	PVC lifted,	Cotract to atta	in open
MW-32	10.37	8.44	10.37 407	F)/ B	Ant,S	10	•
MW-39	11.89	3.18	11.10 841	F/(B)	Ants, Light	angle gusted of	<u> </u>
MW-40	14.71	6.10	14.68 853	F/B	Lack rasted	need oil	(
MW-44A MW-46	12.48	7.03	12.47 1053	(F)/ B	Ludi Gara	an well rear	hiss well can
MW-48	11.50	5.80	11.55 1026	(F)/ B	COEM VUITY	Marca to autoca	That Dell 24
MW-56	6.88	4.17	6.50 1113	(F) / B	USGS Probe well		4.
MW-60	9=38-	\$3.72	10,00 827	F / (B)	PVC toub 1:	fed unable to	open can
MWT-1	10.13	4.98	10.10 935	(F)/ B	1		Toronto.
MWT-3	10.13	5.23	10.09 936	F/ B	uts, sitto	n tip of prob	
MWT-46	12.43	6.14	12,48 926	(F) / B	ant nest		West of ZVI
MWT-84	12.65	5.48	12.44 725	F) / B	Look Ruty,	need oil	East of ZVI
MWT-7 MWT-9	13.64	6.78		(F) / B	7.1		
MWT-10	9.00	105	19,15 917	(F)/ B	16-16 - 1-14	over well	
MWT-17R	11.4	7.87	11.36 1031	(F)/ B	Pilot Biowall , No		vell cap
MWT-22	14.9	4.85	14.85 1032	F / B	Pilot Biowall		- The second
MWT-23	13.7	9,48	13.76 1005	(F) / B	Cuall		
MWT-24	13	7.98	12.95 948	(F) / B	Bees, PVC	liffed, barel	opened (:d
MWT-25	13.25	7.55	13.19 1048	F)/ B	PHC	very	/
MWT-26	13.22	7.33	13.17 1037	(F) B	lock tough	to open	, ,
MWT-27	12.9	8,12	12.73 1245	F B	Lock tong	Lite oya, lod	penely open
MWT-28	12.85	8,12	12.80 1034	E) B			- •
MWT-29	13.1	8.31	13.07 1033	(F)/ B	1		

Mw-60 feels like soft bottom Stickup height 1.9'above ground surface

Bush-

cut tapo

	,	SAM	PLING	RE	CO	RD	-	GR	OU	ND	W	ATE	3	
SI	ENEC	A ARMY I	DEPOT ACTIVI	TY	SOL	ıs		W	ELL #: 1440	wT 26				
PR	OJEC?	Γ:	Ash Landfi	II LTM C	roundy	vater S	ampling	- Roun	117			DATE: 6	119)14	
ro	CATIO	N:		R	OMUL	US, N	<u> </u>				1	SPECTORS: . MP#:	Dillman	
w	FATHE	R / FIELD	CONDITIONS CH	IECKLIS	T	(RI	CORD	MAJOR	CHANG	GES)		MPLE ID #:	0123	
	LATIN	I I I I I I I I I I I I I I I I I I I	CONDITIONS		EL.	WIN			GROUN			BW 2030		
TI	ME	TEMP	WEATHER		HDITY		- 1	ECTION	1			MONIT		
(24	HR)	(APPRX)	(APPRX)	(6	EN)	(APPI	(X) (0	- 360)	CONDI	TIONS	IN	STRUMENT OVM 590	DETECTOR	
				-							_	OVM-580	PID	
G/	LLONS	(INCHES): / FOOT;	V / ~	$\begin{bmatrix} 2 \\ 163 \end{bmatrix} \begin{bmatrix} 3 \\ 0.367 \end{bmatrix}$	4 0.654	6 1.47 5.564	ONE	WELL VO	LUME (GA X V	L) = (POW VELL DIAM	- STA	BILIZED WATER L FACTOR (GAL/FT	EVEL)	
	CALLONS FOOT: 0.0026 0.004 0.163 0.367 0.654 1.47													
1	DEPTH TO POINT DEPTH TO SCREEN WELL WELL OF WELL TOP OF LENGTH DEVELOPMENT DEVLOPMENT DE													
			13.17 ft	-										
DAT	A COLLE	ECTED AT	PID READING (OPENING WE			DEPTH T STATIO ER LEVE	L (TOC)		DEPTH TO STABILIZE ER LEVEL	D [DE	EPTH TO PUMP INTAKE (TOC)	PUMPING START TIME	
					7	,36	1.1							
RAD	IATION S	CREENING	PUMP PRIOR SAMPLING (c					S	PUMP AFTE AMPLING (ER cps)				
		MON	ITORING DAT	га со	LLEC	TED	DURI	NG P	URGI	NG OF	PER	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOI (GALLONS)		DISSOLV XYGEN (11		TEMP (C)		COND	рН		ORP (mV)	TURBIDITY (NTU)	
10-17	7.36	120		321	T 85	*	£;-	1550	t c				HKCH 2100	
10:25	^	102		13 N	60									
10.30	7.91	102		5	7		12.5	1. 8	7	6,5	6	23	152	
10:35		102		6	.6		12.7	1.7	5	6.6	0	35		
10:40	8.12	110		6	6.0		12.8	1.5	-9	6.7	1	80	40.8	
10:45	8.27	102			1.4		12.8		55	6.7.	5	122	18.6	
10:50		102			3.9		12.8		52	670	۵ ا	176	13.4	
10:53	8.44	102			3.2		12.8		19	6.7		78	8.64	
11.00	8.56				2.7		12,7		47	6.8		56	7.61	
	8.69				Z. 3		12.7		47	6.8		49	5.81	
11:10	8.86	101			2.0		12.7	1,4		6.8	2	37	4,49	
11:15	8.96				1.9		12.6	1.4		6.7	9	35	3.68	
11:20	9.12	102			,9		12,6		51	6.8		39	2,82	
11:25			2 gal		, 8		12.5		54	6.8		45	2,53	
11:30					7_		12.4		56	6,6		43	2.51	
11.35					. 6		12.3	1	58	6.80	0	50	2.53 2.51 2.53 2.76	
1140		102			.6		12.2			6.8	3	55	2.76	
11.45					.5		12.2	1	0	6.8	2	56	3.00	
11:50					. 5		12.1		62	6.8		72	5,65	
11:55	9.13	168	2,5 908	1	, 4		12.1		9.2	6.8	1	65	4.18	
12:00	9.91	110			6		12.1	<u> </u>	62	6.8	15	71	3,22	

		SAM	PLING R	E	CO	RL) _	Gl	107	JND	M	ATE	₹_	
S	ENEC	A ARMY	DEPOT ACTIVITY	7			FA	R50	NS		W	ELL #: M	آك	26
	ROJEC		Ash Landfill L			water S JUS, N		ıg - Roui	id 17	-				7/14 11mm
W	EATHI	ER / FIELD	CONDITIONS CHEC	T	T EL.	(R) WIN			R CHAN		SA	mple id #: LBω 20 20	17/	2/
T	IME	ТЕМР	WEATHER		EL. HDITY	VELOC		RECTIO	-	FACE	/ (MONIT		
1	HR)	(APPRX)			EN)	(APP)	- 1	(0 - 360)	COND	ITIONS	IN	STRUMENT	DI	ETECTOR
												OVM-580		PID
G/		(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367 1.389	0.654 2.475	6 1.47 5.564			X			BILIZED WATER L FACTOR (GAL/FT)		
1	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		TO	TH TO P OF N (TOC)	SCREE LENGT (FT)		WELL DEVELOPM TURBIDIT	,	D	WELL DEVELOPMENT pH		WELL EVELOPMENT SPEC. COND
			13.17											
DAT	TA COLLI	ECTED AT SITE	PID READING (OPENING WELL)		WAT	DEPTH 1 STATIC ER LEVE	L (TOC)	W/	DEPTILITE STABILIZE TER LEVEL	ED	DF	EPTH TO PUMP INTAKE (TOC)	PLJN	MPING START TIME
						7.34	>							
RAD	DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)		ļ				PUMP AFT					
			ITORING DATA		LLEC				PURGI			ATIONS		Hech
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		SSOLV (YGEN (n		C)	SPE (1	mhos)	pH pH	, June	ORP (mV)		TURBIDITY (NTU)
1205	10.03	110	3 901	. 1	.7		12.1	1.	64	6.8	3	77		4.72
1210	10.17	108	J	1	.7		12.1) 1,	64	6.8		81		5.44
1215	10.28	108	IN % >	i	,5		11.9	i.	65	6.8	1	83		601
1220	10,42	108	Start my/L					1.	lole	6.8	2	85		7.26
1225	10.56	108	7.	6	2,2(0	11.9	1.	68	6.8	1	84		15.4
1230	10,64		3.5 ggl	0	15.0		11.7	1 /	69	6.78	?	68		17.7
1235	10:76	108		Ö	.19		11.6		71	6.7	8	56		15.0
1240	(0.83	108					11.	7 1.	72	6.78	3	62		17.8
1245	10.96	108	4 9 04	С	.36	3.5	11.	8 1.	72	6.8	$\overline{}$	61		17.5
1250		collect	4 gal										1	
M	13	1,2 m	of/L Hach ?	C47										
Fe	, 27	- 0.0	4 mg/L Hac	NIC	5+			-		-	-		_	
								 			\dashv		\dashv	-
								-		-	-		\dashv	
											-		\dashv	
											-		\dashv	
								-			4		\dashv	
											-		\dashv	
								-			\dashv		\dashv	
			i i											

	S	ENEC.	A ARMY	DEPOT ACTIVITY	7		PA	RSO	N5			(11-27
		ROJECT CATIO		Ash Landfill L		roundwater OMULUS, N		ng - Rou	nd 17	_	DATE: (INSPECTORS PUMP#: 4	
	W	EATHE	R / FIELD	CONDITIONS CHEC	KLIS	Γ (Ι	RECOR	D MAJC	R CHA	NGES)	SAMPLE ID	#:
					R	EL. WI		··	-	JND/SITE	F.LBU20	
		IME	TEMP	WEATHER			- 1	IRECTIO (0 - 360)		RFACE DITIONS	MON INSTRUMEN	NITORING T DETECTOR
		OS	(APPRX)	Sugar Deathercle	- 2	EN) (AP)		(U-360) いつと	1			
	, , ,	- 0	1 1 1	January Destarted	-				10	ach	1 OVINI-2	112
	G/	METER (ALLONS)	(INCHES): / FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617 DEPTH TO POINT	0.367 1.389	4 6 0.654 1.47 2.475 5.564 DEPTH TO				X WELL DIAM	- STABILIZED WATE ETER FACTOR (GAI WELL	
	1	HISTORIC	DATA	OF WELL (TOC)		TOP OF SCREEN (TOC	LENG	T11	DEVELOP	MENT	DEVELOPMENT pH	
				12.73			1			-		
	DAT	FA COLLE	CTED AT	PID READING (OPENING WELL)		DEPTH STAT WATER LEV	IC 'EL (TOC	W	DEPTH STABILI ATER LEV	ZED	DEPTH TO PUMP INTAKE (TOC)	P PUMPING START TIME
						8.1	8					
	RAD	IATION SO DATA	CREENING A	PUMP PRIOR TO SAMPLING (cps)					PUMP AF	FTER i (cps)		
				ITORING DATA	CO	LLECTED				ING OP	ERATIONS	
	TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	Pro VI	SSOLVED YGEN (mg/L)	TEM (C		C. COND umhos)	pН	ORP (mV)	TURBIDITY (NTU)
	1633	8,00	Bladde	Pump 1 75	7, 8	n Well						
	1040		Pump ?	Harfeel								
	1056	8.37	· · · · · · · · · · · · · · · · · · ·		(2.54	17.	2 2.	10	6.7	4 - 75	400
	1101	8.48	122		0	7.53	17.	1 2	.13	6.6	9 - 69	308
,	100	8.64	114		0	,52	12.	2	17	6.64	1 -66	217
	1111	7.67				.53	12.	2 2	.19	6.6	2 -6:	7 176
	1116	8.66	96/90			.52	12.		20	6.6		7 133
	1121	9.60	87		0	.51	12	1 2.	20	6.5		
	1126	8.64	78	~1.0 941		.51	12.		.18	6.5		7 80
	1131					.51	12.		16	6.5		
			85	~1.3 gal		.50	17.	7 2.	15	6.59		1 43.7
- 4	1146	8.65	110	~ 1.75 gali		.49	12-0	2.	17	6.55	- 7-1	39.8
ı	1151				0	.49	11.7		17	6.50		83.4
	1156		102	22.0gal	0	.49	11.9	2	115	6.5		27.2
		8.74	100		0.4	17	11.7		.14	6.54		
	1201	V 74			0	.48	11.9	2.	14	4.5		
	1206	0.71	-	22.3501	0	.48	12		-14	6.53		3 18.2
	1206	8.75	106	20.3541			1 .	7 0	.(4	6.54		
	1206 1211 1216	8.75	106	~7.75gal		40	(1.	1 2	-17	6,7	T	2 (11)
ĺ	1206 1211 1216 1226	8.75		~7.75gal	0.		11.		10	6.52		

	1	SA	M	PL]	INC	$rac{1}{2}$ R	E	CO	RD	-	:	GR	OU	ND	W	A	LEF	<u> </u>	
SI	ENEC	A AF	MY D	DEPO T	ГАСТ	IVITY				PA	R	50N	15		W	ELL	#: <i>M</i> 4	л-	-27
PF LO	ROJECT CATIO	Γ: ON:			Ash La	chec	TM G R	OMUL	US, NY	<i>'</i>	D I	MAJOR	CHAN		PU ŞA	SPECT MP#: MPLE		1	(14_
·								EL.	WIN	D	(F	ROM)	GROUN	D/SITE	AL		030	_	
T	IME	1	EMP	W	EATH	ER	1	IDITY	VELOC			ECTION		FACE	_		MONIT	_	
-	HR)	_	PPRX)		(APPRX	() Ca Herr	(G	EN)	(APPI			- 360)	COND	ITIONS	IN	STRUM		D	ETECTOR
12	45	7	23.	SUN	ny c	Tail,			5-1	7 (<u>~</u>	->E			_	01	√M-580		PID
G.	METER ALLONS LITERS/	(INCH / FOO	ES):	UME CA 0.25 0.0026 0.010	1 0.041 0.151	0.163 0.617	0.367 1.389	4 0.654 2.475	6 1.47 5.564)NE	WELL VO	X	L) = (POW VELL DIAN		R FACTOI	R (GAL/FT)		
	DEPTH TO POINT DEPTH TO SCREEN WELL OF WELL TOP OF LENGTH DEVELOPMENT												ENT	1	WELI DEVELOP	1	D	WELL EVELOPMENT	
	OF WELL TOP OF LENGTH DEVELOPMENT SCREEN (TOC) SCREEN (TOC) (FT) TURBIDITY														pН			SPEC. COND	
	INSTORIC DATA (TOC) SCREEN (TOC) (FT) TURBIDITY																		
DAT	DATA COLLECTED AT PID READING S' WELL SITE (OPENING WELL) WATER)		DFPTH TO STABILIZE ER LEVEL	D	D	EPTH TO INTAK (TOC	Œ	PU	MPING START TIME
RAD	IATION S	CREEN	ING		PUMP PE			<u> </u>				1	PUMP AFT	ER					
	DAT	A			SAMPLIN	NG (cps)		<u> </u>					AMPLING (
	T				ING J		CO	USOLV	CTED	DU			COND	NG OI	PER	ATIO	ORP	—	TURBIDITY
TIME (min)	WATER LEVEL		IPING (ml/min)	l .	IULATIVE (GALLON:		64 P	YGEN (n	ng/L)	(C			nhos)	pН			(mV)		(NTU)
1246	8.76			~	5.5	5 4/	0	2.5	2	11.5	9	2.	09	6.5	3		77		18,5
1256		5.	/	(11.1							F	+ 1,	3.3	0	2/6	over	3,	+
1636		1	pre	1.4	11.20								n '	22.		~7/1	over	1.	4
	-		3 K	VOC	VO	1-							<u> </u>			10	000		- 61
			10	10				bale	1	.0.0	_	E firm	M	4		1_		\dashv	
<u> </u>			ZX		t VO	_	AIV	646	60	pe	۳.	2125	, M	PW14	Via	12			
		-	3 x		VC	145								-				\dashv	
		-	Y	P/ 25	*C									-					
				24	gals		tel	4/1	our	٤.									
								•											
																		\neg	
											\neg							\neg	
																_		\neg	
					-														
 				_							\dashv							\dashv	
 											-			-			~		
							-				\dashv							\dashv	
											_								
							,												

		SAM	PLING R	E	CO	RD	inx	GR	OU	ND	W	ATER	{	
SI	ENEC.	A ARMY I	DEPOT ACTIVITY			F	AR	SON	15		W	ELL #: a/c	17	-28
	CATIO		Ash Landfill L			ater Sar US, NY	npling	- Round	1 17			SPECTORS:	(19 Di)	Mark
W	EATHE	R/ FIELD	CONDITIONS CHEC	KLIS	Γ				CHAN		SA	MPLE ID #: ½	1LB	W 20308
					EL.	WIND			GROUN SURI	17		MONIT	OPI	NC
	ME HR)	(APPRX)	WEATHER (APPRX)		IDITY EN)	VELOCIT (APPR)	- 1	- 360)	CONDI	lt.	INS	TRUMENT		ETECTOR
(24	IIK)	(All let)	(All I Long	(5		(****	7 (-					OVM-580		PID
WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = \(\) (POW - STABILIZED WATER I \\ \) DIAMETER (INCHES): \(\) 0.25 \(\) 1 \(\) 0.0026 \(\) 0.041 \(\) 0.163 \(\) 0.367 \(\) 0.654 \(\) 1.47 \(\) LITERS/FOOT \(\) 0.010 \(\) 0.151 \(\) 0.617 \(\) 1.389 \(\) 2.475 \(\) 5.564 \(\) UEITH TO POINT \(\) OF WELL \(\) OF WELL \(\) OF WELL \(\) UEIGH DEVELOPMENT \(\) DEVELOPMENT \(
	DEPTH TO POINT DEPTH TO SCREEN WELL WELL WELL OF WELL TOP OF LENGTH DEVELOPMENT DEVELOPMENT DEVELOPMENT DEVELOPMENT													
ŀ	OF WELL TOP OF LENGTH DEVELOPMENT DEVELOPM													
12.8 jt DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING S														MINO III
12.8 jt														TIME
		0.000	NUMB PRIOR TO	D I										
RADI	WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC)													
			ITORING DATA		LLEC		DURI		URGI	NG OF	ER	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	OX	ISSOLVI YGEN (m	g/L)	(C)		COND thos)	рН		ORP (mV)		TURBIDITY (NTU)
				YSI	850	3217 -	>	Har	TB A	1	55	04 -		HACH 2106
1535	8.15	120	STERT	f.	mp									
1540	8.69	110		0	.51	_	11.7	1.0		6.3	\rightarrow	-76		15.2
1545	8.74	112-		1	,70		11.7	1.0	0	6.4	_	-71		8.75
1550		102			.61		11.6	1.0	00	6,4	\rightarrow	-67		7.37
1555	8.79	112			52		1.5	1.	01	6,4		-71		6,79
1600	8.82	110		1.	45		11.5	_	63	6.4	5	-75		5.96
1605	8.83	114		1.	34	_	11.5	1.	05	6,4	_	-77	\perp	5.46
1610	8.83	112		i	,29		11.4	1.0	8	6.3		-74	\perp	5.65
1615	8.85	118			,21		11.4	1.1		6.4		- 80	_	4.19
1620		118	2.094		,13		11.4		2_	6.4	0	-80	_	4.13
1625	8.87	118	<u> </u>	1,	07		11.4	1.10		6.3		-82	_	3.98
1630	8.88	118		1	.02	-	11.4	1.15		6.40	2	-83		4.06
	8.87	118		0	1,98		11-4	1.1		6,3	9	-84		5.46
1640	8.90	118		0	,94		11.4	1.1	7	6.2		-82		4.83
1645	893	122		0	, 88		11.4	lela	8	6,26		-84 -82 -86		3,83
1650	8.87	116		0	, 86	>	11.4	1.1	9	6.2		-86		4.32
1655			3.25 gcl	C	282	_	11.4	1.7	-1	6.2		- 87		3208
1700		120	J	0	,78		11.4	1,2	-1	6.2		-85		3.67
1705					0.7:	3	11.5	1.7	3	6.3		-88		5.05
1710	8.93	114			0.7	(11.5		22	6,3		- 86		4.04
1715	8.97	118	1.20 ad		0,-	11	11,5	1.7	22	6.2	8	-87	_	3:12

6/15/2014

Collect sample 17.20
C:\Users\C0010112\Documents\Field Forms\Field Forms for OB & S-25 GW.xls

Fe+2 = + 3.30 Limit Hach Test

MA = 17.5 mg/L Hach Test

S	AM	PLING R	E	CO	RD	_	GR	OU	IND	W	ATEF	}		
SENECA	ARMY I	DEPOT ACTIVITY				PAR	501	15		WE	ELL #: . 40	JT.	-29	
PROJECT:		Ash Landfill L	TM G	round	water Sa	ampling	- Round	d 17			DATE: 6/	191	(4	
LOCATION:	:		R	OMUI	US, NY	,			.	INS	PECTORS: 7	300		
WEATHER	/ FIFLD	CONDITIONS CHEC	KLIS	Г	(RF	CORD	MAJOR	CHAN	GES)		MP#: 137 MPLE ID #:	20	<u></u>	
WEATHER	TILLED	CONDITIONS CITE		EL.	WIN				D/SITE		BW 203	0	?	
TIME	TEMP	WEATHER		IDITY	VELOC		ECTION		FACE		MONIT			
(24 HR)	(APPRX)		(G	EN)	(APPF		- 360)	A	ITIONS	INS	TRUMENT	DE	TECTOR	
1529	76	Sauny Clear			10-1	50		day			OVM-580		PID	
		UME CALCULATION FAC				ONE	WELL VO				BILIZED WATER L			
DIAMETER (IN GALLONS / F		0.025 1 2 0.0026 0.041 0.163	3 0.367	4 0.654	6 1.47	1.	"				FACTOR (GAL/FT)		300/	
LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564 Well														
DEPTH TO POINT DEPTH TO SCREEN WELL WELL WELL OF WELL TOP OF LENGTH DEVELOPMENT DEVELOPMENT DEVELOPMENT														
			/											
HISTORIC DATA (TOC) SCREEN(TOC) (FT) TURBIDITY pH SPEC. COND														
DEPTH TO DEPTH TO PUMP PUMPING START DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC)														
DATA COLLECTED AT WELL SITE PID READING (OPENING WELL) DEPTH TO DEPTH TO PUMP INTAKE TIME WATER LEVEL (TOC) WATER LEVEL (TOC) WATER LEVEL (TOC) WATER LEVEL (TOC)														
DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC)														
DATA COLLECTED AT WELL SITE (OPENING WELL) STATIC WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC) RADIATION SCREENING PUMP PRIOR TO PUMP AFTER														
	PUMPING	CUMULATIVE VOL	D	ISSOLV	ED	TEMP	SPEC.	COND			ORP	П	TURBIDITY	
	ATE (ml/min)	(GALLONS)	OX.	YGEN (n	ng/L)	(C)	-	nhos)	pH		r (anc)	+	(NTU)	
15-00	0	7 75.D in The		æ (1		ICE	6196	20(24	-7/ 0	4117	r (mes)	\dashv		
1601 5.58	108	STAVITON.	0	.33		11.0	1.5	53	6.7	9	-23	+	8.93	
1606 5.64	[08			31		10.9		7	6.6		-25	\dashv	4.34	
	110			. 71		10.9	1 5	7	6.6		-24	+	7/34	
	94			1/27		11 1	1 6	56	6.7	_	-30	- 1	7 8 5	
10.0	17			10	S	11 1			4	-			2.65	
16219.04	12	118 1	0	, 17	,	11.0		19	6.6		-28	\dashv	2.14	
16269.20 1	26	10.892	6	.19		(1.0			6.6	<i>a</i>	-27	\dashv	1.65	
16319.32	7.6	21.0 521		.19		11.0			6.66		-27	\dashv	1.75	
16369.41 1	109	~		.19		10.9			6.6		-26	-+	0.84	
1641 9.62	-452			,70		10.9			6.6		-27	+	1.67	
16469.72	88	~1.5gels		.22		10.9			6.6	_	-27		0.88	
1651 9.84	15	~ 1.9 gels	0	13	-	10.9			6.60		-26	+	1.27	
16569.96	70	~2.0 gals	0	13		10.8			6.6		-28	+	0.93	
1701 10.08		1225		14		10.8			6.6		-28	_	0.87	
170610.20	90	12.25 94/3		13		10.7	1.6	0	6.5	7	-28	_	0.96	
		~2.6 9 263	+-	tel	purs				11 1		. / / /	\dashv		
1720 5	caple	Calledad							Hach		est het		negation 6	
<u> </u>	X VO	13 ter VCC							Fet		3.30	-	over land	
		& for MEE							Mn	,	7.9 00	1		
	x Vo	5 Amber for	To											
1	k Ples	tue Sulfate												

SENECA ARMY DEPOT ACTIVITY PROJECT: Ash Landfill LTM Groundwater Sampling - Round 17 LOCATION: ROMULUS, NY WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) TIME TEMP WEATHER HUMIDITY VELOCITY DIRECTION SURFACE MONITORING (24 HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) CONDITIONS INSTRUMENT DETECTOR 13 2 4 ~70 Senteral clouds S - (3 ML) - 35E WELL VOLUME CALCULATION FACTORS GALLONS / FOOT: 0.0026 0.041 0.163 0.367 0.654 1.47 LITERS/FOOT 0.010 0.151 0.077 1.389 2.475 5.564 DEPTH TO POP SCREEN WELL WELL WELL WELL WELL WELL WELL WELL	S	SAM	PLING R	E	CO	RD	-	GR	lOl	JND	WA	TEI	R	
Note	SENECA	ARMY I	DEPOT ACTIVITY	7			PAF	1501	1 S		WELI	L #: 12	10	T-17
WEATHER FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) SAMPLE ID #: ALVA 20 295	PROJECT:		Ash Landfill L	TM G	round	vater S	ampling	- Round	d 17	_		*	\rightarrow	
WEATHER FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) SAMPLE ID #:	LOCATION	:		R	OMUL	US, NY	<u>′ </u>			-				
TIME TEMP WEATHER HUMIDITY VELOCITY DIRECTION SURFACE MONITORING	WEATHER	/ FIELD	CONDITIONS CHEC	KI IS	T	(RI	CORD	MAIOR	CHAN	GES)	l		Pult	e reap
(24 HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) CONDITIONS INSTRUMENT DETECTOR 3 2 4	WEATHER	FIELD	COMBITIONS CITE	T									95	
Near Control	TIME	ТЕМР	WEATHER					RECTION						
Well volume calculation factors One well volume (gal) = (pow - stabilized water level)					EN)	<u> </u>				ITIONS				
DIAMETER (INCHES): GALLONS/FOOT: 0.0026 0.041 0.163 0.367 0.654 1.47	1324	270	scriffered cloud			5-6	SM	7-32E	-			OVM-580		PID
DIAMETER (INCHES): GALLONS/FOOT: 0.0026 0.041 0.163 0.367 0.654 1.47		WELL VOL	UME CALCULATION FA	CTORS		<u> </u>	ON	E WELL VO	LUME (G	AL) = [(POW	- \$TABILJZ	ED WATER	LEVEL)	
LITERS/FOOT 0.010 0.151 0.017 1.389 2.475 5.564 LEVIL VICE VICE VICE VICE VICE VICE VICE VICE		NCHES):	0.25 1 2	, 3	4				X	WELL DIAM	ETER FACT	FOR (GAL/FT)]	
HISTORIC DATA OF WELL (TOC) SCREEN (TOC) (FT) TURBIDITY DEVELOPMENT DEVELOPMENT PH SPEC. COND				1.389						0.7			Je(ly	
7.54			OF WELL		тот	P OF	LENGTH		EVELOPM		DEVEL	OPMENT		VELOPMENT
	HISTORIC D	AIA			SCREE	N (10C)	(F1)		TOKBIDIT			pri	3.	PEC. COND
			7.31			DEPTH 1	<u> </u>		DEPTH T	0	DEPTH	TO PLIMP	PUN	PING START
DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC)					WAT	STATIO	?		STABILIZE	ED	דאו	AKE		
5.85'					-		•			, , , , , , , , , , , , , , , , , , , ,				
RADIATION SCREENING PUMP PRIOR TO PUMP AFTER SAMPLING (cps) SAMPLING (cps)		EENING											1	
MONITORING DATA COLLECTED DURING PURGING OPERATIONS	DATA	MON		CO	LLEC	CTED	DUR				PERAT	IONS		Hach
TIME WATER PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND ORP TURBIDIT (min) LEVEL RATE (ml/min) (GALLONS) OXYGEN (mg/L)	1							SPEC.	COND	1 64	~ IL.			TURBIDITY
1336 585 85I m well	1		//	- 0,	LI GLIV (I	itg/L)	(C)	(100		l par		, <u>, , (mr)</u>		(NIC)
1337 Peristatuc purp Started			77	< A	ed									
1348 589 100 0.15 11.6 0.965 6.23 6 13.9	1348 589			-			11.6	0.9	65	6.2	3	6		13.9
1353 5.90 0.12 11.0 0.948 6.25 7 5.53				Ć	1.12		11.0					7		5,53
1358590 0.10 11.0 0.940 6.25 11 3.18				0	1.10)	11.0			6.2	5	H		3.18
14035.91 0.10 10.9 0.933 6.23 16 2.39				-			10.9					16		
14085.91 0.08 10.9 0.978 6.23 20 4.66								09	78	1		-	一	
1413 5.91 126 ~1.05al 6.08 10.9 0.918 6.23 22 1.93		176	~1.000					0.9	18	1			\dashv	
		,				Ī								7.37
				0	.08						1 2	29	_	1,59
	1 1												\dashv	1.12
			27.06.1											1.78
			2-0 75											1.28
	1443 (92													0.55
				-				- •	- 0		-			0,00
1456 Sample Collected Hack Tests Fe: 0.14 my/2	1456 <	Samol	Collected				1 20	h T	ests	Fe	; 0	. 14 ~	7/1	
3x Vots Cx VOC Mu: 4.5 ^2/L		Sk VO								1			$\overline{}$	
2x UOKs for MEE, I viel has long size beloke				, 1	viel	hes	las	5;20	e be					
3x VOAS Anber Co TOC														
lx Plestic for Salfate			1 0 - 1	01				1		1				
Total Pune = 3.0 sels		x Med	tre two sal	Him I	•									

	SAM	PLING R	E	CO	RI) .	-	GR	OL	IND	W	ATE	}	44, 116, 116, 116, 116	
SENEC	CA ARMY	DEPOT ACTIVITY	,			PA	\R	501	12		W	ELL #: P 7	- 2	4	
PROJEC	CT:	Ash Landfill L	TM G	round	vater	Sampl	ling	- Round	1 17			DATE: 6	,120	114	
LOCATI	ON:		R	OMUL	US, N	Y						PECTORS:	1.1	man	
	The American	CONDUCTION CHEC	Y	r		FOOT	2.0	VALION	CHAN	CVCO		MP#: 13	-69	8538	
WEATH	ER/ FIELD	CONDITIONS CHEC		EL.	WI				CHAN	D/SITE		MPLE ID #: LB 2029	8		
TIME	TEMP	WEATHER		IDITY			<u> </u>	ECTION		FACE	77	MONIT		G	1
(24 HR)	(APPRX)			EN)	(APP	- 1		- 360)	COND	ITIONS	INS	TRUMENT		ECTOR	
												OVM-580		PID	
GALLON	(INCHES): S / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163	3 0.367	4 0.654	6	ľ	ONE	WELI, VO				BILIZED WATER L FACTOR (GAL/FT)			
DIAMETER (INCHES): 0.25 1 2 3 4 6 X WELL DIAMETER FACTOR (GAL/FT)													1		
LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564 DEPTH TO POINT DEPTH TO SCREEN WELL WELL WELL															
DEPTH TO POINT DEPTH TO SCREEN WELL WELL WELL OF WELL TOP OF LENGTII DEVELOPMENT DEVELOPMENT DEVELOPMENT													1		
HISTORIC DATA OF WELL TOP OF LENGTII DEVELOPMENT DEVELOPMENT SPEC. COND 11.86 F4 DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING START														-	
11.86 FF DEPTH TO DEPTH TO DEPTH TO PUMP PUMP															
DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING START DATA COLLECTED AT PID READING STATIC STABILIZED RYTAKE TIME														1	
DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING ST. DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME															
	MON	ITORING DATA	CO	LLEC	TED	DU	RI	NG P	URGII	NG OF	ER	ATIONS			
DATA COLLECTED AT WELL SITE PID READING (OPENING WELL) PID READING (OPENING WELL) PID READING (OPENING WELL) PID READING (OPENING WELL) PID READING (OPENING WELL) PUMP PRIOR TO SAMPLING (CPS) PUMP PRIOR TO SAMPLING (CPS) MONITORING DATA COLLECTED DURING PURGING OPERATIONS TIME WATER PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND (min) LEVEL RATE (ml/min) (GALLONS) OXYGEN (mg/L) DEPTH TO DEPTH TO PUMP PUMPING PUMPING PUMPING START TIME STABILIZED WATER LEVEL (TOC) STABILIZED WATER LEVEL (TOC) STABILIZED WATER LEVEL (TOC) STABILIZED WATER LEVEL (TOC) STABILIZED WATER LEVEL (TOC) STABILIZED WATER LEVEL (TOC) TIME WATER LEVEL (TOC) STABILIZED WATER LEVEL (TOC) STABILIZE															
(min) LEVEL		(GALLONS)	OX.	A A	ng/L)	142		,		+ U5	,	15504	Hu	+CH 210	0
1425 5.3	1.61	Jat 10	5	. 36		10			19	7.28		41		1638	
1430 5,32	1 .			. 3		10.			133	72	1	- 51	-	3.17	
1435 53	7			5.18		11.	- 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	30	7.0	7	-51		3.1	
1440 5.32	 			>011		1(.		0,0		7.0	-,	-40		5,38	
1445 5.37	1			0.6	Ö		, 2		917	7.0	-	- 28		3.19	1
1450 5,32	156			0,0		11.	_		123	6.9		-34		2 = 64	
1455 5.32	+156			0,0	7	11.	3	0.	925	6.9	9	-8	1	2.98	
1560 5,32	162			٥, ٥		11.	3		927	6.9		0		1,95	
1505 5,32	162			.06			3	0.0	126	6.9		3		2.52	
1510 5.32	160	2 gai		0.00		11.	3	0.	129	6,9		6		2.14	
1515 5.32	160	2	(2.05		110		0.	931	6.9	5		_ /	.66	
1520 5.32	160			3.06	_	_	,3	0.0	130	6.9	5	10		0.99	
1525 5.32	160			>,0		11	. 2	. 0,	732	6.9	1	1/		1.08	
1530 5,32	1 1			٥. د		11.			7 73	6.9	Ù	15	1	0.8/	
1535 5,32		9 ^		0,0		11,			35	6,9	$\overline{}$	16		1.03	
1540 5.32	160	3,5 gaf		<u>ي</u> ر ر ز	5		3	0,9	34	6.9	2	15		0.94	
1545 5,32				5.0	5	11,	3	0.7	36	6.9	3	21		0.98	
1550 5.36				5, C	34	11.	7	۵,	935	6.93	!	20		294	
1555 5.31		112-		7.0	7	11.			934	6.9	2	19	- (0.93	
1600 63	160	4.25 jal		D. O	<u> </u>	11.	7	0,	135	6.9	ر	18		1-12]

COLLECT SAMPLE 1605 Por NOC'S

		SAM	PLING	RE	CO	RI)	- GF	lOL	JND	V	VATEI	3		
S	ENEC	A ARMY	DEPOT ACTIVIT	ſΥ			P/	\RSOI	4 5		W	ELL #: /1	WT	-7	1
PI	ROJEC	Т:	Ash Landfil	LTM (Ground	water S	Samp	ling - Roun	d 17	_		DATE: 4/	zo,	/14	
LO	CATIO)N:		I	ROMUL	LUS, N	Y			-	II .	SPECTORS: V			611
W	FATHE	ER / FIELD	CONDITIONS CH	ECKLIS	T	(R)	FCO	RD MAJQI	CHAN	GES)	1	JMP#: \63 MPLE ID #:	70	1/9201/	
	EATIL	EK/ FIELD	CONDITIONS CA		EEL.	WIN	•	(FROM)		D/SITE		13620202	199		
Т	IME	ТЕМР	WEATHER	нин	MIDITY	VELO	CITY	DIRECTION	SUR	FACE		MONIT	ORIN	(G	
	HR)	(APPRX	(APPRX)		GEN)	(APP		(0 - 360)	COND	ITIONS	IN	STRUMENT	DE	TECTOR	1
92	0_	62	Sanny clea	<u>. (</u>		0-1	0	N-75	ļ			OVM-580		PID	-
		WELL VO	LUME CALCULATION	FACTOR	<u> </u>	<u></u>		ONE WELL VO	OLUME (GA	1.) = I(POW	Y - STA	ABILIZED WATER I	EVEL)		-
G.	METER ALLONS LITERS/	(INCHES): / FOOT:	$\begin{array}{c cccc} 0.25 & 1 & 2 \\ 0.0026 & 0.041 & 0.16 \\ 0.010 & 0.151 & 0.61 \end{array}$	0.367	4 7 0,654	6 1.47 5.564						R FACTOR (GAL/FT			
			DEPTH TO POIN	T		TH TO		EEN	WELL DEVELOPME	ENT		WELL DEVELOPMENT	DEV	WELL VELOPMENT	1
1	HISTORIC	DATA	(TOC)			EN (TOC)		T)	TURBIDIT		<u> </u>	рН		PEC. COND	
			13.65	/											
DAT	TA COLLI	ECTED AT	PID READING			DEPTH T			DEPTH TO STABILIZE		D	EPTH TO PUMP INTAKE	PUM	PING START TIME	
5/1	WELL		(OPENING WELI	-)		TER LEVE	EL (TO	C) WA	TER LEVEL			(TOC)			-
					6	1.2	7'								
RAD	IATION S DAT	CREENING A	PUMP PRIOR T SAMPLING (eps						PUMP AFTI AMPLING (<u></u>				
		MON	ITORING DAT	A CC	LLEC	CTED	DI	JRING I	PURGI	NG OI	PER	ATIONS			
TIME	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV		TE	MP SPEC	. COND			ORP		TURBIDITY	ĺ
(min)_	6,19	BI	(GALLONS)	V	XYGEN (I	العلا	- "	(ui	nihos)	pН		(mV)	+	(NTU)	
940	-/1	D	CI 11	_ئور_		401							\dashv		,
		Tanp	Starter	+			-	1	Tra	1		4 /		u	ł
152		NO 584	13 of water	Con	My 4	P	n.	tubory.	<u> </u>	2420	5	are Oil	7/1	١٠٠١١١٠	
	no	indica	tron of as		CANA) in	17/	THE W	ell. 'r	alley	_P	up up	-		
	-171	pect	prap for	sjac	3,		_	, 1		,					
	Pla	day 1	mp # 16	128	AP	pas	5 .	to he	e ch	1 NC	اعتدا	ne issuc	-		
	Plas	tie bla	deer was	crus	herd	aul		specie	red	1/2	29	re a va	ca	UM	
		essave	on it. Pun	p t	zhen	00	+	of s	ervic	2,14	co	seed w	<u> </u>	=9201	
1002	ľ	Re-Sta	ted pump							/					
1608		DO 1.	24 and cli	nba	, a	pps	ers	Hice	C 15	air	10	el, will	20	ell	
		panp	up al	cla	ech	27	Ł	ine.							
1012		Cut air	line { 52-						un	Cles	. [4	l gir li	44.8	O-6'M	
1016			9 md dind						1, -1	(17)	7	unner v		<u></u>	1/3
. , , ,		(4.2/1	reall area	5	- 2	-	,	1 6	1 0		4	8135			
		Parcel	wall purp		T.	0.4	120	100	N	- P	/	• 100	_		
		1. (((water on	C		/	2	Mera.	ara	CYCLE		Conpresse	100		
			1 mmediate								-9	ir line.	+	1/ 1	
			#8135, 10	spe	cted	0-	111	my area	par	p he	red	* 4 1	- le	attache	7
		vator	air lines.	No	iss	403	ع	cen e	kinp	+ 50°	21	white p	20	edes	
			se ut 0-												
		12-95	Symbled po	up	#8	135.	_6	pared	LATE	on	+2	p of per	4	head	
		and cy	ted corporate de also Sing	sor	. 13	L cx	de	hed	Sing	le a	r	temble e	ner	5° "	
	2	ud core	le also Sim	e 40	r be	blole.	,	3 ra & L	tth c	cycles	n	ad no	air	buble	

		SAM	PLING F	E	CO	RD	_	GR	OL	JND	W	ATEI	₹	
SI	ENEC	A ARMY I	DEPOT ACTIVITY	7			PAF	SON	1S		WEI	LL #: 1/1	UT.	-7
PR	OJECT	Г:	Ash Landfill L	TM G	roundy	water Sa	mpling	- Roung	117		ı	DATE: 6/	20	114
LO	CATIO	N:		R	OMUL	US, NY				-	INSP	ECTORS: 1	BPO	2
W	EATHE	R / FIELD	CONDITIONS CHEC	KLIS	 Г	(RE	CORD	MAJOR	CHAN	GES)		PLE ID #:	<u>S</u>	
11.				7	EL.	WIN				D/SITE	ALD	WZOZ	99	
	ME	TEMP	WEATHER		IDITY			ECTION		FACE	VALOR.	MONIT		
(24	HR)	(APPRX)	(APPRX)	(G.	EN)	(APPR	X) (0	- 360)	COND	ITIONS	INST	RUMENT OVM-580	DE	PID
				_								O V IVI-360		FID
DIAN	CETED (WELL VOL	UME CALCULATION FAC 0.25 1 2	CTORS	4	6	ONE	WELL VO				JZED WATER I		
GA	LLONS	FOOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	0.367	0.654	1.47 5.564	10	المارد		-290				3.692
	211 (21(3/1		DEPTH TO POINT OF WELL	1.005	DEPT	тн то	SCREEN LENGTH		WELL EVELOPMI			WELL ELOPMENT		WELL VELOPMENT
н	ISTORIC	DATA	(TOC)			N (TOC)	(FT)	1	TURBIDIT		DI V	pH		PEC. COND
			13.65'											
DAT	A COLLE	CTED AT	PID READING			DEPTH TO STATIC)		DEPTH TO STABILIZE			H TO PUMP NTAKE	PUM	IPING START TIME
	WELL S	SITE	(OPENING WELL)			27		WAT	ER LEVEL	(TOC)		(1OC)	_	
RADI	ATION S	CREENING	PUMP PRIOR TO		Ų	24			PUMP AFT	ER				
	DATA	4	SAMPLING (cps)				_		AMPLING (
TIME	WATER	MON	CUMULATIVE VOL		LLEC				COND	NG OF				TURBIDITY
(min)	- 1	RATE (ml/min)	(GALLONS)		YGEN (n		TEMP (C)	Harran		pH	- Ho	ORP (mV)	_	(NTU)
1030		Re-Star	tod punp.		1.80					ļ			_	
1041				2.							-		_	
1047					05		10.3							
1054				1.	87		10.1		£ 7 A	/	_	. 7 ~		(1//)
	6.37	1 4 4		-	.79		9.8		530		_	173	$-\downarrow$	44.1
	638	102			08		9.7		54	6.40		141	+	35,9
1	2.39	104			08		1.+		65	6.44		126	-	33.6
1124		100	2001		80			0.0		6.3		113		29.1
		106	~ 0.9 gel		.69		9.5			6.38		104		17.4
1134			. 1 1 . 1		71		9.5			(e.3		102	-	11.9
1137			21.19=1		54		9.5			6.3		91	-+	7.29
[[44]	1.70	104	~1,75 sol		55		9.4			6.3		85		7.42 5.30
		104	~ 1,755-21		61			0.9		6.2		73	-	
1154			~2.0 541		57		9.4			6.3		73	-	4.57
1704	170	100	4.0 241		46		7.4 a u		734	6.2				3/7
1204			~2.3 gal		5		9.4					68		3.63
1209			> 921		57					6.3		66		3.39
1214			17 75.01	0.	26	-	7.4		42	6.34		62		2.20
1219		92	12.75gal	75	55 55			0.9		6.7		63	_	
1224			~ 2.9 5011	0.	<u>35</u>		9.4	0.9		4.3				2.41
1229	217			<u> </u>				1.3/1	- L	we to		63		3,16

1237 Sarghs Cllested trach Trof Mr. O.C 13/L checked trace
13.0 gel C:\Users\C0010112\Documents\Field Forms\Field Forms for OB & S-25 GW.xls

8x Volts for VOC 3x Volts Amber for TOC 1x Make for Salfate

Total

Durge 2x VOAs for MEE, one vial had tiny air buble, smaller than per

6/15/2014

SAMPLING RECORD - GROUNDWATER WELL #: 116T-23 SENECA ARMY DEPOT ACTIVITY **PARSONS** DATE: 6/20/14 Ash Landfill LTM Groundwater Sampling - Round 17 PROJECT: INSPECTORS: Dilline LOCATION: ROMULUS, NY PUMP#: 9500 SAMPLE ID #: ALBU 2030 4 WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) ALBU ZOSOST DUP WIND REL. (FROM) GROUND/SITE MONITORING WEATHER VELOCITY DIRECTION SURFACE TIME TEMP HUMIDITY (APPRX) (0 - 360)CONDITIONS INSTRUMENT DETECTOR (24 HR) (APPRX) (APPRX) (GEN) OVM-580 PID WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = I(POW - STABILIZED WATER LEVEL) X WELL DIAMETER FACTOR (GAL/FT) DIAMETER (INCHES): 0.25 $\binom{2}{0.163}$ 0.367 0.654 0.041 GALLONS / FOOT: 0.0026 1.47 LITERS/FOOT 0.010 0.151 1.389 2,475 5.564 0.617 DEPTH TO POINT WELL. DEPTH TO SCREEN WELL WELL DEVELOPMENT DEVELOPMENT DEVELOPMENT LENGTH OF WELL TOP OF SCREEN (TOC) TURBIDITY SPEC. COND HISTORIC DATA (TOC) (FT) pН 13.64 DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING START DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC) 9.55 Ft RADIATION SCREENING PUMP PRIOR TO PUMP AFTER SAMPLING (cps) SAMPLING (cps) MONITORING DATA COLLECTED DURING PURGING OPERATIONS CUMULATIVE VOL DISSOLVED PUMPING TEMP SPEC, COND TIME WATER TURBIDITY OXYGEN (mg/L) (C) LEVEL RATE (ml/min (GALLONS) (umhos) (niV) (NTU) (min) HACH ZIOCP YSE 35 HORIBAUS 2 1530 9.55 Start 145 138 11638 34 9.78 135 0.2.9 10.2 -50 33 24.8 10:00 9.77 122 0.29 - U9 10.1 0.26 22.7 10.05 977 100 0 20 21.4 10:10 9.80 85 6.27 0.27 9.8 6.24 -34 Zc. 3 2 9.94 140 0,25 9.9 2 8 9.96 122 1020 0.27 120 20 1030 -42 120 0,21 9.02 40 7.21 120 0.19 26 6-25 1040996 120 0.20 6.29 - 48 49 120 15,0 6.28 9.7 26 1050 996 6.35 -53 0.21 120 11:00 996 0.19 -54 6,36 120 26 11:05 9.96 120 -55 0.18 1.25 3.80 -56 11:10 9.96 24 120 6.36 -54 3.16 996 110 1.24 11:15 -56 1120 1996 120 3.26 1.24 gal 9.6 -56 1125 3.17 120 0.18 1,25 6.40 MSD 11:50 DUP

MN = 4.0 Mg/L HALH TOST.

C:\Users\C0010112\Bocuments\Field Forms\Field Forms for OB & S-25 GW.xls

Fe +2 = 3.30 T over limit HACH TOST.

			SAM	PLING R	E	CO	RI) -	GF	ROL	JND	V	VATE	R	
	S	ENEC.	A ARMY I	DEPOT ACTIVITY	7			PAF	750ľ	VS		W	VELL #: P	Τ.	-22
	l .	ROJEC		Ash Landfill L		rounds OMUL			g - Roun	d 17	-		DATE: 3	BB	
	W	ЕАТНЕ	ER/ FIELD	CONDITIONS CHEC			_		MAJOI			SA	MPLE ID #:		-
		IME	ТЕМР	WEATHER		EL.	VELO		(FROM) RECTION	1	FACE	1	MONIT		
		HR)	(APPRX)	1		EN)	(APP	RX) (0 - 360)	1	ITIONS	IN	STRUMENT		ETECTOR
	13	17	82	Sugary thind			5-1	0 4	1-7E				OVM-580)	PID
			WELLVOL	LUME CALCULATION FAC	TORS			ION	E WELL VO	VI TIME (C.)	I) = I(POW	ST.	ABILIZED WATER	LEVE	
	G,	METER (ALLONS LITERS/	(INCHES): / FOOT:	0.25 1 2 0.0026 0.041 0.167 0.010 0.151 0.617	3 0.367 1.389	4 0.654 2.475	6 1.47 5.564			X	WELL DIAM >.4450	LETE	R FACTOR (GAL/F)	Γ)]	1.33 zel
		HISTORIC		DEPTH TO POINT OF WELL (TOC)		TOF	TH TO POF N (TOC)	SCREEN LENGTI (FT)	i T	WELL EVELOPMI TURBIDIT	ENT		WELL DEVELOPMENT pH		WELL EVELOPMENT SPEC COND
				11.92											
	DAT	DATA COLLECTED AT PID READ (OPENING VID					DEPTH STATION ER LEVE	С	WA	DEPTH TO STABILIZE FER LEVEL	D	D	EPTH TO PUMP INTAKE (TOC)	PU	IMPING START TIME
						9	.21								
	RAD			PUMP PRIOR TO SAMPLING (cps)						PUMP AFT AMPLING					
	TIME	WATER				LLEC		DUR		COND	NG OI	EF	RATIONS		TURBIDITY
	(min)	LEVEL	RATE (ml/min)	(GALLONS)	OX	YGEN (n	1g/L)	(C)	(m	S/cm)	pH		(mV)		(NTU)
	1328	WELL SITE (OPENING WILLIAM OPENING WILLIAM OPENING WILLIAM OPENING OPE				n 44		-							
	(329		Punp	Statel											
	1340	1.58	100		_0	.37	!	10.7	0.9	85	6.8		22		5.49
	1345	7.73				.48		10.5	0.9	88	6.7	7	20		4.49
	1350		90			.41		10.4	1.0		6.7	4	27		3.40
	1000	1.91	102	20.5 gals		.58		10.		02	6.7	3	32		2.46
		10.02				-46		10.3		02	6.4	Z	41		1.60
	1405	10.20		~1.0gals		18		10.2		52	6.7		52		2.63
	1410		96			32		10.7			6.7		55 57	\dashv	3,17
	1415			1.5		44		10.2	_	4	6.7				4.02
	1420		106	~1.25713		48		10.1	1.0		6.7		60		3.10
1425				117/1	DO	Probe	CYPO	red	1.0		6.7		63		2.05
	1430	ND		~1.75gak	-	1 1			1.0	3	6.71		61	\dashv	2.42
	1433		Sanda	s Collected	42.	100/	-	Cer	VOC					-	
	1177		Shryne	E CALLECTION	7.8	VUZ	Λ	428	VUC					-	
		1	ł						1		I	- 1		- 1	

S	SAMPLING RECORD - GROUNDWATER SENECA ARMY DEPOT ACTIVITY PARSONS WELL #: MUT-2Z PROJECT: Ash Landfill LTM Groundwater Sampling - Round 17 DATE: 6/21/14													
SENECA	ARMY I	DEPOT ACTIVITY	,			PAR	501	15		w	ELL #: /((UT	-22	
PROJECT:		Ash Landfill L	TM G	roundy	vater S	ampling	- Round	117	_		DATE: 6/	21	14	
LOCATION:			R	OMUL	US, NY	<u></u>			-		SPECTORS:		0	
THE ATTENT	/ FIELD	COMPLETIONS CHEC	VI IC	г	/DI	COPD	MATOD	CHAN	CES)		MP #: 1 87 MPLE ID #:	31		
WEATHER	/ FIELD	CONDITIONS CHEC		EL.	WIN		ROM)		(D / SITE		34 203	000)	
TIME	TEMP	WEATHER		IDITY			ECTION	ł	FACE	, ,	MONIT			
(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APPI		- 360)	COND	ITIONS	INS	STRUMENT	DI	ETECTOR	
1524		Sanny			5-1	O NG	1-32E				OVM-580		PlD	
		/	27070			Java				OTA	DICTION WATER			
DIAMETER (IN	CHES):	UME CALCULATION FAC 0,25 1 2) 3	4	6	ONE	WELL VO				BILIZED WATER I FACTOR (GAL/FT			
GALLONS / F		0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	0.654 2.475	1,47 5,564	1x	Well	= (1)	3421		3a Well=	3.	38 gals	
		DEPTH TO POINT OF WELL			H TO OF	SCREEN LENGTH	D	WELL EVELOPME	ENT	D	WELL EVELOPMENT	DE	WELL EVELOPMENT	
HISTORIC DA	ATA	(TOC)		SCREE	N (TOC)	(FT)		TURBIDIT	Y		pH		PEC. COND	
		14.85												
DATA COLLECT	ED AT	PID READING			DEPTH T			DEPTH TO STABILIZE		DE	EPTH TO PUMP INTAKE	PUA	MPING START TIME	
WELL SIT	E	(OPENING WELL)		WAT	ER LEVE	L (TOC)	WAT	ER LEVEL	.(TOC)		(TOC)			
DADIATION COD	DENTALC	PUMP PRIOR TO		+	.74		l	PUMP AFT	CD			<u></u>		
RADIATION SCR DATA	EENING	SAMPLING (cps)						AMPLING (-		
	MONITORING DATA COLLECTED DURING PURGING OPERATIONS													
	PUMPING ATE (ml/min)	CUMULATIVE VOL (GALLONS)		YGEN (¤		TEMP (C)	1	COND S/cm)	pН		ORP (mV)		TURBIDITY (NTU)	
Equipment Used	21 11	6 \		F 22	1/	YSI	(Hay	4	Harde	7	Hariba		Hech	
550 7.53 7	Slaudola	y pump ? >	SI	mi	sell	15	place	da	5/60	ter	lines	-		
1220 E	unp	Started			,	-			, , ,	_			(+====	
1602 8.80				2.24		9.9		77	6.7		-36	_	650	
1 1 1 1	126		-	.22		9.9		30	6.6	-	-33		573	
16127.77	112/94	160		,24		10.0		30	6,5	7	-31		421	
1617 10.21				.26		10.1	(,,	30_	6.56	2	-31		246	
	100	20.5 yal		.28	$\overline{}$	1.01	110	18	6.55		-32		138	
162710.36			0	.33		10.1	1.7	7	6.54		-34		82.5	
163310.36				.41		10.2			6.54	1	-36		56.6	
163710.36	100	~1.0gal	0	.46		10.2	1.2	25	6.5	5	-37		42.2	
164310.36				.36		10.1	1.2		6.5		-38		27.9	
1647 10,43		11.39213		.36		10.1		9	6.5		-38		20.9	
1652 10.55	108			.41		10.1	1.3		6.50		-37	\neg	18.1	
1657 10.72			0.	37		10.1	1 3	2	6.50		-37		14.4	
1763 10:83	112	22.0 gek		36	-+	10.0	1.3	3	6.57		-36	\dashv	11.8	
1767 11.0				.36		10.0	1.3		6.58		-35	\dashv	10.6	
171211.13				37		10.0	1.3		6.58		-74	\dashv	9.95	
171711.35				32		9.9	1.3		6,58		-34	-	8,99	
111111111111111111111111111111111111111				ے د		1+1	li d	, ,	4121	-	20	+	01 11	
1722		C								+		-		
1722	MARK	Callected of for VOC								\dashv		\dashv		
	DY VOL	to for VOC											- 1	

Page (

		SAM	PLING R	E(CO	RD) _	GR	OU	JND	V	ATE	3	
SI	ENEC	A ARMY	DEPOT ACTIVITY				PAR	50N	1S		W	ELL #: 000	JT-24	
PF	OJEC	Г:	Ash Landfill L	TM G	round	water Sa	mpling	- Round	117	_			6/21/14	
ro	CATIO	N:		R	OMUL	US, NY				-		SPECTORS: IMP #:	19/0	
W	FATUE	P / FIFLD	CONDITIONS CHEC	KLIS	Γ	(RE	CORD	MAJOR	CHAN	GES)	1	MPLE ID #:	163	
 "		I TIBLE	COMBINIONS CARE		EL.	WIN				D/SITE		Λ . / ξ '	0301	
	ME	ТЕМР	WEATHER		IDITY			ECTION		FACE	L.,	MONIT		
(24	HR)	(APPRX)	(APPRX)	(G.	EN)	(APPR	(U	- 360)	COND	ITIONS	IN	STRUMENT OVM-580	DETECTOR PID	
							-					O V IVI-380	FID	
G/		(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VO				BILIZED WATER L R FACTOR (GAL/FT)		
	IISTORIC		DEPTH TO POINT OF WELL (TOC)		TOI	TH TO P OF N (TOC)	SCREEN LENGTH (FT)	D	WELL EVELOPMI TURBIDIT		Г	WELL DEVELOPMENT pH	WELL DEVELOPMENT SPEC COND	
1			12.9 ft											
DAT	A COLL!	ECTED AT	PID READING (OPENING WELL)			DEPTH TO STATIC ER LEVEL	(TOC)		DEPTH TO STABILIZE ER LEVEL	ED Q	DI	EPTH TO PUMP INTAKE (TOC)	PUMPING START TIME	
					8	3,19	Pt							
RAD	ATION S DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)					S/	PUMP AFT AMPLING (ER (cps)				
			ITORING DATA						URGI	NG OI	PER	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	ох	ISSOLV YGEN (1	ng/L)	TEMP (C)	(m§	COND S/cm)	pН		ORP (mV)	TURBIDITY (NTU)	
Equipment	8 18	<u> </u>	- Act - Act	¥ 57	35	3217		Harih	a U.5	2-15-5) C -		MIKHZIW	1.11638
1:45		120	TART PUMP		/ 7	, 	10.9	1 -		- 1	0	-1		
	8.32	130			0.2				2/	9.1	ig	-15	0,91	
1:55	8.32	132			0.2		10.8		20 70	7.0		~ (5	541	
2:00	8.32				0.1		11.0			7.0		-12	29.3	
2:05	8.32	122			0,1		11.0	1. 4		7.1		- 11	16.3	
210	8.32	122			5.1		10.9	1.3		7.1		-14	10.6	
215			1,25 gal		Dil		10.9			7.1		-13	10.1	
220)9.3		0,1		10.9	1.3		7.1		- 7	9.19	
225	8.32	122			0.1		10.9		21	7.1		- 9	7.98	
	8.32				2.1		11.0		. (7.		-10	8.05	
235	8,33	122			2.17		11.0		21	7.1		-4	7,98	
240		138			0.1	- 1	11.0		21	7.1		- Z	8.10	
	8.33	142			2.1		11.0	1.	21	7.0		-1	8,60	
		140	2,75		1.10		11.0	1,0	21	7.0		- Z	8.13	
- 7	8.33	140		C	>.10	٥	11,0	12	21	7.1	1	+6	8.42	_
	833	140	3,00	l	0.1	1	11.0		71	7,1	29	6	8.88	
305	8.33	140			0.10	>	11.0	1.	21	7.0		8	8,12	
	8.33	140			0,11		11.0	10	21	7,0	\rightarrow	10	7,27	
	8.33 140 0.09						11.0		2-1	6,9		13	7.74	
320	8,7)	140	490	(0 0/1		11.0	1.	21	7.0	9	9	8.74	

·		SA	M	PLI	NG	R	E	CO	RD	_		GR	OU	ND	W	ATE	₹	
SI	ENEC	A AF	RMY I	ЕРОТ	ACTIV	ITY				PA	RS	30N	ıs		W	ELL #: M	w7	-24
	ROJECT CATIO				Ash Land	fill LT			vater S US, NY		1g -	Round	17			DATE: SPECTORS: MP #:	6 A 14	121/14 11/men 968
W	EATHE	ER / F	TELD	CONDI	TIONS C	HECI			<u>-</u> _		_		CHAN		SAI	MPLEID#: しなひ この	20	
m	ME		ГЕМР	13/	EATHER		-	EL.	VELOC		<u> </u>			D/SITE		MONIT		
	HR)		PPRX)		APPRX)			EN)	(APPI			360)		ITIONS	INS	STRUMENT		ETECTOR
																OVM-580		PID
																	201101	
GA	METER ALLONS LITERS/	(INCH / FOO	ES):	UME CA 0.25 0.0026 0.010		2 .163	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	o	NE V	VELL VO	LUME (GA X V	il) = (FOW Well Diam	- STA ETER	BILIZED WATER I FACTOR (GAL/FI) Evel	
									TH TO	SCREE		DI	WELL EVELOPMI	ENT	D	WELL EVELOPMENT	D	WELL EVELOPMENT
ŀ	HISTORIC	DATA			(TOC)				N (TOC)	(FT)			TURBIDIT			pН		SPEC. COND
DAT	DEPTH TO POR OF WELL (TOC) TA COLLECTED AT PID READING (OPENING WELL SITE (OPENING WELL DIATION SCREENING PUMP PRIOR SAMPLING (OF MONITORING DATA)						WAT	DEPTH T STATIO ER LEVE	:			DEPTH TO STABILIZE ER LEVEL	ED .	DE	PTH TO PUMP INTAKE (TOC)	PLI	MPING START TIME	
PADI	DIATION SCREENING PUMP PRIOR DATA SAMPLING (TO.					_	F	UMP AFT	FR				
K/1D)												AMPLING (-				
TIME	WATER						ISSOLV	TED	DUI			URGII	NG OP	ER	ATIONS ORP		TURBIDITY	
(min)	LEVEL	1	(ml/min)	ı	GALLONS)		ox	YGEN (n		(C)		(um	ihos)	pH		(mV)		(NTU)
325	8.33	14	5				(2.11		11,0	-	1,	21	7.0	7	13		8264
330	8, 33		5					110	>	H,	0	1.3	21	7.01	6	14		10.3
335	<u>გ. კპ</u>	10	15	5	5ch		Ĺ	1.	1	11.	0	1,	21	7.0	7	15		8.88
340	C.	والو	ct o	inny	le fir	- \	00	3			\perp				_			
				`							\perp							
			_								\perp							
											\perp							
											\perp							
				_					ĺ									
																		-
													-			· · · · · · · · · · · · · · · · · · ·		-
			,								\top				\top			
											\top							i
					-						1	•			1			
											\top				\top			
											\top				\top			

		SAM	PLING F	Œ	CO	RI		-	GR	OU	ND	N	ATER	\	
SI	ENEC	A ARMY I	DEPOT ACTIVITY	7			PA	R	50N	15		W	ELL #: - ^ (WT-25	
PR	OJEC	Т:	Ash Landfill I	TM G	roundy	water S	amp	ling	- Round	1 17			DATE: 6	121/14	
LO	CATIO)N:		R	OMUL	US, N	<u>Y</u>				-		SPECTORS; _ JMP #;	Dillman 9201	
W	EATH	ER/ FIELD	CONDITIONS CHE			· · ·				CHAN		SA	MPLE ID #:	20302	
an	DATE.	TEMP	WEATHER	1	EL.	WIN	_	<u> </u>	ECTION		D/SITE FACE	_	MONITO		
	ME HR)	(APPRX)		1	EN)	(APP			- 360)		ITIONS	IN	STRUMENT	DETECTOR	
(21	****/	(12227											OVM-580	PID	
G/		(INCHES): / FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654 2,475	6 1.47 5.564		ONE	WELL VO				ABILIZÉD WATER L. R FACTOR (GAL/FT)		
			DEPTH TO POINT OF WELL			TH TO P OF	SCR		DI	WELL EVELOPME	ENT	ī	WELL. DEVELOPMENT	WELL DEVELOPMENT	
I	HISTORIC	DATA	(TOC)			N (TOC)		T)		TURBIDIT			pII	SPEC. COND	
			13.20												
DAT	A COLLI	ECTED AT SITE	PID READING (OPENING WELL)		WAT	DEPTH STATION ER LEVI	С	C)		DEPTH TO STABILIZE ER LEVEL	D	D	EPTH TO PUMP INTAKE (TOC)	PUMPING START TIME	
						7.64	<u>'</u>								
RADI	ATION S DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)							UMP AFT MPLING (
		MON	ITORING DATA	CO	LLEC	TED	Dŧ	IRI	NG P	URGI	NG OF	PER	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL. (GALLONS)		YGEN (n		TEI (C			COND (cm)	pН		ORP (mV)	TURBIDITY (NTU)	
Equipment		KATE (IIIIIIII)	(CALLOTTO)	7	032					EBA U		53	04	- HACH-14001	11638
Sta	+ Pu	mp 9.	55	YSI	85										
00:00	70	be lack	ing - Replace	ļ			_								
10.06	16	start A	1					_							
10:10	8,05	140		0	<u>43</u>		11.	C	1.	11	7,0	24	-1		
10:15	8,20	112		0	1.62	2	it.	1	1.	38_	6.9	ς	-21		
10:20	8,25	112		(0,6	7	11.	2	1.	33	7.	il	-22		
W:25	8.33	116		1	.52		11.			29	7.15		-12	7.45	
10:30	8.60	100		(3,3	7	11.	2	1.2	8	7.2	ŀ	- 2	6.28	
10:35				0	134	-	11.		1,2	-8	7.2		4	3.7c	
10,40	8.38	100		C	1.30	3	11	1	1.3		7.2	7	8	3.41	
10,45	9.03	108	1,3 gcl	(0.31		11.	1		31	7.3	6	12	7.78	
10.50	9,23	108			3.31	'	11.	0	1.	33	7.2	2	12	2.18	
10:55				1	2.2	7	il.	Û	1,3	14	7.2	4	16	7.51	
11:00	9.53			3	19		10.	9	1. 3	35	7.2	(ي	15	2.05	
11:05				0	-17		10.	9	1.	35	7.2		12	2.08	
11:10	9.76	90		1	0.14		10.	8	1. 3	35	7.3		9	2.03	
11:15	9.91	94	2,00 gel		0.1		10.	$\overline{}$	1.	37	7.4	3	3	1.68	
11:20	. 1		,		٥.1		10			38	7.3		0	1.36	
1:25					٥.١		10.	$\overline{}$	1.		7.28	$\overline{}$	·- 5	1.28	
11.30		106			0.10		10.	. 1		41	7.36		-15	1.17	
11:35		106			0.11		16 (1.		7.3		-15 -15	1.34	

S	AM	PLING R	E	CO	RD	-	GR	OU	ND	WA	ATE	3
SENECA	ARMY I	DEPOT ACTIVITY	,			PAR	SON	ıs		WEI	LL #: M	WT25
PROJECT: LOCATION:		SEAD-25 LT			iter Sai US, NY		Round 1	1			ECTORS:	121/14 00/1man 9201
WEATHER	/ FIELD	CONDITIONS CHEC	KLIS	<u></u> Γ	(RI	ECORD	MAJOR	CHAN	GES)		PLE ID #:	1201
				EL.	WIN				D / SITE		16W Z	206
TIME	TEMP	WEATHER	HUM	IDITY	VELOC	TITY DIR	ECTION		FACE		MONIT	
(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APPI	RX) (0	- 360)	COND	ITIONS	INST	RUMENT	DETECTOR
											OVM-580	PID
DIAMETER (INC GALLONS / FC LITERS/FOC	CHES): OOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	2.475	6 1.47 5.564		WELL YO	XV		ETER FA	LIZED WATER I CTOR (GAL/FT)1
HISTORIC DA	ΛΤΑ	DEPTH TO POINT OF WELL (TOC)		TOF	TH TO OF N (TOC)	SCREEN LENGTH (FT)		WELL EVELOPME TURBIDIT			WELL ELOPMENT pH	WELL DEVELOPMENT SPEC. COND
		13.20										
DATA COLLECT WELL SITI		PID READING (OPENING WELL)			DEPTH T STATIO ER LEVE		:	DEPTH TO STABILIZE ER LEVEL	D	I	H TO PUMP NTAKE (TOC)	PUMPING START TIME
				7.	64			, ,				
RADIATION SCRI DATA	EENING	PUMP PRIOR TO SAMPLING (cps)						UMP AFTI MPLING (
	MON	ITORING DATA	CO	LLEC	TED	DURI	NG P	URGII	NG OP	ERA	ΓΙΟΝS	
	PUMPING TE (ml/min)	CUMULATIVE VOL (GALLONS)		ISSOLVI YGEN (n		TEMP (C)	SPEC.	COND hos)			ORP (mV)	TURBIDITY
100	ioû	(GALLONS)		0.11		10.6		41	7.3	5	-20	(NTU)
· · · · · · · · · · · · · · · · · · ·	05) . [10.5		41	73	+	-20	137
	66			0.11	_		1. 3		7.3	9	-19	1,28
	04			3 . 11	_	10.5		40	7, 3		- 20	
	04			0.0	8	10.4			7,3		- 27	
	04	25.1		0.0				41		,	-19	- 1.66
	1,	3.5 9 91	-		*	10,4		+3	7.3		- 20	
	104	- Are		3.08		10.4		46	7.3		- 10	7.0
1215 11,22	104	30				10.3		15		-	- ']	091
1710 il.31	102	3.9 55		0.0		10.3	1.	46	7.3	عاد	-19	0.92
1225 6	lect	saufe of	0,-	V	و کا د							
		-										
			<u>_</u>									
										\perp		

		SAM	PLING R	E(CO	RI) -	GR	OI	JND	W	ATER	\	
SI	ENEC.	A ARMY I	DEPOT ACTIVITY				PA	RSOI	15		W	ELL #: PT		
PR	OJEC	Г:	Ash Landfill L	TM G	round	vater S	ampli	ng - Roun	d 17	_			306/21/14	
LO	CATIO	N:		R	OMUL	US, N	<u>Y</u>			-	INS	SPECTORS: MP#: 950	<u>1330</u>	
W	CATHE	ER / FIFLD	CONDITIONS CHEC	KLIS	r	(R	ECOR	D MAJOI	R CHAN	IGES)		MPLE ID #:	70	
- 44.1	E/X I III	JK/ FIELD	COMPTIONS CINE		EL.	WIN		(FROM)			AL	BW 202	96	
TĮ	ME	ТЕМР	WEATHER		IDITY	VELO	- 1	DIRECTION		FACE	****	MONITO		
	HR)	(APPRX)		(G	EN)	(APP		(0 - 360) N→5	COND	ITIONS	INS	OVM-580	DETECTOR PID	
105	, <u>5</u>	76	SMMY			0-,	,	V - 2				O V IVI-360	110	
GA		(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617 DEPTH TO POINT	CTORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564		lwell	X	WELL DIAM	ETER	BILIZED WATER LIFACTOR (GAL/FT)		gals
H	nstoric	DATA	OF WELL (TOC)		TO	P OF N (TOC)	LENG (FT	тн п	EVELOPM TURBIDIT		מ	FVELOPMENT pH	DEVELOPMENT SPEC COND	
			12.79											
DAT	A COLLE	ECTED AT SITE	PID READING (OPENING WELL)			DEPTH STATION ER LEVI	C (TOC) WA	DEPTH T STABILIZ FER LEVE	ED	DE	PTH TO PUMP INTAKE (TOC)	PUMPING START TIME	
					5	3,59	8							
RADI	ATION S DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT AMPLING					
		MON	ITORING DATA		LLEC				PURGI	NG OF	ER	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	OX	YGEN (1	ng/L)	TEM (C		. COND S/cm)	рН		ORP (mV)	TURBIDITY (NTU)	
Equipment		0:10	5 VC-		55°	0	1/	D Hoeri	p-9	Harles		Hereba	Hech	
1110	8.40	PURD	V parp ? YS:	- ,\	74	LE	U							
123	8.70	40'		0.	.57	-	10.	9 1.	25	4.9	9	4	6.7%	
1128	8.78	94		Ó.	62		10.7	5 1.	26	6.9	6	-4	6.58	
1133	8.92	102		0	.7		10:	8 1.	26	6.9	3	- 3	4.66	
138	9.12	102		0	.73	>	10.	9 1.	26	6.9	6	(4.34	
1143	4.18			0	.60	>	10:	8 1.2	26	6.9	5	9	2.91	
1148	4.27	102	20.55als	0.	42		10:	8 1.	25	6.9	4	ZO	2.00	
1153	4.34			0	.37	, -	10.	7 (.	25	6.9		28	1,79	
1158	4.36	94			.26		10.	7 1.	25	6.9	4	35	1.39	
1203	9.40		~1.0 gals		.21		10.	6 1.2	25	6.9	4	43	1.18	
1208	1.49	48		0	.19		10.	6 1.	24	6.91	4	50	1.05	
1213	1.53			0	.16		10-	6 1.	23	6.9	3	56	1.33	
1218			21.65815	0	.15	ires.	10.	5 1.	22	6.9	4	61	1.38	
1223			-	Ó	.15	_	10.	51.	21	6.9	6	67	0.89	
1228	9.69			0.	14		10.		20	6.9	5	69	0.85	
1233			~2.1956		,15		10.	5 1.:	20	6.90		72	0.94	
	1.75	110			.15		10.		20	6.94	-	75	0.87	
1243					15		10.		20	6.9		76	0.77	
			-2.6 sals			Par	2							
1257	Sa	unlar (leted 3 V											

8:61

0

C:\Users\C0010112\Documents\Field Forms\Field Forms for OB & S-25 GW.xls

VOAS

Samples

		SAM	PLING R	E		RI) -	GR	OU	JND	W	ATEI	3	
S	ENEC	A ARMY	DEPOT ACTIVITY				PAF	1025	45		WI	ELL#: 🚜	MW	-40
PF	ROJEC	T:	Ash Landfill L	TM G	round	water S	ampling	g - Round	d 17	_		DATE: 6		
LO	CATIC	N:		R	OMUL	JUS, N	<u> </u>			-	INS PUN	PECTORS: 7	30/	SD
W	EATH	ER/ FIELD	CONDITIONS CHEC	CKLIS	r	(R	ECORD	MAJOR	CHAN	GES)		APLE ID #:		100
					EL.	WIN		FROM)		D/SITE	AL	BUZØ:	ιø	
T:	IME	TEMP	WEATHER	1	IDITY			RECTION	1	FACE		MONIT		
	HR)	(APPRX)		(G	EN)	(APP		360)	COND	ITIONS	INS	TRUMENT	DET	ECTOR
115	54	72	Sunny			0-	5 100	4-758				OVM-580		PID
		WELL VOI	LUME CALCULATION FA	CTORS		<u>L</u>	000	E WELL VO	LUME (G/	(L) = ((POW)	- STAR	BILIZED WATER I	EVEL	
		(JNCHES):	$\begin{array}{cccc} 0.25 & 1 & 2 \\ 0.0026 & 0.041 & 0.163 \end{array}$	0.367	4 0.654	6 1.47			X '	WELL DIAM	ETER I	FACTOR (GAL/FT)]	
	LITERS		0.010 0.151 0.617	1.389	2.475	5.564				1.37	sal			4199
			DEPTH TO POINT OF WELL		TO	TH TO P OF	SCREEN LENGTH	1	WELL EVELOPM		DE	WELL VELOPMENT		VEI.L LOPMFNT
'	HISTORIC	DATA	(TOC)		SCREE	N (TOC)	(FT)		TURBIDIT	J		рН	SPEC	. COND
			14.68'											
DAT	ra coll	ECTED AT	PID READING			DEPTH T			DEPTH TO STABILIZE		DEF	PTH TO PUMP INTAKE		NG START
	WELL	SITE	(OPENING WELL)			ER LEVE		WAT	TER LEVEI	. (TOC)		(TOC)		
					6	.28		1						
RAD	LATION S	CREENING A	PUMP PRIOR TO SAMPLING (eps)		<u></u>				PUMP AFT AMPLING					
		MON	ITORING DATA	CO	LLEC	TED	DUR	ING P	URGI	NG OP	ERA	ATIONS		
TIME (min)	WATER LEVEL	PUNIPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	1	ISSOLV YGEN (I		TEMP (C)	1	. COND	pH		ORP (mV)	Т	URBIDITY (NTU)
b	DEVEL.	Used	(OADDONS)	VS			Y54	Her	-	Harole		1/ /	L	1 1
11:58	6.11	YSI	nthewell	75.		3	[Japan	t) < p	164	HONNE	27	(teriby		tech
1204	6.18	Purp	Stevled											
1210	7.64	116		2	.85	-	9.6	0.	726	7.37	3	34	5	5,63
12.15	200			-7	<u> </u>		0=	0,:		=,30		39	4	41
1220	-				90		7.8		703	7.31		44	L	.6Z
1225	201				,9	6	9.9	0 7	-04	7.32	_	47		3.70
1230	7.617			_	.12		9.9	0.7		7.32		50		
_	7 400									-	$\overline{}$		-	1.38
1275				2	31	,		0.7		4.3		53	- -	2,77
1240			0.11	3	.40		10.0			7.3		54		
1245			~1.1 gals	3	-46	,	10.0		15	7.30	9	54	3	11
250				3	,50	P	10.1	0.6	99	7.3	7	55 57	7	.68
1255	7.97			3	62	<u>-</u>	10.1			7.37		57		1.34
1300				3.	65	_	10.1	0.7	-09	7.38		58	2	1.48
1305	7.98		1.75gals	3.	75		10.1		03	7.38		59	Z	.05
1310			~1.75gals	3	76	,	10.1		213	7.37		60	1	.73
			70	41	ous	4 6								
1315	-	Caller	NZ.25 yals	(A. 1)	<i>a</i>	1	7	Fe	f ;	0.0	1	19/L CH	acted a	
1, ,,,,		C 20 1 C C C	THE VIPER	1				1		1,0		7/4	tendro c	-
								Mu		110	7	12	+	
								1		<u> </u>	-			

	SENE	CA ARM	Y DEPOT ACT	TIVITY		PA	RSONS	DATE: 12/15/2014	
ROJECT:	Ash Landfill							PROJECT NO:	
OCATION:		y Depot, Ror						INSPECTOR: T.Belanger/S. Dillman	
			mins, 141						
	NG EQUIPM							WATER LEVEL INDICATOR:	
DISTRE	IMENT	DECTECTOR	1	BGD		TIME	REMARKS	Pine 14043	CTOR
								HERON DIPPER-T	
								A01584	
OMMENITS	0.44		3					7301204	
OMMENTS	· Organia	ist , wil	205, NOV	uno, 2-	J J Nac	out reun	D		
	Historic				T			Well Status / Comments	
	Well Depth	Depth to	Well Depth	depth of	Time at	Well Condition		The second secon	
Monitoring	(rel. TOC)	Water (re	l. (rel. TOC)		Check	(Fair / Bad)	(Lock?, Well #?, S	Surface Disturbance?, Riser marked?, Condition o	f: rise
Well	(ft)	TOC) (ft)		water	(military)	[circle]	- 4	concrete, protective casing, etc.)	
PT-12A	12.62		1263 1262	12.63	1323	E/B		wai cal, movel	
PT-16	11.00		11.01 11.02	11/02	1315	(F) / B	de.	secondary and a secondary	A i
PT-17	7.52	3.45	7,50 7.54	7.54	1220	F/B	CAL STANGE	s mustal cult suit 141 HC	TU I
PT-18A PT-19	12.78		2 79 12.79	12.79	1406	(F)/ B			_
PT-19	11.63		11.63 11.65	11.65	1210	F)/ B	ac. cons		_
PT-22			11 76 11 78	11.78	1333	(F) / B	de smush	Irak	_
PT-24			11 85 1/1.85	N.85	1242	(E) / B	ch		
MW-27	10.48		16 12 10.50	10.50	12 48	(F)/ B	CM. LANGE &	WCH ST	_
MW-29	10.48		k.47 10.50	10.50	1230	F)/ B	Or mile	HARD TO SMAY, LOUXE STICK UP	-
MW-32	10.37		103610.37	10.37	1215	(F) / B	OK . NO 133		
MW-39	11.90		1 90 11.90	11.90	1357	D/B		new an cas of	
MW-40			768 14 68	14.68	13405	(E) / B	de.		
MW-44A	12.41	5.57	12 41 12 48	12.48	1350	E/B	Ch Builde	suchery will	
MW-46	11.43		11 43 1444	11/44	1550	F/B	LOCK SCIECO	WO-43 OPENES, NOW ELL CAP	
MW-48	11.38		155 LILS	11.5%	1340	(F)/ B	CIL SMALL	BUHES SCREUNIUELL	
MW-56	6.48		6 50 6 50	6.50	1630	(F)/ B	W. waste		
MW-60			0 04 10.001d. d		1130	(F)/ B	mause House	. LOCK OK , WELL CAP ON	
MWT-1	10.09	4.76 1	0,09 10.10	10.10	1244	(F)/ B	de		
MWT-3	10.08	5.08 1	08 10,09	10.09	1246	(F)/ B	de		
MWT-4	12.45		2,46 (2,47	12.47	1235	€)/ B	di.		
MWT-6	12.45	6.10 1	1.45 12 48	12.48	1240	E / B	ch		
MWT-7	13.66	5.87	36413.65	13.65	1225	(F) / B	de.		
MWT-9			4 14 14 15	14.15	1300	F B	Che Rus H. 1	" DIA	
MWT-10			1 60 8 96 1	8.96	1250	(F) / B	de		
MWT-17R			13511.36	11,36	1410	(F) / B	Ch. No CAU.	4 strius sust for no with	. (!
MWT-22			4 84 14 85	14.85	1327	(F) / B	OL NE CASIA	भू इत्रायत्व	
MWT-23		8.39 1	3 76 13 76	13.76	1254	€/ B	de		
MWT-24			2 94 1245	12.95	1252	(F) / B	di		
MWT-25			3 11 13.79	13/19	1408	F/B	de		
MWT-26		3,27	3 16 13.17	13.17	1316	E/B	CL	in contract of thillers me.	. 44
MWT-27 MWT-28			2.72.12.73 2.79.12.80	12.73	1321	GZ / B	Che of the ca	ising streams of Highlice Than	14
		In MALE	2 4 PM 2812 NEI	LAKU	1.2 6	T/D	I C / Town		

BUT ALL STEEL STUB

Page 1 of I

		SAM	PLING R	E	CO	RI) -	GR	OL	IND	WATE	R
S	ENEC	A ARMY I	DEPOT ACTIVITY				PAF	1501	15		WELL #: P	T-17
	CATIO		Ash Landfill L			water S LUS, N		g - Round	1 18	.	DATE: INSPECTORS: PUMP #:	12/16/14 Dillar- 16362
W	EATHI	ER/ FIELD	CONDITIONS CHEC	KLIS	Г	(R		MAJOR		GES)	SAMPLE ID #:	
	DAE	TENAN	NAME A TRUE TO		EL.	WIN				D/SITE /	ALBW 203	
	IME HR)	(APPRX)	WEATHER (APPRX)		IDITY EN)	(APP		RECTION () - 360)	11000	_	INSTRUMENT	DETECTOR
		(12.2.2.2)	(121101)	10		(171			00.12		OVM-580	
G/	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONI	WELL VO			STABILIZED WATER I TER FACTOR (GAL/FI	
-			DEPTH TO POINT OF WELL			TH TO	SCREEN	T D	WELL	INT	WELL DEVELOPMENT	WELL DEVELOPMENT
9 1	HISTORIC	DATA	(TOC)			N (TOC)	(FT)		TURBIDIT		рН	SPEC. COND
DAT	A COLL	ECTED AT	PID READING			DEPTH STATIO			DEPTH TO		DEPTH TO PUMP INTAKE	PUMPING START TIME
	WELL:	SITE	(OPENING WELL)		WAT	ER LEVE	EL (TOC)	WAT	ER LEVEL	.(TOC)	(TOC)	,
212		COPPRIENC	NUMB PRIOR TO		7	15)	1	UMP AFT			
RAD	DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)						MPLING (
			ITORING DATA		LLEC			ING P		NG OPI	ERATIONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		SISSOLV YGEN (1		TEMP (C)		COND (cm)	рН	ORP (m\')	TURBIDITY (NTU)
Equipment 1050	Used	11 +	0 0				1					
1100		Stevert	Pung)								-	
	125		1200	-	-,5	0 30	9.0	0,71	15	6,61	86	-
1/05	2.75				15			0,7				
1110	- 20						9.0			6.63	64	
11/5	2.78		110	-2	, , , , ,	0.30	9.0		96			_
1130	2.78	-	120		1.34		9,0	0.6	1-	6.77	50	
1135	2,76				37		9,0	0.6		6.78	55	1.7.1
1140			120		35		9.0		92	6.79		1.64
1145				0	.35		9.0	-	692	6.80		1.72
1150	-		120 1.3gal	O	12		9.0		93	6.79		
1155			,	0	1.43		9.0		93	6.80		
		120			,44		9.0			6.82		1.10
1210					.45		9.0	0,6		6.82		1.12
1215				0	,43		9.0	0,6	90	6.84		1.10
1220			2.2 gel		.48		9.0	0,6	,89	6,85		0.79
1225			· ·		.46		9,0	0.6	89	6.86		0.90
1230					. 49		1.9	1	387	6.80	28	1.08
1235					.43		9,1	0,	687	6,80	0 28	1.06
1240	276	120	3.Dagal	0	,51		9,1	0.6	87	6,8	7 28	1.08
1245			J		.48		9,0			6,86		0.82
1250	2.76	120	3-1996	0	. 45	3	9.0	0.6	37	6.87	28	0.94

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15-LTM and LUC\Ash Landfill LTM\Round 18-December 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls

Collect Sample at 1255 for NOC, TOC, Sulfafe, Field test for Fe, MN

12/11/2014

LARM TOST FERRUS FROM = D.08 mg/L MN = 6.5 mg/L

Ash GW SAMPLING RECORD

	SAMPLING	PRESER	VATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA		<u> </u>	
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field		<u>.</u>	
7					<u></u>			
\dashv								
								_
CO	MMENTS: (QA/QC	?)						
	HACH 19 HERON 19 YSI 35 6	3066						
	HACH 1	2358						
	Heron 19	3074						
	YS1 35 6	122						
	HACH ca		31					
	(1/4011							
1000	VINFORMATION:							
IJV	V INFORMATION:							

		SAM	PLING F	Œ	COR	D -	•	GROU	UND	N	ATE	3	
S	ENEC	A ARMY I	DEPOT ACTIVITY	Y		PA	R	SONS		W	ELL #: PT	1	8A
	ROJEC		Ash Landfill I		roundwate OMULUS,		ing	- Round 18	_		DATE: [7] SPECTORS: -	111	
W	EATHE	ER / FIELD	CONDITIONS CHEC	CKLIS	Г	(RECOR	D	MAJOR CHA	NGES)		MPLE ID #:		
						VIND	_	ROM) GROU			VBW 20	31	2_
1.0	IME	TEMP	WEATHER			LOCITY	DIR	The state of the s	RFACE		MONIT	_	
(24	HR)	(APPRX)	(APPRX)	(G	EN) (Al	PPRX)	(0	- 360) CON	DITIONS	IN	STRUMENT	DE	ETECTOR
					-		-			-	OVM-580		PID
G.	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 6 0.654 1.4 2.475 5.56	17 64	(17	2.79-7.70	Y 163	ETER	BILIZED WATER L R FACTOR (GAL/FT)	1	2.5
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTH TO TOP OF SCREEN (TO	LENG	ТН	DEVELOPA TURBIDI	MENT	D	WELL DEVELOPMENT pH		WELL EVELOPMENT PEC. COND
			12.79										
DA	TA COLLECTED AT PID READIN (OPENING WE		PID READING (OPENING WELL)		STA	TH TO ATIC EVEL (TOC)	DEPTH STABILIZ WATER LEVE	ED	DE	EPTH TO PUMP INTAKE (TOC)	PUM	APING START TIME
					7.70			7.51					
RAD	IATION S DAT		PUMP PRIOR TO SAMPLING (cps)					PUMP AF SAMPLING					
		MON	ITORING DATA	CO	LLECTE	D DU	RI	NG PURG	ING OP	ER	ATIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (mVmin)	CUMULATIVE VOL (GALLONS)		SYGEN (mg/L)	TEN (C		SPEC. COND (mS/cm)	pH		ORP (mV)		TURBIDITY (NTU)
H 05	7.51	START	BLAONER	45	85	YS		Honosa		3.A	HOLBS		HACH
1115	8.10	220	0	4	154	\$9.	8	1,25	7.10		50		13.2
1125	8.37	105			,30	9,	7	1.22	7107	1	62		9.60
135	8.40	100	0.5	4	1.37	9,	8	1.23	7.0	1	67		10.5
1145	0,69	105		4	.56	9,	1	1.23	7.08	3	82		3.77
1155	8.70	105		4	.50	140	,	1.23	7.00	f	37		3.03
1205	8.91	45		4	.43	10.		1.22	7.09		95		2,55
1215	8.92	65	~2,00	L	1.78	10.	1	1,22	7.10	,	97		2.42
1225		75		=	3.8	3 10,	2	1.22	7.10	$\overline{}$	101		2.04
1235	9.13	85	2.25	3	.63	(0.	3	1.23	7.09		104		1.75
	9.20	85		_	,11	(0.	3	1,22	7.09		105		1.32
1250	9.15	25	2.75		13	101		1.22	7.10	\neg	106		0.84
1255	9.16	85		3	.14	10.	Y	1,23	7.09		107		0.98
1300	9.16	85			.97	10.	-	1.22	7.08		107		0.97
1305	_	85	3.00		.96	10.	_	1.23	7.07	_	107		075
	9.24	85		_	2.99	10.	•	1.23	7.67	_	107		0.93
			~ 3.25								-	1	
1320			SANDLE	A	-BW 2	031	2	UOC,					
				-		-	1					+	

Ash GW SAMPLING RECORD

	SAMPLING	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHEC	KED BY
	ORDER			COUNT VOLUME	TYPE	NUMBER		D	ATE
1.	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA				
20,	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA				
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA				
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE				
5	Fe+ (HACH)				field				
6	Mn+ (HACH)				field				
7									
_			3,,			l			
	ALIBA 19276/2	-1761		caca	0050	s 7 C			
ን	SI 003217 ACH TURB 1561	3					····		
۲ ا۲	SI 003217 AZILI TURB 1561	3			24 1			• 1 - 5 1	
γ 14	SI 003217 ACH TURB 1561	3					, if a su	• 1 - 37 - 1 - 12 - 10 - 12	•:
γ 1.4 	SI 003217 AZIJ TURB 1561	3		: * : * : *	* 4				• •
۲ ۱	SI 003217 AZIJ TURB 1561	3		· * · · *		*14/3 ₀	.1		
۲ ۱	SI 003217 ACIL TURB 1561	3				*14/3 ₀	,1		
۲ ۱	SI 003217 AZIJ TURB 1561	3		· * · · *		*14/3 ₀	,1		
۲ ۱	SI 003217 ACIL TURB 1561	3				*14/3 ₀	,1		
۲ ا	SI 003217 ACIL TURB 1561	3				*14/3 ₀	, 1		
۲ ۱	SI 003217 ACIL TURB 1561	3				* 14 M	, 1		
۲ ا	SI 003217 ACIL TURB 1561	3				* 14 M	, 1		
۲ ا	SI 003217 ACIL TURB 1561	3				* 14 M	, 1		
۲ ۱	SI 003217 ACIL TURB 1561	3				* 14 M			
۲ ا	SI 003217 ACIL TURB 1561	3				* 14 M			

The second of th

		SAM	PLING F	(F)	CU	KI) -	Gh	(U	UND	WATE	K
S	ENEC	A ARMY	DEPOT ACTIVITY	7			PA	RSO	45		WELL #: P.	
Pl	ROJEC	Г:	Ash Landfill I	TM G	round	water S	Sampli	ng - Roun	d 18		DATE:	12/18/14
LC	CATIO	N:		R	OMUI	LUS, N	Y			1	INSPECTORS:	TIBELANGUZ
И	FATHE	ER / FIELD	CONDITIONS CHEC	KLIS	Т	(R	FCOR	D MAJO	R CHA		PUMP #: SAMPLE ID #:	K8489
	LATIN	F	CONDITIONS CITE	т-	EL.	WI			_	UND/SITE	ALBW 203	13
T	IME	TEMP	WEATHER	HUN	IDITY	VELO	CITY	DIRECTION	ECTION SURFACE		MONI	TORING
	HR)	(APPRX		1	EN)	(APP	-	(0 - 360)			INSTRUMENT	DETECTOR
113	0	32	WILLAST	L	W	5-10		270	No s	אשע ענד	OVM-586	D PID
G	METER ALLONS LITERS/	(INCHES): / FOOT:	LUME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654	6 1.47 5.564	O				STABILIZED WATER TER FACTOR (GAL/F	
			DEPTH TO POINT OF WELL			TH TO	SCREI		WEL		WELL DEVELOPMENT	WELL DEVELOPMENT
	HISTORIC	DATA	(TOC)		1	EN (TOC)	(FT		TURBIC		рН	SPEC. COND
			11.9					-		1000		
DA	TA COLLI	ECTED AT	PID READING			DEPTH STATI			DEPTH		DEPTH TO PUMP INTAKE	PUMPING START TIME
	WELL :	SITE	(OPENING WELL)		_	ER LEVI	EL (TOC)			EL (TOC)	(TOC)	
F 1	LATION	CHEENING	DIAM SNICE IS		10,	32		1 5	120 PUMP A			1155
KAD	DAT.	CREENING A	PUMP PRIOR TO SAMPLING (cps)					2	AMPLING			
			ITORING DATA		LLEC			RING I		ING OPI	ERATIONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV KYGEN (r		TEM (C)		. COND S/cm)	pН	ORP (mV)	TURBIDITY (NTU)
Equipment							1//	7 44-		+	110000	11.0.0
0,50	5 130	1.0	^	_	SI 69	>	75			1 tores		HACH
1205	- 116	100	0	-	, M		8.7			7,10	42	5,11
1215	5.49	115		_	.70		8.3			7,07	69	3.66
1225	5.61	130	11.0	-	. 85		0.6	0.9		7.08		7,01
235	5,50	120			88		87	0.94		7,08	105	1.53
1245	5,50			-	1. 20		8.7	0.2	17	7.09	111	1118
1255	5.80	110	~2.0	-	1.05		8.6	019	31	7,08	113	1.05
305	Pu	LED Pur	P TO CHECK C	DANG	ECTE	N.	ac.	TEIN	SCLT	Rung		
	5,42	100			1.25		8.7		32	7.09	104	31,3
1330	5.40	100	~3.0		7.30		8.7			7.1		23.2
1340	5.45	110			7.58		8.2	0.9	20	7.09	118	12,4
1350	5.49	120		-	272		8.3	0.1	ון	707	124	7.72
1355			~4.0	Su	ITCI	HI	um	P5,8	ETS,	Avren	whater &	145
		-1484-44		1			1	LINES				
1420	5.41	130		-	51	·	8.5		23	709	120	97.1
	5.45	120			59		8.7	0,9		707	125	23.3
1440					77		8.7			7.10	175	1511
1450		120	2510	-	56		8.8			207	130	7,28
1454	547	120			67		8,8			202	132	5.12
	5.47	120		6.	68		8.8	0.9	19	7.07	133	
1500	# 111_	13.0			57		0.0	D 0		707	1 2 2	3.96

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Round 18 - December 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls

12/11/2014
Fe.: 0.05 -1/L

515 SAMPLE AZBWZ0313

VOCS

Aw: 0.0 mg/L

1- 1-4

4,02

Transfer tout.

	SAMPLING		PRES	SERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED B
	ORDER				COUNT, VOLUME	TYPE	NUMBER		DATE
T					2/401	VOA			
1.			4 deg. C	HCL	3/ 40 ml	VOA			
.2:	4 :MBE (RSK-175)	ļ	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOCK (ODERA)	ORDER COUNT VOLUME TYPE NUMBER DATE VOC 8260B 4 deg C HCL 3/40 ml VOA MPE (RSK-175) 4 deg C HCL 3/40 ml VOA 1 x 250 mL HDPE Fe+ (HACH) Mn+ (HACH) Mn+ (HACH) MENTS: (QA/QC?) 13 x 250 mL MENTS: (QA/QC?) 13 x 250 mL MENTS: (QA/QC?) 14 x 250 mL MENTS: (QA/QC?) 15 x 250 mL MENTS: (QA/QC?) 16 x 250 mL MENTS: (QA/QC?) 17 x 250 mL MENTS: (QA/QC?) 18 x 250 mL MENTS: (QA/QC?)							
3 [C 8260B							
4	Sulfate (ÉPA 300.1)	, ,	4 deg. C		1 x 250 mL	HDPE		,	
5	Fe+ (HACH)					field			
			مم واوع	भन्द ११५ /	17.1 4.5		112 14	1.34	V*
6	Mn+ (HACH)	ORDER COUNTY VOLUME TYPE NUMBER DATE VOC \$260B 4 deg c HCL 3/40 ml VOA BERSK-175) 4 deg c HCL 3/40 ml VOA Ifate (EPA 300.1) 4 deg c 1 x 250 mL HDPE Fe+ (HACH) Mn+ (HACH) Field Field Fe- (BACH) TABLE (BACH)							
7		ORDER COUNT VOLUME VOC 8260B 4 deg. C RCL 3/40 ml VOA VOA TOC (9060A) 4 deg. C RCL 3/40 ml VOA TOC (9060A) 4 deg. C RCL 3/40 ml VOA Sulfate (EPA 300.1) Fe+ (HACH) Mn+ (HACH) MN+ (HACH) MR-							
	* ::	COUNT VOLUME TYPE NUMBER DATE							
-						 			
_		ļ	ļ						
						1			
\neg									
		L					1	L	
CO1	MMENTS: (QA/	276/	213	ઇ૧	(the) + (ace c	05650		
14 7	MMENTS: (QA)	276 17 5613	213				005650		
(CO)	MMENTS: (QA)	276 17 5613 4	213	(, 5 .)			0565b		£1 \$ 78°
14 14 14	MMENTS: (QA)	276 (17 5613 ¥	213	(, 5 .)			005650		10 mg - 11 mg
(CO)	MMENTS: (QA)	276 (17 5613 *	2,3	(.	. 14 1 11			.*	
7	MMENTS: (QA)	276 (17 5613 *	2,3	(1. %)	, 14 1, 1 21 21 1, 2			. .	12.5 mg
(CO)	MMENTS: (QA)	276 (17 5613 3	2/3/	(1. n) (1. n) (1. n)				. .	12.5 mg
(CO)	MMENTS: (QA)	276 (17 5613 3	2/3/	(1. n) (1. n) (1. n)				; ;	10 (3) (4) 12 (5) (4) 18 (5) (5) 18 (6) (7) (8)
(CO)	MMENTS: (QA)	276 (17 5613 8	6 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•, •	: : ::	10 (10 m) 10 (5 m) 10 (5 m) 10 (7 m) 120 10 (7 m) 1 (7 m)
(CO)	MMENTS: (QA)	276 (17 5613 8	6 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			,		10 (3) (4) 10 (5) (5) 10 (5) (5) 10 (5) (7) 10 (5) (7) 10 (5) (7)
(CO)	MMENTS: (QA)	276 (17 5613 2	6 2/3/ 6 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7	Tyre Billion The State of the S			,		
(COI)	MMENTS: (QA)	276 (17 5613 2	6 2/3/ 6 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7	13. 5. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			*, * 		
(CO)	MMENTS: (QA)	776/	6 2/3/ 6 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7	The second secon			,		
(DV	MMENTS: (QA)	776/	6 2/3/ 6 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7 2/ 7	To the second of			*, * 		
(DV	MMENTS: (QA) BORSA \$ 19 SIES OC 37 MACH TURB 19 WINFORMATION	776 (17 5613 \$ 5013 \$ 5	2/3/	The second of th			*, * 		
(DV	MMENTS: (QA) BORSA \$ 19 SIES OC 37 MACH TURB 19 WINFORMATION	776 (17 5613 \$ 5013 \$ 5	2/3/	10 miles 10 mil			*, * 		
(DV	MMENTS: (QA) BORSA \$ 19 SIES OC 37 MACH TURB 19 WINFORMATION	276 (17 5613 \$ 5013 \$ 5	2/3/	The second of th			ty t		
(DV	MMENTS: (QA) BORSA \$ 19 SIES OC 37 THE TIMES 19 WINFORMATION	276 (17 5613 \$ 5013 \$ 5	2/3/	The second of th			ty t		
(DV	MMENTS: (QA) BORSA \$ 19 SIES OC 37 THE TIMES 19 WINFORMATION	276 (17 5613 \$ 5013 \$ 5	2/3/	The second of th			ty t		

P:\PiT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Round 18 - December 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls

12/11/20 12/11/2014

SENE	CA ARMY	DEPOT ACTIVITY			PAR	501	15		WI	ELL #: P	T 24
PROJEC LOCATI		Ash Landfill L		dwater S LUS, N		- Round	1 18			DATE: / 7 PECTORS: MP#:	119/2019 11/1man
WEATI	IER / FIELD	CONDITIONS CHEC	KLIST	(RI	ECORD	MAJOR	CHAN	GES)	SAI	MPLE ID #:	
			REL.	WIN		ROM)	GROUN		ALBWOOT		14
TIME	TEMP	WEATHER	HUMIDITY			ECTION		FACE		MONIT	
(24 HR)	(APPRX		(GEN)	(APPI	RX) (0	(0 - 360) COND		TIONS	INS	TRUMENT	DETECTOR
1045	24	acres;	(an	-	-					OVM-580	PID
GALLON	WELL VO R (INCHES): NS / FOOT: NS/FOOT	LUME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 4 0.367 0.654 1.389 2.475				X V	L) - I(POW VELL DIAM × 3, 4	LETER	BILIZED WATER I FACTOR (GAL/FT	EVEL)
нізтоя	UC DATA	DEPTH TO POINT OF WELL (TOC)	T	OP OF EEN (TOC)	SCREEN LENGTH (FT)		WELL EVELOPME TURBIDIT		DI	WELL EVELOPMENT pH	WELL DEVELOPMENT SPEC. COND
		11.85			-14						
DATA COL	LECTED AT	PID READING		DEPTH T	_		DEPTH TO STABILIZE		DE	PTH TO PUMP INTAKE	PUMPING START TIME
WEL	L SITE	(OPENING WELL)	WA	ATER LEVE	L (TOC)	WAT	ER LEVEL	(TOC)		(TOC)	
PARIATION	SCREENING	PUMP PRIOR TO		7,86			PUMP AFTI	-p			
	ATA	SAMPLING (cps)				SA	AMPLING (cps)			
TIME WATE		CUMULATIVE VOL	COLLE		DURI		COND	NG OF	ER	ATIONS ORP	TURBIDITY
(min) LEVE	L RATE (ml/min	(GALLONS)	OXYGEN	(mg/L)	(C)	(ms	S/cm)	pH	+	(mV)	(NTU)
1:00 4.4	0 5	Aut pomp	45I 85	612	2 ->	Hori	ba Z	3 230	66		HUCH
11:12 4.8		0 0	3.98	11724 1730	9.0	0,	004	7.9	1	202	10,73
11:19 4.8	5 150		5.2	9	9.0	6.0		7.8	8	191	checked as less
11:24 4.89	150		0.5	0	9.0	0.0	05	7.9	6	106	
11:29 4.8	160		0,41	6	9.0	0.0	0.5	7.8	9	58	531
11:34 4.8	5 160	1.690	0.59	8	9.1		005	70	7	69	
11:39 1.8	5 160	1	0.46	¥.	9,0	0.	006	7.8	5	81	68.3
11:44.8			0.2		9.1		002	7,8	- 1	82	
11:50 4.8		2.3941	0.2		9,2		007	7,8	,	85	43.0
11:56 .19		7	0,1	7	9.2		005	7,8		34	16.9
1200 4.8			0.1		97		005	7.8	3	84	13,3
1205 4.8			016		9.2		010	7,8		83	9,49
210 4.8		3 gc+	0.16		9.2		005	7,8		84	13.7
1215 4.8	34	3 gct 3.25 just 3.5	0,1		9.2		006	7.89		83	9.36
220 4.8		3.5	0.1.	5	9.2		005	7.8		83	3,65
		101	- VO		112	0,	003	100	1		0,00
1225 0	clect	Sample fo	7 70	<u> </u>					+		

Ash GW SAMPLING RECORD

	SAMPLING	-	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
Ĺ	ORDER				COUNT: VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B		4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)		4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)		4 deg. C	HCL	3/40 ml	VOA			
4	Sulfate (EPA 300.1)	. •. ••	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)					field			
6	Mn+ (HACH)					field	14 Mars	Mar. 77	, •
7									
Н,									

COMMENTS: (QA/QC?)		
Horisa 23066		
Y5185 6.22		
HACH TURS 12358		
Win con 19031		
IDW INFORMATION:		

Ob 4

		SAM	PLIN	GR	E	CO	RI) -	(GR	OU	ND	VATE	R
SI	ENEC	A ARMY I	DEPOT ACT	IVITY				PA	RS	50N	ıs		WELL #: MI	vT-7
	CATIO		Ash La	ındfill L			water S LUS, N		1g -	Round	18			12/16/14 T. Ber Anger 11729
W	EATHE	R/ FIELD	CONDITIONS	CHEC	KLIS	Γ	(R	ECORI) M	IAJOR	CHAN	GES) S	AMPLE ID #:	
		o.E			R	EL.	WIN		`			D/SITE	ALBWZ	
	IME	TEMP	WEATH			IDITY	(APP	TITY D				FACE	MONIT NSTRUMENT	ORING DETECTOR
	HR)	(APPRX)	(APPR)	()	LO	EN)	15-2		18	360)		TIONS I	OVM-580	PID
10	1)	70	Consider		20	~	000	-	Į O		PATER		Y81 85	003217
G/	LLONS	INCHES): FOOT:	UME CALCULA' 0.25 1 0.0026 0.041	0.163	3 0.367	4 0.654	6	O!	,	ELL VO	LUME (GA	L) = (POW - S	TABILIZED WATER I ER FACTOR (GAL/FT = 1.33 ×	LEVEL)
	LITERS/	FOOT	0.010 0.151 DEPTH T	0.617)	1.389	2.475 DEP	5.564 TH TO	SCREE		,,,,,	WELL	T	WELL	WELL
	HISTORIC	DATA	OF W	ELL		TO	P OF N (TOC)	LENGT (FT)	н		EVELOPME		DEVELOPMENT	DEVELOPMENT SPEC. COND
	nsionic	DATA	13.64	.,	-	SCREE	11(100)	(11)			TOKDIDIT			and comp
DAT	A COLLE	CTED AT	PID RE (OPENIN			-	DEPTH STATIO	С			DEPTH TO STABILIZE ER LEVEL	D	DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIME
73.473	LATION C	CDEENING	PUMP PI	HOD TO		5.4	1		1		UMP AFTI	:D		
KAU	DAT	CREENING	SAMPLI								MPLING (
			ITORING				CTED	DUI	_	_	URGII	G OPE	RATIONS	TURBIDITY
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE (GALLON			DISSOLV YGEN (1		TEMI (C)			COND /cm)	pH	(mV)	(NTU)
Equipment /030	5.47	BURGER	STANT PUN	,	Y	51		451	1	1400	P.A	Hurisa	HORIBA	HACH
	5.45	130	0.10			1.06		9.4	-	0.93	32	7.58	112	21.5
	5.49	7 110	0.25		5	166		9,9	(0.94	8	7.26	125	50.5
1230	5.47	110	0.30		5	38		10.0	,	0.9	16	7.19	116	38.1
1235	5.47	110	9.00		3.	65		9.9		0.94	6	7.16	121	208
(240	5.47	(Lo	1.00		3	30		10.1		0.9		7.11	121	10.7
1250	5.44	(00	1.3		2	.02		10.3		0.9	16	7.09	116	6.79
1300		100	2.0		+	781	.30	10.2		0.94	6	7,07	106	6,53
	5.44		2,5			.78		103		3.99	1	7.09	94	3.84
1315	5.44	115	2.5		C	0.67	7	(0.2		0.9	51	7.02	90	3.34
1320		100	3.0		0	58		10,4		0,9	51	7.01	90	3,44
1325		100	3.1			77		194	1	0.9	52	7.0.1	85	1. 3.41
1330	5.44		3,2	_	0	.59		10,4		01%		7.00	83.	3.37
1335		105	3.2			.60		10.4		0.9:		7.00	81	2.34
1340			3.5		0	62	_	104	_	0.99		6.99	81	2,31
(345		lo	13.5		0	101		10.4	1	0.99	54	7,00	81	7.35
1350			careci	54	m	E F	υn	Voc	, 01	nee	, SUL	/CHL,	Toc	
				00.0	149	12								
			m c	1.7	mg/									

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Round 18 - December 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls

& 1415 APTER SAMPLING DO= 0.39 mg/k @ 10.40

1

ECONARI NA NA NA

		INCSE	RVATIVES	BOTTL	,ES	SAMPLE	TIME	CHECKED BY
ORDI				COUNT. VOLUME	TYPE	NUMBER		DATE
1 VOC 826	ÒВ	4 deg. C	HCL	3/40 ml	VOA	ALBW 20315	1350	
MÆE (RSK	-175)	4 deg. C	HCL	2/ 40 ml	VOA	4		
TOC (906		4 deg. C	HCL	3/ 40 ml	VOA			
3.5			HCL			1	· *	
Sulfate (EPA	300.1)	4 deg. C		1 x 250 mL	HDPE		14150000	
Fe+ (HAC	CH)	atic simp	()) ' = .	0.00 mg	field			
HAC	CH)			077/2	field	FIGUD "	1995	
* ***	" · · ·	• ;	1	Ģ		b.		
							ξ	
		-						
1					<u> </u> "*!_;#			
					. '			
NO QA		?)						
NO QA	-QC		No. of Beer	14.	17.	(عريدمية	Notice September	
NO QA	LAC	Boton,		1 e 7 13 _e p		Speed (Speed)	Nacional Assistances	
No QA	Lange A	Botonia Botonia	1840	15 17			n North	5" A 13:
No QA	Service of	Besterie	. 85% 178, 281	13 (f) flat 1 0 (5)	01.15 01.5 38 1	95.	5	
No QA	Same in	Bestein,	179. 179.	13 pr 1941 1 0 pr 10 pr	3.1 31, 1 31, 1	70 g. s. 7 kg. 7 kg.	n in the second of the second	
No QA	Carried A	Actoria,	2500 176, 250, 250, 250,	13 (f) f(d) (a) (b) (b) (c) f(d)	10.15 10.15 13.15 13.15 13.15 13.15	70 g 8 s 2 s 2 s 2 s		
No QA	Carried A	Actoria,	2500 176, 250, 250, 250,	13 pr 1941 1 0 pr 10 pr	10.15 10.15 13.15 13.15 13.15 13.15	70 g 8 s 2 s 2 s 2 s	n in the second of the second	
No QA	Carried A	Actoria,	2500 176, 250, 250, 250,	13 (f) f(d) (a) (b) (b) (c) f(d)	10.15 10.15 13.15 13.15 13.15 13.15	70 g 8 s 2 s 2 s 2 s		
No QA	Carried A	Actoria,	2500 176, 250, 250, 250,	13 (f) f(d) (a) (b) (b) (c) f(d)	10.15 10.15 13.15 13.15 13.15 13.15	70 g 8 s 2 s 2 s 2 s		
No QA	Carried A	Actoria,	2500 176, 250, 250, 250,	13 (F Par - 10 (F) - 10 (F) - 27 (F) - 28 (F) - 28 (F)	10.10 28.10 28.10 27.10 28.10 28.10 28.10	70 g 8 s 2 s 2 s 2 s		
No QA	ATION:	2.00 miles 2.00 m	284.00 (194.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00)	13 .F Par 2 0.53 1 0 2 7 2 7 2 8 2 8 2 7	10.00mm 1		7, 711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
No CLA	ATION:	2.00 miles 2.00 m	284.00 (194.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00)	13 .F Par 2 0.53 1 0 2 7 2 7 2 8 2 8 2 7	10.00mm 1	70 g 8 s 2 s 2 s 2 s	7, 711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
No QA	ATION:	2.00 miles 2.00 m	284.00 (194.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00)	13 .F Par 2 0.53 1 0 2 7 2 7 2 8 2 8 2 7	10.00mm 1		7, 711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
No QA	ATION:	2.00 miles 2.00 m	284.00 (194.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00 (284.00)	13 .F Par 2 0.53 1 0 2 7 2 7 2 8 2 8 2 7	10.00mm 1		7, 711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

the same some that was a sure of the same section of the same

S	ENEC	A ARMY	DEPOT ACTIVITY	?			PAR	50 1	15		W	ELL #: M	WT.	-22	
			Ash Landfill L					- Round	1 18	-		SPECTORS:	5,1	DICITA	
W	EATH	ER/ FIELD	CONDITIONS CHEC	KLIS	Г	(RI	CORD	MAJOR	CHAN	IGES)	SA	MPLE ID #:			
				R	EL.	WIN	D (I	ROM)	1500		P				
1. 1.53		DATE 2 18													
		DATE 12 15 15 15 15 15 15 15													
120	00	ECT: Ash Landfill LTM Groundwater Sampling - Round 18 ROMULUS, NY INSPECTORS:						PID							
GA	LLONS	(INCHES): / FOOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367	0.654 2.475	1.47 5.564		WELL VO	LUME (GA	L) = [(POW		FACTOR (GAL/FT)	1		
	HISTORIC	: DATA	OF WELL (TOC)		TOP	OF	LENGTH	1	EVELOPMI		Di	EVELOPMENT	DEVE	ELOPMENT	
			14.89												
DAT	-	DATE: 2. 2							ING START TIME						
RAD	DATE 12 15 15 15 15 15 15 15							-							
				COI	TEC	TED	DUDI				ED	ATIONS			
TIME	WATER			_						NG OP	EK		TE: 12 18 20 TORS: S, DICC 16 367 LID #: 20 316 MONITORING MENT DETECT VM-580 PIL DEVELOPMING SPEC. CON OPLIMP PUMPING ST TIME DOWNS ORP TURBIE (mV) (NTI - 34 - 34 - 34 - 34 - 37 - 36 - 39 - 37 - 27, - 38 - 39 - 37 - 27, - 38 - 39 - 37 - 36 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 37 - 37 - 38 - 39 - 39 - 37 - 38 - 39 - 38 - 39 - 39 - 37 - 38 - 39 - 38 - 39 - 39 - 39 - 39 - 39 - 39 - 39 - 39		
(min) Equipment		RATE (mVmin)	(GALLONS)	OX	YGEN (m	g/L)	(C)	(mS	/cm)	pН		(mV)	+	(NTU)	
1315		Start	Ash Landfill LTM Groundwater Sampling - Round 18 ROMULUS, NY ROMULUS, NY ROMULUS, NY ROMULUS, NY RECORD MAJOR CHANGES SAMPLE 18 18 18 18 18 18 18 1												
	271	7/6/	P			6					+		_		
13:28		180		6	10		10.3	1	25	730	7	-30			
1333													-		
1338											-				
13,17										1	-		+		
1770	- 1	120							-		-		+-	271	
1590		113	26 1	-					-					- 1,6	
1353		115	0.15 gas	-			14/	1.7	_	-					
1358		110					101	1 0	11				6	25.3	
				0	120				0			-41			
1408	7.80	98		0	.17		10.1	1.3	6	7.3	3	-42		22.9	
1413		120		0	.19		10.2					-43		19.1	
1418	3.15	120		0	.18		10.2	1.3	36			- 45		17.89	
1423	8.46	114				4/12:15	10.2						1/	6.3	
				F	17		10.3						1	5.5	
1433	8.80		2 606	C	7/7								1	3.2	
1419	294	117-)										1	3.2	
1438	910	11.7	2,5 44	1	17								1	10.7	
108	A C	Mect	sample for	1	OC		10.	1: 2	•	1,0	+		1		
175)	0 -0		7404	4		.2									
					_						+				

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Round 18 - December 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls

1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			<u> </u>
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field			
7								
							:	
						<u> </u>		
	Haga 2306 71185 6122 HACH TRB 1							
DV	VINFORMATION	•						
				······			<u>-</u>	

tensores. The second of the second of the second of the second of the second of the second of the second of the second of

S	ENEC	A ARMY I	DEPOT ACT	TVITY			PAF	ISON		LOF		LL #: A	1WI-24
	ROJEC		Ash L	andfill L	TM Ground ROMU			g - Round	1 18			DATE: PECTORS:	12/18/201 Dillman
W	EATHE	ER / FIELD	CONDITIONS	CHEC	KLIST	(R	ECORD	MAJOR	CHAN	GES)		P#: //2_ PLE ID #:	39
		1			REL.	WIN		FROM)		D/SITE	AL	BW 20317	
	IME	TEMP	WEATH	7.7	HUMIDITY	VELO	THE COLUMN	RECTION		FACE	YNION	MONIT	
(24	4 HR)	(APPRX)	(APPR	Δ)	(GEN)	(APP	RX) (t	- 360)	COND	ITIONS	INSI	OVM-580	DETECTOR
						-						O V IVI-380	rib
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULA 0.25 1 0.0026 0.041 0.010 0.151	TION FAC 2 0.163 0.617	TORS 3 4 0.367 0.654 1.389 2.475	6 1.47 5.564	ONE	WELL VO				LIZED WATER L ACTOR (GAL/FT)	
	HISTORIC	DATA	OF V	O POINT VELL DC)	TO	PTH TO OP OF EN (TOC)	SCREEN LENGTH (FI)		WELL EVELOPMI TURBIDIT		DEV	WELL ELOPMENT pH	WELL DEVELOPMENT SPEC. COND
			12.	93									
DA	TA COLLE			ADING G WELL)	WA	DEPTH T STATIO	С		DEPTH TO STABILIZE ER LEVEL	D		H TO PUMP INTAKE (TOC)	PUMPING START TIME
			•		6	5.21		A I I I					
RAD	DAT:	CREENING A		RIOR TO NG (cps)					MPLING (
		MON	TORING	DATA	COLLE	CTED	DURI	ING P	URGII	NG OP	ERA	TIONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVI (GALLON		DISSOLV OXYGEN (TEMP (C)		COND /em)	Нq		ORP (mV)	TURBIDITY (NTU)
Equipment	1	cl i-	0 0		YSI 617	7 -	-39	1.6	. 10-		1		HUTCH
9:48	6.2() far T	1 x mg		772 010			Horit	ia Us	2 230		10 = 10 6	1012358
	6.33	140	•		7 2	1	01			710	-		etere gun
9:53	6.38	148			7.3	7	9.6		348	1.60	_	240	
9:58	641			-	(()	1	9.5	0.8	333	7.58		238	35,8
10 03	6.91	148			6.4		9.5		832	7.55		236	
	0 11	148			6.19		-	-		7.57		729	29.3
	641				8.8		9.5		329			218	6717
	6:41	148			1119		9.6	1	328			206	
	6.41				1,2		9.6			7.56		180	26.5
	6.41		21		1,1			0.8				154	
	6,41		2 gal		1.2		9.5		826			137	18.1
	6.41	140			1.10		9.5	0.8		7.50		128	16.4
	641	140			1,15		9.5	0.8		7.55	-	116	14.0
84.01	6.41	140			1.10		9,4		26	7.56		107	13.7
	6.41 140 2,5 gal				1.13		1 L		2.5	-1-1			

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\Ash Landfill LTM\Round 18 - December 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls 12/11/2014

9,5

95

9.6

0.98

12

0

824

0,825

0,825

0,826

0.826

7.59

56

56

101

100

98

95

9,32

140

140

140

140

						 	1
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA		
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA		
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA		
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE		
5	Fe+ (HACH)				field		
6	Mn+ (HACH)				field		
7							
	Horiga 2306 Yst 6/22 Hart T 12	358					
IDV	WINFORMATION	l:					

S	ENEC	A ARMY I	DEPOT ACTIVITY				PAF	501		OF Z	WE	ELL #: M	WT-24	
	ROJEC		Ash Landfill L			water Sa LUS, NY		- Roun	d 18		INSI		118/2014 D. II man	
W	EATHE	ER/ FIELD	CONDITIONS CHEC	1					CHANG		SAM	IPLE ID #:		
Т	IME	ТЕМР	WEATHER		EL.	WIN	1	FROM)	GROUN SURI	12	AL	BW 2031		-
(24	HR)	(APPRX)	(APPRX)	(G	EN)	(APPF	(X) (0	- 360)	CONDI	TIONS	INS	TRUMENT	DETECTO	R
				-			-					OVM-580	PID	-
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VO				ILIZED WATER L ACTOR (GAL/FT)	1	
1	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		TO	TH TO P OF IN (TOC)	SCREEN LENGTH (FT)	D	WELL EVELOPME TURBIDITY		DE	WELL VELOPMENT pH	WELL DEVELOPMEN SPEC. COND	
DAT	TA COLLI	ECTED AT	PID READING (OPENING WELL)		WAT	DEPTH TO STATIC	L (TOC)		DEPTH TO STABILIZE ER LEVEL	D	DEP	TH TO PUMP INTAKE (TOC)	PUMPING STA TIME	RT
RAD	IATION S	CREENING A	PUMP PRIOR TO SAMPLING (cps)			6,2			PUMP AFTE					
			ITORING DATA				DURI		URGIN	NG OP	ERA	TIONS		
TTME (min) Equipment	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		OISSOLV CYGEN (1		TEMP (C)		COND S/cm)	pH	-	ORP (mV)	(NTU)	ry
1130	17 .	140	3.6	1	00		9,5		827	7.5	7	95		
1135	641	140		1	.07		9.5		826	7.5		93	6 //	
1140		140	4 901	1	03		9.4	0,8	126	7.5	7	95	9.16	2
Cil	le t	king	<u>e 11:45</u>	tu	- W	oC.	5							
•											+			
														- 1
-														ii.
						•								

1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA		
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA		
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA		
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE		
5	Fe+ (HACH)				field		
6	Mn+ (HACH)				field		
7							
IDV	W INFORMATION	•					

Page

SAMPLING RECORD - GROUNDWATER WELL #: MWT-25 PARSONS SENECA ARMY DEPOT ACTIVITY 12 19/14 DATE: Ash Landfill LTM Groundwater Sampling - Round 18 PROJECT: INSPECTORS: TB 1 5p ROMULUS, NY LOCATION: 16362 PUMP#: SAMPLE ID #: WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) ALBW20318 REL. WIND (FROM) GROUND / SITE TIME **TEMP** WEATHER HUMIDITY VELOCITY DIRECTION SURFACE MONITORING (APPRX) (APPRX) DETECTOR (APPRX) (0 - 360)CONDITIONS INSTRUMENT (24 HR) (GEN) 5-10 Law 270 24 MACE MOW O.C., # FLUTREIG! OVM-580 PID parten WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = |(POW - STABILIZED WATER LEVEL) DIAMETER (INCHES): X WELL DIAMETER FACTOR (GAL/FT)] 0.041 0.163 0.367 0.654 0.0026 GALLONS / FOOT: 1.47 LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 DEPTH TO WELL WELL DEPTH TO POINT SCREEN WELL DEVELOPMENT DEVELOPMENT DEVELOPMENT LENGTH OF WELL TOP OF HISTORIC DATA SCREEN (TOC) SPEC COND (TOC) (FT) TURBIDITY pH DEPTH TO PUMP PUMPING START DEPTH TO DEPTH TO INTAKE DATA COLLECTED AT STABILIZED TIME PID READING STATIC WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC) (OPENING WELL) WELL SITE 4.34 4.88 RADIATION SCREENING PUMP PRIOR TO PUMP AFTER SAMPLING (cps) MONITORING DATA COLLECTED **DURING PURGING OPERATIONS** WATER PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND THRRIDITY LEVEL RATE (ml/min (GALLONS) OXYGEN (mg/l.) (C) (mS/cm) рН (mV) (NTU) Equipment Used 4.34 BLADOG PUMP Y 51 85 451 HAVIBA HUMISA HORIBA HACH 4.30 :22 5,32 250 776 9.0 7.68 1:27 5.82 6.58 89 7.64 140 110 6.01 6.52 8,8 95 7.66 6,27 7.65 0 1.18 9.0 3.68 6.23 1.18 30 3. 5 9. 100 2 3.0 20 2.61 2:05 8 00 101 3.02 2:0 9.0 20 7,65 9.0 112 2 102 70 20 7,82 2 102 7.65 7,6 .2 222 9.0 2 22-910 8.0 10 9.0 12 .22 14 105 36 9.0 .2 2 107 9,0 .2 106 24 900 108 2 .5 14 123 2 9.0 2 108

	SAMPLING	PRESERV	ATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT: VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	' MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)	Parw .		ter i e e	field	+51 (1. 2)	•	
7								
							<u>.</u>	
			\$	• •				

COMMENTS: (0	QA/QC?)
--------------	---------

IDW INFORMATION:

HURISA 23066 YSIBS G122 HACH TORB 12358 HACH COLOR 1963)

SI	ENEC	A ARMY D	DEPOT ACTIVITY			PA	RSO	VS		WELL #: m	WT-25
	CATIO		Ash Landfill L		oundwater MULUS, N		ng - Roun	d 18	_	DATE: ; INSPECTORS: - PUMP #:	2/19/2014 TB/5/1
W	EATHE	R/FIELD	CONDITIONS CHEC		-		D MAJOI			SAMPLE ID #:	16 70
TI	ME	ТЕМР	WEATHER	HUMII			(FROM)	-	ND/SITE LFACE	ALBU	203/8 ORING
_	HR)	(APPRX)	(APPRX)	(GE		PRX)	IRECTION (0 - 360)		DITIONS	INSTRUMENT	DETECTOR
										OVM-580	PID
GA		(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367	4 6 0.654 1.47 2.475 5.564		NE WELL VO			- STABILIZED WATER I LETER FACTOR (GAL/FT	
			DEPTH TO POINT OF WELL		DEPTH TO TOP OF	SCREI	1.0	WELL	ENT	WELL DEVELOPMENT	WELL DEVELOPMENT
H	ISTORIC	DATA	(TOC)	-	SCREEN (TOC)	(FT	-	TURBIDI	гү	pН	SPEC, COND
DAT	A COLLE	ECTED AT	PID READING (OPENING WELL)		DEPTH STAT WATER LEV	IC		DEPTH T STABILIZ TER LEVE	ED	DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIME
RADL	ATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)					PUMP AFI			
		MON	ITORING DATA	COL	LECTED	DU	RING F	URGI	NG OF	PERATIONS	
TIME (min) uipment l	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		SOLVED GEN (mg/L)	TEM (C)		. COND S/cm)	pH	ORP (mV)	TURBIDITY (NTU)
56	8.73	1/4	3.1 965	5	. 36	9.2	- 1.2	24	7.6	5 108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101	3.85	114	,	.5	. 10	9.	1.2	24	7,60	5 109	110
106	8.83	114		4.	62	9,	2 1,2	4	7,65	5 109	100
	Pu	no fra	zevia Switc	led	toot	ev	2000	5	e sun	3:20	
5.23	893	"108		5	35	71	5 1.	26	7.6	7 108	23.4
3,28	9,10	110		4.	98	9.	1.	24	7.6		12.0
- 11	9,23	110		4.	48	9,	-	23	7.6		4.16
5:38	9.32	110		4.	47	9.9		23	7.6	2 81	3.40
.45	9.52	110	4.1900		33	9.5		して	7.5	9 84	2.58
50	9.63	110		4.	49	9,5	71.	22	7.5	7 86	2.46
55	9.75	110	4.25gal	4.	70	9.5	1.2	22	7.5	7 87	1.71
16	00	Colbo	- sample.	21	Voc	5					
				02-52-5			-				

	SAMPLING	PRESER	VATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER			COUNT VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field			
7								
			<u>-</u>					
DΛ	V INFORMATION:		-					

		SAM	PLING R	E	CO	RI) -	GR	OL	IND	WATE	3	
S	ENEC	A ARMY I	DEPOT ACTIVITY				PAR	501	ıs		WELL #: //	u	1-56
	CATIO		Ash Landfill L			water S LUS, N		- Roun	1 18		DATE: INSPECTORS:	12/	19/14
W	EATHI	ER / FIELD	CONDITIONS CHEC	KLIS	T	(R	ECORD				SAMPLE ID #:		
		F		R	EL.	WIN					ALBW0031		
	IME	TEMP	WEATHER		IIDITY		CITY DIR			FACE	MONIT INSTRUMENT		NG ETECTOR
0800	HR)	(APPRX)	O JERCAST, LT FLURA		EN)	(APP		-360)		E SVAN	OVM-580	וע	PID
0000			TRACE SNOW ON GOD,			3		.,,		g GAUGA	OVM-380		FID
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617		0.654	6 1.47 5.564	ONE	WELL VO	LUME (GA	L) = (POW -	STABILIZED WATER I TER FACTOR (GAL/FT)
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		TO	TH TO P OF EN (TOC)	SCREEN LENGTH (FT)	D	WELL EVELOPMI TURBIDIT		WELL DEVELOPMENT pH		WELL EVELOPMENT SPEC. COND
DAT	TA COLLI	ECTED AT	PID READING (OPENING WELL)		WAT	DEPTH STATIO	С		DEPTH TO STABILIZE ER LEVEL	D	DEPTH TO PUMP INTAKE (TOC)	PU	MPING START TIME
					3.	12		3	3.35			C	840
RAD	LATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT				
		MON	ITORING DATA	CO	LLEC	CTED	DURI	NG P	URGI	NG OPI	ERATIONS		
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV XYGEN (ED	TEMP (C)	SPEC	COND S/cm)	рН	ORP (mV)		TURBIDITY (NTU)
Equipment	Used			V	151 89	-	VII	Un	LBA.	1tor45	1 HURIDA	\exists	BACH
0840	3.35	200	0		48)	5.10	0.60		6.93	-84		14.5
	4.11	14.			.32		5.2	0.61	-	7.02	-109	\dashv	12.8
0855	-	140	0.5		. 6	reasto	5.2	0.6		7.06	-110	-	6.32
900	3.96	145	0.7	_	30	rige	5.2	0.6		1.09	-121	-	6.73
1905	4.00	145			27		5.2	0.64		7.08	-121	-	6.45
	-		1,0	-	32	-	-	-		7.09			5.49
0190	4.04	155	1,0		45		5.1	0.6		7.10	-121	-	4.72
2020	401	135	1.00		52		5.1	0.66		7.10	-120	-	3.51
39 60	4.08	155	1.5		51							-	3,00
	4.09		0.5	-			5.1	0.68		7.11	-120	-	3.03
7930	4.09	155	~ 2.0	0,	52		5,1	0.68	3.7	7.11	-119		7.03
0935		SAM	E ALBWOI	231	9	Voc						\exists	
								7000	42.010.00				-211-

	SAMPLING	PRESE	RVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED B
	ORDER			COUNT VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE		4	
5	Fe+ (HACH)				field			
1		141.	· & 1.7	• : : :: ::		Nassa . / t	13310	
6	Mn+ (HACH)	WAR I'VE BEE	(military		field	August 19 - William Walter		
7		+						
+		-						
\perp								
\perp								
				~				
	MMENTS: (QA/QC?		<u> </u>		.+5			
COI	MMENTS: (QA/QC	?)		7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		•	· · · · · · · · · · · · · · · · · · ·	* (
CON	MMENTS: (QA/QC			To a Section of the Control of the C		•		5 (144, 5) 6 (14 6 (15
DW	MMENTS: (QA/QC			To see the second of the secon				5 (144, 5) 6 (14 6 (15
DW itu	MMENTS: (QA/QC?	21389		7 (N) (N				*

			PLING F									
			DEPOT ACTIVITY					RSO			WELL #: M	27-2
	ROJEC CATIO		Ash Landfill L			water S		ng - Roun	d 18	-	DATE: INSPECTORS:	7. Beel
Lo	CATIO	N:			OMUI	LUS, IN						2485
W	EATH	ER / FIELD	CONDITIONS CHEC	KLIS	T	(R	ECOR	D MAJOR			SAMPLE ID #:	
		F		R	EL.	WIN		(FROM)	1	100	ALBW 203	
1	IME 4 HR)	TEMP (APPRX)	WEATHER (APPRX)		HIDITY EN)	(APP		(0 - 360)		FACE ITIONS	MONIT INSTRUMENT	ORING DETEC
091		32	OVERCAST		W	10-		270	NO SNO		OVM-580	P
-		1	0 0 0 0 1			-	-	- 11	the Mi		O V MI-380	
G	ALLONS	(INCHES): / FOOT:	0.25 1 2 0.0026 0.041 0.163	3 0.367	4 0.654	6 1.47	0	NE WELL VO	DLUME (GA	L) = [(POW	STABILIZED WATER L ETER FACTOR (GAL/FT)	
	LITERS/	FOOT	0.010 0.151 0.617 DEPTH TO POINT	1.389	DEP	5.564 TH TO	SCRE	EN	WELL		WELL	WELL
	HISTORIC	DATA	OF WELL (TOC)		1	P OF EN (TOC)	LENG (FT		DEVELOPMI		DEVELOPMENT pH	SPEC. CO
	HISTORIC DATA		113.53									
					-	DEPTH '			DEPTH TO		DEPTH TO PUMP	PUMPING
DAT	WELL S	SITE	PID READING (OPENING WELL)		WAT	STATION LEVE		WA	STABILIZE FER LEVEL		(TOC)	09
					6	.63						
RAD	IATION S	CREENING A	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT AMPLING (
		MON	ITORING DATA	СО	LLEC	CTED	DU	RING I	PURGI	NG OP	ERATIONS	
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV XYGEN (1		TEM (C)		COND S/cm)	pH	ORP (mV)	TURE (N
Equipment		BLAD										
0940	651		DOR PUMP	166	bedy }	131	150		1.34	itaria		6hs
1000	6.84	135	0	C	11,0		9.0	11.	11	70.7		17
loto	6.82	120			12		140			6.77	74	13,
1020	6.86	115	0.75	(0,10		9.8	47	-1	6.71	-75	15
1030	6.87	120		0	0,00		9.9	1 1.2	21	6.71	-76	17
1035	6.87	120	1.2	C	.68		9.9	1.2	_1	6.70	-76	17.
1040	G. 87	115		0	.09		9.	1,	2-1	0.69	-76	9.
1045		115			0,08		9.			6.69	(-7)	3.
	6.86		~2.1	_	.07		9.	-		10.6		8.5
						-						7.9
1055		SAMPLE	ALBWZ02	20		1104.	TOC	FULCAN	× 111	(
		7,00		20		0007	100	70000	7,110			
			Fe= 3.21	my	L							
				mal								115
- 3				9.								

11T 90 0.9

	PLING	PRESE	RVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKE	D BY
OR	DER			COUNT, VOLUME	TYPE	NUMBER		DAT	E
voc 8	3260B	4 deg. C	HCL	3/40 ml	VOA				
MEE (RS	SK-175)	4 deg. C	HCL	2/ 40 ml	VOA				
3 TOC (9	0060A)	4 deg. C	HCL	3/ 40 ml	VOA				
4 Sulfate (E)	PA 300.1)	4 deg. C		1 x 250 mL	HDPE		::		
5 Fe+ (H	ACH)				field				
6 Mn+ (H	HACH)	1		1. 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	field	4.5	Promise &		.` .
7									
						,	63.		
- Pleas									
MOCHSA	, [92-	(4)	·	. 1000	5613				
75185	∞31	17				*2***** *4	100/15		
75185	∞32	17	. 18.			ne sp	iolis.	1 d	
75185	∞32 '14	17	7. 8 .7.		I radio				
75185	∞32 '14	17 28 30 20 1	. 		Society of			S. 19.	ot qu
75185	∞31 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	17 28 30 20 1	* & **	: ':	A HAMPA A COMPA A		San Maria San San San San San San	ot 4)	
75185	∞31 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	17	* & **		A rinter of			Salahan Salahan Salahan Salahan Salahan	01 a)
75185	∞31 (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		* & **		A HAMPA A COMPA A			01 9. 21 . 128 128	
75185	∞31 (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	17			A CAMPAN A C	*,*** 11			000 a
75185	∞31 (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4				A CAMPAN A C	1,17			000 a
75185	∞31		**	6 g	A CARDON				000 a
75185	≈32	17 (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		6 g	A CARDON	*,*** 11			01 a
75185	≈32 RMATION 19276	121389	**	6 g	A Company of the Comp				01 a

£ 4.

S	ENEC	A ARMY I	DEPOT ACTIVITY	7	F	AF	SON	IS		WE	LL #: VM	WT-26
	ROJEC		Ash Landfill L	TM Ground		pling	- Round	18		INSI	ECTORS:	2/16/14 Dilinan
W	EATHI	D / FIELD	CONDITIONS CHEC	KLIST	(REC	ORD	MAJOR	CHAN	GES)	PUM	IP#: 7	1974
	CATIL	I TIELD	CONDITIONS CIRC	REL.	WIND				D/SITE	1. 2		20321
T	IME	TEMP	WEATHER	HUMIDITY	VELOCIT		ECTION		FACE		MONIT	
(24	HR)	(APPRX)	(APPRX)	(GEN)	(APPRX	(0	- 360)	COND	ITIONS	INST	TRUMENT	DETECTOR
		-				+-	-			-	OVM-580	PID
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 4 0.367 0.654 1.389 2.475	6 1.47 5.564	ONE	WELL VO				LIZED WATER L ACTOR (GAL/FT)	
			DEPTH TO POINT OF WELL	DEP	TH TO S	CREEN	DI	WELL	NT.	DE	WELL VELOPMENT	WELL DEVELOPMENT
1	HISTORIC	DATA	(TOC)		N (TOC)	(FT)		TURBIDIT		DE	pH	SPEC. COND
DAT	WELL :	ECTED AT	PID READING (OPENING WELL)		DEPTH TO STATIC ER LEVEL (TOC)		DEPTH TO STABILIZE ER LEVEL	D		TH TO PUMP INTAKE (TOC)	PUMPING START TIME
RAD	IATION S	CREENING	PUMP PRIOR TO		1 17		P	UMP AFTI	ER			
	DAT		SAMPLING (cps)				SA	MPLING (cps)			
TIME	WATER	MON	CUMULATIVE VOL	COLLEC		DURI TEMP	NG P	COND	NG OP	ERA	TIONS	TURBIDITY
(min) quipment	LEVEL	RATE (mVmin)	(GALLONS)	OXYGEN (I		(C)		/cm)	pН	+	(mV)	(NTU)
2:38		mt Pu	10									
, ,	352	130	1							j	10 hof4.	Polled Comp
3:63	3.56	120		7.04	9	1.3	1.0	2	7.31		131	
308	3.64	120		7,08		7.3		983	7.3		120	
3:13	3.64	130		1.21	(7.1	0.		7.4	5	121	
3:18	3.65	125		7.37	_ (7.1	6.9	18	7.48	}	125	261
3:23	3.66			7.37	3 6	110	0.8		7.5		131	173
3:28	3.14	125		7.40		3:7	0,8	36	7.54		136	126
3:33				7,3-		8.8	0.8	16	7.53	5	7314	1 72.0
		125		7.37		8.8	0.	194	7.55		147	40.1
	4.17			7.3	8	1.7		186	7.5		147	40.1 32.4 21.5
	4.21			7.30		5.7	0.7	183	75		148	21.5
	4.33			7.29		7.7	0,7	76	7.5		151	1210
	4,52			7.35	- 8	.8	0.7	69	7.5		157	17.3
	4,67			7,28	2 6	3.7	0.7		7.5		155	17.3
	485			7.18	8	.7	0.7		7.50		155	15.1
	5.02			7.32		.8		154	7,5		157	13.1
	5.25	1		7.32		,8	0.7	51	7.5		157	11,5
		125	3 gal -	7.15		1.8	0.7		7.5		158	10.3
1001	-	-				^						
	5.60		U	7.2	5 8	18	0.7	38	7.51	0	164	10.6

	SAMPLING	PRESER	VATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field			
7								
						L		
CO	MMENTS: (QA/QC	C?)			<u> </u>			
	HORIBA 23066							
	YSI GIZZ HACH TURB							
	HACH TURB	17358						

SAMPLING RECORD - GROUNDWATER PARSONS WELL #: MWT-Z6 SENECA ARMY DEPOT ACTIVITY Ash Landfill LTM Groundwater Sampling - Round 18 DATE: 12/16/14 PROJECT: INSPECTORS: Oillinen ROMULUS, NY LOCATION: PUMP#: WEATHER/ FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) SAMPLE ID #: 4LBW-2032 REL. WIND (FROM) GROUND/SITE MONITORING TIME TEMP WEATHER HUMIDITY VELOCITY DIRECTION SURFACE DETECTOR (APPRX) (0 - 360)CONDITIONS INSTRUMENT (APPRX) (APPRX) (GEN) (24 HR) OVM-580 PID WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = |(POW - STABILIZED WATER LEVEL) DIAMETER (INCHES): X WELL DIAMETER FACTOR (GAL/FT) | 3 0.367 1.47 0.041 0.0026 0.163 0.654 GALLONS / FOOT: LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564 DEPTH TO POINT DEPTH TO SCREEN WELL WELL. WELL DEVELOPMENT DEVELOPMENT DEVELOPMENT LENGTH TOP OF OF WELL SPEC. COND HISTORIC DATA SCREEN (TOC) TURBIDITY (TOC) (FT) Hq DEPTH TO PUMP PUMPING START DEPTH TO DEPTH TO TIME DATA COLLECTED AT INTAKE PID READING STABILIZED STATIC WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC) (OPENING WELL) WELL SITE RADIATION SCREENING PUMP PRIOR TO PUMP AFTER SAMPLING (cps) SAMPLING (cps) **DURING PURGING OPERATIONS** MONITORING DATA COLLECTED SPEC. COND TURBIDITY WATER PUMPING CUMULATIVE VOL DISSOLVED TEMP (C) pH LEVEL RATE (mVmin (GALLONS) OXYGEN (mg/L) (mS/cm) (mV) (NTU) Equipment Used 162 1,2 8.8 0.729 56 10.4 5.99 7.28 0,723 10.8 162 6.10 125 ,26 8.8 7.56 0.719 162 0 7,09 7,55 125 6.43 0.718 10. 7.50 0.716 5:00 6.70 120 1.9 0.719 7.5 3 7.15 0. 6 175 23 7,56 66 0.740 165 7,32 90 16 5:25 743 125 7,58 6,6 EMD URGI 12 1201 Do 3.53 140 3,21 thered pun nerenjed 12 8:25 45.012 be for 7.35 112 04 4 34 06 465 112 1.00 4.76 100 9.2 5.08 0 9.2 112 9 32,1 3 27.5 925 5.68 9.2 21.4 25 9.2 2

	SAMPLING	PRESERV	'ATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT. VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field			
7								

(41	2 (0.)
Horisk	23066
HACH	12358
HERON	180 74
YS1 85	6122
(tach cou	on 19031

IDW INFORMATION:		

		SAM	PLING R	E)	CO	RD	-	GR	OU	IND	W	ATEI	3
S	ENEC	A ARMY I	DEPOT ACTIVITY	,			PAR	SON	15		W	ELL #: M	WT-26
	ROJEC		Ash Landfill L			water Sa US, NY		- Round	1 18			DATE: 12 SPECTORS: MP#:	2/17/14 0.11mm 9974
W	EATHI	ER / FIELD	CONDITIONS CHEC	KLIS	Γ	(RE	CORD	MAJOR	CHAN	GES)		MPLE ID #:	
					EL.	WIN		-		D/SITE		ALBU -	
	IME	TEMP (APPRX)	WEATHER	HUMIDIT (GEN)				ECTION			INIC	MONIT	ORING DETECTOR
(22	HR)	(APPKA)	(APPRX)	(6	EN)	(APPF	(X) (U	- 360)	COND	HONS	INS	OVM-580	PID
												O 1 M - 300	TID
G	ALLONS	(INCHES); / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163	3 0.367	4 0.654	6	1	WELL VO	XV	VELL DIAM	ETER	FACTOR (GALIFT))]
LITERS/FOOT			0.010 0.151 0.617 DEPTH TO POINT	1.389	2.475 DEP	5.564 TH TO	SCREEN) ///	WELL	/ /	,/(WELL	WELL
HISTORIC DATA			OF WELL (TOC)		TO	OF N (TOC)	LENGTH (FT)		TURBIDIT		DI	PH	DEVELOPMENT SPEC. COND
DATA COLLECTED AT			PID READING		MAT	DEPTH TO			DEPTH TO	D	DE	PTH TO PUMP INTAKE	PUMPING STAR TIME
	WELL	911E	(OPENING WELL)		WAI	ER LEVE	L(10C)	WAI	ER LEVEL	(100)	_	(TOC)	
RAD	IATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						UMP AFTE				
			ITORING DATA	CO	LLEC	TED	DURI				ER	ATIONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOI. (GALLONS)		ISSOLV YGEN (n		TEMP (C)		COND (cm)	рН		ORP (mV)	TURBIDITY (NTU)
quipment	6.57	112		-	1,22		9.2	1.,	10	7,5	4	146	
9:55	6,79			7	26	,	9.2	1,11	0	7.5	5	143	8,86
000	7.03	112	2,9 gal		,20	>	9.2	1.0	9	7.5		143	8,90
10.05	7.18	10.8		-	1.1	3	9.2	1.6		7.50	7	141	7.60
1010	1.33	108		6	,92	-	9.1	1.0	7	7,6	1	141	6.48
1015	1.38	103		0	185	-	7.1	1.0	7	7.59		142	6,85
120	152	108		6	.80		9.2	1.0	7	7.5	5	144	6.61
625	1.55	108	3.5 april	6	74		9.2	1.0		7.5	5	144	6.13
630	7.60		, ,		.70		9.2		07	7.5	-	143	5.71
	1.70	108			66		9.2	1.0	,	7.5		144	6.32
	7.78				,51		9,3		9	7.50		144	5.75
	1.84				42		9.4	1.0	Aug. The Control of t	7.50		144	4.80
050	7.98		4.291		.3		9.5		10	7.54		144	3.95
055		108)		.31		9.4	1.1		7.46		147	4.03
	8.5			6	.14	K	91.5	1.1		7,5		146	3.16
1105				6	20		9.5		2	7.5		146	3.02
110		112			,12		9,5		2	7.4		146	4,54
	8.19	112	5 gal		,0		9.5	1.13		7.4		148	4.03
	8,20		34	6	.01		9,5		3	7,4		149	2.55
	8,30	_			.9		7.6	1.14		7.4		152	4.13
	8.35				180		9.5	1.14		7.4		190	3.64

	SAMPLING	PRESER	VATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED B
	ORDER			COUNT. VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 dcg. C	HCL	2/40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)		,		field			
7								
CO	MMENTS: (QA/Q	C?)						
CO	MMENTS: (QA/Q	C?)						
	WINFORMATION							

		SAM	PLING F	REC	CO	RD	-	GR	OL	IND	WATE	R	
SE	NEC.	A ARMY I	DEPOT ACTIVITY	7			PAR	50N	IS		WELL #: ^	1W-	r-26
	OJECT		Ash Landfill I			water Sa LUS, NY		- Round	1 18		DATE: INSPECTORS: PUMP #:	12	117/14 11/20 174
			CONDITIONS CHEC	R	EL.	WIN	D (1		GROUN	ND/SITE	SAMPLE ID #: ALBW ZO321 MONITORING		
(24)		TEMP (APPRX)	WEATHER (APPRX)		IDITY EN)	(APPR		- 360)		FACE ITIONS	INSTRUMENT		ETECTOR
				-	-		-				OVM-58	30	PID
GAI		(INCHES): FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VO			STABILIZED WATE ETER FACTOR (GAL/		L)
н	STORIC	DATA	DEPTH TO POINT OF WELL (TOC)		TO	TH TO P OF EN (TOC)	SCREEN LENGTH (FT)	DEVELOPMENT			WELL DEVELOPMENT pH		WELL EVELOPMENT SPEC. COND
	COLLE WELL S	CCTED AT	PID READING (OPENING WELL)		WAT	DEPTH TO STATIC TER LEVEL			DEPTH TO STABILIZE ER LEVEL	D	DEPTH TO PUMP INTAKE (TOC)	PU	MPING START TIME
RADIA	RADIATION SCREENING PUMP PRIOR TO SAMPLING (cps)								UMP AFT				
TIME I	WATER	MON.	ITORING DATA		LLEC		DURI	NG P	URGI	NG OP	ERATIONS		TURBIDITY
	LEVEL	RATE (ml/min)	(GALLONS)		YGEN (n		(C)		/em)	pH	(mV)		(NTU)
	3.48	112		5	.71	6	9.5	1,1	5	7.4	^		2.89
	8.53	112		5	3, 15	7	9.5	1,1	5		b 15 B		2,10
1	3,63	112		5	5.48		9.5	1.1	6	7.3			1,59
1200	0,74	112	6 get	-	5.3	61	9.6	1.16	2	7.3	1 154		1.47
			- Songle	Por		5,T	or of	Sulf.		MME		ests	Fe Ma
	1-107	H 7ES	T- Fe2 = 0	,00) _v	7/1		MA	04:	0.0	my/L	·imi	†
								-					

	SAMPLING	PRESER	VATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT: VOLUME	TYPE	NUMBER		DATE
1	VOC 8260B	4 deg. C	HCL	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field			
7								
						•		
אס	VINFÖRMATION	•						

	ENECA	ARMY I	DEPOT ACTIVITY			F	PAR	50N	is				UT- 2
	ROJECT: CATION		Ash Landfill L			vater Sa US, NY		- Round	18			CTORS:	11/2014 0:11 mz
W	EATHE	R / FIELD	CONDITIONS CHEC	KLIS	Г	(RE	CORD	MAJOR	CHANG	ES)		#:	17.) 2
***	LATHE	TIEED.	COMDITIONS CHEC		EL.	WINI			GROUND		17-6	BW 20	322 + MS
T	IME	TEMP	WEATHER	ним	IDITY		TY DIRI	ECTION	SURF	-		MONIT	ORING
(24	(HR)	(APPRX)	(APPRX)	(G	EN)	(APPR	X) (0	- 360)	CONDIT	TIONS	INSTR	UMENT	DETECTOR
												OVM-580	PID
GA	METER (I ALLONS / I LITERS/FO	NCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VO	LUME (GAL X WI) = [(POW - ELL DIAME	STABILIZ TER FAC	ZED WATER LI TOR (GAL/FT)	EVEL)
	DEPTH TO POINT OF WELL				DEPT		SCREEN LENGTH	DI	WELL. EVELOPMEN	T T		VELL LOPMENT	WELL DEVELOPMENT
ŀ	HISTORIC I	DATA	(TOC)		SCREEN	V (TOC)	(FT)		TURBIDITY			pH	SPEC. COND
	DATA COLLECTED AT PID READING (OPENING WELL) RADIATION SCREENING PUMP PRIOR TO					DEPTH TO STATIC ER LEVEL	-	WAT	DEPTH TO STABILIZED ER LEVEL (roc)	IN	TO PUMP TAKE TOC)	PUMPING START TIME
	DATA		SAMPLING (cps)					SA	MPLING (cp	os)			
	Lauren	MON	CUMULATIVE VOL		LLEC		DURI		COND	G OP	ERAT	IONS	TURBIDITY
TIME (min)		RATE (ml/min)	(GALLONS)		YGEN (m		(C)		/cm)	pH		(mV)	(NTU)
· 2-2	Used	et D	0						-		+		1
>	/11/	170 10	weed to 110			-							
:30	5.42	110	0 1 0 1 0	10	,09		IDD	16	2	6,60	,	-85	
:40	542	110			,09			1.6		6,71		-84	
:45	542				,09		10.1		3	6,68		- 86	
50	6.42	110			, 10		10.1	1.6	1	6,70		-87	40,5
155	542	110			-	-	10.1	. 6	5	6.68		-91	27.7
1 1 1		110			.08		10.1	1.6	7.	6.70	_	-92	25.1
1 = /10		110		0,08					(2)				
2:03		110		-			10:2						
:03	5.42	110		0	.07	/	10.2	1.6	7	6.78	3	-92	23.4
2:03	542	110		0	.07		10,2	1.6	7	6.6	3	-92	23.4
2:03	542	110		0	.07		10.2	1.6	7	6.6	9	-92 -95	23.4 17.8 15.8
2:03	542 542 542	110 110 110		0.0.	.07		10,2	1.6	7	6.6	3 9	-92 -95 -96 -97	23.4 17.8 15.8 14.8
2:03	542 542 542	110 110 110 110		0.0.0.	.07		10.2	1.6	7 9 71 12	6.70 6.6 6.70 6.6 6.70	3 9 9	-92 -95 -96 -97	23.4 17.8 15.8 14.8 14.0
203 208 20 20 20 235 430	542 542 542 542 5.47 5.50	110 110 110 110 140		0.0.0.	.07		10.2	1.6 (.6 (.7)	7 9 5 71 12 13	6.70 6.6 6.70 6.6 6.7	9	-92 -95 -96 -97 -98 -100	23.4 17.8 15.8 14.8 14.0 /3.1
2:03 2:08 2:15 2:20 2:35 1:30 1:40	5.42 5.42 5.42 5.47 5.50 5.50	110 110 110 110 140 140 140		0.	07		10.2 10.2 10.2 10.2 10.3 10.3	1.6	7 9 71 12 13 13	6.70 6.6 6.70 6.7 6.7 6.7	9 9 6 6	-92 -95 -96 -97 -98 -100	23.4 17.8 15.8 14.8 14.0 13.1
2:05 2:08 2:15 2:20 2:30 2:30 2:45	542 542 542 542 5.47 5.50 5.50	110 110 110 110 140 140 140		0 0 0 0 0 0	.07 .07 .07 .07	(10.2 10.2 10.2 10.2 10.3 10.3	1.6 (.6 (.7)	7 9 5 71 12 13 13 13 73	6.70 6.6 6.70 6.70 6.7 6.7	9 9 6 6 3	-92 -95 -96 -97 -98 -100 -101	23.4 17.8 15.8 14.8 14.0 13.1 12.3 - 11.9
2:05 2:08 2:15 2:20 2:25 -130 2:45 2:45	5,42 5,42 5,42 5,47 5,50 5,50 5,50	110 110 110 110 140 140 140 140		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07		10.2 10.2 10.2 10.2 10.3 10.3 10.1	1.6 (.6 (.7) 1.7 1.7 1.7	7 9 5 71 12 13 13 13 15	6.70 6.6 6.70 6.70 6.7 6.7 6.7	9 9 6 6 3	-92 -95 -96 -97 -98 -100 -101 -103	23.4 17.8 15.8 14.8 14.0 13.1 12.3 - 11.9
105 108 108 120 130 130 130 140 150	5,42 5,42 5,42 5,47 5,50 5,50 5,50 5,50	110 110 110 110 140 140 140 140 140		0 0 0 0 0 0 0	07		10.2 10.2 10.2 10.3 10.3 10.1 10.1	1.6 (.6 (.7 1.7 1.7 1.7	7 9 5 71 13 13 73 75 (6	6.70 6.6 6.70 6.70 6.7 6.7 6.7	9 9 1 6 6 3 1	-92 -95 -96 -97 -98 -100 -101 -103 -103	23.4 17.8 15.8 14.8 14.0 13.1 12.3 - 11.96 11.6 9.90
105 108 108 120 130 130 130 130 130 130 130 130 130 13	5,42 5,42 5,42 5,47 5,50 5,50 5,50	110 110 110 110 140 140 140 140		0 0 0 0 0 0 0 0	07		10.2 10.2 10.2 10.2 10.3 10.3 10.1	1.6 (.6 (.7) 1.7 1.7 1.7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6.70 6.6 6.70 6.70 6.7 6.7 6.7	9 9 6 6 6 3 1	-92 -95 -96 -97 -98 -100 -101 -103	23.4 17.8 15.8 14.8 14.0 13.1 12.3 - 11.9

•	100	٠٠٠ (٠٠	

	SAMPLING	PRESERV	ATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT' VOLUME	ТҮРЕ	NUMBER		DATE
1	VOC 8260B	4 deg. C	нсі.	3/40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
4	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
6	Mn+ (HACH)				field			
_7								

C	0	M	M.	EN	TS:	(QA/	QC?)

HORIBA 23066

YJi 85 6122

HACH DOS 1235B

IDW INFORMATION:

SENECA	ARMY I	DEPOT ACTIVITY	Y		PA	R	50N	ıs		W	ELL #: M	JT-2	7
PROJECT LOCATION		Ash Landfill l		oundwate MULUS		ing -	Round	1 18	-		DATE: 12 SPECTORS: 1 MP#: 245	117/20 5/11mm	14
WEATHE	R/ FIELD	CONDITIONS CHE	RE		(RECO			GROUI	ND/SITE	SA	MPLE ID #:	12 + ms	luce
TIME (24 HR)	TEMP (APPRX)	WEATHER (APPRX)	HUMI (GE		PPRX)		360)		FACE	IN	MONITO STRUMENT OVM-580	DETEC	
DIAMETER (I	INCHES): FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163	3 4 6 X WELL DI 3 0.367 0.654 1.47 7 1.389 2.475 5.564										
LITERS/F		0.010 0.151 0.617 DEPTH TO POINT OF WELL (TOC)	1.389	DEPTH TO TOP OF SCREEN (TO	SCR	TH		WELL EVELOPM TURBIDIT	- 1	D	WELL DEVELOPMENT pH	WELL DEVELOPA SPEC. CO	ÆNT
	DATA COLLECTED AT WELL SITE (OPENING WELL			ST	TH TO ATIC LEVEL (TO)		DEPTH TO STABILIZE ER LEVE	ED	DE	EPTH TO PUMP INTAKE (TOC)	PUMPING :	
RADIATION SC DATA		PUMP PRIOR TO SAMPLING (cps)	601				SA	PUMP AFI	(cps)		1 TONG		
TIME WATER (min) LEVEL uipment Used	MON PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	DI	SSOLVED GEN (mg/L)	TEI (C		SPEC.	COND (/em)	pH	ER	ORP (mV)	TURB (N	
3.15 5,50	140	4.5		.07	10.		1.7	8	6.80		-105	8.	21
Cu 60	- 5 sym	1 le it 3	:25	- f		00	, T	محر,	5-1fg	+3	MME		
	Fiz	a test te	8	pro	Novy	\$ 51		<u> </u>	13	1	750 =	7	
									8	5	3135		
						_							
	Ferm	3,30 mg/L 2200 mg/L		III									
		1											
						+							
					-	-			-	_		-	

. Ne

	SAMPLING	PRESERV	ATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT: VOLUME	TYPE	NUMBER		DATE
l	VOC 8260B	4 deg. C	HCI.	3/ 40 ml	VOA			
2	MEE (RSK-175)	4 deg. C	HCL	2/40 ml	VOA			
3	TOC (9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
1	Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			
5	Fe+ (HACH)				field			
	Mn+ (HACH)				field			
<u>, </u>								
O	MMENTS: (QA/Q	C?)						
O	MMENTS: (QA/Q	C?)				·		
O	MMENTS: (QA/Q	C?)						
	WINFORMATION					· • •		

	S	ENEC.	A ARMY I	DEPOT ACTIVITY	<i>Y</i>			PAR	SON	15		WELL #: Mu	T-28
	PI	ROJEC	Γ:	Ash Landfill I	TM (Fround	water S	ampling	- Roun	d 18		DATE:	2/17/14
	LO	CATIO	N:		F	ROMUI	US, NY	<u> </u>				The state of the s	T. BELAN
	w	FATHE	P / FIFI D	CONDITIONS CHEC	KLIS	T	(R)	CORD	MAIOR	R CHAN	(GES)	PUMP#: SAMPLE ID #:	9500
		LATIL	KITIEED	CONDITIONS CHEC		EL.	WIN				ND/SITE	ALBW 20	324
		IME	TEMP	WEATHER	HUN	AIDITY	VELOC		RECTION		FACE	MONIT	
		HR)	(APPRX)			GEN)	(APPI		- 360)	COND	ITIONS	INSTRUMENT	DETECTO
	1300		375	MOSTILY CLOSE	1	au	270	5	-10	WET		OVM-580	PID
	G	METER ALLONS	(INCHES): / FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	0.654	6 1.47 5.564	ONE	WELL VO			STABILIZED WATER L ETER FACTOR (GAL/FT)	
				DEPTH TO POINT OF WELL		DEP	TH TO	SCREEN	T .	WELL.	ENT	WELL DEVELOPMENT	WELL DEVELOPMEN
	1	HISTORIC	DATA	(TOC)	-		N (TOC)	(FT)		TURBIDIT		pH	SPEC. CONI
	DAT	TA COLLE	ECTED AT	PID READING	H		DEPTH T	2		DEPTH TO	ED	DEPTH TO PUMP INTAKE	PUMPING STA
		WELL S	SITE	(OPENING WELL)		-	ER LEVE	L (TOC)	-	5 YU	L (TOC)	(100)	1310
	RAD		CREENING	PUMP PRIOR TO		150	58	V-12-17-1		PUMP AFT			1310
		DAT		ITORING DATA	CO	LLEC	TED	DURI		PURGI		ERATIONS	
	TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	T	DISSOLV XYGEN (r	ED	TEMP (C)	SPEC.	COND S/cm)	pH	ORP (mV)	TURBIDI (NTU)
	Equipment	Used	1.10.0.	DO METER START		V31		Vici	Hor	BA	Hous	A Horrisa	HAC-
RE	1320	5.87	85	Donera STANT	+	3.08	χ	10.9	1,3		6.58		76.8
•	1330	5.84	96		_	108		10.9	1.3		6.5	-	25.
	1346	5.92	95	0.5	_	1.05		11,0	1.3		6.57	-76	23.9
		5.11	85	75	1	7.04		10.9	4		6.56		16.
	1400	-	86	1,0		1.04		10,9	1.4		6.56		12.0
		5,95		~1,5	_	70,04		10.9	1,4		6.56		10.1
		5.99		1.75		.03		10.8			6.55		10.2
		6.01		210	-	.02		10.7	1,40	/	G.54		8,17
	1430		105		_	.02	-	12.7	1.4		6.54		7.41
		6.05	105	~2.75	1	,02		10.7	1.4		6.5		5.8
	Ittee		54.00	C									
	1440		SAMPL										-
			Feu	2.13 My/L									
			My	7.4 mg/L									
	_					4							
							1000		1000				

	AMPLING		PRESE	ERVATIVES	BOTTL	ES	SAMPLE	TI	ME	CHECK	ED BA
	ORDER				COUNT VOLUME	TYPE	NUMBER	ļ		DA	TE
· vo	OC 8260B		4 deg. C	HCL	3/ 40 ml	VOA					
			4 deg. C	HCL	2/ 40 ml	VOA					
	C (9060A)		4 deg. C	HCL	3/ 40 ml	VOA					
Sulfate	(EPA 300.1)	374	4 deg. C		1 x 250 mL	HDPE					
Fe	+ (HACH)					field					
	+ (HACH)		740	MAR LONG CO	14 CKS	field !	ann s'	18624	7		1.E.
			<u> </u>							_	
-											
			ļ								
				7.2	•						
tur BA	NTS: (QA) 19276 0032										
tur BA YSIBS tack	19276 0032	17	3,		i ya		१९८ ५ स्टब्स्	7°	и (57. ·	• • • •
turBA YSIBS tack	19276 0032	; 17 [56]	3		<. · `	v .	ne de la constante de la const	grant 18	1.	``* .	٠. ٠
tur BA 1 SI BS tacy	19276 0032 TURB	17	3	•		* · · · · · · · · · · · · · · · · · · ·	no de la constante de la const	gran, s		``.,	S.E.
tur BA Y SI BS tach	19276 0032 TURB 1	561	۲.			* · · · · · · · · · · · · · · · · · · ·				**, ** **, *	Servi
tur BA Y SI BS tach	19276 0032 TURB	17	3						* · · · · · · · · · · · · · · · · · · ·	**, ** **, *	56. 36. 7
tur BA Y SI BS tach	19276 0032 TURB 1	1561	3			***	· ·		**************************************		500 500 7 7
tur BA Y SI BS tach	19276 0032 TURB	561	3					· ·	**************************************		56. 56. 6.
tur BA Y SI BS tacy	19276 0032 TURB	17	3				*{ ·	· ·	**************************************		
to BS	19276 0032 TURB	1561	3				****	· ·	*** *** *** ** ** ** ** ** **		58°
to BS	19276 0032 TURB	17 5 6	3				*{ ·	· ·	\$ 10 \$ 10 \$ 10 \$ 10 \$ 10 \$ 10 \$ 10 \$ 10		
toring	ORMATICA SCA	N:	3				****		* * * * * * * * * * * * * * * * * * *		Service of the servic
toring	19276 0032 TURB	N:	3				****				Service of the servic
WINF Hora	ORMATICA SCA	DN:	3	76 /500			****		* * * * * * * * * * * * * * * * * * *		

S	ENEC	A ARMY I	DEPOT ACTIVITY	7			PAF	SON	15		WELL #: MU	UT-289
	ROJEC		Ash Landfill L			water Si US, NY		- Round	d 18		DATE:	12/16/14 T. Berny
W	EATHI	ER / FIELD	CONDITIONS CHEC	KLIS	T	(RE	CORD	MAJOR	CHAN	GES)	SAMPLE ID #:	
		of		7	EL.	WIN	D (FROM)	GROUN	VD / SITE	ALBW 20:	325
	IME	TEMP	WEATHER		HDITY			RECTION		FACE	MONIT	
1525	HR)	(APPRX)	(APPRX)	(G	EN)	(APPR	- '	35	GRASS		INSTRUMENT	DETECTOR
110		10	STORMA, LT WIND			3.70		,	4.4.72	, 561	OVM-580	PID
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION BAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	0.654	6 1.47 5.564			X '	AL) = {(POW-	STABILIZED WATER I FER FACTOR (GAL/FT)	LEVEL))1 4.67 gal
-	DITENSI	1001	DEPTH TO POINT	1.367	DEP	тн то	SCREEN		WELL		WELL	WELL
1	HISTORIC	DATA	OF WELL (TOC)	r		P OF N (TOC)	LENGTH (FT)		EVELOPMI TURBIDIT		DEVELOPMENT pH	DEVELOPMENT SPEC, COND
			13.07									
DAT	ra colli Well :	ECTED AT	PID READING (OPENING WELL)		WAT	DEPTH TO STATIC ER LEVEI			DEPTH TO STABILIZE ER LEVEL	D	DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIME
					3	54						1525
RAD	IATION S DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT.			
		MON	ITORING DATA	CO	LLEC	TED	DURI	NG P	URGI	NG OPE	ERATIONS	
TIME (min) quipment	WATER LEVEL Used	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV (YGEN (n	and the second second	TEMP (C)		COND (cm)	рН	ORP (mV)	TURBIDITY (NTU)
525	1	BLADDER	Pemp	45	(YSI	Horu	BA	HONIB	4 HORIBA	HACH
540	4.0	120	0	7	.91		7.0	0,9		7.03	77	33.9
550	4.45	110	~ 05	7	.90		7.2	0.7		7.36	94	10.6
600	4.50	100	0.75	7	. 98	,	7,5	0.	729	7,37	88	5.95
410	5,20	95	~1.2	7	195		7.4	0.6		7,40	91	4.87
	5,20	95			481		7.4		694	7.39	87	4.14
	5.71	95	~ 2.0	7	,93		7.4	06	83	7.40	87	
640	5,94	70	~2.5		1.90			0.6		7.41	86	3.14
	6.15			-	295			0.6		7.41	2010	7.78
	6.28		3		5.09		7.3	0.6	61	· 27.		2.22
1715			~3.5		,82		7.7			7.37	82	
	3.64	wird P	me t do probe	iN	wen		835	3000	T PUN	P. INI	T Do= 6.14	e 1.2c
	4.28		0		.71		7.4	0.6		7.22	183	1.67
900		100			76	_		Oi 6		7.41	97	1.58
2910	4.90	110	0.5		32			0,59		7.46	91	1.73
	5,76	105	~ (,0		32			0.58		7.50	87	1.13
	5.73	605			3.32		7.4	0,5		7.50		1,20
2940		100	~ 1.75		.33		27	0.50		7.5	85	1,41
	6.23	100			, 27			0,5		7.48		1.28
	635	95	~ 2.3		3 0		un m	0,5		7.46		1.19

SAN	MPLING	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIM	E	CHECK	נט טו
	RDER			COUNT/ VOLUME	ТҮРЕ	NUMBER			DA	re
1 VOC	8260B	4 deg. C	HCL	3/ 40 ml	VOA					
MEE (I	RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA					
3 TOC ((9060A)	4 deg. C	HCL	3/ 40 ml	VOA					
4 Sulfate (I	EPA 300.1)	4 deg. C		1 x 250 mL	HDPE			'-†		
	НАСН)				field					_
	НАСН)	1-75.0	* t Alle	16 37 7	field	in the first to	11: 1.	٠,		3 .
7						2				
		7-11	1.8							
						:: 				
 							, is ,		<u>-</u>	
	<u> </u>					<u> </u>	, ,			
				* ; ;			<u> </u>			
COMMEN	TS: (QA/Q	(C?)								
	*#remsor	\$5. No.58	(3000) 1 gs	· · · · · · · · · · · · · · · · · · ·		,	, All 1	งกร รู้รั		
tswy Sie	taninso Unit	25. No.14.							,	
tswy Sie	1965-00 176-17 146-180	\$5. No.58	(2) · ·			• • •			2000 2000	
ister Ministra Minist	**************************************	\$5 NSW 				• • •				
ister Ministra Minist	Tariansia 177 178 178 178 178 178	\$5. 858 			***	• • •			**: **:	
Series Series Minde	Tariansia 177 178 178 178 178 178	\$5. KSH 			***	• • •				
ister Ministra Minist	Tariansia 177 178 178 178 178 178	\$5. KSH 			***	• • •				
Series Series Minde	Tariansia 177 178 178 178 178 178	\$5. KSH 				• • •				
No. 11	RMATIO	The North				• • •				
DWINFO 1-bris	RMATION	276/213				• • •				
DWINFO 1-bris	RMATION A. 197	276/213	39			• • •				
DWINFO 1-bris	RMATION A. 197 20032	276/213	39 30 150			• • •				

• ..

2011 2812 SA

111;

S	ENEC	A ARMY I	DEPOT ACTIVITY			PAI	102 5	15		WELL #: MW	T-29
	ROJECT CATIO		Ash Landfill L		undwater MULUS, N		g - Round	18	_	INSPECTORS:	12/17/14
			CONDITIONS CIVE	VV 407	-	FCCDF		CILLY	IOPO)	PUMP #: SAMPLE ID #:	2 9400
W	EATHE	R/ FIELD	CONDITIONS CHEC	REI			(FROM)		ND/SITE	ALBW 2032	50707
Т	IME	TEMP	WEATHER	HUMIE			RECTION	7.50	RFACE	MONITO	
	HR)	(APPRX)		(GE	N) (API	-	0 - 360)	CONI	DITIONS	INSTRUMENT	DETECTOR
10	D	43	overcourt,	Low	10-	15 2	170	NO SA	vav,	OVM-580	PID
G.	METER (ALLONS)	INCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367	4 6 0.654 1.47 2.475 5.564	ON	E WELL VO	LUME (G X	AL) = (POW	- STABILIZED WATER LI ETER FACTOR (GAL/FT)	EVEL)
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTH TO TOP OF SCREEN (TOC)	SCREET LENGTI (FT)	I D	WELL EVELOPM TURBIDI		WELL DEVELOPMENT pH	WELL DEVELOPMENT SPEC. COND
DA	TA COLLE		PID READING (OPENING WELL)		DEPTH STAT WATER LEV	IC		DEPTH T STABILIZ ER LEVE	ED	DEPTH TO PUMP INTAKE (TOC)	PUMPING STAR TIME
RAD	DATA	CREENING	PUMP PRIOR TO SAMPLING (cps)					PUMP AF			
		MON	ITORING DATA	COL	LECTED	DUR	ING P	URGI	NG OF	PERATIONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		SOLVED GEN (mg/L)	TEMP (C)		COND S/cm)	рН	ORP (mV)	TURBIDITY (NTU)
quipment	1										
1010	6.49	100	2,75	7,		7.1	0.5		7.43	83	1,44
no	6.63	(18			75	8.5	0.5		17.41	84	1.53
1030	7.01	105	3.25	-	65	7.9	0. 60		7.36	83	1,23
०५०	7.14	100			54	8.0	0.6		7.33		1.18
1050	7.26	95	~4.0	7,	53	8.0	0.6	24	7.37	84	
	PUT	DO P201	E IN SECTIS CH	re.	TO SEE	F. 52					
1130	7.55	100	~510	-			0.6	83	7.20		1.79
140	7.61	100	~ 5.2	7,1	61	7.8	0.6	۲ ٦	7.17	82	1.30
	7.61	100		7.	57	7.8	0.7	106	7.16	83	1,24
1150	7.62	100		7.	58	7.9	0.7	11	7.15		1.38
1155	7.55	110	~5.5	7	55	7.9	0.7	12	7.15	81	1,67
1200	SA	MLE	ALBW 2.325								
				7.	53 A	ere	SAME	Lev G	Pont	mu Rower	()
		Fe ²⁴ Mu	0.11 7/2								
		14111	0.7 Agla								

(SAMPLING ORDER		SERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	DRDER			COUNT: VOLUME	ТҮРЕ	NUMBER		DATE
, vó	8260B			2/401	VOA			
1 VOC	820UB	4 deg. C	HCL	3/ 40 ml	VOA			
2 MEE.(RSK-175)	4 deg. C	HCL	2/ 40 ml	VOA			
3 . TOC	(9060A)	4 deg. C	HCL	3/ 40 ml	VOA			
	EPA 300.1)	1 . 7		1 . 250 I	HDPE			
4 Sulfate (EPA 300.1)	4 deg. C		1 x 250 mL	HDPE		•	
5 Fe+	(НАСН)				field	, , , ,	ergias 7	
6 Mn+	(НАСН)			i i ≱i igh	field			,
7			1-1-2-					
' -				l				
				<u> </u>				
_			-					
					L			
	۲: ن	(MA)	**************************************		(6) (1) (2)	27.	· ,-	
	* : **:	TVA MAX	. P. P	₹. 	Sec.		¢	
	γ : 		**************************************	7 3 7 5	100 mm		C .	
	7	i Nove Marie	10% 11% 17	17 - 18	2' 33 4	. 1 b	C	
	7	i Nove Marie	10h				c	
	, x		1000 11000 11000 11000 11000 11000	g y Seg to see see	2 73, 724 25, 32	and the second	• • • • • • • • • • • • • • • • • • •	
	N ₁		100 1100 1100 1100 1100 1100 1100 1100	19 10 19 12 19 14 2017 11 14 11 14 14		100 mm = 120		
, N. ,			1000 (1000) (1000) (1000) (1000) (1000) (1000)	Paris Paris Paris Paris Paris Paris Paris Paris		100 mm = 120		77
(100 1100 1100 1100 1100 1100 1100 1100	19 10 19 12 19 14 2017 11 14 11 14 14		100 mm = 120		72.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000 (1000) (1000) (1000) (1000) (1000) (1000)	Paris Paris Paris Paris Paris Paris Paris Paris		100 - 100 -		72.7 · · · · · · · · · · · · · · · · · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000 (1000) (1000) (1000) (1000) (1000) (1000)			100 mm = 120		72.7 · · · · · · · · · · · · · · · · · · ·
() () () () () () () () () ()			1000 (1000) (1000) (1000) (1000) (1000) (1000)			100 - 100 -		72.7 (V)
OR INFO	DRMATIC	DN:	1000 1000 1000 1000 1000 1000 1000 100			100 - 100 -		72.7 · · · · · · · · · · · · · · · · · · ·

S	ENEC	A ARMY I	DEPOT ACTIVITY	7			PAF	150	NS		W	ELL #: M	W	7-40
	CATIO		Ash Landfill L			water S US, N		g - Rou	nd 18			DATE: (SPECTORS: MP #:	D.	18/20,4
W	EATH	ER / FIELD	CONDITIONS CHEC	KLIS	Т	(R	ECORD	MAJO	R CHAN	NGES)		MPLE ID #:		na ary
				R	EL.	WIN	ND (FROM	-	ND/SITE	AL	BW2032		
	IME	TEMP	WEATHER		IDITY	VELO		RECTIO		FACE		MONIT		
(24	HR)	(APPRX)	(APPRX)	(G	EN)	(APP	RX) (- 360)	CONI	DITIONS	INS	TRUMENT	D	ETECTOR
	4-1-			-			+					OVM-580		PID
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	4 6 7 0.654 1.47 9 2.475 5.564					ETER FACTOR (GAL/FT)]		
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		TO	TH TO P OF N (TOC)	SCREEN LENGTH (FT)		WELL DEVELOPM TURBIDIT	ENT	DI	WELL EVELOPMENT pH		WELL EVELOPMENT SPEC. COND
			14.65											
DAT	TA COLLI	ECTED AT	PID READING (OPENING WELL)		WAT	DEPTH T		W	DEPTH T STABILIZ ATER LEVE	ED	DEI	PTH TO PUMP INTAKE (TOC)	PU	MPING START TIME
					3	.77	3		1					
RAD	IATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT			V		
			ITORING DATA	CO	LLEC	TED	DUR			NG OP	ERA	ATIONS		
TIME	WATER	PUMPING	CUMULATIVE VOL	I	DISSOLV	ED	TEMP	SPE	C. COND		T	ORP		TURBIDITY
(min) Equipment	LEVEL	RATE (ml/min)	(GALLONS)	OX	YGEN (a	ng/L)	(C)	(mS/cm)	pH	+	(mV)		(NTU)
3:4	0_	5-	tont Pun	6 -	_									
3:5	5		Restant Put	np	-									
4:07	5.38	5-3		j			8:71	0.5	59	8.1	0	- 22		
4:00	6.33	360					8.47	0,	558	8.00	,	-16		
4:09	6.78	330			7-11-0		8,21	0.	558	8.06	,	-	7	
4:14	7.05	260					8.09	0,	555	8.09	1	-2_		
4:19	1.30	260	1,5 601				8,27	0,	552	8.04	-	2_		
4:24	7.45	260					8.36	0,	552	8.04	1	2		
4:29		260	2,25 gal		100		8.41	0.	552	8.04				
4:34	7.69	260					8.55	0:	553	8:00	-	6		
4:39	1.79	260	3.10 gal				8,59	0,:	553	8.0	3	6		
4:44	1,85	260)				858	0,	553	8.03	3	7		
											1			
			Feo. 0	5	wy/	1-					+			
			Mn = 0	al v	vg /	_					1			
, , , , , , , , , , , , , , , , , , ,											+			

4 deg. C	3/ 40 ml 3/ 40 ml 4CL	VOA VOA			
4 deg. C	HCL 3/40 ml	VOA			
4 deg. C	1 x 250 mL	[
		HDPE		-	
		field			
		field			
				· ·	
5€ } c 3 \					
:					
	C?)	5€ ic 31	C?)	C?)	C?)

and the second

		·

APPENDIX B COMPLETE GROUNDWATER DATA

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Aren	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20059	ALBW20074	ALBW20088	ALBW20103	ALBW20117	ALBW20132	ALBW20147
Sample Date	1/3/2007	3/17/2007	6/5/2007	11/15/2007	6/24/2008	12/12/2008	6/4/2009
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Semple Round	1	2	3	4	5	6	7
Filtered	Total	Total	Total	Total	Total	Total	Total

													11000	
			Frequency			Number	Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedences	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Que
fointile Organic Compounds														
,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1 U	1 U	1 U	1 U	1 U	0,26 UJ	0,26 U
,1,2,2-Tetrachioroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.21 U	0.21 U
,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 UJ	1 U	1 W	0.31 U	0.31 U
,1.2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	1 U	1 U	1 U	1 U	0.23 U	0,23 U
,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1 U	1 U	1 U	1 U	1 U	0.75 U	0.75 U
,1-Dichloroethane	UG/L	2.6	12%	5	0	33	268	0.64 J	0.73 J	1.4	2.1	1 U	1.3	0.8 J
,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.41 U	0.41 U
,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 U	1 U	1 U	1 U	1 W	1 W	1 U
,2-Dibromoethane	UG/L	0	0%	0,0006	0	0	268	1 U	1 U	1 U	1 U	1 U	0.17 U	0.17 U
,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	1 U	1 U	0,2 U	0.2 U
,2-Dichloroethane	UGIL	5.6	16%	0.6	34	42	268	1 U	1 U	1 U	1 U	1 U	0.21 U	0,21 U
,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	1 U	1 U	1 U	1 U	0.14 U	0.14 U
,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Acetone	UG/L	2600	17%			45	262	5 U	2 J	7	5 U	5 U	1.3 U	1.3 W
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
romodichloromethane	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0.38 U	0.39 U
Sromoform	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0.26 U	0.26 U
Carbon disuffide	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	1 U	0.19 U	0.19 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.27 W	0.27 U
Chiorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.32 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0.32 U	0.32 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	1 U	1 U	1 U	1 113	0.32 U	0.32 U
Chloroform	UG/L	71	8%	7	7	22	268	27	13 U	14	8.7	1 U	2.2	2
Cis-1.2-Dichloroethene	UG/L	820	88%	5	166	235	268	220	170	430	720	200	610	260
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	1 U	1 U	1 U	0.36 U	0,36 U
cyclohexane	UG/L	0,3	0%	•••		1	268	1 U	1 U	1 U	1 U	1 U	0.22 U	0.53 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	1 U	1 U	1 U	1 U	1 U	0.28 UJ	0.29 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1 U	1 U	1 U	1 U	1 U	0,18 U	0.18 U
sopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 U	1 U	1 U	1 U	1 U	0.19 U	0.19 U
detinyl Acetate	UG/L	6	1%	•	•	2	253	1 U	1 UJ	1 U	1 UJ	1 W	0.17 U	0,17 U
dethyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	1 U	1 U	1 U	1 W	0.28 U	0,28 U
Aethyl butyl ketone	UG/L	0	0%	•	•	0	268	5 U	5 U	5 U	5 UJ	5 UJ	1.2 U	1.2 U
Rethyl chloride	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 W	0.34 U	0,35 U
Nethyl cyclohexane	UG/L		0%		•	1	268	1 U	1 U	1 U	1 U	1 U	0.22 U	0.5 U
Sethyl ethyl ketone	UG/L	4900	8%			22	268	5 U	5 U	5 U	5 U	5 UJ	1.3 U	1.3 U
Methyl Isobutyl ketone	UG/L	1.9	0%			1	268	5 U	5 U	5 U	5 U	5 UJ	0.91 U	0.91 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 UJ	1 U	1 U	1 U	1 U	0.44 W	0.44 U
	UG/L	0		5	,	0	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.18 U
Styrene	UG/L	0	0%	5	0	0	268	10	10	10	10	1 0	0.18 U	0.18 U

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A
Metrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20059	ALBW20074	ALBW20088	ALBW20103	ALBW20117	ALBW20132	ALBW20147
Sample Date	1/3/2007	3/17/2007	6/5/2007	11/15/2007	6/24/2008	12/12/2008	6/4/2009
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	1	2	3	4	5	6	7
Filtered	Total	Total	Total	Total	Total	Total	Total

		Maximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples							
Parameter	Unit	Vatue	Detections	Goale	Exceedences	Detects	Analyzed	Value Qual	Value Qual	Velue Qual	Value Qual	Value Qual	Value Qual	
Tetrachloroethene	UG/L	27	1%	5	1	2	268	1 U	1 U	1 U	1 U	1 U	0.36 U	
Toluene	UG/L	590	12%	5	18	32	268	1 U	1 U	1 U	1 U	1 U	0,51 U	
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	3 U	3 U	3 U	3 U	0.93 U	
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1.6	1.4	3.3	3.4	0.9 J	2.4	
Trans-1,3-Dichloropropene	UG/L	0	0%	0,4	0	0	268	1 U	1 U	1 U	1 U	1 U	0,37 U	
Trichloroethene	UG/L	3800	69%	5	86	185	268	2,000	1,000	1,100	2,700	220	1,400	ĺ
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 UJ	1 U	1 UJ	0.15 UJ	
Vinyl chloride	UG/L	180	67%	2	137	180	268	2.4	2.6	3,3	8.2	1.4	4.6	ĺ
Other														
iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							

133

113

136

136

136

136

MG/L 2050

UG/L 23,000

MG/L 1,060

98%

83%

100%

Methane

Sulfate

Total Organic Carbon

Value Qual

0,36 U

0.51 U 0.66 U

1.8

0.37 U

0,15 U

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A
GW	GW	GW	gw	GW	GW	gw
ALBW20162	ALBW20177	ALBW20192	ALBW20207	ALBW20222	ALBW20237	ALBW20252
12/17/2009	7/1/2010	12/19/2010	7/22/2011	12/15/2011	6/21/2012	12/12/2012
SA	SA	SA	SA	SA	SA	SA
LTM	LTM	LTM	LTM	LTM	LTM	LTM
8	9	10	11	12	13	14
Total	Total	Total	Total	Total	Total	Total
	PT-18A GW ALBW20162 12/17/2009 SA LTM 6	PT-18A PT-18A GW GW GW ALBW20162 ALBW20177 12/17/2009 7/1/2010 SA SA LTM LTM B 9	PT-18A PT-18A PT-18A GW GW GW ALBW20162 ALBW20177 ALBW20192 12/17/2009 7/1/2010 12/19/2010 SA SA SA LTM LTM LTM B 9 10	PT-18A PT-18A PT-18A PT-18A GW GW GW GW ALBW20162 ALBW20177 ALBW20192 ALBW20207 71/2010 12/19/2010 7/22/2011 SA SA SA SA LTM LTM LTM LTM B 9 10 11	PT-18A PT-18A PT-18A PT-18A PT-18A GW GW GW GW GW GW GW ALBW20162 ALBW20177 ALBW20192 ALBW20207 ALBW20222 12/17/2009 7/1/2010 12/19/2010 7/22/2011 12/15/2011 SA SA SA SA SA LTM LTM LTM LTM LTM LTM B 9 10 11 12	PT-18A PT-18A PT-18A PT-18A PT-18A PT-18A GW GW GW GW GW GW GW GW GW GW GW GW GW

		Maximum	Frequency of	Cleanup	Number of	of Times								
Peremeter	Unit	Value	Detections	Goels	Exceedences	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Foliatile Organic Compounds												22.7		
,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1.1 U	0.5 U	0.5 U	16	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.65 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	1.2 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.92 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1.5 U	0.25 U	0.25 U	62	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	2 J	0.11 U	0.11 U	1,5	0.11 U	2,6	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1.6 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1.6 U	0.44 U	0.44 U	0.44 UJ	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.66 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.81 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.86 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U
1,2-Dichloropropene	UG/L	0.29	0%	1	0	1	268	1.3 U	0.13 U	0.13 U	0.29 J	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1.4 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1.6 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5.4 U	5 U	5 UJ	8.1 J	5 UJ	5 U	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	1,6 U	0.25 U	0.25 U	0.38 J	0.25 U	0.48 J	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	1.5 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	1 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.78 U	0,6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1.1 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1,3 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1.3 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1.3 UJ	1 U	1 U	1 U	1 W	1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	3.1 J	2,1	0,27 J	0.14 U	0.14 U	71	0.14 U
Cis-1,2-Dichloroethene	UG/L		88%	5	166	235	268	630	28	0.54 J	18	0.53 J	820	0.8 J
Cls-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1,4 U	0,11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0,3	0%	0.4	•	1	268	2.1 U	0.25 U	0.25 U	0.25 U	0.25 U	0.3 J	0,25 U
Dichlorodiffuoromethene	UG/L	0.3	0%	5	0	1	268	1.1 U	0.25 U	0,25 U	0.25 U	0.25 U	0.3 J	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.74 U	0.11 U	0.11 U	9.2	0.11 U	0,11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	ò	1	268	0.77 U	0.1 U	0.1 U	0.1 J	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%	3	•	2	253	2 U	0.19 U	0,19 U	0.19 U	0.19 U	0,19 UR	0.19 UJ
Methyl bromide	UG/L	2,1	0%	5	0	4	262	1.1 UJ	0.8 U	0.8 UJ	0.8 UJ	0.8 UJ	0.8 W	0.8 W
Methyl butyl ketone	UG/L	0	0%	3	v	0	268	5 U	1 U	1 U	1 U	1 W	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	1.4 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 W	0.33 U
				5	0	1	268	2 U	0.1 U	0.1 U	0.17 J	0.1 U	0.1 U	0.1 U
Methyl cyclohexane	UG/L		0%				268	5.3 U	1 U	1 U	5.1 J	1 U	1 U	1 U
Methyl ethyl ketone	UG/L	4900	8%			22		3.6 U	1 U	1 U	1.9 J	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L		0%			1	268	0.64 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methyl Tertbutyl Ether	UG/L		0%		-	0	268	1.8 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	UG/L		4%	5	7	12	268					0.11 U	0.11 U	0.11 U
Styrene	UG/L	0	0%	5	0	0	268	0.74 U	0.11 U	0.11 U	0.11 U	0.11 0	0.11 0	0.11 0

Area Loc ID	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A
Matrix Sample ID	GW ALBW20162	GW ALBW20177	GW ALBW20192	GW ALBW20207	GW ALBW20222	GW ALBW20237	GW ALBW20252
Sample Date	12/17/2009	7/1/2010	12/19/2010	7/22/2011	12/15/2011	6/21/2012	12/12/2012
QC Type	SA						
Study ID	LTM						
Sample Round	8	9	10	11	12	13	14
Filtered	Total						

Parameter	Unit	Maximum Value	Frequency of Detections	Cleanup	Number of Exceedances	of Times	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachioroethene	UG/L	27	1%	5	1	2	268	1.5 U	0.15 U	0.15 U	1 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	2 U	0.33 U	0.33 U	130	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	2.6 U	0.2 U	0.2 U	60	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	3.5 J	0.2 U	0,2 U	0.2 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1,5 U	0,21 U	0.21 U	0,21 U	0,21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	2,100	120	6.3	0.13 U	7.3
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.61 UJ	0,25 U	0,25 U	0,25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	7.1	0.18 U	0.18 U	120	0.18 U
Other							77.			_		
Iron	UG/L	296,000	100%			12	12					
Iron+Manganese	UG/L	352,900	100%			12	12					
Manganese	UG/L	56,900	100%			12	12					
Ethane	UG/L	98	95%			129	136					
Ethene	UG/L	200	90%			122	136					
Methane	UG/L	23,000	98%			133	136					

136

136

113

136

MG/L 1,060

MG/L 2050

83%

100%

Total Organic Carbon

Value Qual

0.15 U

0.33 U 0.2 U

4.7

0,25 U

0.21 U

10

Value Qual 0.15 U

0,33 U

0.2 U

0.2 U

0,21 U

0.25 U

0.18 U

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	PT-18A	PT-18A	PT-18A	PT-18A	MWT-25	MWT-25	MWT-25
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20265A	ALBW20280	ALBW20296	ALBW20312	ALBW20064	ALBW20079	ALBW20093
Sample Dete	7/11/2013	12/13/2013	6/21/2014	12/19/2014	1/3/2007	3/17/2007	6/6/2007
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	15	16	17	18	1	2	3
Filtered	Total	Total	Total	Total	Total	Total	Total

attoreus .								1 0001	1 ocai	1000	1 otas	1 Other	T DOM	1 000
		Maximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
/olatile Organic Compounds														
,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	1 U
,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	3.6 U	1 U	1 U	1 U
,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0,5 U	10 U	1 U	1 U	1 UJ
,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0,13 U	0.13 U	2.6 U	1 U	1 U	1 U
,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	5 U	1 U	1 U	1 U
,1-Dichloroethene	UGIL	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.77 J	2,2 U	1 U	1 U	1 U
,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	5 U	1 U	1 U	1 U
2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	8.8 U	1 U	1 U	1 U
,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0,25 U	5 U	1 U	1 U	1 U
,2-Dichlorobenzene	UGIL	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	4.2 U	1 U	1 U	1 U
,2-Dichloroethane	UGIL	5.6	15%	0,6	34	42	268	0.1 U	0.1 U	0.1 U	2 U	1 U	1 U	1 U
2-Dichloropropane	UGIL	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	2.6 U	1 U	1 U	1 U
I.3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	5 U	1 U	1 U	1 U
.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	5.6 U	1 U	1 U	1 U
Acetone	UG/L	2600	17%			45	262	5 U	5 U	5 U	100 U	5 U	5 U	4.5 J
enzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0,25 U	0.25 U	5 U	1 U	1 U	1 U
romodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0.25 U	0.25 U	5 U	1 U	1 U	1 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	1 U
Carbon disulfide	UG/L	0	0%		-	0	268	0.6 U	0.6 U	0.5 U	12 U	1 U	1 U	1 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	1 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	5 U	1 U	. 10	1 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	2 U	1 U	1 U	1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	2 U	2 U	2 U	48 U	1 U	1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	0,62 J	0,14 U	8.8	16 J	1 U	1 U	1 U
Cis-1.2-Dichloroethene	UG/L	820	88%	5	166	235	268	8.1	1.4	240	420	41	84	36
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	2.2 U	1 U	1 U	1 U
Cyclohexane	UG/L	0,3	0%		•	1	268	0.25 U	0.25 U	0.25 U	5 U	1 U	1 U	1 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	0.25 UJ	0.25 U	5 U	1 U	1 U	1 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	2.2 U	1 U	1 U	1 U
sopropyfbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	2 U	1 U	1 U	1 U
Methyl Acetate	UG/L	6	1%	•	•	2	253	0,19 U	0,19 U	0.19 U	3.8 U	1 U	1 UJ	1 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	2 U	2 UJ	2 U	40 U	1 U	1 U	1 U
Wethyl butyl ketone	UG/L	0	0%	3	U	0	268	1 U	1 U	1 U	20 U	5 U	5 U	5 U
Rethyl chloride	UG/L	0	0%	5	0	0	268	0,33 UJ	0.33 U	0.33 U	6.6 U	1 U	1 U	1 U
Methyl cyclohexene	UG/L	0.17	0%	3	0	1	268	0.1 U	0.1 U	0.1 U	2 U	1 U	1 U	1 U
Wethyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 U	20 U	5 U	5 U	5 U
Wethyl Isobutyl ketone	UG/L		0%			1	268	1 U	1 U	1 U	20 U	5 U	5 U	5 U
		1.9				0	268	0.2 U	0.2 U	0.2 U	4 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			•		1 U	1 U	1 U	20 U	1 U	1 U	1 U
Methylene chloride	UG/L	18	4%	5	0	12	268		0,11 U	0.11 U	2.2 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0,11 0	0,11 0	2.2 0	10	10	10

Area Loc ID	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL MWT-25	ASH LANDFILL MWT-25	ASH LANDFILL MWT-25
Matrix	GW						
Sample ID	ALBW20265A	ALBW20280	ALBW20296	ALBW20312	ALBW20064	ALBW20079	ALBW20093
Sample Date	7/11/2013	12/13/2013	6/21/2014	12/19/2014	1/3/2007	3/17/2007	6/6/2007
QC Type	SA						
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	15	16	17	18	1	2	3
Filtered	Total	Total	Total	Total	Total	Total	Total

Unit	Maximum Value	of Detections	Cleanup	Number of Exceedences	Number of Times Detects	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
UG/L	27	1%	5	1	2	268	0,15 U	0.15 U	0.15 U	27	1 U
UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	6,6 U	1 U
UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	4 U	3 U
UG/L	22	52%	5	12	140	268	0.2 U	0.2 U	1.2	5 J	0.56 J
UG/L	0	0%	0.4	0	0	268	0.21 U	0,21 UJ	0,21 U	4.2 U	1 U
UG/L	3800	69%	5	86	185	268	47	9,4	1,200	1,000	80
UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0,25 U	5 U	1 U
UG/L	180	67%	2	137	180	268	0.18 U	0.18 U	2.2	3.6 U	1.6
								_			
UG/L	296,000	100%			12	12					
UG/L	352,900	100%			12	12					
UG/L	56,900	100%			12	12					
UG/L	98	95%			129	136					
UG/L	200	90%			122	136					
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Unit Velue UG/L 27 UG/L 590 UG/L 60 UG/L 22 UG/L 0 UG/L 3800 UG/L 180 UG/L 180 UG/L 352,900 UG/L 352,900 UG/L 362,900 UG/L 98	Maximum	Meximum Of Cleanup	Maximum Of Clearup Number of Gools Exceedances	Maximum Unit Value of Detections Clearup Goals Number of Exceedences of Times Detects UG/L 27 1% 5 1 2 UG/L 590 12% 5 18 32 UG/L 60 1% 5 1 2 UG/L 22 52% 5 12 140 UG/L 0 0% 0.4 0 0 0 UG/L 3800 69% 5 86 185 0 0 UG/L 180 67% 2 137 180 UG/L 296,000 100% 12 12 UG/L 55,900 100% 12 12 UG/L 5,900 100% 12 12 UG/L 98 95% 129 129	Maximum Of Clearup Number of Of Times Samples	Maximum Office Cleanup Number of Times Samples Velue Qual	Maximum Off Cleanup Number of Times Samples Velue Qual Value Qual	Maximum Unit Veitue Detections Goale Exceedemoes Detects Analyzed Veitue Queil Queil Quei	Maximum Unit Veitue Detections Goale Exceedemoes Detects Analyzed Veitue Queil Queil Qu

133

113

136

136

136

MG/L 2050

UG/L 23,000

MG/L 1,060

83%

100%

Sulfate

Total Organic Carbon

Value Qual

1 U

1 U

3 U

1 U

9,6

1.2

Value Quel

1 U

3 U 0.5 J

1 U

26

1 W 2.1

4.6

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise,

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20108	ALBW20123	ALBW20138	ALBW20153	ALBW20168	ALBW20183	ALBW20198
Sample Date	11/15/2007	6/24/2008	12/15/2008	6/3/2009	12/17/2009	6/30/2010	12/19/2010
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	4	5	6	7	8	9	10
Filtered	Total	Total	Total	Total	Total	Total	Total

Parameter	Unit	Maximum Value	Frequency of Detections	Cleanup Goals	Number of Exceedances	of Times	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds								4.11			0.26 U	0.26 U	0.5 U	0,5 U
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1 U	1 U 1 U	0.26 U	0.26 U 0.21 U	0.26 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 U		0.21 U			0.18 UJ	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	1 U	1 UJ	0,31 U	0.31 U	0.31 U	0.13 U	0,5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	1 U	0.23 U	0.23 U	0,23 U		
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1 U	1 U	0.75 U	0.75 U	0.38 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	1 U	1 U	0.29 U	0.29 U	0.29 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	0.41 U	0,41 U	0.41 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 U	1 UJ	1 UJ	1 UJ	0.39 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	1 U	1 0	0.17 U	0,17 U	0.17 U	0,25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	0.2 U	0.2 U	0.2 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	1 U	1 U	0.21 U	0.21 U	0,21 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	1 U	0.14 U	0.14 U	0.32 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	0.16 U	0.16 U	0.36 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	0.16 U	0.16 U	0.39 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5 U	5 U	1.3 U	1.3 U	1.3 U	5 U	5 UJ
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	1 U	0.16 U	0.16 U	0.41 U	0,25 U	0,25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	1 U	1 U	0.38 U	0.39 U	0.39 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	1 U	1 U	0.26 U	0.26 UJ	0.26 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	1 U	1 U	0.19 U	0.19 UJ	0.19 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1 U	1 U	0.27 U	0.27 U	0.27 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	0.18 U	0.32 U	0,32 U	0,25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1 U	1 U	0.32 U	0.32 U	0.32 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	1 UJ	0.32 U	0.32 U	0.32 U	1 U	1 UJ
Chloroform	UG/L	71	8%	7	7	22	268	1 U	1 U	0,34 U	0.34 U	0.34 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	17	17	0.63 J	10	3.3	13	0.97 J
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	0.36 U	0.36 U	0.36 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	1 U	1 U	0.22 U	0.53 U	0.53 U	0,25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	1 U	1 U	0.28 U	0.29 U	0.29 U	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1 U	1 U	0,18 U	0.18 U	0.18 U	0.11 U	0.11 U
1sopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 U	1 U	0.19 U	0.19 U	0.19 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	1 UJ	1 UJ	0.17 U	0.17 UJ	0.5 U	0.19 UJ	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	1 UJ	0.28 U	0.28 U	0.28 UR	0.8 UJ	0.8 U
Methyl butyl ketone	UG/L	0	0%			0	268	5 UJ	5 UJ	1.2 U	1.2 U	1.2 U	1 UJ	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	1 U	1 UJ	0.34 U	0.35 U	0.35 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	1 U	1 U	0.22 U	0.5 U	0.5 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	5 U	5 UJ	1.3 ∪	1.3 U	1.3 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	5 U	5 UJ	0.91 U	0.91 U	0.91 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	1 U	0.16 U	0.16 U	0.16 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	0.44 UJ	0.44 U	0.44 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	1 U	1 U	0,18 U	0.18 U	0.18 U	0.11 U	0.11 U

Area Loc ID Matrix Sample ID	ASH LANDFILL MWT-25 GW ALBW20108	ASH LANDFILL MWT-25 GW ALBW20123	ASH LANDFILL MWT-25 GW ALBW20138	ASH LANDFILL MWT-25 GW ALBW20153	ASH LANDFILL MWT-25 GW ALBW20168	ASH LANDFILL MWT-25 GW ALBW20183	ASH LANDFILL MWT-25 GW ALBW20198
Sample Dete	11/15/2007	6/24/2008	12/15/2008	6/3/2009	12/17/2009	6/30/2010	12/19/2010
QC Type	SA						
Study ID	LTM						
Sample Round	4	5	6	7	8	9	10
Filtered	Total						

Parameter	Unit	Maximum Value	of Detections	Cleanup Goale	Number of Exceedances	of Times	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Tetrachloroethene	UG/L	27	1%	5	1	2	268	1 U	1 U	0,36 U	0.36 U	0.36 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	1 U	1 U	0.51 U	0,51 U	0.51 U	0.33 U	0,33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	3 U	0.93 U	0.66 U	0.66 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1 U	1 U	0.13 U	0.13 U	0.42 U	0.49 J	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	0.37 U	0,37 U	0.37 U	0,21 U	0,21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	26	19	3.2	12	4.2	7.7	1.9
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 U	1 UJ	0.15 U	0.15 U	0.15 UJ	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.64 J	1 U	0.24 U	0.24 U	0.24 U	0.18 U	0.18 U
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L		100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							
Methane	UG/L	23,000	98%			133	136							
Sulfate	MG/L	1,060	83%			113	136							
Total Organic Carbon	MG/L	2050	100%			136	136							

^{1,} The cleenup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20213	ALBW20228	ALBW20243	ALBW20258	ALBW20271	ALBW20286	ALBW20302
Sample Date	7/20/2011	12/15/2011	6/21/2012	12/12/2012	7/11/2013	12/13/2013	6/21/2014
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	11	12	13	14	15	16	17
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency			Number	Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 UJ	0.5 ∪	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	16%	0,6	34	42	268	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0,28 U	0,28 U	0.28 U	0.28 U	0,28 U	0.28 U	0.28 ∪
Acetone	UG/L	2600	17%			45	262	21 J	5 UJ	5 UJ	5 U	5 U	5 U	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0,25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.6 U	0.6 U	0.6 ∪	0.6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0,25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 UJ	1 UJ	1 UJ	1 U	2 U	2 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	14	0.3 J	6.8	0.39 J	6,8	3.3	21
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Сусюнехале	UG/L	0.3	0%			1	268	0,25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0,3	0%	5	0	1	268	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 UJ	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 UJ	0.19 U	0.19 UR	0.19 UJ	0.19 U	0,19 U	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	2 U	2.1 J	2 U
Methyl butyl ketone	UG/L	0	0%			0	268	1 UJ	1 UJ	1 UJ	1 U	1 U	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	0,33 U	0.33 UJ	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1,9	0%			1	268	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25	MWT-25
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20213	ALBW20228	ALBW20243	ALBW20258	ALBW20271	ALBW20286	ALBW20302
Sample Date	7/20/2011	12/15/2011	6/21/2012	12/12/2012	7/11/2013	12/13/2013	6/21/2014
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	11	12	13	14	15	16	17
Filtered	Total	Total	Total	Total	Total	Total	Total

Value Qual

0.15 U

0.33 U

0.2 U

0.2 U

0.21 U

1.6

0.25 U

0.18 U

Value Qual

0.15 U

0.33 U

0.2 U

0.2 U

0.21 UJ

6.1

0.25 U

0.18 U

			Frequency			Number	Number of		
		Maximum	of	Cleanup	Number of	of Times	Samples		
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value (Q
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15	U
Toluene	UG/L	590	12%	5	18	32	268	1 1	U
Total Xylanes	UG/L	60	1%	5	1	2	268	0.26	J
Trens-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.45	J
Trens-1,3-Dichtoropropene	UG/L	0	0%	0.4	0	0	268	0.21	U
Trichloroethene	UG/L	3800	69%	5	86	185	268	4.4	
Trichloroffuoromethane	UG/L	0	0%	5	0	0	268	0.25	U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.72	J
Other									
Iron	UG/L	296,000	100%			12	12		
Iron+Manganese	UG/L	352,900	100%			12	12		
Manganese	UG/L	56,900	100%			12	12		
Ethane	UG/L	98	95%			129	136		
Ethene	UG/L	200	90%			122	136		
Methane	UG/L	23,000	98%			133	136		
Sulfate	MG/L	1,060	83%			113	136		
Total Organic Carbon	MG/L	2050	100%			136	136		

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

Value Qual

0.15 U

0.33 U

0.2 U

0.2 U

0.21 U

8,2

0.25 U

0.18 U

Value Qual

0.15 U

0.33 U

0.2 U

0.2 U

0,21 U

0,25 U

0.18 U

1.3

Value Qual

0.15 U

0,33 U

0.2 U

0.2 U

0.21 UJ

4.6

0.25 U

0.47 J

Value Quel

0.15 U

0.33 U

0.2 U

0.42 J

0.21 U

24

0.25 U

2.6

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is end estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-25	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20318	ALBW20066	ALBW20081	ALBW20095	ALBW20111	ALBW20126	ALBW20141
Sample Date	12/19/2014	1/3/2007	3/17/2007	6/5/2007	11/15/2007	6/24/2008	12/15/2008
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	18	1	2	3	4	5	6
Filtered	Total	Total	Total	Total	Total	Total	Total

Parameter Volatile Organic	c Compounds	Unit	Maximum	of	-										
Volatile Organi	Compounds	Unit			Cleanup		of Times	Samples							
	c Compounds		Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value_Qual	Value Qual	Value Qual	Value Qual
1 1 1-Trichloroet														4.0	
		UG/L	15	2%	5	1	5	268	0.5 U	1 U	1 U	1 U	1 U	1 U	0.26 U
1,1,2,2-Tetrachle		UG/L	0	0%	5	0	0	268	0.18 U	1 U	1 U	1 U	1 0	1 U	0.21 U
		UG/L	0	0%	5	0	0	268	0.5 U	1 0	1 U	1 UJ	1 0	1 0	0.31 U
1,1,2-Trichloroet		UG/L	0	0%	1	0	0	268	0.13 U	1 U	1 U	1 U	1 U	1 U	0.23 U
1,1-Dichloroetha	ne	UG/L	62	13%	5	1	34	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.75 U
1,1-Dichloroethe	ne	UG/L	2.6	12%	5	0	33	268	0.11 U	1 U	1 U	1 U	1 U	1 U	0.29 U
1,2,4-Trichlorobe	enzene	UG/L	0	0%	5	0	0	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.41 U
1,2-Dibromo-3-c	hloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	1 U	1 U	1 U	1 U	1 U	1 UJ
1,2-Dibromoeths	ine	UG/L	0	0%	0.0006	0	0	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.17 U
1,2-Dichloroben:	zene	UG/L	0	0%	3	0	0	268	0.21 U	1 U	1 U	1 U	1 U	1 U	0.2 U
1,2-Dichloroetha	ne	UG/L	5,6	16%	0.6	34	42	268	0.1 U	1 U	1 U	1 U	1 U	1 U	0.21 U
1,2-Dichloroprop	eane	UG/L	0.29	0%	1	0	1	268	0.13 U	1 U	1 U	1 U	1 U	1 U	0.14 U
1,3-Dichloroben	zene	UG/L	0	0%	3	0	0	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.16 U
1,4-Dichloroben	zene	UG/L	0	0%	3	0	0	268	0.28 U	1 U	1 U	1 U	1 U	1 U	0.16 U
Acetone		UG/L	2600	17%			45	262	5 U	5 U	17	5 U	5 U	5 U	1.3 U
Benzene		UG/L	0.48	2%	1	0	5	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.16 U
Bromodichlorom	ethane	UG/L	0	0%	80	0	0	268	0,25 U	1 U	1 U	1 U	1 U	1 U	0.38 U
Bramoform		UG/L	0	0%	80	0	0	268	0.5 U	1 U	1 U	1 U	1 U	1 U	0.26 U
Carbon disutfide		UG/L	0	0%			0	268	0.6 U	1 U	1 U	1 U	1 U	1 U	0.19 U
Carbon tetrachio	oride	UG/L	0	0%	5	0	0	268	0.5 U	1 U	1 U	1 U	1 U	1 U	0.27 U
Chlorobenzene		UG/L	0	0%	5	0	0	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.18 U
Chlorodibromon	nethane	UG/L	0	0%	80	0	0	268	0.1 U	1 U	1 U	1 U	1 U	1 U	0.32 U
Chloroethane		UG/L	1.1	3%	5	0	7	268	2 U	1 U	1 U	1 U	1 U	1 UJ	0.32 U
Chloraform		UG/L	71	8%	7	7	22	268	0.14 U	1 U	1 U	1 U	1 U	1 U	0.34 U
Cis-1.2-Dichloro	ethene	UG/L	820	88%	5	166	235	268	1.7	19	17	11	2.8	3.3	1
Cis-1,3-Dichloro		UG/L	0	0%	0.4	0	0	268	0.11 U	1 U	1 U	1 U	1 U	1 U	0.36 U
Cyclohexane	properte	UG/L	0.3	0%		•	1	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.22 U
Dichlorodifluoro	methane	UG/L	0.3	0%	5	0	1	268	0.25 U	1 U	1 U	1 U	1 U	1 U	0.28 U
Ethyl benzene	mediane	UG/L	9.2	7%	5	1	19	268	0.11 U	1 U	1 U	1 U	1 U	1 U	0.18 U
Isopropylbenzer		UG/L	0.1	0%	5	0	1	268	0.1 U	1 U	1 U	1 U	1 U	1 U	0.19 U
Methyl Acetate		UG/L	6	1%	•	•	2	253	0.19 U	1 U	1 UJ	1 U	1 UJ	1 UJ	0.17 U
Methyl bromide		UG/L	2.1	0%	5	0	1	262	2 U	1 U	1 U	1 U	1 U	1 UJ	0,28 U
Methyl butyl ket		UG/L	0	0%	3	٧	ò	268	1 U	5 U	5 U	5 U	5 UJ	5 UJ	1.2 U
Methyl chloride	one	UG/L		0%	5	0	0	268	0.33 U	1 U	1 U	1 U	1 U	1 U	0.34 U
,			0		5	U	1	268	0.1 U	1 U	1 U	1 U	1 U	1 U	0.22 U
Methyl cyclohex		UG/L	0.17	0%			•	268 268	1 U	5 U	15	5 U	5 U	5 U	1.3 U
Methyl ethyl ket		UG/L	4900	8%			22 1		1 0	5 U	5 U	5 U	5 U	5 U	0.91 U
Methyl isobutyl		UG/L	1.9	0%				268	0.2 U	1 U	1 U	1 U	1 U	1 U	0.16 U
Methyl Tertbuty		UG/L	0	0%		_	0	268		1 U	1 U	1 U	1 U	1 U	0.44 UJ
Methylene chlor	nde	UG/L	18	4%	5	7	12	268	1 U		1 U	1 U	1 U	1 U	0.44 U
Styrene		UG/L	0	0%	5	0	0	268	0.11 U	1 U	10	10	1 0	10	0,10 0

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-25	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26
Matrix								GW						
Sample ID								ALBW20318	ALBW20066	ALBW20081	ALBW20095	ALBW20111	ALBW20126	ALBW20141
Sample Date								12/19/2014	1/3/2007	3/17/2007	6/5/2007	11/15/2007	6/24/2008	12/15/2008
QC Type								SA						
Study ID								LTM						
Sample Round								18	1	2	3	4	5	6
Filtered								Total						
		Meximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects		Value Qual	Value Qua	Value Qua	Value Qua	Value Qua	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	1 U	1 U	1 U	1 U	1 U	0.36 U
Toluene	UG/L	590	12%	5	18	32	268	0,33 U	1 U	1 U	1 U	1 U	1 U	0.51 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	3 U	3 U	3 U	3 U	3 U	0.93 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.2 U	0.6 J	1	0.7 J	1 U	1 U	0.13 U
Trans-1,3-Dichloropropone	UG/L	0	0%	0.4	0	0	268	0.21 U	1 U	1 U	1 U	1 U	1 U	0,37 U

2.5

0.25 U

0.18 U

10

2

1 U

11

1 U

6.1

275 J	844				
1,043 J	2,464				
768	1,620				
2 U	0.4	1	0.16	0.82	0.046
2 U	7.8	13	0.4	2.9	0,028
2 U	210	390	44	210	10
986	738	478	1,000	900	84
3.9 J	15,2	10,3	6,1	5,6	4,4

2.8

1 U

1 U

1.7

1 UJ

1 U

1.9

0.15 U

0.24 U

3.2

4.4

1 UJ

UG/L 3800

UG/L 296,000

UG/L 352,900

UG/L 23,000

180

98

UG/L 0

UG/L

UG/L 56,900

UG/L

UG/L 200

MG/L 1,060

MG/L 2050

69%

0%

67%

100%

100%

100%

95%

90%

98%

83%

100%

5

2

86

137

268

268

268

12

12

12

136

136

136

136

136

185

180

12

12

12

129

122

133

113

136

Trichloroethene

Vinyl chloride

Iron+Menganese

Total Organic Carbon

Manganese

Ethane

Ethene

Sulfate

Methane

Other

Trichlorofluoromethan

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safeweter/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26
Metrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20156	ALBW20171	ALBW20186	ALBW20202	ALBW20216	ALBW20232	ALBW20246
Sample Date	6/3/2009	12/17/2009	6/29/2010	12/19/2010	7/20/2011	12/15/2011	6/20/2012
QC Type	SA	SA	SA	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	7	8	9	10	11	12	13
Filtered	Total	Total	Total	Total	Total	Total	Total

		Meximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples							
Parameter	Unit	Value	Detections	Goels	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.26 U	0.26 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.21 U	0.21 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.31 U	0.31 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.23 U	0.23 U	0,13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichforoethane	UG/L	62	13%	5	1	34	268	0.75 U	0.38 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.29 U	0.29 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichforobenzene	UG/L	0	0%	5	0	0	268	0.41 U	0.41 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 UJ	0.39 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.17 U	0.17 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.2 U	0.2 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	15%	0.6	34	42	268	0.21 U	0.21 U	0.1 U	0,1 U	0.1 U	0.1 U	0.1 UJ
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.14 U	0.32 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.16 U	0.36 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.16 U	0,39 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%		-	45	262	1.3 U	1.3 U	5 U	5 UJ	5 UR	5 UJ	5 W
Benzene	UG/L	0.48	2%	1	0	5	268	0,16 U	0,41 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0,39 U	0.39 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 UJ
Bromoform	UG/L	0	0%	80	0	0	268	0.26 UJ	0.26 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%		•	0	268	0.19 UJ	0.19 U	0.6 U	0,6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.27 U	0,27 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.32 U	0.32 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.32 U	0.32 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethene	UG/L	1.1	3%	5	0	7	268	0.32 U	0.32 UJ	1 W	1 UJ	1 UJ	1 111	1 UJ
Chloroform	UG/L	71	8%	7	7	22	268	0.34 U	0.34 U	0.14 U	0,14 U	0.14 U	0.14 U	0.14 U
Ch-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	6	831	5.5	12	9.8	1.1	4.4
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.36 U	0,36 U	0.11 U	0.11 U	0,11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0,3	0%	V.+	v	1	268	0,53 U	0.53 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.29 U	0.29 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.18 U	0.18 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzane	UG/L	0.1	0%	5	0	1	268	0.19 U	0,19 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%	3	U	2	253	0.17 UJ	0.5 U	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 UR
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.28 U	0.28 UJ	0.8 UJ	0.6 U	0.8 UJ	0,8 UJ	0.8 W
Methyl butyl ketone	UG/L	0		5	U	0	268	1.2 U	1.2 U	1 U	1 U	1 UJ	1 UJ	1 W
			0%	5		0		0.35 U	0.35 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Methyl chloride	UG/L	0	0%	5	0	-	268		0.55 U		0.1 U	0.1 U	0.1 U	0.1 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.5 U	1.3 U	0.1 U	1 U	1 U	1 U	1 11
Methyl ethyl ketone	UG/L	4900	8%			22	268	1.3 U			10	1 U	1 U	1 W
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	0.91 U	0.91 U	1 U				0.2 U
Methyl Tertbutyl Ether	UG/L	0	0%		_	0	268	0.16 U	0.16 U	0.2 U	0.2 U	0.2 U	0.2 U	
Methylene chloride	UG/L	18	4%	5	7	12	268	0.44 U	0.44 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area							-	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-26	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26	MWT-26
Matrix								GW						
Sample ID								ALBW20156	ALBW20171	ALBW20186	ALBW20202	ALBW20216	ALBW20232	ALBW20246
Sample Date								6/3/2009	12/17/2009	6/29/2010	12/19/2010	7/20/2011	12/15/2011	6/20/2012
QC Type								SA						
Study ID								LTM						
Sample Round								7	8	9	10	11	12	13
Filtered								Total						
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qua	Value Qua	Value Que	Value Qua	I Value Que	
Tetrachloroethene	UG/L	. 27	1%	5	1	2	268	0,36 U	0,36 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	. 590	12%	5	18	32	268	0.51 U	0.51 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Total Xylenes	UG/L	. 60	1%	5	1	2	268	0.66 U	0.66 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
and the second s														

			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedences	Detects	Analyzed	Value Qual	Velue Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Quel
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0,36 U	0.36 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.51 U	0.51 U	0.33 U	0.33 U	0.33 U	0,33 U	0,33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.66 U	0.66 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.13 U	0.42 U	0.37 J	0.67 J	0.81 J	0.2 U	0.24 J
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0,37 U	0,37 U	0.21 U	0.21 U	0,21 U	0.21 U	0.21 UJ
Trichloroethene	UG/L	3800	69%	5	86	185	268	3.6	8.8	1.7	4.2	1.6	1.2	1.6
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.15 U	0.15 UJ	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	3,6	4.2	0.18 U	7.8	4.4	0.47 J	1.1
Other										_				
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	3.2	2.2	2.2	3.7	4.5	0.23	1
Ethene	UG/L	200	90%			122	136	2.7	1.8	0.71	3.3	1	0.425 U	0.5
Methane	UG/L	23,000	98%			133	136	1,100	610	740	1,600	960	39	230
Sulfate	MG/L	1,060	83%			113	136	570	912	800	690	810	800	640
Total Organic Carbon	MG/L	2050	100%			136	136	6.9	5,6	4.6	5.5	6,3	4,5	4.4

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\T0#15 - LTM and LUC\Ash Landfill LTM\Yr 8 Annual Report\Draft\Appendices\Appendix 8 - Groundwater Data\ASH_GW_Rnd_1-18_valid_results.xis

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area Loc ID Matrix	ASH LANDFILL MWT-26 GW	ASH LANDFILL MWT-26 GW	ASH LANDFILL MWT-26 GW	ASH LANDFILL MWT-26 GW	ASH LANDFILL MWT-26 GW	ASH LANDFILL MWT-27 GW	ASH LANDFILL MWT-27 GW
Sample ID	ALBW20262	ALBW20274	ALBW20289	ALBW20306	ALBW20321	ALBW20067	ALBW20082
Sample Dete	12/14/2012	7/11/2013	12/14/2013	6/19/2014	12/17/2014	1/3/2007	3/16/2007
QC Type	SA						
Study ID	LTM						
Sample Round	14	15	16	17	18	1	2
Filtered	Total						

			Frequency				Number of							
Parameter	Unit	Maximum Value	of Detections	Cleanup Goals	Number of Exceedances	of Times Detects	Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds	Ojiii	1000	Detection			50000	,	Turde addi	Tulue was	10100 4001	74147			
1.1.1-Trichloroethane	UG/L	15	2%	5	1	5	268	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	20 UJ	20 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	20 UJ	20 U
.1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	20 UJ	20 U
1.1.2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	20 UJ	20 U
.1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
.1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	20 UJ	20 U
.2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	20 UJ	20 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	20 UJ	20 U
1.2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	20 UJ	20 U
1.2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	20 UJ	20 U
1,2-Dichloropropane	UG/L	0,29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	20 UJ	20 U
.3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	20 UJ	20 U
cetone	UG/L	2600	17%			45	262	5 U	5 U	5 UJ	5 U	5 U	2,000 J	1,300
enzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.25 U	0,25 U	0,25 U	0,25 U	20 UJ	20 U
kromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
romoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	20 UJ	20 U
arbon disulfide	UG/L	0	0%			0	268	0,6 U	0.6 U	0.6 U	0,6 U	0.6 U	20 UJ	20 U
arbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	20 UJ	20 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	20 UJ	20 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	2 U	2 U	2 U	2 U	20 UJ	20 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	20 UJ	20 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	3.1	5.8	2.8	4,5	9.7	49 J	20 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	20 UJ	20 U
Cyclohexane	UG/L	0.3	0%			1	268	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	20 UJ	20 U
sopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	20 UJ	20 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 UJ	0.19 U	0.19 U	0.19 U	0.19 U	20 UJ	20 UJ
Methyl bromide	UG/L	2,1	0%	5	0	1	262	0.8 UJ	2 U	2 U	2 UJ	2 U	20 UJ	20 U
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	1 U	100 UJ	100 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	20 UJ	20 U
Methyl cyclohexane	UG/L	-	0%	-	-	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	20 UJ	20 U
Methyl ethyl ketone	UG/L		8%			22	268	1 U	1 U	1 U	1 U	1 U	4,100 J	2,200
Methyl isobutyl ketone	UG/L		0%			1	268	1 U	1 U	1 U	1 U	1 U	100 UJ	100 U
Methyl Tertbutyl Ether	UG/L		0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	20 UJ	20 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	18 J	20 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	20 UJ	20 U

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID								ASH LANDFILL MWT-26 GW ALBW20262 12/14/2012 SA LTM	ASH LANDFILL MWT-26 GW ALBW20274 7/11/2013 SA LTM	ASH LANDFILL MWT-26 GW ALBW20289 12/14/2013 SA LTM	ASH LANDFILL MWT-26 GW ALBW20306 6/19/2014 SA LTM 17	ASH LANDFILL MWT-26 GW ALBW20321 12/17/2014 SA LTM 18	ASH LANDFILL MWT-27 GW ALBW20067 1/3/2007 SA LTM	ASH LANDFILL MWT-27 GW ALBW20082 3/16/2007 SA LTM
Sample Round Filtered								14 Total	15 Total	16 Total	Total	Total	Total	Total
Parameter	Unit	Maximum Vatue	Frequency of Detections	Cleanup Goals	Number of Exceedences	of Times	Number of Samples Analyzed	Value Qual	Value Qual	Value Qua	l Value Qua	Velue Que	l Velue Qual	Value Qual
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	20 UJ	20 U
Totuene	UG/L		12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	20 UJ	20 U
Total Xylenes	UG/L		1%	5	1	2	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	60 UJ	60 U
Trans-1,2-Dichloroethene	UG/L		52%	5	12	140	268	0.2 U	0.2 U	0.2 U	0.4 J	0.2 U	20 UJ	20 U
Trans-1,3-Dichloropropene	UG/L		0%	0.4	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0,21 U	20 UJ	20 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	2.1	2.1	1,3	0.83 J	2.1	20 UJ	20 U
Trichlorofluoromethane	UG/L	. 0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	20 UJ	20 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.56 J	1.6	1	1.1	3,3	20 UJ	20 U
Other													100	
tron	UG/L	296,000	100%			12	12						296,000 J	229,000
tron+Manganese	UG/L		100%			12	12						352,900 J	273,600
Manganese	UG/L		100%			12	12						58,900	44,500
Ethane	UG/L	. 96	95%			129	136	0.096	0.69	0.52	0.92	0.62	10,000 UJ	0.15
Ethene	UG/L	200	90%			122	136	0.069	0.54	0.2	0.15 J	0,24	10,000 UJ	2.7

130

250

61

240

680

60

MG/L 2050

UG/L 23,000

MG/L 1,060

98%

83%

100%

Methane

Total Organic Carbon

Sulfate

15,000

1,350

10 U

10,000 UJ

2,050 J

10 U

133

113

136

136

136

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not datected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not datected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20096	ALBW20097	ALBW20112	ALBW20127	ALBW20142	ALBW20143	ALBW20157
Sample Date	6/5/2007	6/5/2007	11/15/2007	6/24/2008	12/15/2008	12/15/2008	6/3/2009
QC Type	SA	DU	SA	SA	SA	DU	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	3	3	4	5	6	6	7
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency				Number of							
_		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Quai
Volatile Organic Compounds				_		_								
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	20 U	20 U	10 U	4 U	2.6 UJ	2.6 UJ	2.6 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	20 U	20 U	10 U	4 U	2.1 UJ	2.1 UJ	2.1 U
1,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	20 UJ	20 UJ	10 U	4 U	3.1 UJ	3.1 UJ	3.1 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	20 U	20 U	10 U	4 U	2.3 UJ	2.3 UJ	2,3 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	20 U	20 U	10 U	4 U	7.5 U	7.5 U	7.5 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	20 U	20 U	10 U	4 U	2.9 U	2.9 U	2.9 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	20 U	20 U	10 U	4 U	4.1 UJ	4.1 UJ	4.1 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	20 U	20 U	10 U	4 U	10 UJ	10 UJ	10 UJ
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	20 U	20 U	10 U	4 U	1.7 UJ	1.7 UJ	1.7 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	20 U	20 U	10 U	4 U	2 U	2 U	2 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	20 U	20 U	10 U	4 U	2,1 U	2.1 U	2,1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	20 U	20 U	10 U	4 U	1.4 U	1.4 U	1.4 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	20 U	20 U	10 U	4 U	1.6 U	1.6 U	1.6 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	20 U	20 U	10 U	4 U	1.6 U	1,6 U	1.6 U
Acetone	UG/L	2600	17%			45	262	1,300	1,300	30 J	20 U	26 J	13 UJ	13 U
Benzene	UG/L	0.48	2%	1	0	5	268	20 U	20 U	10 U	4 U	1,6 U	1.6 U	1.6 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	20 U	20 U	10 U	4 U	3.8 U	3.8 U	3.9 U
Bromoform	UG/L	0	0%	80	0	0	268	20 U	20 U	10 U	4 U	2.6 UJ	2.6 UJ	2.6 UJ
Carbon disulfide	UG/L	0	0%			0	268	20 U	20 U	10 U	4 U	1.9 U	1.9 U	1.9 UJ
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	20 U	20 U	10 U	4 U	2.7 UJ	2.7 UJ	2.7 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	20 U	20 U	10 U	4 U	1,8 U	1,8 ∪	3.2 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	20 U	20 U	10 U	4 U	3.2 U	3.2 U	3.2 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	20 U	20 U	10 U	4 UJ	3.2 U	3.2 U	3.2 U
Chloroform	UG/L	71	8%	7	7	22	268	20 U	20 U	10 U	4 U	3.4 U	3.4 U	3.4 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	20 U	20 U	10 U	4 U	1.6 U	1.6 U	1.6 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	20 U	20 U	10 U	4 U	3.6 U	3.6 U	3.6 U
Cyclohexane	UG/L	0.3	0%	0,4	•	1	268	20 U	20 U	10 U	4 U	2,2 UJ	2,2 UJ	5.3 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	20 U	20 U	10 U	4 U	2.8 U	2.8 U	2.9 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	20 U	20 U	10 U	4 U	1.8 U	1,8 U	1.8 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	20 U	20 U	10 U	4 U	1,9 U	1,9 U	1.9 U
Methyl Acetate	UG/L	6	1%	3	٠	2	253	20 U	20 U	10 UJ	4 UJ	1.7 UJ	1.7 UJ	1.7 UJ
Methyl bromide	UG/L	2,1	0%	5	0	1	262	20 U	20 U	10 U	4 UJ	2.8 U	2.8 U	2.8 U
Methyl butyl ketone	UG/L	0	0%	5	U	0	268	100 U	100 U	50 UJ	20 UJ	12 U	12 U	12 U
Methyl chloride	UG/L	0	0%	5	0	0	268	20 U	20 U	10 U	4 U	3.4 U	3.4 U	3,5 U
Methyl cyclohexane	UG/L	0.17		ą	U	1	268	20 U	20 U	10 U	4 U	2.2 UJ	2.2 UJ	5 U
, ,	UG/L	4900	0% 8%			,	268	1.800	1.700	50 U	20 U	13 UJ	13 UJ	13 U
Methyl ethyl ketone						22	268 268	100 U	100 U	50 U	20 U	9.1 UJ	9.1 UJ	9.1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1		20 U	20 U	10 U	4 U	1.6 UJ	1.6 UJ	1.6 U
Methyl Tertbutyl Ether	UG/L	0	0%		_	0	268		13 J	10 U	4 U	1.6 UJ	1.6 UJ	4.4 U
Methylene chloride	UG/L	18	4%	5	7	12	268	11 J	13 J 20 U	10 U	4 U	4.4 UJ 1.8 U	4.4 UJ 1,8 U	4.4 U
Styrene	UG/L	0	0%	5	0	0	268	20 U	20 0	10 U	4 0	1.8 U	1,8 U	1,8 U

Area Loc ID Matrix Sample ID	ASH LANDFILL MWT-27 GW ALBW20096	ASH LANDFILL MWT-27 GW ALBW20097	ASH LANDFILL MWT-27 GW ALBW20112	ASH LANDFILL MWT-27 GW ALBW20127 6/24/2008	ASH LANDFILL MWT-27 GW ALBW20142 12/15/2008	ASH LANDFILL MWT-27 GW ALBW20143 12/15/2008	ASH LANDFILL MWT-27 GW ALBW20157 6/3/2009
Sample Date QC Type	6/5 / 2007 SA	6/5/2007 DU	11/15/2007 SA	6/24/2008 SA	12/15/2008 SA	DU	6/3/2009 SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	3	3	4	5	6	6	7
Filtered	Total	Total	Total	Total	Total	Total	Total

		Maximum Value		Cleanup Goals	Number of	of Times	Number of Samples Analyzed	Volum Cond	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Parameter	Unit		Detections	Goals	Exceedances	Detects		Value Qual					3,6 U	3,6 U
Tetrachloroethene	UG/L	27	1%	5	1	2	268	20 U	20 U	10 U	4 U	3,6 U		
Toluene	UG/L	590	12%	5	18	32	268	20 U	20 U	7,3 J	5.9	6.9 J	7.2 J	5.1 U
Total Xylenes	UG/L	60	1%	5	1	2	268	60 U	60 U	30 U	12 U	9.3 U	9.3 U	6.6 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	20 U	20 U	10 U	4 U	1.3 U	1.3 U	1.3 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	20 U	20 U	10 U	4 U	3.7 U	3.7 U	3.7 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	20 U	20 U	10 U	4 U	1.8 U	1.8 U	1.8 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	20 UJ	20 UJ	10 U	4 UJ	1.5 UJ	1.5 UJ	1.5 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	20 U	20 U	10 U	4 U	2.4 U	2.4 U	2.4 U
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	96	95%			129	136	0.082	0.079	0.025 U	2.3	1.6	1.6	5.1
Ethene	UG/L	200	90%			122	136	0.34	0.32	0.014 J	0.049	0.13	0.12	0,15
Methane	UG/L	23,000	98%			133	136	14,000	13,000	13,000	13,000	15,000	15,000	14,000
Sulfate	MG/L	1,060	83%			113	136	2 U	2.7	31.7	2 U	24.2	23.8	0.93 J
Total Organic Carbon	MG/L	2050	100%			136	136	738	771	167	88.9	53,8	53.1	81.7

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20172	ALBW20173	ALBW20187	ALBW20203	ALBW20217	ALBW20218	ALBW20233
Sample Date	12/16/2009	12/16/2009	6/29/2010	12/18/2010	7/20/2011	7/20/2011	12/14/2011
QC Type	SA	DU	SA	SA	SA	DU	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	8	8	9	10	11	11	12
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency			Number	Number of							
		Maximum		Cleanup	Number of		Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances		Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1.3 U	1.3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1.1 U	1.1 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	1.5 U	1.5 ∪	0.5 UJ	0.5 U	0.5 U	0.5 U	0,5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1.2 U	1.2 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1.9 U	1.9 ∪	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2,6	12%	5	0	33	268	1,5 U	1.5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	2 U	2 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	2 U	2 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.83 U	0.83 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	1.1 U	1.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1.6 U	1.6 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1.8 U	1.8 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	2 U	2 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	6.7 U	6.7 U	11 J	5 UJ	5 UR	5.6 J	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	2 U	2 U	0.25 U	0,25 U	0.25 U	0,25 U	0.26 J
Bromodichloromethane	UG/L	0	0%	80	0	0	268	1.9 U	1.9 U	0.25 U	0.25 U	0.25 U	0,25 U	0,25 U
Bromoform	UG/L	0	0%	80	0	0	268	1.3 U	1.3 U	0.5 U	0.5 ∪	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.97 U	0.97 U	0.6 U	0.6 U	0.6 U	0,6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1.3 U	1.3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1.6 U	1,6 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1.6 U	1.6 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1.6 U	1.6 U	1 U	1 UJ	1 UJ	1 UJ	1 U
Chloraform	UG/L	71	8%	7	7	22	268	1.7 U	1.7 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	1.9 U	1.9 U	0.18 J	1.1	0.15 J	0.27 J	1.4
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1.8 U	1.8 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	2.7 U	2.7 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	1.4 U	1.4 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 ∪
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.92 U	0.92 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.96 U	0.96 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	2.5 U	2.5 U	0.19 UJ	0.19 U	0.19 UJ	0.19 UJ	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1.4 U	1,4 U	0.8 UJ	0.8 U	0.8 UJ	0.8 UJ	0,8 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	6.2 U	6.2 U	1 UJ	1 U	1 UJ	1 UJ	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	1.7 U	1.7 U	0.33 U	0.33 U	0.33 U	0.33 U	0,33 UJ
Methyl cyclohexane	UG/L	0.17	0%			1	268	2.5 U	2.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	6.6 U	6.6 U	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	4.5 U	4.5 U	1 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0,8 U	0.8 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	2.2 U	2.2 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.92 U	0.92 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area		ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID		MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27
Matrix		GW	GW	GW	GW	GW	GW	GW
Sample ID		ALBW20172	ALBW20173	ALBW20187	ALBW20203	ALBW20217	ALBW20218	ALBW20233
Sample Date		12/16/2009	12/16/2009	6/29/2010	12/18/2010	7/20/2011	7/20/2011	12/14/2011
QC Type		SA	DU	SA	SA	SA	DU	SA
Study ID		LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round		8	8	9	10	11	11	12
Filtered		Total	Total	Total	Total	Total	Total	Total
	Framiency	Number Number of						

Parameter	Unit	Maximum Value	Frequency of Detections	Cleanup	Number of Exceedances	of Times	Number of Samples Analyzed	Value Qual	Value Qual	Value Qual	Velue Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	1.8 U	1,8 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 W
Toluene	UG/L	590	12%	5	18	32	268	2.6 U	2,6 U	0.61 J	0.33 U	1 U	1 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3.3 U	3,3 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	2.1 U	2,1 U	0.2 U	0.2 U	0.33 J	0.23 J	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1.8 U	1.8 U	0.21 U	0.21 U	0,21 U	0,21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	2.3 U	2,3 U	0.13 U	0.51 J	0.13 U	0.13 U	0.13 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.76 U	0.76 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	3.2 J	2.9 J	0.18 U	2.1	0.18 U	0.18 U	3
Other	00/2	100	0170		107	100		-		_				
Iron	UG/L	296,000	100%			12	12							
Iron+Menganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	4.4	4.3	3.8	3	6.2	6.1	2
Ethene	UG/L	200	90%			122	136	1.2	1.1	0.12	0.88	0.083	0.072	1.6
Methane	UG/L	23,000	98%			133	136	15,000	16,000	13,000	18,000	14,000	14,000	16,000
Sulfate	MG/L	1,060	83%			113	136	13.9 J	14 J	0.95 J	25	0.76 J	0.61 J	19
Total Organic Carbon	MG/L	2050	100%			136	136	49	50.9	61	32	42	41	35

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20247	ALBW20265	ALBW20275	ALBW20276	ALBW20290	ALBW20307	ALBW20322
Sample Date	6/20/2012	12/14/2012	7/11/2013	7/11/2013	12/12/2013	6/19/2014	12/17/2014
QC Type	SA	SA	SA	DU	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	13	14	15	15	16	17	18
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency			Alumbas	Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0,5 UJ	0.5 U	0,5 UJ	0.5 U	0.5 U	0.5 U	0,5 U
1.1.2.2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 UJ	0.18 U	0.18 U	0.18 U	0.18 U
1.1.2-Trichloro-1.2.2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0,5 U	0.5 U	0.5 UJ	0,5 U	0.5 U	0.5 U	0.5 U
1.1.2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 UJ	0.13 U	0.13 U	0.13 U	0.13 U
1.1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
1.1-Dichloroethene	UG/L	2,6	12%	5	0	33	268	0,11 U	0.11 U	0.11 UJ	0.11 U	0.11 U	0.11 U	0.11 U
1.2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 UJ	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0,0006	0	0	268	0,25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 UJ	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	0.1 UJ	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 UJ	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0,28 UJ	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5 UJ	10 J	5 U	25 U	5 U	8.5 J	9,8 J
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0,25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.27 J
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 UJ	0.25 U	0.25 UJ	0,25 U	0,25 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 ∪
Carbon disulfide	UG/L	0	0%			0	268	0.6 U	0.6 U	0,6 UJ	0.6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0,25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0,1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 UJ	1 U	2 UJ	2 U	2 U	2 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 UJ	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	0.42 J	0.15 U	0.15 UJ	0.15 U	0.48 J	0.83 J	0.76 J
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 UJ	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0,3	0%			1	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 UJ	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 UJ	0,11 U	0.11 U	0.11 U	0,11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 UR	0.19 UJ	0.19 UJ	0.19 U	0.19 U	0.19 U	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 UJ	0,8 UJ	2 UJ	2 U	2 UJ	2 UJ	2 U*
Methyl butyl ketone	UG/L	0	0%			0	268	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 UJ	0.33 UJ	0.33 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 UJ	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0,11 UJ	0.11 U	0,11 U	0.11 U	0.11 U

Area Loc ID Matrix Sample ID Sample Date QC Type		ASH LANDFILL MWT-27 GW ALBW20247 6/20/2012 SA	ASH LANDFILL MWT-27 GW ALBW20265 12/14/2012 SA	ASH LANDFILL MWT-27 GW ALBW20275 7/11/2013 SA	ASH LANDFILL MWT-27 GW ALBW20276 7/11/2013 DU	ASH LANDFILL MWT-27 GW ALBW20290 12/12/2013 SA	ASH LANDFILL MWT-27 GW ALBW20307 6/19/2014 SA	ASH LANDFILL MWT-27 GW ALBW20322 12/17/2014 SA
Study ID		LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round		13	14	15	15	16	17	18
Filtered		Total	Total	Total	Total	Total	Total	Total
	Frequency	Number Number of						

			Frequency			Number	Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0.15 UJ	0.15 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0,33 U	0.33 UJ	0.33 U	0,33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0,2 ∪	0,2 U	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.2 U	0.2 U	0.2 UJ	0.2 U	0,2 U	0.27 J	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0,21 UJ	0,21 U	0,21 UJ	0.21 U	0.21 UJ	0,21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.13 U	0.13 U	0.13 UJ	0.13 U	0.13 U	0.13 U	0.13 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 UJ	0.25 U	0.25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.61 J	0,18 U	0.18 UJ	0.18 U	0.84 J	1	1.3
Other														
tron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	8.4	88.0	2	2.3	1.4	5,3	2.3
Ethene	UG/L	200	90%			122	136	0.68	0.051	0.2 U	0.2 U	0.16 J	0.79	0.35
Methane	UG/L	23,000	98%			133	136	14,000	13,000	13,000	12,000	20,000	16,000	12,000
Sulfate	MG/L	1,060	83%			113	136	1.4	2.5	4.2	3.9	5.2	6.6	37
Total Organic Carbon	MG/L	2050	100%			136	136	28	35	41	40	37 J	39	38

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-27	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20323	ALBW20068	ALBW20069	ALBW20083	ALBW20098	ALBW20113	ALBW20128
Sample Date	12/17/2014	1/3/2007	1/3/2007	3/16/2007	6/5/2007	11/15/2007	6/25/2008
QC Type	DU	SA	DU	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	18	1	1	2	3	4	5
Fiftered	Total	Total	Total	Total	Total	Total	Total

			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times			14.4	161				
Parameter Volatile Organic Compounds	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
1,1,1-Trichloroethane	110.0				1	5	000	0.5 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,1,2,2-Tetrachloroethane	UG/L	15 0	2% 0%	5 5	0	0	268	0.18 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
	UG/L	-		-	-	-	268					20 UJ	5 U	4 U
1,1,2-Trichloro-1,2.2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	20 UJ	20 UJ	20 U			
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Acetone	UG/L	2600	17%			45	262	16	2,500 J	2,600 J	170	520	25 U	20 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.26 J	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Carbon disulfide	UG/L	0	0%			0	268	0.6 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	20 ŲJ	20 UJ	20 U	20 U	5 U	4 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	2 U	20 UJ	20 ŲJ	20 U	20 U	5 U	4 UJ
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	0.63 J	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Cyclohexane	UG/L	0.3	0%			1	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	20 UJ	20 UJ	20 UJ	20 U	5 UJ	4 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	2 U*	20 UJ	20 UJ	20 U	20 U	5 U	4 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	100 UJ	100 UJ	100 U	100 U	25 UJ	20 UJ
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Methyl cyclohexane	UG/L	0.17	0%	-	-	1	268	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	4,900 J	4,900 J	180	510	25 U	20 U
Methyl isobutyl ketone	UG/L	1,9	0%			1	268	1 U	100 UJ	100 UJ	100 U	100 U	25 U	20 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	13 J	14 J	20 U	9,3 J	5 U	4 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Oxyrene	UG/L	v	0 70	9	v	v	200	0 0	20 00	20 00	24 4			

Area Loc ID	ASH LANDFILL MWT-27	ASH LANDFILL MWT-28	ASH LANDFILL MWT-28	ASH LANDFILL MWT-28	ASH LANDFILL MWT-28	ASH LANDFILL MWT-28	ASH LANDFILL MWT-28
Matrix	GW GW	GW	GW GW	GW GW	GW GW	GW GW	GW
Sample ID	ALBW20323	ALBW20068	ALBW20069	ALBW20083	ALBW20098	ALBW20113	ALBW20128
Sample Date	12/17/2014	1/3/2007	1/3/2007	3/16/2007	6/5/2007	11/15/2007	6/25/2008
QC Type	DU	SA	DU	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	18	1	1	2	3	4	5
Filtered	Total	Total	Total	Total	Total	Total	Total

Perameter	Unit	Meximum Value	Frequency of Detections	Cleanup	Number of Exceedances	of Times	Number of Semples Analyzed	Value Qual	Value Quel	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Toluene	UG/L	590	12%	5	18	32	268	0,33 U	330 J	350 J	160	800	210	53
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	60 UJ	60 UJ	60 U	60 U	15 U	12 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.2 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Trichioroethene	UG/L	3800	69%	5	86	185	268	0.13 U	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	20 UJ	20 UJ	20 U	20 UJ	5 U	4 UJ
Vinyl chloride	UG/L	180	67%	2	137	180	268	1.1	20 UJ	20 UJ	20 U	20 U	5 U	4 U
Other														
Iron	UG/L	296,000	100%			12	12		278,000 J	271,000 J	33,000			
Iron+Manganese	UG/L	352,900	100%			12	12		309,800 J	301,800 J	37,480			
Manganese	UG/L	56,900	100%			12	12		31,800	30,800	4,450			
Ethene	UG/L	98	95%			129	136	2.1	10,000 UJ	10,000 UJ	0.67	0.01 J	0.014 J	0.65
Ethene	UG/L	200	90%			122	136	0.32	10,000 UJ	10,000 UJ	0.48	0.057	0.025 U	0.044
Methane	UG/L	23,000	98%			133	136	12,000	12,000 J	13,000 J	19,000	11,000	11,000	12,000
Sulfate	MG/L	1,060	83%			113	136	36	2 U	2.3	2 U	2 U	2 U	2 U
Total Organic Carbon	MG/L	2050	100%			136	136	38	1.820 J	1,730 J	171	309	92	49.2

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standarda (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20144	ALBW20158	ALBW20159	ALBW20174	ALBW20188	ALBW20189	ALBW20204
Sample Date	12/15/2008	6/3/2009	6/3/2009	12/18/2009	6/29/2010	6/29/2010	12/18/2010
QC Type	SA	SA	DU	SA	SA	DU	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	6	7	7	8	9	9	10
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency				Number of							
D		Maximum Value	of Detections	Cleanup Goals	Number of Exceedances	of Times	Samples Analyzed	Malara Orași	Malue Ouel	Makes Ovel	Value Ovel	Makes Over	Value Ouel	Value Over
Parameter Volatile Organic Compounds	Unit	value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
1,1,1-Trichloroethane	UG/L	15	2%	5	4	5	268	2.6 U	0,26 U	0,26 ∪	1,3 ∪	0.5 U	0.5 U	0.5 U
1.1.2.2-Tetrachloroethane	UG/L		0%	5	0	0	268	2,8 U	0.21 U	0.21 U	1.1 U	0.18 U	0.18 U	0.18 U
1,1,2,2-Tetrachioroethane	UG/L	0	0%	5	0	0	268	3.1 U	0.31 U	0.31 U	1.5 UJ	0.16 UJ	0.5 UJ	0.16 U
1.1.2-Trichloroethane	UG/L	0	0%	1	0	0	268	2.3 U	0.23 U	0.23 U	1,3 U	0.13 U	0.13 U	0.13 U
1.1-Dichloroethane	UG/L	62	13%	5	4	34	268	7.5 U	0.75 U	0.75 U	1.9 U	0.75 U	0.15 U	0.15 U
1.1-Dichloroethene	UG/L	2.6		5	0			2.9 U	0.79 U	0.79 U	1.5 U	0.11 U	0.11 U	0.11 U
			12%	5	0	33 0	268	4.1 U	0.29 U	0.29 U	2 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	_	0	-	268	10 UJ	1 UJ	1 UJ	2 U	0.44 U	0.44 U	0.44 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	-	0	268	1,7 U	0,17 U	0.17 U	0.83 U	0.44 U	0.44 U	0.25 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	1.7 U	0.17 U	0.17 U	1 U	0,25 U	0.25 U	0,21 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	2.1 U	0.2 U	0.2 U	1.1 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	2.1 U 1.4 U			1.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268		0.14 U	0.14 U				
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1.6 U	0.16 U	0.16 U	1.8 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1,6 U	0.16 U	0.16 U	2 U	0.28 U	0.28 U	0,28 U
Acetone	UG/L	2600	17%			45	262	13 U	1,9 J	1.9 J	6.7 U	6,2 J	5.9 J	5 UJ
Benzene	UG/L	0.48	2%	1	0	5	268	1.6 U	0.16 U	0.16 U	2 U	0.25 U	0,25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	3.8 U	0.39 U	0.39 U	1.9 U	0,25 U	0.25 U	0,25 U
Bromoform	UG/L	0	0%	80	0	0	268	2.6 U	0.26 UJ	0.26 UJ	1.3 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	1.9 U	0.19 UJ	0.19 UJ	0.97 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	2.7 U	0.27 U	0.27 ∪	1.3 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1.8 U	0.32 U	0.32 U	1.6 ∪	0.25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	3.2 U	0.32 U	0.32 U	1.6 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	3.2 U	0.32 U	0.32 U	1.6 UJ	1 U	1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	3.4 U	0.34 U	0.34 U	1.7 ∪	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	1.6 U	0.16 U	0.16 U	1.9 U	0.15 U	0.15 U	0.51 J
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	3.6 U	0.36 U	0.36 U	1.8 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	2.2 U	0.53 U	0.53 U	2.7 U	0.25 U	0.25 U	0,25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	2.8 U	0.29 U	0.29 U	1.4 U	0.25 U	0,25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1.8 U	0.18 U	0.18 U	0.92 U	0.17 J	0.17 J	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	1.9 U	0.19 U	0.19 U	0.96 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	1.7 U	0.17 UJ	0.17 UJ	2,5 U	0.19 UJ	0.19 UJ	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	2.8 U	0.28 U	0.28 U	1.4 UJ	0.8 UJ	0.8 UJ	0,8 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	12 U	1.2 U	1.2 U	6.2 U	1 UJ	1 UJ	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	3.4 U	0,35 U	0.35 U	1.7 ∪	0.33 U	0.33 U	0.33 ∪
Methyl cyclohexane	UG/L	0.17	0%			1	268	2.2 U	0.5 U	0.5 U	2.5 U	0.1 U	0,1 U	0.1 ∪
Methyl ethyl ketone	UG/L	4900	8%			22	268	13 U	1.3 U	1.3 U	6.6 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	9.1 U	0.91 U	0.91 U	4.5 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1.6 U	0.16 U	0.16 U	0.8 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	4,4 UJ	0,44 U	0.44 U	2,2 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	1.8 U	0.18 U	0.18 U	0.92 U	0,11 U	0.11 U	0.11 U

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28
Matrix								GW						
Sample ID								ALBW20144	ALBW20158	ALBW20159	ALBW20174	ALBW20188	ALBW20189	ALBW20204
Sample Date								12/15/2008	6/3/2009	6/3/2009	12/18/2009	6/29/2010	6/29/2010	12/18/2010
QC Type								SA	SA	DU	SA	SA	DU	SA
Study ID								LTM						
Sample Round								6	7	7	8	9	9	10
Filtered								Total						
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances		Analyzed	Value Qual	Value Qual				Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	3.6 U	0.36 U	0.36 U	1.8 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	5.1 U	0,57 J	0.6 J	2.6 U	0,52 J	0.48 J	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	9.3 U	0.66 U	0.66 U	3.3 ∪	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1.3 U	0,13 U	0.13 U	2.1 U	0.2 U	0.2 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	3.7 U	0.37 U	0.37 U	1.8 U	0,21 U	0.21 U	0,21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	1.8 U	0.18 U	0.18 U	2.3 U	0.13 U	0.13 U	0.13 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1.5 U	0.15 U	0,15 U	0.76 UJ	0,25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	2.4 U	0.24 U	0.24 U	1.2 U	0.18 U	0.18 U	0.64 J
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	2	1.9	1.7	1.6	1.6	1.5	1.4
Ethene	UG/L	200	90%			122	136	0.12	0.062	0.066	0.12	0.057	0.061	0.17
Methane	UG/L	23,000	98%			133	136	19,000	14,000	12,000	15,000	14,000	13,000	12,000
Sulfate	MG/L	1,060	83%			113	136	48.3	0.35 U	0.35 U	3.16	0.5 U	0.5 U	4.8
Total Organic Carbon	MG/L	2050	100%			136	136	27.9	28.7	27.6	25,5	21	21	12

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

			4011141105111	ACILI ANDENII	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANUFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20219	ALBW20234	ALBW 20248	ALBW20249	ALBW20264	ALBW20277	ALBW20291
Sample Date	7/19/2011	12/14/2011	6/20/2012	6/20/2012	12/14/2012	7/11/2013	12/14/2013
QC Type	SA	SA	SA	DU	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	11	12	13	13	14	15	16
Filtered	Total	Total	Total	Tota!	Total	Total	Total

			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples	14.1	Makes Beeck	Materia Const	Makes Assal	Value Ovel	Value Qual	Value Qual
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Quai
Volatile Organic Compounds								0.5.11	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0,5 U	0.5 U
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U			0.5 UJ 0.18 U	0.5 U	0.18 U	0.18 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U		0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0,44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 ∪	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5 UR	5 U	5 UJ	5 UJ	5 U	5 U	5 UJ
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0,25 U	0.25 U	0.25 UJ	0.25 UJ	0.25 U	0,25 U	0,25 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.6 U	0.6 U	0,6 ∪	0.6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0,25 U	0.25 U	0,25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 UJ	1 U	1 UJ	1 UJ	1 U	2 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0,14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1.2-Dichloroethene	UG/L	820	88%	5	166	235	268	0.15 U	0.28 J	0.15 U	0.15 U	0.15 U	0.15 U	0.39 J
Cis-1.3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0,3	0%	•		1	268	0.25 U	0,25 U	0,25 U	0,25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0,11 U	0.11 J	0.13 J	0.12 J	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%	3	v	2	253	0.19 UJ	0.19 U	0.19 UR	0.19 UR	0,19 UJ	0.19 U	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0,8 UJ	0,8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	2 U	2 U
Methyl butyl ketone	UG/L	0	0%	5	v	0	268	1 UJ	1 U	1 UJ	1 UJ	1 U	1 U	1 U
			0%	5	0	0	268	0.33 U	0,33 UJ	0.33 U	0.33 U	0.33 U	0.33 UJ	0.33 U
Methyl chloride	UG/L	0 0.17		J	U	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl cyclohexane	UG/L		0%			22	∠68 268	1 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U
Methyl ethyl ketone	UG/L	4900	8%					1 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methyl Tertbutyl Ether	UG/L	0	0%	_	-		268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	UG/L	18	4%	5	/	12	268			0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0,11 0	0.11 0	0.11 0	0.11 0	0.11 0

Area

Ethene

Methane

Sulfate

Total Organic Carbon

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

ASH LANDFILL

ASH LANDFILL

0.053

15,000

0.5 J

18

ASH LANDFILL

0.086

13,000

0.67 J

18

ASH LANDFILL

0.074

11,000

1.1

25

ASH LANDFILL

Loc ID								MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28	MWT-28
Matrix								GW						
Sample ID								ALBW20219	ALBW20234	ALBW20248	ALBW20249	ALBW20264	ALBW20277	ALBW20291
Sample Date								7/19/2011	12/14/2011	6/20/2012	6/20/2012	12/14/2012	7/11/2013	12/14/2013
QC Type								SA	SA	SA	DU	SA	SA	SA
Study ID								LTM						
Sample Round								11	12	13	13	14	15	16
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency			Number	Number of							
		Maximum		Cleanup	Number of		Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value_Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 UJ	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	1 U	0,33 U	0.6 J	0.68 J	0,33 U	0.38 J	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.2 U	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 UJ	0.21 UJ	0,21 U	0,21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0,25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.18 U	0.56 J	0.18 U	0.18 U	0.31 J	0.18 U	0.18 U
Other														
1ron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	0.9	1.6	3.3	2.9	0.38	1.6	1.7

0.0085 J

8,800

0.63 J

17

122

133

113

136

136

136

136

136

0.425 U

19

12

12,000

MG/L 2050

UG/L 200

UG/L 23,000

MG/L 1,060

90%

98%

83%

100%

ASH LANDFILL

ASH LANDFILL

0.2 U

1.1 J

25

14,000

0.27 J

2.5 U

24 J

20,000

^{1,} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise,

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-28	MWT-28	MWT-28	MWT-29	MWT-29	MWT-29	MWT-29
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20292	ALBW20308	ALBW20324	ALBW20070	ALBW20084	ALBW20085	ALBW20099
Sample Date	12/14/2013	6/19/2014	12/17/2014	1/3/2007	3/16/2007	3/16/2007	6/5/2007
QC Type	DU	SA	SA	SA	SA	DU	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	16	17	18	1	2	2	3
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency			Number	Number of							
		Maximum		Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 U	2 U	5 U	4 U	2 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	2 U	5 U	4 U	2 U
1,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	0,5 U	0.5 U	0.5 U	2 U	5 U	4 U	2 UJ
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	2 U	5 U	4 U	2 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	2 U	5 U	4 U	2 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	2 U	5 U	4 U	2 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	2 U	5 U	4 U	2 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.1 U	0.1 U	0.1 U	2 U	5 U	4 U	2 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	2 U	5 U	4 U	2 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0,28 U	0.28 U	2 U	5 U	4 U	2 U
Acetone	UG/L	2600	17%			45	262	5 UJ	5 U	5 U	10 U	15 J	14 J	5.7 J
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0,25 U	0.25 U	2 U	5 U	4 U	2 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.5 U	2 U	5 U	4 U	2 U
Carbon disulfide	UG/L	0	0%			0	268	0,6 U	0.6 U	0.6 U	2 U	5 U	4 U	2 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 UJ	0.5 U	2 U	5 U	4 U	2 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	2 U	5 U	4 U	2 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	2 U	2 U	2 U	2 U	5 U	4 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0,14 U	2 U	5 U	4 U	2 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	0.35 J	0.15 U	0.19 J	280	220	220	100
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	2 U	5 U	4 U	2 U
Cyclohexane	UG/L	0,3	0%	0.4	•	1	268	0.25 U	0.25 U	0,25 U	2 U	5 U	4 U	2 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	0.25 U	0.25 U	2 U	5 U	4 U	2 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0,11 U	2 U	5 U	4 U	2 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	2 U	5 U	4 U	2 U
Methyl Acetate	UG/L	6	1%	9	•	2	253	0.19 UJ	0.19 U	0,19 U	2 U	5 UJ	4 UJ	2 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	2 UJ	2 UJ	2 U*	2 U	5 U	4 U	2 U
Methyl butyl ketone	UG/L	0	0%	•	•	0	268	1 U	1 U	1 U	10 U	25 U	20 U	10 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	2 U	5 U	4 U	2 U
Methyl cyclohexane	UG/L	0.17	0%	9	U	1	268	0.1 U	0.33 U	0.33 U	2 U	5 U	4 U	2 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 U	10 U	25 U	20 U	10 U
Methyl isobutyl ketone	UG/L	1.9	8% 0%			1	268	1 U	1 U	1 U	10 U	25 U	20 U	10 U
Methyl Tertbutyl Ether		1.9				0		0.2 U	0.2 U	0.2 U	2 U	25 U	4 U	2 U
Methylene chloride	UG/L	0 18	0%		-	•	268	1 U	1 U	0.2 U	2 U	2.5 J	4 U	2 U
	UG/L		4%	5 5	7 0	12 0	268					2.5 J 5 U	4 U	2 U
Styrene	UG/L	0	0%	5	Ü	U	268	0.11 U	0,11 U	0.11 U	2 U	5 U	4 0	2 0

Area				ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID				MWT-28	MWT-28	MWT-28	MWT-29	MWT-29	MWT-29	MWT-29
Matrix				GW						
Sample ID				ALBW20292	ALBW20308	ALBW20324	ALBW20070	ALBW20084	ALBW20085	ALBW20099
Sample Dete				12/14/2013	6/19/2014	12/17/2014	1/3/2007	3/16/2007	3/16/2007	6/5/2007
QC Type				DU	SA	SA	SA	SA	DU	SA
Study ID				LTM						
Sample Round				16	17	18	1	2	2	3
Filtered				Total						
	Frequency		Number No	umber of						

			Frequency	24	M	Number of Times	Number of							
Parameter	Unit	Maximum Value	Detections	Cleanup Goals	Number of Exceedances	Detects	Samples Analyzed	Value Quel	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Que
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0,15 U	0.15 U	0.15 U	2 U	5 U	4 U	2 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0,33 U	0.33 U	2.6	5 U	2.2 J	2 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	6 U	15 U	12 U	6 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.2 U	0,2 U	0.2 U	6,6	7,8	8	2.1
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 U	2 U	5 U	4 U	2 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.13 U	0.13 U	0.13 U	22	19	19	7.6
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U	2 U	5 U	4 U	2 UJ
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.18 U	0.16 U	0.16 U	140	160	170	81
Other										_				
fron	UG/L	296,000	100%			12	12				1,370 J	2,470	2,660	
Iron+Manganese	UG/L	352,900	100%			12	12				8,820 J	8,780	9,060	
Manganese	UG/L	56,900	100%			12	12				7,260	6,280	6,500	
Ethane	UG/L	98	95%			129	136	1.2	2.8	0.35	2,000 U	20	25	13
Ethene	UG/L	200	90%			122	136	0.2	0.0068 J	0.049 J	2,000 U	120	150	160
Methane	UG/L	23,000	98%			133	136	19,000	15,000	12,000	2,000 U	6,500	8,100	2,800
Sulfate	MG/L	1,060	83%			113	136	2.5 U	1.3 U	11	113	179	173	151
Total Organic Carbon	MG/L	2050	100%			136	136	24 J	19	18	25,1 J	35	36.7	15.7

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/eafewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29
Matrix	GW	GW	GW	GW	GW	GW	GW
Sample ID	ALBW20114	ALBW20129	ALBW20130	ALBW20145	ALBW20160	ALBW20175	ALBW20190
Sample Date	11/14/2007	6/25/2008	6/25/2008	12/15/2008	6/3/2009	12/16/2009	6/30/2010
QC Type	SA	SA	DU	SA	SA	SA	SA
Study ID	LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round	4	5	5	6	7	8	9
Filtered	Total	Total	Total	Total	Total	Total	Total

			Frequency			Number	Number of							
Parameter	Unit	Maximum Value	of Detections	Cleanup Goals	Number of Exceedences	of Times Detects	Samples Analyzed	Value Qual	Value Quel	Value Qual	Value Qual	Value Qual	Value Qual	Value Que
folatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1 U	1 U	1 U	0.26 UJ	0,26 U	0.26 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	0.21 UJ	0.21 U	0.21 U	0.18 U
1,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	0.31 UJ	0.31 U	0.31 U	0.5 UJ
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	1 U	1 U	0.23 UJ	0.23 U	0.23 U	0,13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1 U	1 U	1 U	0.75 U	0.75 U	0.38 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	1 U	1 U	1 U	0,29 U	0.29 U	0.29 U	0.26 J
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	0.41 UJ	0.41 U	0.41 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 U	1 U	1 U	1 03	1 UJ	0.39 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0,0006	0	0	268	1 U	1 U	1 U	0.17 UJ	0.17 U	0.17 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	0.2 U	0.2 U	0.2 U	0.21 U
1.2-Dichloroethane	UG/L	5.6	15%	0.6	34	42	268	1 U	1 U	1 U	0.21 U	0.21 U	0.21 U	0.1 U
1.2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	1 U	1 U	0.14 U	0.14 U	0.32 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	0.16 U	0.16 U	0.36 U	0.25 U
1.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	0,16 U	0.16 U	0.39 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5 U	5 U	5 U	1.3 UJ	1.3 U	1.3 U	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	1 U	1 U	0.16 U	0.16 U	0.41 U	0.25 U
Bromodichioromethene	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	0.38 U	0,39 U	0.39 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	0.26 UJ	0.26 UJ	0.26 U	0.5 U
Carbon disulfide	UG/L	0	0%		•	0	268	1 U	1 U	1 U	0.19 U	0.19 UJ	0,19 U	0,6 U
Cerbon tetrachloride	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	0.27 UJ	0.27 U	0.27 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	0.18 U	0.32 U	0.32 U	0.25 U
Chlorodibromomethane	UG/L	o	0%	80	0	0	268	1 U	1 U	1 U	0.32 U	0.32 U	0.32 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	1 UJ	1 UJ	0.32 U	0.32 U	0.32 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	1 U	1 U	1 U	0,34 U	0,34 U	0.34 U	0.14 U
Ch-1.2-Dichloroethene	UG/L	820	88%	5	166	235	268	96	83	85	92	61	37	78
Cla-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	1 U	0,36 U	0,36 U	0,36 U	0.11 U
Cyclohexane	UG/L	0.3	0%	0.4	•	1	268	1 U	1 U	1 U	0,22 UJ	0.53 U	0,53 U	0.25 U
Dichlorodiffuoromethane	UG/L	0.3	0%	5	0	1	268	1 U	1 U	1 U	0.28 U	0.29 U	0.29 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1 U	1 U	1 U	0.18 U	0.18 U	0.18 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 U	1 U	1 U	0.19 U	0.19 U	0.19 U	0.1 U
Methyl Acetate	UG/L	6	1%	3	0	2	253	1 UJ	1 UJ	1 UJ	0.17 UJ	0.17 UJ	0.5 U	0,19 W
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	1 UJ	1 UJ	0.28 U	0.28 U	0.28 U	0.8 W
Methyl butyl ketone	UG/L	0	0%	3	· ·	0	268	5 UJ	5 UJ	5 UJ	1.2 U	1.2 U	1.2 U	1 W
Methyl chloride	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	0,34 U	0.35 U	0,35 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%	9	U	1	268	1 U	1 U	1 U	0.22 UJ	0.5 U	0.5 U	0.1 U
	UG/L	4900	8%			22	268	5 U	5 U	5 U	1.3 UJ	1.3 U	1.3 U	1 U
Methyl ethyl ketone						1	268	5 U	5 U	5 U	0.91 UJ	0.91 U	0.91 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			•		1 U	1 U	1 U	0.16 UJ	0.16 U	0.16 U	0.2 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	1 U	1 U	0.44 UJ	0.44 U	0.44 U	1 U
Methylene chloride	UG/L	18	4%	5	7	12	268			1 U				0.11 U
Styrene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 0	0.18 U	0.18 U	0.18 U	0.11 0

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29
Matrix								GW						
Sample ID								ALBW20114	ALBW20129	ALBW20130	ALBW20145	ALBW20160	ALBW20175	ALBW20190
Sample Dete								11/14/2007	6/25/2008	6/25/2008	12/15/2008	6/3/2009	12/16/2009	6/30/2010
QC Type								SA	SA	DU	SA	SA	SA	SA
Study ID								LTM						
Sample Round								4	5	5	6	7	8	9
Filtered								Total						
		Maximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qu
Tetrachioroethene	UG/L	27	1%	5	1	2	268	1 U	1 U	1 U	0,36 U	0.36 U	0,36 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	2.1	1 U	1 U	0.51 U	0.51 U	0.51 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	3 U	3 U	0.93 U	0.66 U	0.66 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.83 J	0.62 J	0.68 J	0.6 J	0.67 J	0.65 J	1.1
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	1 U	0,37 U	0,37 U	0.37 U	0.21 U
Trichioroethene	UG/L	3800	69%	5	86	185	268	4.4	3.2	3.3	8.8	4.5	3,5	1.3
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 U	1 UJ	1 ເມ	0,15 UJ	0.15 U	0,15 U	0,25 U
Vinyi chloride	UG/L	180	67%	2	137	180	268	74	73	74	30	43	29	
Other											•			
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	19	15	14	14	10	6.7	18
Ethene	UG/L	200	90%			122	136	200	140	140	19	47	12	88

289

173

14.2

174

312

\$44 J

170

10

MG/L 1,060

MG/L

2050

83%

100%

Sulfate

Total Organic Carbon

113

136

136

136

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29
Matrix								GW						
Sample ID								ALBW20205	ALBW20220	ALBW20235	ALBW20250	ALBW20263	ALBW20278	ALBW20293
Sample Date								12/19/2010	7/20/2011	12/14/2011	6/20/2012	12/13/2012	7/10/2013	12/12/2013
QC Type								SA						
Study ID								LTM						
Sample Round								10	11	12	13	14	15	16
Filtered								Total						
rittered			Frequency			Number	Number of		i Otal	i otaj	1 Olas	lotar	Total	TO(a)
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0,5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0,5 U					
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.4 J	0.11 U	0.11 U	0,11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0,44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	ō	0%	0.0006	ō	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0,21 U	0,21 U	0.21 U	0.21 U	0,21 U	0,21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.1 U	0.1 U	0.1 U	0,1 UJ	0.1 U	0.1 U	0,1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0,13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0.23	0%	3	0	0	268	0.25 U	0.25 U	0.15 U	0.75 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%	3	U	45	262	5 UJ	5 UR	5 U	5 UJ	5 U	5 U	5 U
				1	0	5		0.25 U	0,25 U	0,25 U	0,25 U	0,25 U	0.25 U	0.25 U
Benzene Bromodichloromethane	UG/L UG/L	0.48 0	2% 0%		0	0	268 268	0.25 U	0.25 U	0.25 U	0,25 UJ	0.25 U	0.25 U	0.25 U
				80	0	•		0.25 U	0.25 U	0.25 U	0.25 U	0.5 U	0.5 U	0.5 U
Bromoform	UG/L	0	0%	80	U	0	268	0.5 U	0.5 U	0.6 U	0.5 U	0.6 U	0.5 U	0.6 U
Carbon disulfide	UG/L	-	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	UG/L	0	0%	-	-	-	268	0.5 U	0.5 U	0.5 U	0.25 U	0.25 U	0.5 U	0.25 U
Chlorobenzene	UG/L	0	0%	5	0	0	268						0.1 U	0.1 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U 1 U	0,1 U	2 U
Chloroethane	UG/L	1,1	3%	5	0	7	268	1 U	1 UJ	1 U	1 UJ		0.14 U	0.14 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 J	0.14 U	0.14 U	0.14 U	0.14 U	80	28
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	38	33	8.5				0,11 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	
Cyclohexane	UG/L	0.3	0%	_	_	1	268	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0,25 U	0.25 U	0,25 U	0.25 U	0.25 U	0,25 U	0.25 UJ
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0,11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U						
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	0.19 UJ	0,19 U	0.19 UR	0,19 UJ	0.19 U	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	2 U	2 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Methyl chloride	ŲG/L	0	0%	5	0	0	268	0,33 U	0.33 U	0.33 UJ	0.33 U	0.33 U	0,33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U						
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 U	1 U	1 U	1 UJ	1 U	1 W	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U						
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29	MWT-29
Matrix								GW						
Sample ID								ALBW20205	ALBW20220	ALBW20235	ALBW20250	ALBW20263	ALBW20278	ALBW20293
Sample Date								12/19/2010	7/20/2011	12/14/2011	6/20/2012	12/13/2012	7/10/2013	12/12/2013
QC Type								SA						
Study ID								LTM						
Sample Round								10	11	12	13	14	15	16
Filtered								Total						
			Frequency											
		Maximum		Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Anelyzed	Value Qual	Value Qual	Value Qual				
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0,15 UJ	0.15 U	0.15 U	0,15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0,33 U	0.33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.77 J	1,6	0.28 J	0.59 J	0.44 J	1.1	0.42 J
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 U	0.21 UJ	0.21 U	0.21 UJ	0.21 W
Trichloroethene	UG/L	3800	69%	5	86	185	268	2.1	0.79 J	2.4	0.69 J	3,3	3.7	2.1
Trichlorofluoromethane	UG/L	0	0%	5	0	. 0	268	0.25 U	0,25 U	0.25 U	0,25 U	0.25 U	0,25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	27	43	8.9	49	11	32	20
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	5.1	8.3	1.7	10	0.58	2.9	1.5
Ethene	UG/L	200	90%			122	136	7.9	47	7.3	38	0.8	6,6	3.8
Methane	UG/L	23,000	98%			133	136	3,100	3,100	760	5,200	180	2,500	1,700
Sulfate	MG/L	1,060	83%			113	136	300	170	210	95	130	84	130
Total Organic Carbon	MG/L	2050	100%			136	136	7,4	7.7	4.9	8.2	4.8	5.8	6.2

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa,gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting firmit is approximate

UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-29	MWT-29	MWT-29	MWT-22	MWT-22	MWT-22	MWT-22
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20309	ALBW20309RA	ALBW20325	ALBW20071	ALBW20075	ALBW20100	ALBW20115
Sample Date								6/19/2014	6/19/2014	12/17/2014	1/4/2007	3/17/2007	6/6/2007	11/14/2007
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								17	17	18	1	2	3	4
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qua	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds				_		_				25.11	2.11	4 U	1 U	1 U
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U		0.5 U	2 U		1 U	1 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U		0.18 U	2 U	4 U		
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0,5 U		0.5 U	2 U	4 U	1 UJ	1 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U		0.13 U	2 U	4 U	1 U	1 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U		0.25 U	2 U	4 U	1 U	1 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.13 J		0.11 U	2 U	4 U	1 U	1 U
1.2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0,25 U		0.25 U	2 U	4 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U		0.44 U	2 U	4 0	1 U 1 U	1 U 1 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U		0.25 U	2 U	4 U		
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U		0.21 U	2 U	4 U	1 U	1 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.1 U		0.1 U	2 U	4 U	1 U 1 U	1 U 1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U		0.13 U	2 U	4 U		1 0
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U		0.25 U	2 U	4 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U		0.28 U	2 U	4 U	1 U	5 U
Acetone	UG/L	2600	17%			45	262	5 U		5 U	10 U	18 J	38	
Benzene	UG/L	0.48	2%	1	0	5	268	0,25 U		0,25 U	2 U	4 U	1 U	1 U 1 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U		0.25 U	2 U	4 U	1 U	
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U		0.5 U	2 U	4 U 4 U	1 U 1 U	1 U 1 U
Carbon disulfide	UG/L	0	0%			0	268	0.6 U		0.6 U	2 U			
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 UJ		0,5 U	2 U	4 U 4 U	1 U 1 U	1 U 1 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U		0.25 U	2 U	4 U	1 U	1 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U		0.1 U	2 U			1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	2 U		2 U	2 UJ	4 U 4 U	1 U 1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	7	0.14 U	2 U	90	120	99
Cis-1,2-Dichloroethene	UG/L	820	86%	5	166	235	268	45	_	18	130 2 U	4 U	1 U	1 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U		0.11 U	2 U	4 U	1 U	1 U
Cyclohexane	UG/L	0.3	0%	_		1	268	0.25 U 0.25 U		0.25 U 0.25 U	2 U	4 U	1 U	1 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268			0.25 U	2 U	4 U	1 U	1 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U		0.11 U	2 U	4 U	1 U	1 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U		0.19 U	2 U	4 UJ	1 U	1 UJ
Methyl Acetate	UG/L	6	1%			2	253	0.19 U 2 UJ		2 0*	2 U	4 U	1 U	1 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262			1 U	10 U	20 U	5 U	5 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	1 U 0.33 U		0.33 U	2 U	20 U	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268			0.33 U	2 U	4 U	1 U	1 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U		0.1 U	6 J	20 U	5 U	5 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U 1 U		1 U	10 U	20 U	5 U	5 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268			0,2 U	2 U	4 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U 1 U		0.2 U	1.2 J	4 U	1 U	1 U
Methylene chloride	UG/L	18	4%	5	7	12	268	0.11 U		0.11 U	1.2 J 2 U	4 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 0		0.11 0	20	+ 0	10	. 3

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-29	MWT-29	MWT-29	MWT-22	MWT-22	MWT-22	MWT-22
Matrix								GW						
Sample ID								ALBW20309	ALBW20309RA	ALBW20325	ALBW20071	ALBW20075	ALBW20100	ALBW20115
Sample Date								6/19/2014	6/19/2014	12/17/2014	1/4/2007	3/17/2007	6/6/2007	11/14/2007
QC Type								SA						
Study ID								LTM						
Sample Round								17	17	18	1	2	3	4
Filtered								Total						
			Frequency				Number of							
		Meximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual				
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U		0.15 U	2 U	4 U	1 U	1 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U		0.33 U	2 U	4 U	1 U	1 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U		0.2 U	6 U	12 U	3 U	3 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1,1		0.2 U	2,7	4 U	3,2	0.85 J
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U		0.21 U	2 U	_ 4 U	1 U	_ 1 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.71 J		2,3	8,2	3,8 J	6,8	2.6
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U		0.25 U	2 U	4 U	1 UJ	1 U
Vinyl chloride	UG/L	180	67%	2	137	180	268		130	7.8	96	64	\$1	180
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	9.1		0.34				
Ethene	UG/L	200	90%			122	136	45		0.87				
Methane	UG/L	23,000	98%			133	136	6,100		160				
Sulfate	MG/L	1,060	83%			113	136	97		120				

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a, NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-22	MWT-22	MWT-22	MWT-22	MWT-22	MWT-22	MWT-22
Matrix								GW						
Sample ID								ALBW20121	ALBW20136	ALBW20151	AL8W20166	ALBW20181	ALBW20196	ALBW20211
Sample Date								6/25/2008	12/15/2008	6/3/2009	12/16/2009	7/1/2010	12/17/2010	7/20/2011
QC Type								SA						
Study ID								LTM						
Sample Round								5	6	7	8	9	10	11
Fiftered								Total						
			Frequency				Number of	!						
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qua	Value Qual	Value Qua	Value Qual	Value Qua	Value Qual
Volatile Organic Compounds				_		_			4.0.114					
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	5 U	1.3 UJ	0.26 U	1,3 U	0.5 U	0,5 U	0,5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	5 U	1 UJ	0.21 U	1.1 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	5 UJ	1.6 UJ	0.31 U	1.5 U	0,5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	5 U	1.2 UJ	0,23 U	1.2 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	5 U	3.8 U	0.75 U	1.9 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	5 U	1.4 U	0.29 U	1.5 U	0.12 J	0,66 J	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	5 U	2 UJ	0.41 U	2 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	5 UJ	5 ŲJ	1 UJ	2 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	5 U	0.85 UJ	0.17 U	0.83 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	5 U	1 U	0,2 U	1 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	5 U	1 U	0,21 U	1.1 U	0.1 U	0,25 J	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	5 U	0.7 U	0.14 U	1.6 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	5 U	0.8 U	0.16 U	1.8 U	0,25 U	0.25 U	0,25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	5 U	0.8 U	0.16 U	2 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	25 U	6.5 UJ	2,5 3	6.7 U	5 U	5 UJ	5 UR
Benzene	UG/L	0.48	2%	1	0	5	268	5 U	0,8 U	0.16 U	2 U	0.25 U	0,25 U	0,25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	5 U	1.9 U	0.39 U	1.9 U	0.25 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	5 U	1,3 UJ	0.26 UJ	1.3 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	5 U	0.95 U	0.19 UJ	0.97 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	5 U	1.4 UJ	0.27 U	1.3 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	5 U	0.9 U	0.32 U	1,6 U	0.25 U	0.25 U	0,25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	5 U	1.6 U	0.32 U	1.6 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	5 UJ	1.6 U	0.32 U	1,6 U	1 U	1 U	1 UJ
Chloroform	UG/L	71	8%	7	7	22	268	5 U	1.7 U	0.34 U	1.7 U	0.14 U	0.14 U	0.14 U
Cls-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	68	160	66	57	41	130	23
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	5 U	1,8 U	0.36 U	1,8 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	5 U	1.1 UJ	0.53 U	2.7 U	0.25 U	0,25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	5 U	1,4 U	0.29 U	1,4 U	0.25 UJ	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	5 U	0.9 U	0.18 U	0,92 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	5 U	0.95 U	0.19 U	0.96 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	5 UJ	0.85 UJ	0.17 UJ	2,5 U	0.19 U	0.19 U	0.19 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	5 UJ	1.4 U	0.28 U	1.4 U	0.8 U	0.8 W	0.8 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	25 UJ	6 U	1.2 U	6.2 U	1 U	1 U	1 W
Methyl chloride	UG/L	0	0%	5	0	0	268	5 UJ	1.7 U	0.35 U	1.7 U	0.33 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%	-	-	1	268	5 U	1.1 UJ	0.5 U	2.5 U	0,1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	25 UJ	6,5 UJ	1.3 U	6,6 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	25 UJ	4.6 UJ	0.91 U	4.5 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	5 U	0.8 UJ	0.16 U	0.8 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	5 U	2,2 UJ	0,44 U	2.2 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	5 U	0.9 U	0.18 U	0.92 U	0,11 U	0.11 U	0.11 U
	L	•	0.0	-	*	-								

Area

Loc ID

Methane

Total Organic Carbon

Sulfate

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

122

133

113

136

136 136

136

136

MWT-22

Matrix								GW						
Sample ID								ALBW20121	ALBW20136	ALBW20151	ALBW20166	ALBW20181	ALBW20196	ALBW20211
Sample Date								6/25/2008	12/15/2008	6/3/2009	12/16/2009	7/1/2010	12/17/2010	7/20/2011
QC Type								SA						
Study ID								LTM						
Sample Round								5	6	7	8	9	10	11
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Meximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goels	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	5 U	1,8 U	0.36 U	1.8 U	0.15 U	0,15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	5 U	2.6 U	0.51 U	2,6 U	0.33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	15 U	4.6 U	0.66 U	3.3 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	5 U	0.65 U	0.77 J	2.1 U	1.3	2.8	2
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	5 U	1.8 U	0.37 U	1.8 U	0.21 U	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	3 J	8,9	2.2	2,3 U	0,6 J	1.6	0.32 J
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	5 UJ	0.75 UJ	0.15 U	0,76 U	0.25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	42	140	69	82	67	98	5
Other							_							
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Mangenese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							

UG/L 23,000

MG/L 2050

UG/L 200

MG/L 1,060

90%

98%

83%

100%

U = compound was not detected

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminent Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-22	MWT-22	MWT-22	MWT-22	MWT-22	MWT-22	MWT-22
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20226	ALBW20241	ALBW20256	ALBW20269	ALBW20281	ALBW20300	ALBW20316
Sample Date								12/14/2011	6/21/2012	12/12/2012	7/10/2013	12/12/2013	6/21/2014	12/18/2014
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								12	13	14	15	16	17	18
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency			Number	Number of		· Otal	10001	, otal	Total	i otal	rotai
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0,5 UJ	0.5 U	0,5 U	0.5 U	0.5 U	0,5 ↓
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 ↓
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0,5 UJ	0.5 ∪
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0,25 ↓	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.38 J	0.11 U	0.11 U	0.27 J	0.14 J	0,11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0,25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0,04	0	0	268	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0,21 U	0,21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	0.29 J	0.1 UJ	0,22 J	0.28 J	0.25 J	0.11 J	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0,13 U	0,13 U	0.13 U	0.13 U	0,13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	o o	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0,25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	ō	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%		•	45	262	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U
Benzene	UG/L	0,48	2%	1	0	5	268	0,25 U	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U	0,25 U
Bromodichloromethane	UG/L	0.40	0%	80	0	0	268	0.25 U	0.25 UJ	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	UG/L	ō	0%	80	0	o	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%	00	•	ō	268	0.6 U	0.5 U	0.6 U	0.5 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0,25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	1 UJ	1 U	2 U	2 U	2 UJ	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	, 166	235	268	140	57	86	150	100	19	32
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0,11 U	0,11 U	0,11 UJ	0,11 U	0.11 U	0,11 U	0,11 U
Cyclohexane	UG/L	0.3	0%	0.4	v	1	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	i	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 UJ	0,25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5		19	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0,11 U	0.11 U
•				5	1				0.11 U	0.11 U		0.1 U		0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U 0.19 UR		0.1 U		0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%	_		2	253	0.19 U		0.19 UJ	0.19 U	0.19 U	0,19 U	
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 UJ 1 U	0.8 UJ 1 UJ	0.8 UJ 1 U	2 U 1 U	2 UJ 1 U	2 U 1 U	2 U 1 U
Methyl butyl ketone	UG/L	0	0%			0	268							
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 UJ	0.33 U	0.33 U	0,33 U	0.33 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 U	1 UJ	1 UJ	1 UJ	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area

Loc ID

Methane

Total Organic Carbon

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

MWT-22

ASH LANDFILL

133

113

136

136

136

136

MWT-22

Matrix Sample ID								GW ALBW20226	GW ALBW20241	GW ALBW20256	GW ALBW20269	GW ALBW20281	GW ALBW20300	GW ALBW20316
Sample Date								12/14/2011	6/21/2012	12/12/2012	7/10/2013	12/12/2013	6/21/2014	12/18/2014
QC Type								SA						
Study ID								LTM						
Sample Round								12	13	14	15	16	17	18
Filtered								Total						
			Frequency				Number of							
Parameter	Unit	Maximum Value	of Detections	Cleanup Goals	Number of Exceedances	of Times Detects	Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 UJ	0.15 U					
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0.33 U	0,33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U						
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	3.9	5	3.8	6,2	7.1	2.8	3,6
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	2,3	0.48 J	0.73 J	2	U 88.0	0.19 J	0,21 J
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0,25 U	0.25 U	0,25 U	0,25 U	0,25 U	0.25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	83	90	100	84	120	4.6	84
Other							_							
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							

UG/L 23,000

MG/L 2050

MG/L 1,060 98%

83%

100%

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not datected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area		ASH LAN	NDFILL AS	SH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID			PT-22	PT-22	PT-22	PT-22	PT-22	PT-22	PT-22
Matrix			GW	GW	GW	GW	GW	GW	GW
Sample ID		ALB	3W20060	ALBW20086	ALBW20089	ALBW20104	ALBW20118	ALBW20133	ALBW20148
Sample Dete		1/	3/2007	3/15/2007	6/5/2007	11/14/2007	6/26/2008	12/15/2008	6/2/2009
QC Type			SA	SA	SA	SA	SA	SA	SA
Study ID			LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round			1	2	3	4	5	6	7
Fittered			Total	Total	Total	Total	Total	Total	Total
	Frequency	Number Number of							

Filtered								Total	Total	Total	Total	Total	Total	Total
i ittorou		Meximum		Cleanup	Number of	of Times	Number of Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Volatile Organic Compounds														
1,1,1-Trichioroethane	UG/L	15	2%	5	1	5	268	1 U	1 U	1 U	1 U	1 U	0.26 U	0.26 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.21 U	0.21 U
1,1.2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 UJ	0.31 U	0.31 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	1 U	1 U	1 U	1 U	0.23 U	0,23 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1 U	1 U	1 U	1 U	1 U	0.75 U	0.75 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	1 U	1 U	1 U	1 U	1 U	0,29 U	0.29 U
1.2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 UJ	1 U	1 U	0.41 U	0.41 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 U	1 U	1 U	1 U	1 W	1 W	1 UJ
1.2-Dibromoethene	UG/L	0	0%	0.0006	0	0	268	1 U	1 U	1 U	1 U	1 U	0.17 U	0.17 U
1.2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	t U	1 U	0.2 U	0.2 U
1,2-Dichloroethane	UG/L	5.6	16%	0,6	34	42	268	2.3	2.4	8.8	5	3.9	2.8	4
1.2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	1 U	1 U	1 U	1 U	0.14 U	0.14 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Acetone	UGIL	2600	17%	3	•	45	262	5 U	5 U	3.8 J	5.3	5 U	1.3 U	1.3 U
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Bromodichloromethane	UG/L	0.40	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0.38 U	0.39 U
Bromodicinoromediane	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0.26 U	0.26 UJ
				80	U	0	268	1 U	1 U	1 U	1 U	1 U	0.19 U	0.19 W
Carbon disulfide	UG/L	. 0	0%			0		1 U	1 U	1 U	1 U	1 U	0.27 U	0.27 U
Carbon tetrachloride	UG/L	. 0	0%	5	0	•	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.32 U
Chlorobenzene	UG/L	. 0	0%	5	0	0	268	1 0	1 U	1 U	1 U	1 U	0.32 U	0.32 U
Chlorodibromomethane	UG/L	. 0	0%	80	0	0	268			1.1 J	0.82 J	1 W	0.32 U	0,32 U
Chloroethane	UG/L		3%	5	0	7	268	1 03	1 U		0.82 J	1 0	0.34 U	0.34 U
Chloroform	UG/L		8%	7	7	22	268	1 U	10	10			62	41
Cls-1,2-Dichloroethene	UG/L		88%	5	166	235	268	57	41	61	30	26		0,36 U
Cls-1,3-Dichloropropene	UG/L	. 0	0%	0.4	0	0	268	1 0	1 0	1 U	1 0	1 0	0,36 U	
Cyclohexane	UG/L		0%			1	268	1 U	1 U	1 U	1 U	1 U	0.22 U	0.53 U
Dichlorodifluoromethane	UGIL	0,3	0%	5	0	1	268	1 U	1 U	1 UJ	1 U	1 0	0.28 U	0,29 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.18 U
Isopropytbenzene	UG/L	0.1	0%	5	0	1	268	1 U	1 U	1 U	1 U	1 U	0.19 U	0.19 U
Methyl Acetate	UG/L	6	1%			2	253	1 U	1 UJ	1 UJ	1 U	1 UJ	0.17 U	0.17 W
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	1 U	1 UJ	1 U	1 UJ	0.28 U	0.28 U
Methyl butyl ketone	UG/L	. 0	0%			0	268	5 U	5 U	5 U	5 U	5 UJ	1,2 U	1,2 U
Methyl chloride	UG/L	. 0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 UJ	0.34 U	0.35 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	1 U	1 U	1 UJ	1 U	1 U	0.22 U	0.5 U
Methyl ethyl ketone	UG/L		8%			22	268	5 U	5 U	5 U	5 U	5 UJ	1.3 U	1,3 U
Methyl isobutyl ketone	UG/L		0%			1	268	5 U	5 U	5 U	5 U	5 UJ	0.91 U	0.91 U
Methyl Tertbutyl Ether	UG/L	. 0	0%			0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Methylene chloride	UGA		4%	5	7	12	268	1 W	1 U	1 U	1 U	1 U	0.44 UJ	0.44 U
,				-	-	0		1 U	1 U	1 U	1 U	1 U	0.18 U	0.18 U
Methylene chloride Styrene	UG/L		0%	5	0		268							

Table B-1

Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Area								ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22
Loc ID												GW GW	GW	GW GW
Matrix								GW	GW	GW	GW		ALBW20133	ALBW20148
Sample ID								ALBW20060	ALBW20086	ALBW20089	ALBW20104	ALBW20118		
Sample Dete								1/3/2007	3/15/2007	6/5/2007	11/14/2007	6/26/2008	12/15/2008	6/2/2009
QC Type								SA						
Study ID								LTM						
Sample Round								1	2	3	4	5	6	7
Filtered								Total						
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects		Value Qual	Value Qual					
Tetrachloroethene	UG/L		1%	5	1	2	268	1 U	1 U	1 U	1 U	1 U	0,36 U	0,36 U
Toluene	UG/L	590	12%	5	18	32	268	1 U	1 U	1 U	1 U	1 U	0.51 U	0.51 U
Total Xylenes	UG/L		1%	5	1	2	268	3 U	3 U	3 U	3 U	3 U	0.93 U	0.66 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.86 J	0.51 J	0.72 J	0,67 J	0.57 J	0.41 J	0.81 J
Trans-1,3-Dichloropropene	UG/L	. 0	0%	0.4	0	0	268	1 U	1 U	1 U	1 U	1 U	0.37 U	0.37 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	11	16	8,8	9.7	4.1	35	6,0
Trichlorofluoromethane	UG/L	. 0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 UJ	0.15 U	0.15 U
Vinyl chloride	UG/L		67%	2	137	180	268	22	13	32	11	13	1.3	11
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L		100%			12	12							
Manganese	UG/L		100%			12	12							
Ethane	UG/L		95%			129	136							
Ethene	UG/L		90%			122	136							
	40,2	200	-370											

UG/L 23,000

MG/L 1,060

MG/L 2050

98%

83%

100%

Methane

Sulfate

Total Organic Carbon

133

113

136

136

136

136

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data velidation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-22	PT-22	PT-22	PT-22	PT-22	PT-22	PT-22
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20163	ALBW20178	ALBW20193	ALBW20208	ALBW20223	ALBW20238	ALBW20253
Sample Date								12/16/2009	6/30/2010	12/17/2010	7/22/2011	12/14/2011	6/21/2012	12/13/2012
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								8	9	10	11	12	13	14
Filtered								Total	Total	Total	Total	Total	Total	Total
1 110100			Frequency			Number	Number of						1.75	
		Meximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Quel	Value Qual	Value Qua	Value Qual
Volatile Organic Compounds														
1,1,1-Trichtoroethane	UG/L	15	2%	5	1	5	268	0,26 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.21 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	0.31 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.23 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0,38 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.29 U	0.11 U	0.11 U	0.11 U	0.11 U	0,11 U	0,11 U
1.2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.41 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.39 U	0.44 U	0.44 U	0,44 UJ	0.44 U	0.44 U	0.44 U
1.2-Dibromoethene	UG/L	0	0%	0.0006	0	0	268	0.17 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0,2 U	0,21 U	0,21 U	0.21 U	0.21 U	0,21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0,6	34	42	268	3	3.2	1.9	0.1 U	1.9	2.1	1.6
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.32 U	0.13 U	0.13 U	0.13 U	0.13 U	0,13 U	0,13 U
1,3-Dichlorobenzene	UG/L	0.23	0%	3	0	o	268	0.36 U	0.25 U	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.39 U	0.28 U	0,28 U	0.28 U	0.28 U	0.28 U	0.28 U
•	UG/L	2600	17%	3	U	45	262	1.3 U	5 U	5 UJ	5,3 J	5 U	5 UJ	5 U
Acetone	UG/L			1	0	5	268	0,41 U	0,25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U
Benzene		0.48	2%	•	0	0	268	0.39 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80 80	0	0	268	0,26 U	0.5 U	0,5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromoform	UG/L	0	0%	80	U	-				0.6 U				
Cerbon disutfide	UG/L	0	0%			0	268	0.19 U	0.6 U 0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0,27 U		0.5 U	0.5 U	0.5 U	0.25 U	0.25 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.32 U	0.25 U			0.1 U	0.1 U	0.1 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.32 U	0.1 U	0.1 U	0.1 UJ		1 UJ	1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	0.32 U	1 U	1 U	1 0	1 0		0.14 U
Chloroform	UG/L	71	8%	7	7	22	268	0,34 U	0.14 U	0.19 J	1 U	0.14 U	0.14 U	
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	29	43	42	42	32	31	26
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.36 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	0.53 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethene	UG/L	0.3	0%	5	0	1	268	0,29 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.18 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.19 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.5 U	0.19 UJ	0.19 U	0.19 U	0.19 U	0.19 UR	0.19 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0,28 U	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	1,2 U	1 UJ	1 U	1 U	1 U	1 W	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.35 U	0.33 U	0.33 U	0.33 U	0.33 UJ	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0,17	0%			1	268	0.5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1.3 U	1 U	1 U	1 U	1 U	1 W	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	0.91 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.16 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	0.44 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.18 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area

Loc ID

Ethene

Methane

Total Organic Carbon

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

ASH LANDFILL

PT-22

ASH LANDFILL

PT-22

ASH LANDFILL

PT-22

ASH LANDFILL

PT-22

ASH LANDFILL

122

133

113

136

136

136

136

136

PT-22

Matrix								GW						
Sample ID								ALBW20163	ALBW20178	ALBW20193	ALBW20208	ALBW20223	ALBW20238	ALBW20253
Sample Date								12/16/2009	6/30/2010	12/17/2010	7/22/2011	12/14/2011	6/21/2012	12/13/2012
QC Type								SA						
Study ID								LTM						
Sample Round								8	9	10	11	12	13	14
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Meximum		Cleanup	Number of	of Times	Samples						Make and	Makes Our
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.36 U	0.15 U	0.15 U	0.15 U	0.15 UJ	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.51 U	0.33 U	0.33 U	0,33 U	0.33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.66 U	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.42 U	0.75 J	0.48 J	0.2 U	0.37 J	0.84 J	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.37 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	8.7	4.6	29	31	34	7.5	28
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.15 U	0.25 U	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	9.6	11	2.1	0.18 U	0.68 J	4	0.46 J
Other														
fron	UG/L	296,000	100%			12	12							
fron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							

UG/L

MG/L 2050

200

UG/L 23,000

MG/L 1,060

90%

98%

83%

100%

ASH LANDFILL

PT-22

ASH LANDFILL

PT-22

GW

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2,} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data velidation rejected the results

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area Loc ID								ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL PT-22	ASH LANDFILL MWT-23	ASH LANDFILL MWT-23	ASH LANDFILL MWT-23
Matrix								GW	GW	GW	GW	GW	GW	GW
Semple ID								ALBW20266	ALBW20284	ALBW20297	ALBW20313	ALBW20065	ALBW20080	ALBW20094
Sample Date								7/9/2013	12/12/2013	6/21/2014	12/18/2014	1/3/2007	3/16/2007	6/6/2007
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								15	16	17	18	1	2	3
fittered			£			Monte	Mary bar of	Total	Total	Total	Total	Total	Total	Total
		Maximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Que	Value Qual	Value Qual	Value Que	Value Qual
Volatile Organic Compounds	Offic		00000010				renayaou	Yeard crass	Value Gua	Yaida Gai	Value Gui	VIII COM	Value Gue	V 4800 COM
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0,5 U	0.5 U	0.5 U	0.5 U	4 U	4 U	2 U
.1.2.2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	4 U	4 U	2 U
,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0,5 U	0.5 U	0,5 U	0.5 U	4 U	4 U	2 UJ
.1.2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	4 U	4 U	2 U
.1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	0.25 U	4 U	4 U	2 U
.1-Dichloroethene	UG/L	2.5	12%	5	0	33	268	0.11 U	0.11 U	0,11 U	0.11 U	4 U	4 U	2 U
2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	4 U	4 U	2 U
,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	0.44 U	4 U	4 U	2 U
,2-Dibromoethane	UG/L	0	0%	0.0006	o	0	268	0.25 U	0,25 U	0.25 U	0.25 U	4 U	4 U	2 U
2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	4 U	4 U	2 U
2-Dichloroethane	UG/L	5.6	16%	0,6	34	42	268	2.3	2	3.1	1.2	23 J	7 40	1,6 J
1,2-Dichloropropane	UG/L	0.29	0%	1	0	4	268	0,13 U	0.13 U	0.13 U	0.13 U	4 U	40	2 U
1,3-Dichlorobenzene	UG/L	0.29	0%	3	0	0	268	0.15 U	0.25 U	0,25 U	0.25 U	4 U	4 U	2 U
.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0,28 U	0.28 U	0.28 U	4 U	4 U	2 U
Acetone	UG/L	2600	17%	3	0	45	262	5 U	5 U	5 U	5 U	180	190	190
Benzene	UG/L	0,48	2%	1	0	5	268	0.25 U	0.25 U	0,25 U	0,25 U	4 U	4 U	2 U
Bromodichloromethane	UG/L	0.40	0%	80	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	4 U	4 U	2 U
Bromoform	UG/L	0	0%	80	0	0	268	0,5 U	0.5 U	0.5 U	0.5 U	4 U	4 U	2 U
Carbon disulfide	UG/L	0	0%	80	U	0	268	0.5 U	0.5 U	0.5 U	0.6 U	4 U	4 U	2 U
Carbon deunde Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	4 U	4 U	2 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.5 U	0.5 U	0.25 U	4 U	4 U	2 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	4 U	4 U	2 U
Chloroethane	UG/L		3%	5	0	7	268	2 U	2 U	2 U	2 U	4 U	4 U	2 U
Chloroform		1.1		7	7			0.14 U	0,14 U	0.14 U	0.14 U	4 U	4 U	2 U
Cis-1.2-Dichloroethane	UG/L	71	8% 88%	5		22 235	268 268	49	37	1 52	23	60	11	3.1
		820		_	166			0,11 U	0,11 U	0,11 U	0.11 U	4 U	4 U	
Cls-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268		0.11 U	0.25 U	0.25 U	4 U	4 U	2 U
Cyclohexane	UG/L	0.3	0%		•	1	268	0.25 U 0.25 U	0,25 UJ	0.25 U	0.25 U	4 U	4 U	2 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268		0.25 UJ		0.25 U	4 U	4 U	1.3 J
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U		0.11 U		4 U	4 U	1.3 J
sopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	4 U	4 UJ	
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	0.19 U	0.19 U	0.19 U		4 U	5.1 2 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	2 U	2 UJ	2 U	2 U	4 U	4 U	10 U
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	20 U 4 U	20 U	
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0,33 U	0.33 U	0.33 U			2 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	4 U	4 U	2 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 0	1 U	1 0	250	130	73
Methyl Isobutyl ketone	UG/L	1.9	0%			1	268	1 UJ	1 U	1 U	1 U	20 U	20 U	10 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	4 U	4 U	2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	2.8 J	4 U	2 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	4 U	4 U	2 U

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-22	PT-22	PT-22	PT-22	MWT-23	MWT-23	MWT-23
Matrix								GW						
Sample ID								ALBW20266	ALBW20284	ALBW20297	ALBW20313	ALBW20065	ALBW20080	ALBW20094
Sample Date								7/9/2013	12/12/2013	6/21/2014	12/18/2014	1/3/2007	3/16/2007	6/6/2007
QC Type								SA						
Study ID								LTM						
Sample Round								15	16	17	18	1	2	3
Fiftered								Total						
			Frequency				Number of							
		Meximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Quel				
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0.15 U	0,15 U	4 U	4 U	2 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0,33 U	4 U	7.4	\$7
Total Xylenes	UG/L	60	1%	5	1	2	268	0,2 U	0.2 U	0.2 U	0.2 U	12 U	12 U	6 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.45 J	0.28 J	1.3	0,2 U	4 U	4 U	2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 UJ	0.21 UJ	0.21 U	0.21 U	4 U	4 U	2 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	38	29	23	28	4 U	4 U	2 U
Trichloroffuoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	4 U	4 U	2 UJ
Vinyl chloride	UG/L	180	67%	2	137	180	268	1.6	0.68 J	2.8	0.18 U	23	4.8	2 U
Other											_			
Iron	UG/L	296,000	100%			12	12					122,000 J	120,000	7
Iron+Manganese	UG/L	352,900	100%			12	12					141,600 J	139,500	1
Manganese	UG/L	56,900	100%			12	12					19,600	19,500	7
Ethane	UG/L	98	95%			129	136					10,000 U	45	4.1
Ethene	UG/L	200	90%			122	136					10,000 U	5.9	0,28
Methane	UG/L	23,000	98%			133	136					12,000	23,000	18,000
Sulfate	MG/L	1,060	83%			113	136					2 U	2 U	2 U
Total Organic Carbon	MG/L	2050	100%			136	136					260 J	210	303

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

							,	,	poc/					
Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-23
Matrix								GW						
Sample ID								ALBW20109	ALBW20110	ALBW20125	ALBW20140	ALBW20155	ALBW20170	ALBW20185
Sample Date								11/16/2007	11/16/2007	6/25/2008	12/12/2008	6/2/2009	12/15/2009	6/29/2010
QC Type								SA	DU	SA	SA	SA	SA	SA
Study ID								LTM						
Sample Round								4	4	5	6	7	8	9
Filtered								Total						
Filtered			Frequency			Number	Number of	Total	1000	1000	1000	rotut	1 0101	1 0 (41
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1.1.1-Trichloroethane	UG/L	15	2%	5	1	5	268	10 U	4 U	1 U	0,26 UJ	0,26 U	0.26 U	0.5 U
1.1.2.2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	10 U	4 U	1 U	0.21 U	0.21 U	0.21 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	10 U	4 U	1 U	0.31 U	0,31 U	0.31 U	0,5 UJ
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	10 U	4 U	1 U	0.23 U	0.23 U	0.23 U	0.13 U
1.1-Dichloroethane	UG/L	62	13%	5	1	34	268	10 U	4 U	1 U	0.75 U	0.75 U	0,38 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	n	33	268	10 U	4 U	1 U	0,29 U	0.29 U	0.29 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	10 U	4 U	1 U	0.41 U	0.41 U	0.41 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	10 U	4 U	1 U	1 UJ	1 UJ	0.39 U	0.44 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	10 U	4 U	1 U	0.17 U	0.17 U	0.17 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	10 U	4 U	1 U	0.2 U	0.2 U	0.2 U	0.21 U
		-	16%	0.6	34	42	268	10 U	4 U	0.6 J	0.6 J	0.64 J	0,21 U	0,66 J
1,2-Dichloroethane 1,2-Dichloropropane	UG/L UG/L	5,6 0,29	0%	0.6	0	1	268	10 U	4 U	1 U	0,14 U	0.14 U	0.32 U	0,13 U
.,				3	0	0	268	10 U	4 U	1 U	0,16 U	0.16 U	0.36 U	0,25 U
1,3-Dichlorobenzene	UG/L	0	0%	-	0	0	268	10 U	4 U	1 U	0.16 U	0.16 U	0.39 U	0.28 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	-		64	62	4 J	1.3 U	1.6 J	1,3 U	5 U
Acetone	UG/L	2600	17%			45	262	10 U	4 U	1 U	0,16 U	0.16 U	0.41 U	0.25 U
Benzene	UG/L	0.48	2%	1	0	5	268			1 U	0.38 U	0,39 U	0.39 U	0,25 U
Bromodichloromethane	UG/L	. 0	0%	80	0	0	268	10 U 10 U	4 U 4 U	1 U	0.38 U	0,26 UJ	0.26 UJ	0.5 U
Bromoform	UG/L	. 0	0%	80	0	0	268		4 U	1 U	0.28 U	0.19 UJ	0.19 UJ	0.5 U
Carbon disulfide	UG/L	. 0	0%			0	268	10 U						0,5 U
Carbon tetrachforide	UG/L	. 0	0%	5	0	0	268	10 U	4 U	1 0	0.27 UJ	0.27 U	0.27 U	0.25 U
Chlorobenzene	UG/L	. 0	0%	5	0	0	268	10 U	4 U	1 0	0.18 U	0.32 U	0.32 U	
Chlorodibromomethane	UG/L	. 0	0%	80	0	0	268	10 U	4 U	1 U	0.32 U	0.32 U	0.32 U	0.1 U
Chloroethane	UG/L	. 1.1	3%	5	0	7	268	10 U	4 U	1 UJ	0.32 U	0.32 U	0.32 UJ	1 0
Chloroform	UG/L		8%	7	7	22	268	10 U	4 U	1 U	0.34 U	0,34 U	0.34 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	10 U	2.1 J	1 U	2.4	0.42 J	0.47 J	0.41 J
Cis-1,3-Dichloropropene	UG/L	. 0	0%	0.4	0	0	268	10 U	4 U	1 U	0,36 U	0.36 U	0.36 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	10 U	4 U	1 U	0.22 U	0.53 U	0.53 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	10 U	4 U	1 U	0.28 UJ	0,29 U	0.29 U	0.25 U
Ethyl berizene	UG/L	9,2	7%	5	1	19	268	10 U	4 U	0.85 J	0.71 J	0.49 J	0.18 U	0,38 J
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	10 U	4 U	1 U	0.19 U	0.19 U	0.19 U	0.1 U
Methyl Acetate	UG/L	. 6	1%			2	253	10 U	4 UJ	1 UJ	0.17 U	0.17 UJ	0.5 U	0.19 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	10 U	4 U	1 UJ	0.28 U	0.28 U	0.28 U	0.8 UJ
Methyl butyl ketone	UG/L	. 0	0%			0	268	50 U	20 UJ	5 UJ	1.2 U	1.2 U	1,2 U	1 W
Methyl chloride	UG/L	. 0	0%	5	0	0	268	10 U	4 U	1 U	0.34 U	0.35 U	0.35 UJ	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	10 U	4 U	1 U	0.22 U	0.5 U	0.5 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	26 J	25	12	1.3 U	1.3 U	1,3 U	1 U
Methyl isobutyl ketone	UG/L		0%			1	268	50 U	20 U	5 U	0.91 U	0.91 U	0.91 U	1 U
Methyl Tertbutyl Ether	UG/L	. 0	0%			0	268	10 U	4 U	1 U	0.16 U	0,16 U	0.16 U	0.2 U
Methylene chloride	UG/L		4%	5	7	12	268	12	4 U	1 U	0.44 UJ	0.44 U	0,44 U	1 U
Styrene	UG/L		0%	5	0	0	268	10 U	4 U	1 U	0.18 U	0.18 U	0.18 U	0.11 U
,		-	-,-	-	-	-								

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered			Frequency			Number	Number of	ASH LANDFILL MWT-23 GW ALBW20109 11/16/2007 SA LTM 4 Total	ASH LANDFILL MWT-23 GW ALBW20110 11/16/2007 DU LTM 4 Total	ASH LANDFILL MWT-23 GW ALBW20125 6/25/2008 SA LTM 5 Total	ASH LANDFILL MWT-23 GW ALBW20140 12/12/2008 SA LTM 6 Total	ASH LANDFILL MWT-23 GW ALBW20155 6/2/2009 SA LTM 7 Total	ASH LANDFILL MWT-23 GW ALBW20170 12/15/2009 SA LTM 8 Total	ASH LANDFILL MWVT-23 GW ALBW20185 6/29/2010 SA LTM 9 Total
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qua	I Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	10 U	4 U	1 U	0,36 U	0,36 U	0,36 U	0,15 U
Toluene	UG/L	590	12%	5	18	32	268	570	590	300	43	1,5	0.51 U	0.34 J
Total Xylenes	UG/L	60	1%	5	1	2	268	30 U	12 U	3 U	0.93 U	0.66 U	0.66 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	10 U	4 U	1 U	0.13 U	0.13 U	0.42 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	10 U	4 U	1 U	0.37 U	0.37 U	0,37 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	10 U	4 U	1 U	0,41 J	0.18 U	0.46 U	0.13 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	10 U	4 U	1 UJ	0,15 UJ	0.15 U	0,15 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	10 U	2,3 J	1 1 0	2.8	0.24 U	0.24 U	0.18 U
Other										•		-		
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	0.49	0.66	0.53	4.6	1.6	1	2.4
Ethene	UG/L	200	90%			122	136	0.3	0.39	0.048	1.2	0.16	0,058	0.038
Methane	UG/L	23,000	98%			133	136	15,000	17,000	18,000	19,000	21,000	18,000	18,000
Sulfate	MG/L	1,060	83%			113	136	2.8	2.7	2 U	6.3	0,35 U	0.35 U	0,5 U
Total Organic Carbon	MG/L	2050	100%			136	136	147	155	28.4	20.1	15.6	17.4	11

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

U = compound was not detected

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR# the compound was not detected; data validation rejected the results

Styrene

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

								,						
Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-23
Matrix								GW						
Sample ID								ALBW20200	ALBW20201	ALBW20215	ALBW20230	ALBW20231	ALBW20245	ALBW20260
Sample Date								12/19/2010	12/19/2010	7/19/2011	12/14/2011	12/14/2011	6/20/2012	12/13/2012
QC Type								SA	DU	SA	SA	DU	SA	SA
Study ID								LTM						
Sample Round								10	10	11	12	12	13	14
Filtered								Total						
			Frequency			Number	Number of							
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedences	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UJ	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0,52 J	0.52 J	0,25 U	0.32 J	0.33 J	0.25 U	0.25 ∪
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 ↓	0.11 U	0.11 U	0.11 U	0,11 U	0,11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0,44 U	0,44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethene	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0,21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	15%	0,6	34	42	268	1,5	1,6	1 1	1,3	1,2	0,65 J	0.72 J
1.2-Dichloropropane	UG/L	0.29	0%	1	0	72	268	0.13 U	0.13 U	0.13 U	0,13 U	0.13 U	0.13 U	0,13 U
1,3-Dichlorobenzene	UG/L	0.29	0%	3	0	0	268	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
		2600		3	U	45	262	5 UJ	5 UJ	5 UR	5 U	5 U	5 UJ	5 U
Acetone	UG/L		17%					0.25 U	0.25 U	0,25 U	0.25 U	0,25 U	0.25 U	0.25 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 UJ	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268						0.25 U	0.5 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0,5 U	0.5 U	0,5 U	0,5 U		0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 UJ	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1,1	3%	5	0	7	268	1 UJ	1 UJ	1 UJ	1 0	1 U	1 UJ	1 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.17 J	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	4.6	4.6	0.57 J	2	2	0.55 J	2
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0,11 U	0,11 U
Cyclohexane	UG/L	0.3	0%			1	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0,3	0%	5	0	1	268	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.14 J	0.12 J	0.13 J	0.15 J	0.17 J	0.13 J	0.21 J
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 UR	0.19 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 U	0.8 U	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ	0.8 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 U	1 UJ	1 U	1 U	1 UJ	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	0.33 UJ	0.33 UJ	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%	-	-	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 U	1 U	1 U	1 W	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 U	1 U	1 U	1 U	1 U	1 W	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0,2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Medigrene chionide	UG/L	16	976	9	′	12	200	011.11	0 44 11	011 11	011 11	0.11.11	0.11.11	0.11 11

0.11 U

0.11 U

0.11 U

0.11 U

0.11 U

UG/L 0

Area Loc ID Matrix Sample ID								ASH LANDFILL MWT-23 GW ALBW20200	ASH LANDFILL MWT-23 GW ALBW20201	ASH LANDFILL MWT-23 GW ALBW20215	ASH LANDFILL MWT-23 GW ALBW20230	ASH LANDFILL MWT-23 GW ALBW20231 12/14/2011	ASH LANDFILL MWT-23 GW ALBW20245 6/20/2012	ASH LANDFILL MWT-23 GW ALBW20260 12/13/2012
Sample Date								12/19/2010	12/19/2010 DU	7/19/2011 SA	12/14/2011 SA	DU	5/20/2012 SA	SA
QC Type								SA LTM	LTM	LTM	LTM	LTM	LTM	LTM
Study ID										11	12	12	13	14
Sample Round								10	10	Total	Total	Total	Total	Total
Filtered			Frequency			Number	Number of	Total	Total	i otai	lotai	i dtai	10(8)	rotar
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0,15 U	0,15 UJ	0.15 UJ	0,15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0,33 U	1 U	0.33 U	0.33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0,49 J	0,49 J	0.22 J	0.38 J	0,35 J	0.42 J	0.29 J
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 UJ	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0,34 J	0,24 J	0.13 U	0.19 J	0.16 J	0.13 U	0.13 U
Trichlorofluoromethene	UG/L	0	0%	5	0	0	268	0,25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	5,3	6,3	0.33 J	1.9	1.8	0.33 J	1.9
Other										_				
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	16	16	2.3	5.7	8.9	5	2.5
Ethene	UG/L	200	90%			122	136	2.9	2.8	0.1	1.2	1.2	0.26	0,63
Methane	UG/L	23,000	98%			133	136	16,000	16,000	15,000	16,000	16,000	18,000	16,000
Sulfate	MG/L	1,060	83%			113	136	16	16	1.5	14	14	1,5	13
Total Organic Carbon	MG/L	2050	100%			136	136	5.9	6,3	6.2	6.3	6.3	4.8	11

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-24
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20261	ALBW20273	ALBW20288	ALBW20304	ALBW20305	ALBW20320	ALBW20063
Sample Date								12/13/2012	7/10/2013	12/14/2013	6/20/2014	6/20/2014	12/18/2014	1/3/2007
QC Type								DU	SA	SA	SA	DU	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								14	15	16	17	17	18	1
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency			Number	Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value_Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.71 J
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	1 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.5 J	0.25 U	0,25 U	0.25 U	0.43 J	0.81 J
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	1 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	0,44 U	0.44 U	0.44 U	1 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1 U
1.2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0,21 U	1 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.61 J	1.2	0,81 J	0.65 J	0,67 J	0,1 U	1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0,13 U	0.13 U	1 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	1 U
Acetone	UG/L	2600	17%		•	45	262	5 U	5 U	5 UJ	5 U	5 U	5 U	42 U
Benzene	UG/L	0.48	2%	4	0	5	268	0.25 U	0,25 U	0,25 U	0.25 U	0.25 U	0.25 U	1 U
Bromodichloromethane	UG/L	0.40	0%	80	ő	o	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	1 U
Bromoform	UG/L	0	0%	80	0	a	268	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	1 U
Carbon disulfide	UG/L	0	0%	00	0	0	268	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	1 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0,5 U	1 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	1 U
		0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	1 U
Chlorodibromomethane Chloroethane	UG/L		3%	5	0	7	268	1 U	2 U	2 U	2 U	2 U	2 U	1 U
	UG/L	1,1		7	7			0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	1 U
Chloroform	UG/L	71	8%	5		22	268	1.8	3.3	2.6	0.46 J	0.43 J	2.7	210
Cis-1,2-Dichloroethene	UG/L	820	88%	-	166	235	268	0,11 U	0,11 U	0.11 U	0.11 U	0.11 U	0,11 U	1 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1 U
Cyclohexane	UG/L	0.3	0%				268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	1 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	0.25 U	0.25 U	0.11 U	0.11 U	0.11 U	1 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268				0.11 U	0.11 U	0.1 U	1 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U				1 U
Methyl Acetate	UG/L	6	1%	_		2	253	0.19 UJ	0.19 U	0.19 U	0.19 U	0.19 U 2 UJ	0.19 U 2 U	1 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 U	2 U	2 U	2 UJ			5 U
Methyl butyl ketone	UG/L	0	0%	_	_	0	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	0,33 U	0,33 ∪	0.33 U	1 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 0	1 U	1 0	1 0	1 U	24
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 U	1 UJ	1 U	1 U	1 0	1 U	5 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 ∪	0.2 U	0.2 U	0.2 U	1 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 0
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	1 U

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-23	MWT-24
Matrix								GW						
Sample ID								ALBW20261	ALBW20273	ALBW20288	ALBW20304	ALBW20305	ALBW20320	ALBW20063
Sample Date								12/13/2012	7/10/2013	12/14/2013	6/20/2014	6/20/2014	12/18/2014	1/3/2007
QC Type								DU	SA	SA	SA	DU	SA	SA
Study ID								LTM						
Sample Round								14	15	16	17	17	18	1
Filtered								Total						
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual				Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0,15 U	0.15 U	0,21 J	0,15 U	0,15 U	1 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0,33 U	0,33 U	0.33 U	1 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 บ	0.2 U	0.2 U	0.2 U	3 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.29 J	1,4	0.52 J	0.45 J	0.48 J	0.39 J	2.1
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 UJ	0.21 U	0.21 U	0.21 U	0.21 U	1 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.13 U	0.13 U	0.13 U	0,13 U	0.13 U	0.19 J	0.94 J
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	1 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	1.4	2.9	2.6	0.37 J	0.36 J	0.18 U	18
Other														
fron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	2.6	7	7	3,4 J	11 J	5.4	
Ethene	UG/L	200	90%			122	136	0,65	2.6	1.7	0,1 J	0.13 J	2.2	
Methane	UG/L	23,000	98%			133	136	15,000	14,000	15,000	17,000	16,000	13,000	
Sulfate	MG/L	1,060	83%			113	136	13	15	10	1,4 J	1.4 J	98	
Total Organic Carbon	MG/L	2050	100%			136	136	11	4.1	5,5	4,9	4.5	5.6	

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-24	MWT-24	MWT-24	MWT-24	MWT-24	MWT-24	MWT-24
Matrix								GW						
Sample ID								ALBW20078	ALBW20092	AL8W20107	ALBW20122	ALBW20137	ALBW20152	ALBW20167
Sample Date								3/15/2007	6/5/2007	11/13/2007	6/26/2008	12/12/2008	6/2/2009	12/15/2009
QC Type								SA						
Study ID								LTM						
Sample Round								2	3	4	5	6	7	8
Filtered								Total						
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua	Value Qual
Volatile Organic Compounds						_		0.50		4.11			0.00.11	
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.58 J	2 U	1 U	5 U	0.76 J	0.26 U	0,4 J
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 0	2 U	1 0	5 U	0.21 U	0.21 U	0.21 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	1 0	2 UJ	1 0	5 UJ	0.31 U	0.31 U	0.31 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	2 U	1 U	5 U	0.23 U	0.23 U	0.23 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0,83 J	1.1 J	1 U	5 U	0.75 U	0.75 U	0.7 J
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	1 U	2 U	1 U	5 U	0.29 U	0.29 U	0.29 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	2 U	1 U	5 U	0.41 U	0.41 U	0.41 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 U	2 U	1 0	5 UJ	1 UJ	1 W	0.39 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	1 U	2 U	1 U	5 U	0.17 U	0.17 U	0.17 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	2 U	1 U	5 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	UG/L	5,6	16%	0,6	34	42	268	1 U	2 U	1 U	5 U	0.21 U	0.21 U	0.21 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	2 U	1 0	5 U	0,14 U	0.14 U	0.32 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	2 U	1 U	5 U	0.16 U	0.16 U	0,36 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	2 U	1 U	5 U	0.16 U	0.16 U	0.39 U
Acetone	UG/L	2600	17%			45	262	54	73	5 U	25 U	1.3 U	1.3 U	1.3 U
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	2 U	t U	5 U	0.16 U	0.16 U	0,41 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	1 U	2 U	1 U	5 U	0.38 U	0,39 U	0.39 U
Bromoform	UG/L	0	0%	80	0	0	268	1 U	2 U	1 U	5 U	0.26 U	0.26 UJ	0,26 UJ
Carbon disulfide	UG/L	0	0%			0	268	1 U	2 U	1 U	5 U	0.19 U	0.19 UJ	0.19 UJ
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1 U	2 U	1 U	5 U	0.27 UJ	0.27 U	0.27 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1 U	2 U	1 U	5 U	0.18 U	0.32 U	0.32 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1 U	2 U	1 U	5 U	0.32 U	0.32 U	0.32 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	2 U	1 U	5 UJ	0.32 U	0.47 J	0.32 UJ
Chloroform	UG/L	71	8%	7	7	22	268	1 U	2 U	1 U	5 U	0.34 U	0.34 U	0.34 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	68	19	6.7	31	62	38	32
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	2 U	1 U	5 U	0.36 U	0.36 U	0,36 U
Cyclohexane	UG/L	0.3	0%			1	268	1 U	2 U	1 U	5 U	0.22 U	0.53 U	0.53 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	1 U	2 U	1 U	5 U	0.28 UJ	0.29 U	0.29 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1 U	2 U	1 U	5 U	0.18 U	0,18 U	0.18 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 U	2 U	1 U	5 U	0.19 U	0.19 U	0.19 U
Methyl Acetate	UG/L	6	1%			2	253	1 UJ	6	1 UJ	5 UJ	0.17 U	0.17 UJ	0,5 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	2 U	1 U	5 UJ	0.28 U	0.28 U	0.28 U
Methyl butyl ketone	UG/L	0	0%			0	268	5 U	10 U	5 UJ	25 UJ	1.2 U	1.2 U	1.2 U
Methyl chloride	UG/L	0	0%	5	0	0	268	1 U	2 U	1 U	5 UJ	0.34 U	0.35 U	0.35 UJ
Methyl cyclohexane	UG/L	0.17	0%			1	268	1 U	2 U	1 U	5 U	0.22 U	0.5 U	0.5 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	36	40	5 U	25 UJ	1.3 U	1.3 U	1.3 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	5 U	10 U	5 U	25 UJ	0.91 U	0.91 U	0.91 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	2 U	1 U	5 U	0.16 U	0.16 U	0.16 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 J	1 U	5 U	0.44 UJ	0.44 U	0.44 U
Styrene	UG/L	0	0%	5	0	0	268	1 U	2 U	1 U	5 U	0.18 U	0.18 U	0.18 U
	_													

Area

Loc ID

Ethane

Ethene

Methane

Sulfate

Total Organic Carbon

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

ASH LANDFILL

MWT-24

ASH LANDFILL

MWT-24

ASH LANDFILL

MWT-24

ASH LANDFILL

MWT-24

ASH LANDFILL

129

122

133

113

136

136

136

136

136

MWT-24

Matrix								GW						
Sample ID								ALBW20078	ALBW20092	ALBW20107	ALBW20122	ALBW20137	ALBW20152	ALBW20167
Sample Date								3/15/2007	6/5/2007	11/13/2007	6/26/2008	12/12/2008	6/2/2009	12/15/2009
QC Type								SA						
Study ID								LTM						
Sample Round								2	3	4	5	6	7	8
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	1 U	2 U	1 U	5 U	0,36 U	0.36 U	0.36 U
Toluene	UG/L	590	12%	5	18	32	268	1 U	2 U	1 U	5 U	0.51 U	0.51 U	0,51 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	6 U	3 U	15 U	0.93 U	0,66 U	0.66 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.88 J	2 U	1 U	5 U	0.13 U	0.13 U	0.42 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	2 U	1 U	5 U	0.37 U	0.37 ∪	0.37 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	1 U	2 U	1,6	5 U [•	4.8	4.7
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 U	2 UJ	1 U	5 UJ	0.15 UJ	0.15 U	0.15 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	46	22	3,8	5 U	3,6	7.3	4
Other							_				_			
Iron	UG/L	296,000	100%			12	12							
fron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							

UG/L 98

UG/L 200

UG/L 23,000

MG/L 1,060

MG/L 2050

95%

90%

83%

100%

ASH LANDFILL

MWT-24

ASH LANDFILL

MWT-24

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-24	MWT-24	MWT-24	MWT-24	MWT-24	MWT-24	MWT-24
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20182	ALBW20197	ALBW20212	ALBW20227	ALBW20242	ALBW20257	ALBW20270
Sample Date								7/1/2010	12/17/2010	7/22/2011	12/13/2011	6/19/2012	12/12/2012	7/9/2013
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								9	10	11	12	13	14	15
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Meximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qua	Value Qual	Value Qua	Value Que
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Triffuoroethene	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.79 J	0.58 J	0.25 U	0.44 J	0.8 J	0.57 J	0.7 J
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropene	UG/L	0	0%	0.04	0	0	268	0,44 U	0.44 U	0.44 UJ	0.44 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethene	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	0.1 U	0.1 U	3,3	0.1 U	0.1 UJ	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0,28 U	0.28 U	0.28 U	0.28 U	0.28 U	0,28 U	0,28 U
Acetone	UG/L	2600	17%	3	· ·	45	262	5 U	5 UJ	5 U	5 U	5 UJ	5 U	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.25 U	0,25 U	0,25 U	0.25 U	0.25 U	0.25 U
The state of the s					0			0,25 U	0.25 U	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.25 UJ	0.25 U	0.5 U	0.5 U	0.5 U
Bromoform	UG/L	0	0%	80	0	•	268							0.5 U
Cerbon disulfide	UG/L	0	0%			0	268	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U 0.5 UJ	0.6 U 0.5 U	0.5 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 UJ	0.5 UJ			
Chlorobenzene	UG/L	0	0%	5	. 0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	1 U	1 U	1 03	1 111	1 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.19 J	0.14 U	0.14 U	0.14 U	0.14 U	0,14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	31	23	.39	16	28	26	24
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0,11 U
Cyclohexane	UG/L	0.3	0%			1	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 UJ	0,25 U	0.25 U	0,25 UJ	0.25 U	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	0.11 U	0,11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	0.19 U	0.19 U	0.19 U	0.19 UR	0.19 UJ	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 U	0.8 UJ	0.8 UJ	0.8 UJ	0.8 W	0.8 UJ	2 U
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 U	1 U	1 U	1 U	t UJ	1 U	1 W
Methyl Tertbutyl Ether	UG/L	0	0%			ò	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area

Loc ID

Sulfate

Methane

Total Organic Carbon

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

ASH LANDFILL

MWT-24

ASH LANDFILL

MWT-24 GW ASH LANDFILL

MWT-24

GW

ASH LANDFILL

MWT-24

GW

ASH LANDFILL

MWT-24

GW

ASH LANDFILL

MWT-24

GW

ASH LANDFILL

136

136

136

133

113

136

MWT-24

Matrix Sample ID								GW ALBW20182	ALBW20197	ALBW20212	ALBW20227	ALBW20242	ALBW20257	ALBW20270
Sample Date								7/1/2010	12/17/2010	7/22/2011	12/13/2011	6/19/2012	12/12/2012	7/9/2013
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								9	10	11	12	13	14	15
Filtered								Total	Total	Total	Total	Total	Total	Total
Perameter	Unit	Maximum Value	of Detections	Cleanup	Number of Exceedances	of Times		Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0,15 U	0.15 U	0,15 U	0.15 U	0,15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0.33 U	0,33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.41 J	1	1.6	0.39 J	1.5	0.2 U	1.2
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 U	0.21 UJ	0.21 UJ	0.21 U	0.21 UJ
Trichloroethene	UG/L	3800	69%	5	86	185	268	5	3.3	8,8	3.1	2.7	4.1	3.7
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	7.8	4.3	17	2,8	8,3	0.31 J	2.1
Other							_							
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							

1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

UG/L 23,000

2050

MG/L 1,060

MG/L

- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b, Federal Maximum Contaminant Level (http://www.epa.gov/safer

98%

83%

100%

- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- R = Rejected, data validation rejected the results
- UJ= the compound was not detected; the associated reporting limit is approximate
- UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-24	MWT-24	MWT-24	PT-17	PT-17	PT-17	PT-17
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20285	ALBW20301	ALBW20317	ALBW20058	ALBW20073	ALBW20087	ALBW20102
Sample Date								12/11/2013	6/21/2014	12/18/2014	1/2/2007	3/15/2007	6/5/2007	11/13/2007
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								16	17	18	1	2	3	4
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times							Makes Over	l Value Qual
Parameter	Unit_	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qua	Value Qual	Value Qual	Value Qua	Value Qual
Volatile Organic Compounds						_		0.5 U	0,5 U	0.5 U	1 U	2 U	1 U	1 U
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268			0.5 U	1 U	2 U	1 U	1 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U 0.5 U	0.16 U	1 U	2 U	1 UJ	1 U
1,1,2-Trichloro-1,2,2-Trifluoroeth		0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	1 U	2 U	1 0	1 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U 0.67 J	0.13 U	0.13 U	1 0	2 U	1 U	1 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268				1 U	2 U	1 U	1 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0,11 U	0.11 U	1 U	2 U	1 U	1 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	1 U	2 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U 0.25 U	1 U	2 U	1 U	1 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0,25 U 0,21 U	0.25 U 0.21 U	0.23 U	1 U	2 U	1 U	1 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.1 U	1 U	2 U	1 U	1 U
1,2-Dichloroethane	UG/L	5.6	16%	0,6	34	42	268		0.13 U	0.13 U	1 U	2 U	1 U	1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U 0.25 U	0.13 U	0.13 U	1 U	2 U	1 U	1 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.28 U	0.28 U	1 U	2 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	5 U	5 U	9,3 U	22	5 U	5 U
Acetone	UG/L	2600	17%			45	262	0,25 U	0.25 U	0,25 U	1 U	2 U	1 U	1 U
Benzene	UG/L	0.48	2%	1	0	5	268	0,25 U	0.25 U	0.25 U	1 U	2 U	1 U	1 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268 268	0.5 U	0.5 U	0.5 U	1 U	2 U	1 U	1 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.6 U	0.5 U	1 U	2 U	1 U	1 U
Carbon disulfide	UG/L	0	0% 0%	5	0	0	268	0.5 U	0.5 U	0.5 U	1 U	2 U	1 U	1 U
Carbon tetrachloride	UG/L	0		-	0	0	268	0.25 U	0.25 U	0,25 U	1 U	2 U	1 U	1 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.1 U	0.1 U	0.1 U	1 U	2 U	1 U	1 U
Chlorodibromomethane	UG/L	0	0%	80 5	0	7	268	2 U	2 U	2 U	1 U	2 U	1 U	1 U
Chloroethane	UG/L	1.1	3%	7	7	22	268	0.14 U	0.14 U	0.14 U	1 U	2 U	1 U	1 U
Chloroform	UG/L	71 820	8%	5	166	235	268	21	21	11	62	26	43	27
Cis-1,2-Dichloroethene	UG/L	0	88% 0%	0.4	0	0	268	0,11 U	0.11 U	0,11 U	1 U	2 U	1 U	1 U
Cis-1,3-Dichloropropene	UG/L UG/L	0.3	0%	0.4	U	1	268	0.25 U	0.25 U	0.25 U	1 U	2 U	1 U	1 U
Cyclohexane Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 UJ	0.25 U	0.25 U	1 U	2 U	1 U	1 U
	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0,11 U	1 U	2 U	1 U	1 U
Ethyl benzene	UG/L		0%	5	0	1	268	0.1 U	0.1 U	0.1 U	1 U	2 U	1 U	1 U
Isopropylbenzene	UG/L		1%	5	v	2	253	0.19 U	0,19 U	0.19 U	1 U	2 UJ	1 U	1 UJ
Methyl Acetate	UG/L		0%	5	0	1	262	2 UJ	2 U	2 U	1 U	2 U	1 U	1 U
Methyl bromide	UG/L	2.1	0%	5	v	0	268	1 U	1 U	1 U	5 U	10 U	5 U	5 UJ
Methyl butyl ketone Methyl chloride	UG/L	. 0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	1 U	2 U	1 U	1 U
,	UG/L		0%	5	v	1	268	0,1 U	0.1 U	0.1 U	1 U	2 U	1 U	1 U
Methyl cyclohexane	UG/L	4900	8%			22	268	1 U	1 U	1 U	5,4	11	5 U	5 U
Methyl ethyl ketone	UG/L		0%			1	268	1 U	1 U	1 U	5 U	10 U	5 U	5 U
Methyl isobutyl ketone	UG/L		0%			0	268	0.2 U	0.2 U	0.2 U	1 U	2 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	. 18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1.2 J	1 U	1 U
Methylene chloride Styrene	UG/L	. 18	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	1 U	2 U	1 U	1 U
Otherie.	- G/L		V /0	3	•		200							

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-24	MWT-24	MWT-24	PT-17	PT-17	PT-17	PT-17
Matrix								GW						
Sample ID								ALBW20285	ALBW20301	ALBW20317	ALBW20058	ALBW20073	ALBW20087	ALBW20102
Sample Dete								12/11/2013	6/21/2014	12/18/2014	1/2/2007	3/15/2007	6/5/2007	11/13/2007
QC Type								SA						
Study ID								LTM						
Sample Round								16	17	18	1	2	3	4
Filtered								Total						
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual		Value Que	I Value Qua	Value Qua	Velue Qua	Value Qual
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0.15 U	1 U	2 U	1 U	1 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	1 U	2 U	1 U	1 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	3 U	6 U	3 U	3 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1.5	1,6	0,2 U	1 U	2 U	0.77 J	0,54 J
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 UJ	0.21 U	0.21 U	1 U	2 U	1 U	1 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	1.9	1,5	1.9		11	3.4	16
Trichtoroffuoromethane	UG/L	. 0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	1 U	2 U	1 W	1 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	2.4	3.6	0.18 U	21	21	0.9	22
Other										_				
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L		100%			12	12							
Manganese	UG/L		100%			12	12							

UG/L 200

UG/L 23,000

MG/L 1,060

MG/L 2050

90%

98%

83%

100%

UG/L

Ethane

Ethene

Methene

Total Organic Carbon

129

122

133

113

135

136

136

136

136

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Stendards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected
J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

								,	poertourny					
Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-17	PT-17	PT-17	PT-17	PT-17	PT-17	PT-17
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20116	ALBW20131	ALBW20146	ALBW20161	ALBW20176	ALBW20191	ALBW20206
Sample Date								6/26/2008	12/11/2008	6/2/2009	12/15/2009	7/1/2010	12/18/2010	7/21/2011
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								5	6	7	8	9	10	11
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency			Number	Number of							
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1 U	0.26 UJ	0.26 U	0,26 U	0.5 U	0,5 U	0,5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 U	0.21 U	0.21 U	0.21 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	1 UJ	0.31 U	0.31 U	0,31 U	0.5 U	0.5 U	0,5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	0.23 U	0.23 U	0.23 U	0,13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1 U	0.75 U	0.75 U	0,38 U	0,25 U	0.25 U	0,25 UJ
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	1 U	0,29 U	0.29 U	0,29 U	0.24 J	0.42 J	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	0.41 U	0.41 U	0.41 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 UJ	1 UJ	1 UJ	0.39 U	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	1 U	0.17 U	0.17 U	0.17 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	0.2 U	0.2 U	0.2 U	0.21 U	0,21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	1 U	0,21 U	0.21 U	0,21 U	0.1 U	0,1 U	0.1 U
1.2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	0.14 U	0.14 U	0.32 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	0,16 U	0.16 U	0.36 U	0.25 U	0.25 U	0,25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	0.16 U	0.16 U	0.39 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%	•	•	45	262	5 U	1.3 U	1,3 U	1.3 U	5 U	5 UJ	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	0.16 U	0,16 U	0.41 U	0.25 U	0,25 U	0,25 U
Bromodichloromethane	UG/L	0.40	0%	80	o	ō	268	1 U	0.38 U	0.39 U	0.39 U	0.25 U	0.25 U	0.25 U
Bromoform	UG/L	o	0%	80	0	ō	268	1 U	0.26 U	0,26 UJ	0.26 UJ	0,5 U	0.5 U	0.5 UJ
Carbon disutfide	UG/L	0	0%	00	•	0	268	1 U	0.19 U	0.19 UJ	0.19 UJ	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1 U	0.27 UJ	0.27 U	0.27 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1 U	0.18 U	0,32 U	0.32 U	0.25 U	0,25 U	0,25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1 U	0.32 U	0.32 U	0.32 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 UJ	0.32 U	0,49 J	0.32 UJ	1 U	1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	1 U	0.34 U	0,34 U	0,34 U	0.14 U	0.15 J	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	7 166	235	268	21	24	56	65	81	39	94
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	0,36 U	0,36 U	0.36 U	0.11 U	0.11 U	0,11 U
Cyclohexane	UG/L	0.3	0%	0.4	U	1	268	1 U	0.22 U	0.53 U	0,53 U	0.25 U	0.25 U	0.25 U
-	UG/L			5	0	1	268	1 U	0.28 UJ	0.29 U	0.29 U	0.25 UJ	0.25 U	0,25 U
Dichlorodiffuoromethane		0.3	0%	5	0	19		1 U	0.18 U	0.18 U	0.18 U	0.11 U	0.11 U	0.11 U
Ethyl benzene	UG/L	9.2	7%	5	1		268	1 U		0.19 U	0.19 U	0.1 U	0.1 U	0.1 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 UJ	0.19 U 0.17 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
Methyl Acetate	UG/L	6	1%	_		2	253	1 UJ	0.17 U	0.17 U	0.28 U	0.19 U	0.8 UJ	0.8 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262					1 U	1 U	1 U
Methyl butyl ketone	UG/L	0	0%			0	268	5 UJ	1.2 U	1.2 U	1.2 U	0.33 U	0.33 U	0.33 UJ
Methyl chloride	UG/L	0	0%	5	0	0	268	1 UJ	0.34 U	0.35 U	0.35 UJ	0.33 U 0.1 U	0.33 U 0.1 U	0.33 UJ 0.1 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	1 U	0.22 U	0.5 U	0.5 U	0.1 U 1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	5 UJ	1,3 U	1.3 U	1,3 U			
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	5 UJ	0.91 U	0.91 U	0.91 U	1 0	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	0.16 U	0.16 U	0.16 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	0.44 UJ	0.44 U	0,44 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	1 U	0.18 U	0.18 U	0.18 U	0.11 U	0.11 U	0.11 U

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-17						
Matrix								GW						
Sample ID								ALBW20116	ALBW20131	ALBW20146	ALBW20161	ALBW20176	ALBW20191	ALBW20206
Sample Date								6/26/2008	12/11/2008	6/2/2009	12/15/2009	7/1/2010	12/18/2010	7/21/2011
QC Type								SA						
Study ID								LTM						
Sample Round								5	6	7	8	9	10	11
Filtered								Total						
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual				Value Qua	
Tetrachloroethene	UG/L	27	1%	5	1	2	268	1 U	0,36 U	0.36 U	0,36 U	0.15 U	0.15 U	1 U
Toluene	UG/L	590	12%	5	18	32	268	1 U	0.51 U	0.51 U	0.51 U	0.33 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	0.93 U	0.66 U	0.66 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1 U	0.46 J	1.1	1.8	3.2	2.2	7
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	0.37 U	0,37 U	0,37 U	0.21 U	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	8.8	9,2		7.8	3	8.1	4,5
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 UJ	0.15 UJ	0.15 U	0.15 U	0,25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	23	10	86	20	63	76	84
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	98	6.9	50	9.9	16	4.8	1.8
Ethene	UG/L	200	90%			122	136	66	6.6	56	5	20	3.5	3.8
Methane	UG/L	23,000	98%			133	136	5,700	380	8,300	1,500	4,300	900	780
Sulfate	MG/L	1,060	83%			113	136	15,2	45,8	28	46.2 J	36	31	24
Total Organic Carbon	MG/L	2050	100%			136	136	6	2.6	4.9	2.4	2.4	1.5	3,4

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b, Federal Meximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected
J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

								40111 440701	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Area								ASH LANDFILL PT-17	PT-17	PT-17	PT-17	PT-17	PT-17	PT-17
Loc ID								GW	GW GW	GW	GW	GW	GW	GW
Matrix								ALBW20221	ALBW20236	ALBW20251	ALBW20264A	ALBW20279	ALBW20295	ALBW20311
Sample ID								12/13/2011	6/19/2012	12/13/2012	7/10/2013	12/13/2013	6/20/2014	12/16/2014
Sample Date									6/19/2012 SA	12/13/2012 SA	7/10/2013 SA	12/13/2013 SA	SA	SA
QC Type								SA LTM	LTM	LTM	LTM	LTM	LTM	LTM
Study ID											15	16	17	18
Sample Round								12 Total	13 Total	14 Total	Total	Total	Total	Total
Filtered			Frequency			Number	Number of	I otal	I DIBI	lotai	rotai	i otai	10(8)	i o(ai
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0,5 U	0.5 UJ	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachioroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	0,5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0,25 U	0.25 U	0,25 U	0.25 U	0.25 U	0,25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.37 J	0.18 J	0.11 U	0.16 J	0.32 J	0.31 J
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0,44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	ŲG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5,6	16%	0.6	34	42	268	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0,5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.6 ∪	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 UJ	1 UJ	1 U	2 U	2 U	2 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	25	170	68	38	64	130	120
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0,11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0,3	0%			1	268	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 UJ	0.25 U	0.25 U	0,25 U	0,25 UJ	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	0.19 UR	0.19 UJ	0.19 U	0.19 U	0.19 U	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 U	0.8 UJ	0.8 UJ	2 U	2 UJ	2 UJ	2 ∪*
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1,9	0%			1	268	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-17						
Matrix								GW						
Sample ID								ALBW20221	ALBW20236	ALBW20251	ALBW20264A	ALBW20279	ALBW20295	ALBW20311
Sample Date								12/13/2011	6/19/2012	12/13/2012	7/10/2013	12/13/2013	6/20/2014	12/16/2014
QC Type								SA						
Study ID								LTM						
Sample Round								12	13	14	15	16	17	18
Filtered								Total						
			Frequency											
Parameter	Unit	Maximum Value	of Detections	Cleanup Goals	Number of Exceedances	of Times Detects	Samples Analyzed	Value Quel	Value Quel	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0,15 U	0.15 U	0,15 U	0.15 U	0,15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0,33 U	0.33 U	0,33 U	0,33 U	0.33 U	0,33 U	0,33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichioroethene	UG/L	22	52%	5	12	140	268	1.8	18	8,3	6,2	11	18	22
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0,21 U	0.21 UJ	0.21 U	0.21 UJ	0.21 UJ	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	11	6.9	12	14	8.4	3,4	7,4
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U	0,25 U	0,25 U	0,25 U	0,25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	12	66	21	7,9	17	86	38
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	1.7	10	2,2	1.1	1.5	4.5	2.5
Ethene	UG/L	200	90%			122	136	2.4	12	2.4	0.69	1.4	6.5	2
Methane	UG/L	23,000	98%			133	136	810	8,200	810	780	960	5,700	1,600
Sulfate	MG/L	1,060	83%			113	136	27	25	35	27	31	20	29
Total Organic Carbon	MG/L	2050	100%			136	136	1.6	2,8	1.7	1,2	2	2.9	1.7

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/eafewater/contaminanta/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting fimit is approximate

UR= the compound was not detected; data validation rejected the results

Area Loc ID Matrix								ASH LANDFILL MWT-7 GW	ASH LANDFILL MWT-7 GW	ASH LANDFILL MWT-7 GW	ASH LANDFILL MWT-7 GW	ASH LANDFILL MWT-7 GW	ASH LANDFILL MWT-7 GW	ASH LANDFILL MWT-7 GW
Sample ID								ALBW20062	ALBW20077	ALBW20091	ALBW20106	ALBW20120	ALBW20135	ALBW20150
Sample Date								1/4/2007	3/15/2007	6/5/2007	11/13/2007	6/25/2008	12/15/2008	6/2/2009
QC Type								SA						
Study ID								LTM						
Sample Round								1	2	3	4	5	6	7
Filtered								Total						
			Frequency			Number	Number o	f						
		Meximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qua	Value Qual	Value Qual	Value_Qual	Value Qual
Volatile Organic Compounds						_		4.11			4.11	4.0		
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1 U	1 U	1 0	1 U	1 U	0.26 U	0.26 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 U 1 U	1 U	1 U	1 U 1 U	1 U	0.21 U	0.21 U 0.31 U
1,1.2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268		1 0	1 UJ		1 UJ	0.31 U	
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	1 U 1 U	1 U 1 U	1 0	1 U 1 U	0.23 U 0.75 U	0.23 U 0.75 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	1 U			1 U 1 U			
1,1-Dichloroethene	UG/L	2.6	12%	5 5	0	33 0	268	1 U 1 U	1 U 1 U	1 U 1 U	1 0	1 U 1 U	0.29 U 0.41 U	0.29 U 0.41 U
1,2,4-Trichlorobenzene	UG/L	0	0%		-	0	268	1 U	1 U	1 U	1 0	1 UJ	0.41 U 1 UJ	1 UJ
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	-	268	1 U	1 U	1 U	1 0	1 0	0.17 U	0.17 U
1,2-Dibromoethane 1,2-Dichlorobenzene	UG/L	-	0% 0%	0.0006	0	0	268	1 U	1 U	1 U	1 0	1 U	0.17 U	0.17 U
1,2-Dichloroethane	UG/L UG/L	0 5.6	16%	3 0.6	34	-	268 268	1 U	1 U	1 U	1 U	1 U	0.21 U	0.21 U
,					0	42 1	268	1 U	1 U	1 U	1 U	1 U	0.14 U	0.14 U
1,2-Dichloropropane 1,3-Dichlorobenzene	UG/L UG/L	0.29	0% 0%	1 3	0	0	268	1 U	1 U	1 U	1 U	1 U	0.14 U	0.14 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Acetone	UG/L			3	v	45		5 U	5 U	5 U	5 U	5 U	1.3 U	1.3 U
Benzene	UG/L	2600 0.48	17% 2%	1	0	45 5	262 268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Bromodichloromethane	UG/L	0.40	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0.38 U	0.39 U
Bromoform	UG/L	0	0%	80	0	0	268	1 U	1 U	1 U	1 U	1 U	0,26 U	0.26 UJ
Carbon disulfide	UG/L	0	0%	80	•	0	268	1 U	1 U	1 U	1 U	1 U	0.19 U	0.19 UJ
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.27 U	0.27 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.32 U
Chlorodibromomethane	UG/L	o	0%	80	ő	ō	268	1 U	1 U	1 U	1 U	1 U	0,32 U	0.32 U
Chloroethane	UG/L	1.1	3%	5	ő	7	268	1 U	1 U	1 U	0.65 J	1 UJ	0.93 J	0.61 J
Chloroform	UG/L	71	8%	7	7	22	268	1 U	1 U	1 U	1 U	1 U	0.34 U	0,34 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	36	42	61	90	90	79	68
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	1 U	1 U	1 U	0,36 U	0.36 U
Cyclohexane	UG/L	0.3	0%	•••	-	1	268	1 U	1 U	1 U	1 U	1 U	0.22 U	0.53 U
Dichlorodifluoromethane	UG/L	0,3	0%	5	0	1	268	1 U	1 U	1 U	1 U	1 U	0,28 U	0.29 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.18 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 U	1 U	1 U	1 U	1 U	0.19 U	0.19 U
Methyl Acetate	UG/L	6	1%			2	253	1 U	1 UJ	1 U	1 UJ	1 UJ	0.17 U	0.17 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	1 U	1 U	1 U	1 UJ	0.28 U	0.28 U
Methyl butyl ketone	UG/L	0	0%			0	268	5 U	5 U	5 U	5 UJ	5 UJ	1,2 U	1.2 U
Methyl chloride	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 UJ	0.34 U	0.35 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	1 U	1 U	1 U	1 U	1 U	0.22 U	0.5 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	5 U	5 U	5 U	5 U	5 UJ	1.3 U	1,3 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	5 U	5 U	5 U	5 U	5 UJ	0.91 U	0.91 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	0.44 UJ	0.44 U
Styrene	UG/L	0	0%	5	0	0	268	1 U	1 U	1 U	1 U	1 U	0.18 U	0.18 U

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-7						
Matrix								GW						
Sample ID								ALBW20062	ALBW20077	ALBW20091	ALBW20106	ALBW20120	ALBW20135	ALBW20150
Sample Date								1/4/2007	3/15/2007	6/5/2007	11/13/2007	6/25/2008	12/15/2008	6/2/2009
QC Type								SA						
Study ID								LTM						
Sample Round								1	2	3	4	5	6	7
Filtered								Total						
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qua				
Tetrachioroethene	UG/L	27	1%	5	1	2	268	1 U	1 U	1 U	1 U	1 U	0,38 U	0,38 U
Toluane	UG/L	590	12%	5	18	32	268	1 U	1 U	1 U	1 U	1 U	0,51 U	0.51 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	3 U	3 U	3 U	3 U	0.93 U	0.66 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1 U	1 U	1 U	1 U	1 U	0.13 U	0.13 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	1 U	1 U	1 U	0,37 U	0.37 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	490	440	410	E10	440	410	330
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 U	1 U	1 UJ	1 U	1 UJ	0,15 U	0.15 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.51 J	9.7	18	24	12	13	9,3
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136					6.7	11	7.8
Ethene	UG/L	200	90%			122	136					2	0.27	0.76
Methane	UG/L	23,000	98%			133	136					400	670	1,100
Sulfate	MG/L	1,060	83%			113	136					29.1	29,1	27
Total Organic Carbon	MG/L	2050	100%			136	136					2.3	3	3.1

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.eps.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data velidation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-7	MWT-7	MWT-7	MWT-7	MWT-7	MWT-7	MWT-7
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20165	ALBW20180	ALBW20195	ALBW20210	ALBW20225	ALBW20240	ALBW20255
Sample Date								12/15/2009	7/1/2010	12/18/2010	7/22/2011	12/13/2011	6/19/2012	12/13/2012
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	ŁTM	LTM	LTM
Sample Round								8	9	10	11	12	13	14
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of	f						
_		Maximum	of	Cleanup	Number of	of Times					Material Const	Value Ourt	Value Ouel	Value Ovel
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds		4.5					200	0,26 U	0,5 U	0,5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.20 U	0.18 U	0,18 U	0.18 U	0.18 U	0,18 U	0,18 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.21 U	0.18 U	0.18 U	0.18 U	0.18 U	0.16 U	0.10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268			0.13 U	0,3 U	0.13 U	0.13 U	0.13 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.23 U	0.13 U	0.13 U 0.25 U	0.13 U 0.94 J	1.2	0.13 U	0.15 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.38 U	0.25 U				0.59 J	0.5 J
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.48 J	0.78 J	0.98 J	0.11 U 0.25 U	0.11 U 0.25 U	0.59 J 0.25 U	0.5 J 0.25 UJ
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.41 U	0.25 U	0.25 U		0.25 U	0.25 U 0.44 U	0.25 UJ 0.44 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.39 U	0,44 U	0.44 U	0.44 UJ		0.44 U	0,44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.17 U	0.25 U	0.25 U	0.25 U	0.25 U 0.21 U	0,21 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.2 U	0.21 U	0.21 U	0.21 U			
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.21 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.32 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U 0.25 U	0.13 U 0.25 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.36 U	0.25 U	0.25 U	0.25 U	0.25 U		0,25 U 0,28 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.39 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.26 U 5 U
Acetone	UG/L	2600	17%			45	262	1,3 U	5 U	5 UJ	5 U	5 U	5 UJ	0.25 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.41 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.39 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 UJ	0.25 UJ
Bromoform	UG/L	0	0%	80	0	0	268	0.26 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U	0,5 U	0.5 U
Carbon disulfide	UG/L	0	0%			0	268	0.19 UJ	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.27 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.32 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.32 U	0.1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	0,32 UJ	1 U	1 U	1 U	1 UJ	1 UJ	1 U
Chloroform	UG/L	71	8%	7	7	22	268	0.34 U	0.14 U	0.14 U	0.14 U	0,14 U 56	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	140	170	120	12 0,11 U	0,11 U	0,11 U	0.11 UJ
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.36 U	0.11 U	0.11 U 0.25 U	0.11 U 0.25 U	0.11 U	0.11 U	0.25 UJ
Cyclohexane	UG/L	0.3	0%			1	268	0.53 U	0.25 U		0.25 U	0.25 UJ	0.25 U	0,25 U
Dichlorodifluoromethane	UG/L	0,3	0%	5	0	1	268	0.29 U	0.25 UJ	0.25 U		0.25 UJ	0,11 U	0.11 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.18 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.1 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0,19 U	0.1 U	0.1 U	0.1 U	0.19 U	0.19 UR	0.19 UJ
Methyl Acetate	UG/L	6	1%			2	253	0.5 U	0.19 U	0,19 U	0,19 U	0.19 U	0.19 UJ	0.8 UJ
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.28 U	0.8 U	0.8 UJ	0.8 UJ		1 UJ	1 U
Methyl butyl ketone	UG/L	0	0%			0	268	1.2 U	1 U	1 U	1 U	1 U	0.33 U	0.33 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.35 UJ	0.33 U	0.33 U	0.33 U	0.33 UJ 0.1 U	0.33 U 0.1 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.5 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U 1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1.3 U	1 0	1 0	1 U 1 U	1 U	1 W	1 UJ
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	0.91 U	1 U	1 U				0.2 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.16 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U 1 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	0.44 U	1 U	1 U	1 U	1 U	0.11 U	0,11 U
Styrene	UG/L	0	0%	5	0	0	268	0.18 U	0.11 U	0.11 U	0.11 U	0.11 U	U.11 U	0.11 0

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-7						
Matrix								GW						
Sample ID								ALBW20165	ALBW20180	ALBW20195	ALBW20210	ALBW20225	ALBW20240	ALBW20255
Sample Date								12/15/2009	7/1/2010	12/18/2010	7/22/2011	12/13/2011	6/19/2012	12/13/2012
QC Type								SA						
Study ID								LTM						
Sample Round								8	9	10	11	12	13	14
Filtered								Total						
			Frequency				Number of							
Parameter	Unit	Maximum Value	of Detections	Cleanup Goals	Number of Exceedances	of Times Detects	Samples Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0,36 U	0,15 U	0.15 U	0,15 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0,51 U	0.33 U	0,33 U	0.33 U	0,33 U	0,33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.66 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0,55 J	0,91 J	0.75 J	0.34 J	0.24 J	0.64 J	0.33 J
Trans-1,3-Dichloropropene	UG/L	0	0%	0,4	0	0	268	0.37 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 UJ	0.21 UJ
Trichloroethene	UG/L	3800	69%	5	86	185	268	380	230	310	0,52 J	2.3	280	280
Trichtoroffuoromethane	UG/L	0	0%	5	0	0	268	0,15 U	0,25 U	0,25 U	0,25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	21	16	16	2,6	4.3	11	6.0
Other														
iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	17	9	4.5	4.9	0.84	3.1	0.64
Ethene	UG/L	200	90%			122	136	0.52	0.55	0.2	0.21	0,425 U	0.33	0.067
Methane	UG/L	23,000	98%			133	136	2,900	1,700	400	1,600	79	1,600	96
Sulfate	MG/L	1,060	83%			113	136	29.3 J	29	31	39	26	28	29
Total Organic Carbon	MG/L	2050	100%			136	136	4.5 J	1,5	1.3	2	1.7	1,6	1.6

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1,1,1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Sheding indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-7	MWT-7	MWT-7	MWT-7	PT-24	PT-24	PT-24
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20268	ALBW20283	ALBW20299	ALBW20315	ALBW20061	ALBW20076	ALBW20090
Sample Date								7/10/2013	12/13/2013	6/20/2014	12/16/2014	1/2/2007	3/15/2007	6/5/2007
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								15	16	17	18	1	2	3
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of	•						
		Maximum		Cleanup	Number of	of Times		161	V-1 0				M-1 0	Materia Accel
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qua	Value Qual	Value Qua	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds			***					0.5.11	4.11	0.5.11	2.5 U	1 U	1 U	1 U
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	1 U 0.36 U	0.5 U	2.5 U	1 U	1 U	1 U
1,1.2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U 0.5 U	0.36 U	0.18 U 0.5 U	2.5 U	1 U	1 U	1 UJ
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268					1 U	1 0	1 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.26 U	0.13 U	0.65 U		1 U	0.75 J
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0,25 U	0.5 U	0.25 U	1,3 U	0.68 J	1 U	0.75 J 1 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.5 J	0,22 U	0.69 J	1.8 J	1 U 1 U	1 0	1 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.5 U	0.25 U	1.3 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0,88 U	0.44 U	2,2 U	1 U		1 U
1,2-Dibromoethane	UG/L	0	0%	0,0006	0	0	268	0.25 U	0.5 U	0.25 U	1.3 U	1 U	1 U 1 U	1 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.42 U	0.21 U	1.1 U 0.5 U	1 U	1 U	1 U
1,2-Dichloroethane	UG/L	5.6	16%	0.5	34	42	268	0.1 U 0.13 U	0.2 U	0.1 U 0.13 U	0.5 U	1 U	1 U	1 U
1,2-Dichloropropane	UG/L	0,29	0%	1	0	1	268		0.26 U			1 U	1 U	1 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.5 U	0.25 U	1.3 U 1.4 U	1 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.56 U 10 UJ	0.28 U 5 U	1.4 U 25 U	5 U	5 U	5 U
Acetone	UG/L	2600	17%			45	262	5 U				1 U	1 U	1 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.5 U	0,25 U	1,3 U	1 U	1 U	1 U
Bromodichloromethene	UG/L	0	0%	80	0	0	268	0.25 U 0.5 U	0.5 U 1 U	0.25 U 0.5 U	1.3 U 2.5 U	1 U	1 U	1 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	1.2 U	0.5 U	2.3 U	1 U	1 U	1 U
Carbon disulfide	UG/L	0	0%			0	268	0.5 U	120	0.5 UJ	2.5 U	1 U	1 U	1 U
Carbon tetrachforide	UG/L	0	0%	5	0	-	268	0.5 U	0.5 U	0.5 U	1,3 U	1 U	1 U	1 U
Chlorobenzene	UG/L	0	0%	5	0	0	268				0.5 U	1 U	1 U	1 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U 2 U	0.2 U 4 U	0.1 U 2 U	10 U	1 U	1 U	1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	0,14 U	0.53 J	0,14 U	0.95 J	1 U	1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	110	140	110	150	54	38	60
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	0,11 U	0,22 U	0,11 U	0,55 U	1 U	1 U	1 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.25 U	0.5 U	0.11 U	1.3 U	1 U	1 U	1 U
Cyclohexane	UG/L	0.3	0%			1	268 268	0.25 U	0.5 U	0.25 U	1.3 U	1 U	1 U	1 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1 19	268	0.25 U	0.22 U	0.25 U	0,55 U	1 U	1 U	1 U
Ethyl benzene	UG/L	9.2	7%	5 5	0	19		0.11 U	0.2 U	0,1 U	0.5 U	1 U	1 U	1 U
Isopropylbenzene	UG/L	0.1	0%	5	U	2	268 253	0,19 U	0.38 ∪	0.19 U	0.95 U	1 U	1 UJ	1 U
Methyl Acetate	UG/L	6	1%	5	0	1	262	2 U	4 U	2 UJ	10 U	1 U	1 U	1 U
Methyl bromide	UG/L	2.1	0%	5	U	0		1 U	2 U	1 U	5 U	5 U	5 U	5 U
Methyl butyl ketone	UG/L UG/L	0	0% 0%	5	0	0	268 268	0.33 U	0.66 U	0.33 U	1.7 U	1 U	1 U	1 U
Methyl chloride		-		5	U	1		0.33 U	0.2 U	0.1 U	0.5 U	1 U	1 U	1 U
Methyl cyclohexane	UG/L	0,17	0%				268 268	1 U	2 U	1 U	5 U	5 U	5 U	5 U
Methyl ethyl ketone	UG/L	4900	5% 0%			22 1	268 268	1 UJ	2 U	1 U	5 U	5 U	5 U	5 U
Methyl isobutyl ketone	UG/L	1.9 0	0%			0	268	0.2 U	0.4 U	0.2 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	_			7	12	268	1 U	0.4 U	1 U	5 U	1 U	1 U	1 U
Methylene chloride	UG/L UG/L	18 n	4% 0%	5 5	,	0	268	0.11 U	0.22 U	0.11 U	0.55 U	1 U	1 U	1 U
Styrene	UG/L	U	U70	5	U	U	200	0.11 0	0.22 0	0.11 0	0.00	1 0	, ,	

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MWT-7	MWT-7	MWT-7	MWT-7	PT-24	PT-24	PT-24
Matrix								GW						
Sample ID								ALBW20268	ALBW20283	ALBW20299	ALBW20315	ALBW20061	ALBW20076	ALBW20090
Sample Date								7/10/2013	12/13/2013	6/20/2014	12/16/2014	1/2/2007	3/15/2007	6/5/2007
QC Type								SA						
Study ID								LTM						
Sample Round								15	16	17	18	1	2	3
Filtered								Total						
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual					
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.3 U	0.15 U	0.75 U	_ 1 U	1 U	1 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.66 U	0.33 U		1 U	1 U	1 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.4 U	0.2 U	1 U	3 U	3 U	3 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.46 J	0,4 U	0.73 J	1.8 J	0.86 J	0.81 J	1.6
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 UJ	0.42 U	0.21 U	1.1 U	1 U	1 U	1 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	300	370	190	260	4	2,8	3.1
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0,25 U	0,5 U	0.25 U	1,3 U	1 U	1 U	1 UJ
Vinyl chloride	UG/L	180	67%	2	137	180	268	2,8	9,6	9,6	16	0.6 J	1 U	2.6
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136	0.5	1.2	1.2	1.1			
Ethene	UG/L	200	90%			122	136	0.2 U	0.18 J	0.19 J	0.095 J			
Methane	UG/L	23,000	98%			133	136	160	1,000	510	1,300			
Sulfate	MG/L	1,060	83%			113	136	31	26	23	23			
Total Organic Carbon	MG/L	2050	100%			136	136	0.89 J	2	1.4	2			

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

e. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

								-						
Area									ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-24	PT-24	PT-24	PT-24	PT-24	PT-24	PT-24
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20105	ALBW20119	ALBW20134	ALBW20149	ALBW20164	ALBW20179	ALBW20194
Sample Date								11/13/2007	6/26/2008	12/12/2008	6/2/2009	12/15/2009	6/30/2010	12/17/2010
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								4	5	6	7	8	9	10
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency				Number of							
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	1 U	1 U	0,26 U	0,26 U	0.26 U	0,5 U	0,5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	1 U	1 U	0.21 U	0.21 U	0.21 U	0.18 U	0.18 U
1,1.2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	1 U	1 UJ	0.31 U	0.31 U	0.31 U	0.5 UJ	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	1 U	1 U	0.23 U	0.23 U	0.23 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.56 J	0.69 J	0.75 U	0.75 U	0,38 U	0.54 J	0.54 J
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	1 U	1 U	0.29 U	0,29 ↓	0,29 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	0.41 U	0.41 U	0.41 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	1 U	1 UJ	1 UJ	1 UJ	0.39 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	1 U	1 U	0.17 U	0.17 U	0.17 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	0.2 U	0,2 U	0.2 U	0,21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	1 U	1 U	0,21 U	0,21 U	0,21 U	0.1 U	0,1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	1 U	1 U	0.14 U	0.14 U	0.32 U	0.13 U	0.13 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	n	268	1 U	1 U	0.16 U	0,16 U	0.36 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	1 U	1 U	0.16 U	0.16 U	0.39 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%		•	45	262	5 U	5 U	1,3 U	1.3 U	1,3 U	5 U	5 UJ
Benzene	UG/L	0.48	2%	1	0	5	268	1 U	1 U	0,16 U	0.16 U	0.41 U	0,25 U	0.25 U
Bromodichloromethane	UG/L	0.40	0%	80	0	0	268	1 U	1 U	0.38 U	0.39 U	0.39 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	1 U	1 U	0,26 U	0.26 UJ	0,26 UJ	0.5 U	0.5 U
Carbon disulfide		0		80	U	0	268	1 U	1 U	0.19 U	0.19 UJ	0.19 UJ	0.6 U	0.5 U
	UG/L	-	0%	_		-		1 U				0.19 U	0.5 U	0.5 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268		1 U	0.27 U	0.27 U			
Chlorobenzene	UG/L	0	0%	5	0	0	268	1 U	1 U	0.18 U	0.32 U	0.32 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	1 U	1 U	0.32 U	0.32 U	0.32 U	0.1 U	0.1 U
Chloroethane	UG/L	1,1	3%	5	0	7	268	1 U	1 UJ	0.32 U	0.32 U	0.32 UJ	1 U	1 U
Chloroform	UG/L	71	8%	7	7	22	268	1 U	1 0	0.34 U	0.34 U	0.34 U	0.14 U	0.16 J
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	39	48	34	32	28	33	30
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	0,36 U	0,36 U	0.36 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	1 U	1 U	0.22 U	0.53 U	0.53 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0,3	0%	5	0	1	268	1 U	1 U	0.28 U	0.29 U	0.29 U	0.25 U	0,25 U
Ethyl benzene	UG/L	9,2	7%	5	1	19	268	1 U	1 U	0.18 U	0.18 U	0.18 U	0,11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	1 U	1 U	0.19 U	0.19 U	0.19 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	1 UJ	1 UJ	0.17 U	0.17 UJ	0.5 U	0.19 UJ	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	1 U	1 UJ	0,28 U	0.28 U	0.28 U	0.8 UJ	0.8 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	5 UJ	5 UJ	1.2 U	1.2 U	1,2 U	1 UJ	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	1 U	1 UJ	0.34 U	0.35 U	0.35 UJ	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0.17	0%	•	-	1	268	1 U	1 U	0.22 U	0.5 U	0.5 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	5 U	5 UJ	1,3 U	1.3 U	1.3 U	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	5 U	5 UJ	0.91 U	0.91 U	0.91 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	1 U	1 U	0.16 U	0.16 U	0.16 U	0.2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	0.44 UJ	0.44 U	0.16 U	1 U	1 U
,	UG/L	18		5	,	0	268	1 0	1 U	0,18 U	0.18 U	0.18 U	0.11 U	0.11 U
Styrene	UG/L	U	0%	5	U	U	208	1 0	1 0	0.18 0	v.10 U	0.10 0	0.11 0	0.11

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Aren								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-24						
Metrix								GW						
Sample ID								ALBW20105	ALBW20119	ALBW20134	ALBW20149	ALBW20164	ALBW20179	ALBW20194
Sample Date								11/13/2007	6/26/2008	12/12/2008	6/2/2009	12/15/2009	6/30/2010	12/17/2010
QC Type								SA						
Study ID								LTM						
Sample Round								4	5	6	7	8	9	10
Filtered								Total						
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times	Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual		Value Qual	Value Qual	Value Qual
Tetrachioroethene	UG/L	27	1%	5	1	2	268	1 U	1 0	0.36 U	0.36 U	0.36 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	1 U	1 U	0.51 U	0.51 U	0.51 U	0.33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	3 U	3 U	0.93 U	0.66 U	0.66 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1 U	1.1	0.36 J	0.83 J	0.61 J	1,1	1.4
Trans-1,3-Dichtoropropene	UG/L	0	0%	0.4	0	0	268	1 U	1 U	0.37 U	0.37 U	0.37 U	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	3.8	2,4	2.2	1.7	1.7	0.39 J	0.53 J
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	1 U	1 UJ	0.15 U	0.15 U	0.15 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	1 U	1.9	0.26 J	2	1.6	3,8	7.7
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							
Methane	UG/L	23,000	98%			133	136							
Sulfate	MG/L	1,060	83%			113	136							

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

MG/L 2050

100%

Total Organic Carbon

136

136

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1

Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8

Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-24	PT-24	PT-24	PT-24	PT-24	PT-24	PT-24
Metrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20209	ALBW20224	ALBW20239	ALBW20254	ALBW20267	ALBW20282	ALBW20298
Sample Date								7/21/2011	12/13/2011	6/19/2012	12/12/2012	7/9/2013	12/11/2013	6/20/2014
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								11	12	13	14	15	16	17
Filtered								Total	Total	Total	Total	Total	Total	Total
		Meximum	Frequency	Cleanup	Number of	Number of Times								
Parameter	Unit	Value	Detections	Goals	Exceedences	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachioroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Triffuoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.78 J	0,48 J	0.57 J	0.32 J	0.51 J	0.52 J	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0,11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
1,2-Dibromo-3-chioropropane	UG/L	0	0%	0.04	0	0	268	0,44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1.2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0,21 U
1.2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0,1 U	0.1 U	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0,13 U
					•	0	268	0.13 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0			0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	-	268	0.28 U 5 U	5 U	5 UJ	5 U	5 U	5 U	5 U
Acetone	UG/L	2600	17%			45	262						0,25 U	0.25 U
Benzene	UG/L	0.48	2%	4	0	5	268	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U		
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	0,5 UJ	0.5 U	0,5 U	0.5 U	0.5 U	0,5 U	0.5 U
Carbon disuffide	UG/L	0	0%			0	268	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0,6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 W
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0,1 U	0.1 U
Chloroethane	UG/L	1.1	3%	5	0	7	268	1 U	1 UJ	1 UJ	1 U	2 U	2 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	37	.21	.30	18	24	23	23
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0,11 U	0,11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 UJ	0,25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%	•	•	2	253	0.19 U	0.19 U	0.19 UR	0,19 UJ	0.19 U	0.19 U	0.19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 UJ	0.8 U	0.8 UJ	0.8 UJ	2 U	2 W	2 UJ
Methyl butyl ketone	UG/L	0	0%	•	•	0	268	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 UJ	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
Methyl cyclohexane	UG/L	0,17	0%		•	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
						22	268	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U
Methyl ethyl ketone	UG/L	4900	8% 0%			1	268	1 U	1 U	1 UJ	1 U	1 W	1 U	1 U
Methyl isobutyl ketone	UG/L	1.9						0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methyl Tertbutyl Ether	UG/L	0	0%		_	0	268					1 U	1 U	1 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U			0.11 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								PT-24						
Metrix								GW						
Sample 1D								ALBW20209	ALBW20224	ALBW20239	ALBW20254	ALBW20267	ALBW20282	ALBW20298
Sample Date								7/21/2011	12/13/2011	6/19/2012	12/12/2012	7/9/2013	12/11/2013	6/20/2014
QC Type								SA						
Study ID								LTM						
Sample Round								11	12	13	14	15	16	17
Filtered								Total						
			Frequency				Number of							
		Maximum		Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual						
Tetrachioroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0.15 U	0,15 U	0,15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0,33 U	0.33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	0,2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	1.4	0.63 J	0.84 J	0.38 J	0.8 J	0.86 J	1
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 UJ	0.21 U	0.21 UJ	0.21 UJ	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.38 J	0.82 J	0.87 J	1.1	1.6	1.3	1.3
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	7.9	2.9	2.8	0.18 U	0.83 J	1.8	1.7
Other														
Iron	UG/L	296,000	100%			12	12							
Iron+Manganese	UG/L	352,900	100%			12	12							
Menganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							
Methane	UG/L	23,000	98%			133	136							
Sulfate	MG/L	1,060	83%			113	136							
Total Organic Cerbon	MG/L	2050	100%			136	136							

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

m. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc 1D								PT-24	MW-56	MW-56	MW-56	MW-56	MW-56	MW-56
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20314	ALBW20072	ALBW20101	ALBW20124	ALBW20139	ALBW20154	ALBW20169
Sample Date								12/19/2014	1/4/2007	6/6/2007	6/26/2008	12/11/2008	6/4/2009	12/18/2009
QC Type								SA	SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Sample Round								18	1	3	5	6	7	8
Filtered								Total	Total	Total	Total	Total	Total	Total
			Frequency			Number	Number of	1						
		Maximum	of	Cleanup	Number of	of Times								
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qua	l Value Qua	Value Qua	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	1 U	1 U	1 U	0.26 UJ	0,26 U	0,26 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	1 U	1 U	1 U	0.21 U	0.21 U	0.21 U
1,1.2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	1 U	1 UJ	1 ŲJ	0.31 U	0.31 U	0.31 UJ
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	1 U	1 U	1 U	0.23 U	0.23 U	0.23 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.29 J	1 U	1 U	1 U	0.75 U	0.75 U	0,38 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	1 U	1 U	1 U	0.29 U	0,29 U	0,29 U
1.2.4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0,25 U	1 U	1 U	1 U	0.41 U	0.41 U	0.41 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	1 U	1 U	1 UJ	1 UJ	1 U	0.39 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	1 U	1 U	1 U	0.17 U	0.17 U	0.17 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	1 U	1 U	1 U	0,2 U	0.2 U	0,2 U
1.2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0,1 U	1 U	1 U	1 U	0.21 U	0.21 U	0.21 U
1,2-Dichloropropane	UG/L	0.29	0%	4	0	1	268	0,13 U	1 U	1 U	1 U	0,14 U	0.14 U	0.32 U
1,3-Dichlorobenzene	UG/L	0.23	0%	3	0	ò	268	0.25 U	1 U	1 U	1 U	0.16 U	0,16 U	0,36 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	1 U	1 U	1 U	0.16 U	0.16 U	0.39 U
Acetone	UG/L	2600	17%	3	v	45	262	5 U	5 U	5 U	5 U	1,3 U	1.3 UJ	1.3 U
				1	0	5	268	0,25 U	1 U	1 U	1 U	0,16 U	0.16 U	0.41 U
Benzene	UG/L	0.48	2%		0	0	268	0.25 U	1 U	1 U	1 U	0.38 U	0,39 U	0.39 U
Bromodichloromethane	UG/L	0	0%	80	•	-		0,5 U	1 U	1 U	1 U	0.26 U	0.26 U	0.26 U
Bromoform	UG/L	0	0%	80	0	D	268		1 U	1 U	1 U	0.19 U	0.19 U	0.19 U
Carbon disulfide	UG/L	0	0%	_	_	0	268	0.6 U	1 U	1 0	1 U	0.19 UJ	0.13 U	0.27 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U					0.32 U	0.32 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0,25 U	1 0	1 0	1 U 1 U	0.18 U 0.32 U	0.32 U	0.32 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	1 0	1 U				0.32 UJ
Chloroethane	UG/L	1,1	3%	5	0	7	268	2 U	1 U	1 U	1 UJ	0.32 U	0.32 U	
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	1 0	1 U	1 U	0.34 U	0.34 U	0.34 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	13	1.2	1.7	1.3	0.4 J	1	0.56 J
Cls-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0,11 U	1 U	1 U	1 U	0.36 U	0,36 U	0.36 U
Cyclohexane	UG/L	0.3	0%			1	268	0.25 U	1 U	1 U	1 U	0.22 U	0.53 U	0.53 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 U	1 U	1 U	1 U	0.28 UJ	0.29 U	0,29 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	1 U	1 U	1 U	0.18 U	0.18 U	0.18 U
1sopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	1 U	1 U	1 U	0.19 U	0.19 U	0.19 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	1 U	1 U	1 UJ	0,17 U	0.17 U	0.5 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	2 U	1 U	1 U	1 UJ	0.28 U	0,28 U	0.28 UJ
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	5 U	5 U	5 UJ	1.2 U	1,2 U	1.2 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	1 U	1 U	1 UJ	0.34 U	0.35 U	0.35 U
Methyl cyclohexane	UG/L	0,17	0%			1	268	0.1 U	1 U	1 U	1 U	0.22 U	0.5 U	0.5 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	5 U	5 U	5 UJ	1.3 U	1.3 U	1.3 U
Methyl isobutyl ketone	UG/L	1.9	0%			1	268	1 U	5 U	5 U	5 UJ	0.91 U	0.91 U	0.91 U
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	1 U	1 U	1 U	0.16 U	0.16 U	0.16 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	0.44 UJ	0.44 U	0.44 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	1 U	1 U	1 U	0.18 U	0.18 U	0.18 U
Stylene	UG/L	v	0.70	J	v	v	200							

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL													
Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered								PT-24 GW ALBW20314 12/19/2014 SA LTM 18 Total	MW-56 GW ALBW20072 1/4/2007 SA LTM 1 Total	MW-56 GW ALBW20101 6/6/2007 SA LTM 3 Total	MW-56 GW ALBW20124 6/26/2008 SA LTM 5 Total	MW-56 GW ALBW20139 12/11/2008 SA LTM 6 Total	MW-56 GW ALBW20154 6/4/2009 SA LTM 7 Total	MW-56 GW ALBW20169 12/18/2009 SA LTM 8 Total													
																	Frequency				Number of						
																Maximum		Cleanup	Number of	of Times							
	Parameter	Unit	Value	Detections	Goals	Exceedances		Analyzed	Value Qual																		
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	1 U	1 U	1 U	0,36 U	0.36 U	0,36 U													
Toluene	UG/L	590	12%	5	18	32	268	0,33 U	1 U	1 U	1 U	0.51 U	0.51 U	0.51 U													
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	3 U	3 U	3 U	0.93 U	0.66 U	0.66 U													
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.53 J	1 U	1 U	1 U	0.13 U	0.13 U	0.42 U													
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	1 U	1 U	1 U	0.37 U	0.37 U	0.37 U													
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.85 J	1 U	1 U	1 U	0.33 J	0.18 U	0.46 U													
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	1 U	1 UJ	1 UJ	0.15 UJ	0.15 U	0.15 UJ													
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.18 U	1 U	1 U	1 U	0.24 U	0.24 U	0.24 U													
Other																											
Iron	UG/L	296,000	100%			12	12																				
Iron+Manganese	UG/L	352,900	100%			12	12																				
Manganese	UG/L	56,900	100%			12	12																				
Ethane	UG/L	98	95%			129	136																				
Ethene	UG/L	200	90%			122	136																				
Methane	UG/L	23,000	98%			133	136																				
Sulfate	MG/L	1,060	83%			113	136																				
Total Organic Carbon	MG/L	2050	100%			136	136																				

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a, NYSDEC Class GA GW Standards (TOGS 1,1,1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MW-56	MW-56	MW-56	MW-56	MW-56	MW-56	MW-56
Matrix								GW	GW	GW	GW	GW	GW	GW
Sample ID								ALBW20184	ALBW20199	ALBW20214	ALBW20229	ALBW20244	ALBW20259	ALBW20272
Sample Date								7/1/2010	12/19/2010	10/4/2011	12/12/2011	6/18/2012	12/14/2012	7/9/2013
								SA	SA	SA	SA	SA	SA	SA
QC Type								LTM	LTM	LTM	LTM	LTM	LTM	LTM
Study ID								LIM 9	10	11		13	14	15
Sample Round								•	Total	Total	12 Total	Total	Total	Total
Filtered			Frequency			Mumbar	Number of	Total	lotai	1 otai	I otal	iotai	lotai	(Otal
		Maximum	of	Cleanup	Number of		Samples							
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds														
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0,5 U	0.5 U
1,1,2,2-Tetrachioroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0,44 U	0.44 U	0.44 U	0.44 U	0,44 U	0,44 U	0.44 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0.21 U	0,21 U	0.21 U	0.21 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.1 U	0,1 U	0.1 U	0,1 U	0,1 UJ	0.1 U	0,1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0.29	0%	3	0	0	268	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U	0.25 U	0,25 U
1.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0,28 U	0.28 U	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%	3	U	45	262	5 U	5 UJ	5 U	5 U	5 UJ	5 U	5 U
				1	0	5	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U
Benzene	UG/L	0.48	2%		0	0		0.25 U	0.25 U	0.25 U	0.25 U	0.25 UJ	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80		-	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.5 U	0.5 U
Bromoform	UG/L	0	0%	80	0	0	268		0.5 U	0.6 U				
Carbon disulfide	UG/L	0	0%			0	268	0.6 U				0.5 UJ		0.5 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0,5 U	0.5 U	0.5 U	0.5 U		0.5 U 0.25 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U		
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chloroethane	UG/L	1,1	3%	5	0	7	268	1 U	1 UJ	1 U	1 U	1 UJ	1 U	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.24 J	1	0.14 U	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	0.61 J	0.86 J	2.3	0.95 J	2.2	0.85 J	2.2
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%			1	268	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0,25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U	0,11 U	0.11 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0.1	0%	5	0	1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%			2	253	0.19 U	0.19 U	0.19 U	0.19 U	0.19 UR	0.19 UJ	0,19 U
Methyl bromide	UG/L	2.1	0%	5	0	1	262	0.8 ∪	0.8 ∪	0.8 U	0.8 U	0.8 UJ	0.8 UJ	2 U
Methyl butyl ketone	UG/L	0	0%			0	268	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
Methyl chloride	UG/L	0	0%	5	0	0	268	0.33 U	0.33 U	0.33 U	0,33 ∪	0.33 U	0.33 U	0,33 U
Methyl cyclohexane	UG/L	0.17	0%			1	268	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Methyl ethyl ketone	UG/L	4900	8%			22	268	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U
Methyl isobutyl ketone	UG/L	1,9	0%			1	268	1 U	1 U	1 U	1 U	1 UJ	1 U	1 UJ
Methyl Tertbutyl Ether	UG/L	0	0%			0	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0,2 U	0.2 U
Methylene chloride	UG/L	18	4%	5	7	12	268	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MW-56						
Matrix								GW						
Sample ID								ALBW20184	ALBW20199	ALBW20214	ALBW20229	ALBW20244	ALBW20259	ALBW20272
Sample Date								7/1/2010	12/19/2010	10/4/2011	12/12/2011	6/18/2012	12/14/2012	7/9/2013
QC Type								SA						
Study ID								LTM						
Sample Round								9	10	11	12	13	14	15
Filtered								Total						
			Frequency				Number of							
•		Maximum	of	Cleanup	Number of									141
Parameter	Unit	Value	Detections	Goals	Exceedances		Analyzed	Value Qual					Value Qual	
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0,15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0,33 U	0.33 U	0.33 U	0,33 U	0,33 U	0.33 U	0,33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0,2 U	0.2 U	0.2 U	0.2 U	0,2 U	0.2 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 U	0.21 U	0.21 U	0.21 U	0.21 UJ	0.21 U	0.21 UJ
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0,13 U	0.13 U
Trichtorofluoromethane	UG/L	0	0%	5	0	0	268	0,25 U	0,25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0,18 U	0.18 U
Other														
Iron	UG/L	296,000	100%			12	12							
tron+Manganese	UG/L	352,900	100%			12	12							
Manganese	UG/L	56,900	100%			12	12							
Ethane	UG/L	98	95%			129	136							
Ethene	UG/L	200	90%			122	136							
Methane	UG/L	23,000	98%			133	136							
Sulfate	MG/L	1,060	83%			113	136							
Total Organic Carbon	MG/L	2050	100%			136	136							

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a, NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MW-56	MW-56	MW-56
Matrix								GW	GW	GW
Sample ID								ALBW20287	ALBW20303	ALBW20319
Sample Date								12/11/2013	6/22/2014	12/19/2014
QC Type								SA	SA	SA
Study ID								LTM	LTM	LTM
Sample Round								16	17	18
Filtered								Total	Total	Total
			Frequency			Number	Number of			
		Maximum	of	Cleanup	Number of	of Times				
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qual
Volatile Organic Compounds										
1,1,1-Trichloroethane	UG/L	15	2%	5	1	5	268	0.5 U	0.5 U	0.5 ∪
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	268	0.18 U	0.18 U	0.18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	268	0.5 U	0.5 UJ	0.5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	268	0.13 U	0.13 U	0.13 U
1,1-Dichloroethane	UG/L	62	13%	5	1	34	268	0.25 U	0.25 U	0.25 U
1,1-Dichtoroethene	UG/L	2.6	12%	5	0	33	268	0.11 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	268	0.25 U	0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	268	0.44 U	0.44 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	0	268	0.25 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.21 U	0.21 U	0,21 U
1,2-Dichloroethane	UG/L	5.6	16%	0.6	34	42	268	0.1 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0.29	0%	1	0	1	268	0.13 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.25 U	0.25 U	0.25 U
1.4-Dichlorobenzene	UG/L	0	0%	3	0	0	268	0.28 U	0.28 U	0.28 U
Acetone	UG/L	2600	17%			45	262	5 U	5 U	5 U
Benzene	UG/L	0.48	2%	1	0	5	268	0.25 U	0.25 U	0.25 U
Bromodichloromethane	UG/L	0	0%	80	0	0	268	0.25 U	0,25 U	0.25 U
Bromoform	UG/L	0	0%	80	0	0	268	0.5 U	0.5 U	0.5 ∪
Carbon disulfide	UG/L	0	0%			0	268	0.6 U	0.6 U	0.6 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	268	0.5 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	268	0,25 U	0,25 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80	0	0	268	0,1 U	0.1 U	0.1 U
Chloroethane	UG/L	1,1	3%	5	0	7	268	2 U	2 UJ	2 U
Chloroform	UG/L	71	8%	7	7	22	268	0.14 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	820	88%	5	166	235	268	1.7	0.98 J	0.89 J
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0,11 U	0.11 U	0.11 U
Cyclohexane	UG/L	0.3	0%	0.4	U	1	268	0.25 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0.3	0%	5	0	1	268	0.25 UJ	0.25 U	0.25 U
Ethyl benzene	UG/L	9.2	7%	5	1	19	268	0.11 U	0.11 U	0.11 U
•		0.1	0%	5	0	19	268	0.11 U	0.1 U	0.1 U
Isopropylbenzene	UG/L			5	U	2		0.19 U	0.19 U	0.1 U
Methyl Acetate	UG/L		1%	5		1	253	0.19 U	2 U	2 U
Methyl bromide	UG/L		0%	5	0	-	262		2 U	2 U
Methyl butyl ketone	UG/L		0%		•	0	268	1 U		0,33 U
Methyl chloride	UG/L		0%	5	0	0	268	0.33 U	0.33 U	0.33 U 0.1 U
Methyl cyclohexane	UG/L		0%			1	268	0.1 U	0.1 U	
Methyl ethyl ketone	UG/L		8%			22	268	1 U	1 U	1 U
Methyl isobutyl ketone	UG/L		0%			1	268	1 U	1 U	1 U
Methyl Tertbutyl Ether	UG/L		0%			0	268	0.2 U	0.2 U	0.2 U
Methylene chloride	UG/L		4%	5	7	12	268	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	268	0.11 U	0.11 U	0.11 U

Table B-1 Complete Groundwater Data for Ash Landfill Long Term Monitoring Ash Landfill Annual Report, Year 8 Seneca Army Depot Activity

Area								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Loc ID								MW-56	MW-56	MW-56
Matrix								GW	GW	GW
Sample ID								ALBW20287	ALBW20303	ALBW20319
Sample Date								12/11/2013	6/22/2014	12/19/2014
QC Type								SA	SA	SA
Study ID								LTM	LTM	LTM
Sample Round								16	17	18
Filtered								Total	Total	Total
			Frequency				Number of			
		Maximum	of	Cleanup	Number of	of Times	Samples			
Parameter	Unit	Value	Detections	Goals	Exceedances	Detects	Analyzed	Value Qual	Value Qual	Value Qua
Tetrachloroethene	UG/L	27	1%	5	1	2	268	0.15 U	0.15 U	0.15 U
Toluene	UG/L	590	12%	5	18	32	268	0.33 U	0,33 U	0,33 U
Total Xylenes	UG/L	60	1%	5	1	2	268	0.2 U	0.2 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	22	52%	5	12	140	268	0.2 U	0.2 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	268	0.21 UJ	0.21 U	0.21 U
Trichloroethene	UG/L	3800	69%	5	86	185	268	0.13 U	0.13 U	0.13 U
Trichlorofluoromethane	UG/L	0	0%	5	0	0	268	0.25 U	0,25 U	0.25 U
Vinyl chloride	UG/L	180	67%	2	137	180	268	0.18 U	0.18 U	0.18 U
Other										
Iron	UG/L	296,000	100%			12	12			
Iron+Manganese	UG/L	352,900	100%			12	12			
Manganese	UG/L	56,900	100%			12	12			
Ethane	UG/L	98	95%			129	136			
Ethene	UG/L	200	90%			122	136			
Methane	UG/L	23,000	98%			133	136			
Sulfate	MG/L	1,060	83%			113	136			
Total Organic Carbon	MG/L	2050	100%			136	136			

^{1.} The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

^{2.} Shading indicates a concentration above the GA GW standard.

U = compound was not detected

J = the reported value is and estimated concentration

R = Rejected, data validation rejected the results

UJ= the compound was not detected; the associated reporting limit is approximate

UR= the compound was not detected; data validation rejected the results

APPENDIX C REGRESSION PLOTS

			,

Fig. C-1
Regression Plot of Well Concentrations At MWT-25
Ash Landfill Annual Report, Year 8

Figure C-2 Regression Plot of Well Concentrations At MWT-26 Ash Landfill Annual Report, Year 8

Appendix C

Fig. . . C-3
Regression Plot of Well Concentrations At MWT-27
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Figure C-4
Regression Plot of Well Concentrations At MWT-28
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

Fig. 3-5
Regression Plot of Well Concentrations At MWT-29
Ash Landfill Annual Report, Year 8

Figure C-6
Regression Plot of Well Concentrations At MWT-22
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

App...dix C

Fig. C-7
Regression Plot of Well Concentrations At PT-22
Ash Landfill Annual Report, Year 8

Figure C-8
Regression Plot of Well Concentrations At MWT-23
Ash Landfill Annual Report, Year 8

Fig __ &-9
Regression Plot of Well Concentrations At MWT-24
Ash Landfill Annual Report, Year 8

Figure C-10 Regression Plot of Well Comcentrations At PT-24 Ash Landfill Annual Report, Year 8

Appendix C

Figu. 3-11
Regression Plot of Well Concentrations At PT-18A
Ash Landfill Annual Report, Year 8

Figure C-12
Regression Plot of Well Concentrations At PT-17
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

ND = not detected.

Figu. 3-13
Regression Plot of Well Concentrations At MWT-7
Ash Landfill Annual Report, Year 8
Seneca Army Depot Activity

		•	