

Task Order No. 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

July 2015

PARSONS

DRAFT

ANNUAL REPORT 2014 - YEAR 7

FOR THE ABANDONED DEACTIVATION FURNACE (SEAD-16) AND THE ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY, ROMULUS, NY

Prepared for:

U.S. ARMY CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE, ALABAMA

U.S. ARMY, CORPS OF ENGINEERS, NEW YORK DISTRICT NEW YORK, NEW YORK

and

SENECA ARMY DEPOT ACTIVITY

ROMULUS, NY

Prepared by:

PARSONS 100 High Street Boston, MA 02110

Contract Number W912D4-08-D-003 Task Order 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

July 2015

TABLE OF CONTENTS

List of	Exhibits.		ii
List of	Tables		ii
List of	Figures		ii
List of	Appendi	ces	ii
1.0	INTROL	DUCTION	1-1
2.0	SITE BA	ACKGROUND	2-1
2.1	Site D	Description	2-1
2.2	2 Site H	lydrology	2-2
	2.2.1	SEAD-16	2-2
	2.2.2	SEAD-17	2-2
2.3	Pre-Re	emedial Action Soil and Groundwater Conditions for SEAD-16	2-2
2.4	Pre-Re	emedial Action Soil and Groundwater Conditions for SEAD-17	2-4
2.5	Reme	dial Action Summary	2-5
3.0	LONG T	ERM MONITORING RESULTS	3-1
3.1	Year 7	7 LTM Event	3-1
	3.1.1	Year 7 Groundwater Elevations for SEAD-16 and SEAD-17	3-1
	3.1.2	Year 7 LTM Sample Collection	3-1
	3.1.3	Year 7 LTM Sample Filtering	3-2
	3.1.4	Year 7 Groundwater Results for SEAD-16	3-2
	3.1.5	Year 7 Groundwater Results for SEAD-17	3-3
	3.1.6	LTM Groundwater Data Trends	3-4
3.2	Routin	ne Inspections of SEAD-16 and SEAD-17 Monitoring Wells	
4.0	REMED	Y EVALUATION	4-1
5.0	CONCLU	USIONS AND RECOMMENDATIONS	5-1
5.1	Conclu	usions	5-1
5.2	Recom	nmendations	5-1
6.0	REFERE	INCES	6-1

LIST OF EXHIBITS

Exhibit 1.1 LTM and Inspection Summary

LIST OF TABLES

Table 1	SEAD-16 - Groundwater Table Elevations Summary
Table 2	SEAD-17 - Groundwater Table Elevations Summary
Table 3A	SEAD-16 - Year 7 Filtered and Unfiltered Groundwater Analyses
Table 3B	SEAD-17 - Year 7 Filtered and Unfiltered Groundwater Analyses

LIST OF FIGURES

- Figure 1 Location Map
- Figure 2 Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
- Figure 3 SEAD-16 Site Plan
- Figure 4 SEAD-17 Site Plan
- Figure 5 SEAD-16 and SEAD-17 Groundwater Flow Trend
- Figure 6A Concentration of Antimony Over Time at MW16-2, MW16-4, MW16-7 and MW17-2
- Figure 6B Concentration of Lead Over Time at MW16-2, MW16-4, MW16-7 and MW17-2

LIST OF APPENDICES

Appendix A Pre-Remedial Action Monitoring Data
Appendix B SEDA Background Groundwater Data Summary
Appendix C Field Forms - Year 7 LTM Groundwater Sampling Activities
Appendix D Post-Remedial Action Monitoring Results (Years 1 through 7)
Appendix E Laboratory Analytical Report
Appendix F Data Validation
Appendix G ProUCL Output Sheets

1.0 **INTRODUCTION**

This Draft Annual Report – Year 7 for the former Abandoned Deactivation Furnace (SEAD-16) and the former Active Deactivation Furnace (SEAD-17) sites at the Seneca Army Depot Activity (SEDA or the Depot) in Romulus, Seneca County, New York provides a review of annual groundwater monitoring data collected in December 2014, comparisons of the 2014 data to other pre- and post-remedial action (RA) groundwater sampling events, recommendations for future long-term monitoring (LTM) at SEAD-16 and SEAD-17, and the annual review of the effectiveness of the remedy implemented at the sites in 2007.

In accordance with the Record of Decision (ROD) for SEAD-16 and SEAD-17 (Parsons, 2006) and the Remedial Design Work Plan and Design Report (Parsons, 2007) (Final Work Plan), a RA was completed in August 2007 at SEAD-16 and SEAD-17 [the areas of concern (AOCs)]. The RA consisted of the excavation and disposal of soil, from both AOCs, which was contaminated with selected metals (antimony, arsenic, cadmium, copper, lead, mercury, thallium, and zinc) at levels above identified riskbased action levels. In addition, soil at SEAD-16 was also contaminated with polyaromatic hydrocarbons (PAHs) at concentrations in excess of risk-based action levels. The PAH impacted soil was excavated and was disposed of at a licensed landfill. The RA implemented at SEAD-16 and SEAD-17 is documented in the Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008). The RA at SEAD-16 involved the removal of approximately 1,862 cubic yards (cy) of soil which was impacted with metals and PAHs. The RA at SEAD-17 involved the removal of approximately 2,565 cy of metals-impacted soil.

The ROD for SEAD-16 and SEAD-17 also requires the implementation, maintenance, inspection, and periodic reporting of land use controls (LUCs) prohibiting use of the land at the AOCs for residential purposes and access to and use of groundwater until applicable cleanup standards are met. Applicable cleanup standards refer to the lowest enforceable standard associated with either the New York State Class GA (NYS Class GA) Ambient Water Quality Standards or United States Environmental Protection Agency (EPA) maximum contaminant levels (EPA MCLs). Once groundwater cleanup standards are achieved, the groundwater use restrictions may be eliminated upon approval of the EPA and the New York State Department of Environmental Conservation (NYSDEC). SEAD-16 and SEAD-17 are located within the Planned Industrial/Office Development and Warehousing (PID) area. The PID area has areawide LUCs that prohibit the development and use of the property for residential housing, elementary and secondary schools, childcare facilities, and playgrounds; and, prohibits access to and use of groundwater until concentrations have been reduced to levels that allow for unlimited exposure and unrestricted use.

The Land Use Control Remedial Design (LUC RD) Addendum #4 identifies and implements the LUCs required by the SEAD-16 and SEAD-17 ROD at the identified AOCs, as well as other AOCs (SEADs 1, 2, 5, 59, 71, 121C, and 121I) in the PID area. The LUC objectives for SEAD-16 and SEAD-17 are to prevent access to or use of groundwater until New York State GA groundwater standards are achieved, and to prohibit residential housing, elementary and secondary schools, child care facilities and playground activities at the sites. Implementation of the LUCs at SEAD-16 and SEAD-17 may include lease restrictions, an environmental easement, deed restrictions, zoning, periodic certification, and a five-year review as is defined in the Final Land Use Control Design for SEAD-27, 66, and 64A (Army, 2006). The

July 2015

LUC RD for SEAD-27, 66 and 64A is also known as the LUC RD for the Planned Industrial/Office Development or Warehousing Area that proposed the establishment of an area-wide set of land use restrictions for the PID/Warehouse Area to simplify institutional control implementation by having a single set of land use restrictions for the PID/Warehouse Area, which are consistent with its anticipated industrial land use. The periodic certification will be submitted to the NYSDEC and EPA to document that the LUCs at SEAD-16 and SEAD-17 are unchanged and that no activities have occurred that impair or violate the ability of the LUCs to protect public health and the environment.

Long-term groundwater monitoring is being performed at SEAD-16 and SEAD-17 as part of the postclosure monitoring and maintenance (PCMM) operations in accordance with the ROD and as outlined in the Final Work Plan (Parsons, 2007). LTM results are summarized in annual reports beginning in December 2007 (Exhibit 1.1). No LTM sampling event was conducted in 2011 due to budgetary constraints. This Year 7 report presents and discusses the results for the Year 7 LTM event which was conducted in December 2014.

Round Number	Event	Date	Report Title
1	LTM	December 2007	Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008).
2	LTM	December 2008	Final Annual Report - Year 2 (Parsons, 2009)
3	LTM	November 2009	Final Annual Report - Year 3 (Parsons, 2010)
4	LTM	December 2010	Draft Final Annual Report – Year 4 (Parsons, 2013)
5	LTM	December 2012	Final Annual Report - Year 5 (Parsons, 2014a)
6	LTM	December 2013	Draft Annual Report – Year 6 (Parsons, 2014b)
7	LTM	December 2014	Draft Annual Report – Year 7

Exhibit 1.1 - LTM and Inspection Summary

2.0 SITE BACKGROUND

2.1 Site Description

SEDA, a 10,587-acre former military facility located in Seneca County near Romulus, New York, is located between Seneca Lake and Cayuga Lake in Seneca County, and is bordered by New York State Highway 96 to the east, New York State Highway 96A to the west, and sparsely populated farmland to the north and south. The facility was wholly owned by the United States Government and was operated by the Department of the Army between 1941 and 2000; since 2000, portions of the Depot have been transferred to other parties for reuse. The primary mission of SEDA was the receipt, storage, maintenance, and supply of military items. A location map of SEDA is presented as **Figure 1**.

SEAD-16 and SEAD-17 are located in the east-central portion of the SEDA within the former ammunition storage area in an area where vehicular and pedestrian access is restricted. SEAD-16 and SEAD-17 are located in the portion of SEDA where land is presently designated for future PID uses. The locations of SEAD-16 and SEAD-17 are shown in **Figure 2**.

Both AOCs were historically used for the demilitarization of various small arms munitions. The munitions deactivation process involved heating the munitions in a rotating steel kiln. The heat would cause the munitions to detonate once the detonation temperature was reached. The byproducts produced during this detonation were then either swept out of the kiln through the stack or expelled from the kiln as bottom ash or debris.

SEAD-16, the former Abandoned Deactivation Furnace, was used from approximately 1945 until the mid 1960s when its use ceased and the site was vacated. The site consisted of 2.6 acres of fenced land with grasslands in the north, east, and west; a storage area for empty boxes and wooden debris located to the west; and an unpaved roadway in the south. Building S-311, which previously housed the deactivation furnace, was located at the approximate center of this area, and was demolished as part of the RA at SEAD-16. Documentation of demolition activities is presented in the *Building Cleaning and Building Demolition Completion Report* (Parsons, 2008). Building S-366, known as the Process Support Building, is located to the northeast of former Building S-311, and is currently unused and vacant. In addition to Building S-366, two sets of SEDA railroad tracks and utilities are presently on-site.

SEAD-17, the former Active Deactivation Furnace, was constructed to replace the Abandoned Deactivation Furnace at SEAD-16. However, SEAD-17 was inactive after 1989 as a result of Resource Conservation and Recovery Act (RCRA) permitting issues. SEAD-17 formerly consisted of the deactivation furnace, associated air pollution control equipment, and a support building (Building S-367), which were demolished or dismantled during the RA. Details and results of the demolition are documented in the *Building Cleaning and Building Demolition Completion Report* (Parsons, 2008). The former SEAD-17 deactivation furnace facility and support building were surrounded by a crushed shale road, beyond which lie grasslands. An unpaved gravel road to the north permits vehicular access to SEAD-17.

2.2 Site Hydrology

The hydrogeologic setting of SEAD-16 and SEAD-17 is described in detail in Sections 3.1.6 and 3.2.6, respectively, of the *Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17)* (Parsons, 1999). A brief summary of the hydrogeologic conditions and chemical impacts, as described in the RI Report, is presented below.

2.2.1 SEAD-16

Three groundwater monitoring wells (MW16-1, MW16-2, and MW16-3) were installed as part of the Expanded Site Investigation (ESI) conducted at SEAD-16 in 1993/1994. Four additional groundwater monitoring wells (MW16-4, MW16-5, MW16-6, and MW16-7) were installed during the RI. As summarized in the *Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17)* (Parsons, 2008), MW16-3 was destroyed during the RA construction activities, and was not replaced as groundwater conditions on the southwest side of Building S-311 are adequately characterized by MW16-2 and MW16-5. The locations of the six existing groundwater monitoring wells and the former MW16-3 are shown on **Figure 3**.

Prior to the completion of the RA in August 2007, depth to groundwater was measured at SEAD-16 three times (April 1994, August 1996, and December 1996). Groundwater flow generally trends to the west based on previous subsurface investigations conducted at SEDA. Data from previous investigations suggest that a groundwater divide exists near, and approximately parallel to, Route 96 near Romulus, New York, indicating that the groundwater in the SEAD-16 area flows west. Based on available groundwater elevation data, it appears that there may be a regional groundwater high southwest of former Building S-311, which may contribute to local fluctuations in groundwater flow for the Site.

Horizontal hydraulic conductivities were determined for five wells screened in the till/weathered shale zone at SEAD-16. The saturated thickness in the till/weathered shale aquifer measured less than 2 feet when tested in September 1996. Hydraulic conductivity values for the shallow till/weathered shale aquifer ranged from 2.8×10^{-3} cm/sec to 2.5×10^{-2} cm/sec; the geometric mean was 7.3×10^{-3} cm/sec.

2.2.2 SEAD-17

Four groundwater monitoring wells (MW17-1, MW17-2, MW17-3, and MW17-4) were installed as part of the ESI conducted at SEAD-17. One additional groundwater monitoring well, MW17-5, was installed during the RI. The locations of the five groundwater monitoring wells installed at SEAD-17 are shown on **Figure 4**. Prior to the completion of the RA, depth to groundwater was measured at SEAD-17 in April 1994, August 1996, and December 1996 (the same time groundwater levels were measured at SEAD-16). Interpretation of groundwater elevation data indicates that groundwater flows to the southwest.

A horizontal hydraulic gradient of 0.01ft/ft was calculated between monitoring wells MW17-1 and MW17-3. Hydraulic conductivities were found to range from 2.9×10^{-3} cm/sec to 1.4×10^{-2} cm/sec.

2.3 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-16

Pre-Remedial Action Soil Conditions

The primary historic constituents of concern (COCs) at SEAD-16 for soil included arsenic, copper, lead,

and zinc. The highest concentrations of soil contamination resulted from operations that were performed within and in close proximity to the former Abandoned Deactivation Furnace Building (S-311) and the Process Support Building (Bld. 366). Carcinogenic PAHs were detected in soils found at discrete locations within the AOC, with the highest concentrations detected in the surface soil samples collected adjacent to the northwestern corner of the former Abandoned Deactivation Furnace Building. Metals (antimony, copper, lead, mercury, and zinc) were found at concentrations greater than the site-specific cleanup goals in soil located in portions of the surrounding man-made drainage ditches.

Pre-Remedial Action Groundwater Conditions

Prior to completion of the RA, three rounds of low-flow groundwater sampling were conducted at SEAD-16, including one round in April 1994 as part of the ESI investigation activities, and two rounds in August and December 1996 as part of the RI activities. Compounds detected in the ESI and RI groundwater samples are presented in **Appendix A** (refer to the RI Report for complete groundwater analyses). Total metals were detected above either the applicable NYS Class GA standards or EPA MCLs. Concentrations exceeding applicable standards were less than or close to SEDA background concentrations, except for the exceedances of sodium. A summary of SEDA background groundwater data providing summary statistics (including maximum and average concentrations, the standard deviation for the collected data, and the frequency of detection) is provided in **Appendix B**. The Final Work Plan summarized that although metals had been detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities (Parsons, 2007). This conclusion was based on a comparison of results to the background groundwater data collected from unaffected parts of SEDA.

ESI and RI Data

Review of SEAD-16 data presented in the RI Report indicated that one or more concentrations measured for 14 metals (including arsenic, antimony, barium, beryllium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, sodium, and thallium) in 19 unfiltered groundwater samples collected during the ESI (performed in 1993/1994) and/or the RI (performed in 1999) exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 39 total instances where groundwater concentrations exceeded NYS Class GA or EPA MCL standards, 22 exceedances were associated with samples collected with peristaltic pumps (e.g., for the ESI sampling event) while the remaining 17 exceedances were found in samples collected using low-flow sampling with a bladder pump. Sample turbidities recorded during the RI sampling events were significantly lower than those recorded during the ESI sampling event, and thus are believed to be more representative of the water quality located at the site prior to the RA. Examination of the RI groundwater data shows that six metals were detected at concentrations in excess of NYS Class GA or EPA MCL standards in effect at the time of analysis:

- antimony (detected 2 times);
- iron (detected 5 times);
- lead (detected 1 time);

- manganese (detected 2 times);
- sodium (detected 3 times); and
- thallium (detected 4 times) EPA MCL.

Of these detections, antimony was detected at concentrations above the applicable NYS Class GA standard only in well MW16-3, with a maximum concentration of 12.3 μ g/L. Iron was found at elevated concentrations in three wells: MW16-1 (at a maximum concentration of 2,400 J μ g/L), MW16-2, and MW16-3. Lead was detected only in MW16-3 at a maximum concentration of 24.1 J μ g/L; manganese was detected at elevated concentrations only in MW16-6 with a maximum level of 1,380 μ g/L; sodium was detected in two wells (MW16-5 and MW16-6) with a maximum concentration of 409,000 μ g/L detected at MW16-6; and thallium was detected in three wells including (MW16-2, MW16-5, and MW16-6), with a maximum concentration of 11 μ g/L detected at MW16-6.

2.4 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-17

Pre-Remedial Action Soil Conditions

The primary historic COCs in the soil at SEAD-17 were metals including antimony, arsenic, copper, lead, mercury, and zinc. The concentrations of metals were highest in samples collected closest to the location of the former Active Deactivation Furnace and its support building, particularly near the southwestern corner of the building.

Pre-Remedial Action Groundwater Conditions

Prior to the completion of the RA, three rounds of groundwater sampling were conducted at SEAD-17, concurrent with the sampling conducted at SEAD-16. Compounds detected in the groundwater samples collected during the low-flow sampling events in 1996 for SEAD-17 are presented in **Appendix A**. Total metals were detected at concentrations above the applicable NYS Class GA standards or EPA MCLs; however, except for sodium, these concentrations were lower than SEDA background metal concentrations (see SEDA background groundwater data summary in **Appendix B**.) The Final Work Plan summarized that, although metals had been detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities. This conclusion is based on a comparison of results to groundwater data collected from non-impacted areas of SEDA.

ESI and RI Data

Review of SEAD-17 data presented in the RI Report indicated that one or more concentrations measured for four metals (i.e., iron, lead, sodium, and thallium) in 12 unfiltered groundwater samples exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 16 instances where groundwater concentrations exceeded the NYS Class GA or EPA MCL standards, 10 were associated with samples collected with a peristaltic pump (ESI sampling event) while the remaining six were found in samples collected using low-flow sampling with a bladder pump. As was indicated above for SEAD-16, sample turbidities recorded during the RI sampling events were lower than those recorded during the ESI sampling event, and thus the analytical results from the RI samples are believed to be more representative of the water quality present at SEAD-17. Examination of the RI groundwater data indicates

that only three metals (iron, sodium, and thallium) were detected at concentrations above NYS Class GA or EPA MCL standards in effect at the time of analysis. Of these detections, iron was detected at an elevated concentration in one well (MW17-1 at a concentration of 572 J μ g/L); sodium was detected in two wells (MW17-3, at a maximum concentration of 30,100 μ g/L, and at MW17-4); and thallium was detected in two wells (MW17-1 at a maximum concentration of 7.1 μ g/L, and at MW17-5).

2.5 Remedial Action Summary

The selected remedy for SEAD-16 and SEAD-17 required the following:

- Excavation of soil impacted with metals and PAHs at concentrations greater than the site-specific cleanup standards;
- Stabilization of excavated soil exceeding the toxicity characteristic leaching procedure;
- Disposal of the material in an off-site landfill;
- Backfilling the excavated areas with clean backfill;
- Performing groundwater monitoring for select metals until groundwater concentrations do not exceed the applicable NYS Class GA or EPA MCL standards;
- Establishing and maintaining LUCs to prevent access to or use of groundwater and to prevent residential use of the land until cleanup standards are met; and
- Performing a review of the selected remedy every five years to evaluate if the remedy remains protective of the public health and the environment in accordance with Section 121(c) of the Comprehensive Environmental Remediation and Cleanup Liability Act (CERCLA).

The excavation of the impacted soil at SEAD-16 and SEAD-17 began on July 9, 2007 and was completed on August 2, 2007. Approximately 1,862 cy of impacted soil was removed from SEAD-16 and approximately 2,565 cy of impacted soil was removed from SEAD-17. The limit of the excavations performed at SEAD-16 is shown on **Figure 3** and for SEAD-17 on **Figure 4**.

Soil was excavated from both SEAD-16 and SEAD-17 until confirmatory soil samples collected from the sidewalls (when appropriate), the excavation floor, and the perimeter yielded analytical results below site-specific cleanup standards. The depth of excavation completed at SEAD-16 varied from approximately 1 to 3 feet below ground surface (bgs) and the excavation depth at SEAD-17 varied from approximately 1 to 2 feet bgs. The impacted soil from SEAD-16 and SEAD-17 was transported off-site and was disposed as non-hazardous material at the Ontario County Landfill in Flint, New York.

Deeper excavations at SEAD-16 and SEAD-17, including excavation areas surrounding the railroad tracks, were backfilled with clean bank-run gravel. SEAD-16 and SEAD-17 were graded to promote positive drainage. The areas at SEAD-17 that were vegetated prior to the RA were seeded to restore the vegetation. SEAD-16 was not seeded since it was not previously vegetated.

3.0 LONG TERM MONITORING RESULTS

3.1 Year 7 LTM Event

The Year 7 post-RA LTM event was conducted at SEAD-16 and SEAD-17 from December 20, 2014 through December 21, 2014. Filtered and unfiltered groundwater samples were collected from six monitoring wells (MW16-1, MW16-2, MW16-4, MW16-5, MW16-6, and MW16-7) located at SEAD-16 and from five monitoring wells (MW17-1, MW17-2, MW17-3, MW17-4, and MW17-5) located at SEAD-17. This is the fifth sampling event that includes the collection of filtered and unfiltered samples. Field forms completed for the Year 7 sampling event are included in **Appendix C**. Groundwater data results for each LTM event are presented in **Appendix D**, and the laboratory analytical report for Year 7 is included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**; there were no non-compliance issues reported.

3.1.1 Year 7 Groundwater Elevations for SEAD-16 and SEAD-17

Prior to the collection of groundwater samples from each of the monitoring wells, groundwater elevation measurements were collected at each of the wells to be sampled. Groundwater elevation data for the Year 7 LTM event and historic data from past events are presented in **Table 1** and **Table 2** for SEAD-16 and SEAD-17, respectively. Groundwater elevations were measured on December 15, 2014 at SEAD-16 and SEAD-17.

Groundwater elevation data collected during previous investigations indicate that groundwater generally flows to the southwest at SEAD-16; however, historical groundwater elevation data also indicate that localized variation in groundwater flow direction may be due to higher groundwater elevations observed to the northeast and southwest of the former Building S-311. During the most recent (Year 7) LTM event, and similar with Years 4, 5, and 6 LTM groundwater flow observations at SEAD-16, groundwater elevation data suggest that there is a groundwater low in the vicinity of the former Building S-311 location. The higher groundwater elevations to the northeast and southwest of the apparent groundwater low in the vicinity of Building S-311 result in two apparent local groundwater flow directions (to the southwest and northeast, respectively) (Figure 5).

Based on the most recent elevation data (December 2014), groundwater at SEAD-17 appears to flow generally to the west-southwest, which is consistent with historical groundwater flow observations at SEAD-17 (Figure 5).

3.1.2 Year 7 LTM Sample Collection

Samples for the Year 7 LTM event were collected using low-flow sampling techniques. A peristaltic pump was used in place of a bladder pump to collect the groundwater samples during this event due to winter weather conditions, including standing air temperatures below 32 degrees Fahrenheit (0 degrees Celsius). A peristaltic pump is recommended for freezing conditions since the bladder pump recharge cycle sequence allows water to freeze in the exposed portion of the sample tubing, which may inhibit sample collection efforts due to ice plugs forming in the tubing.

Sample collection, handling and custody, holding times, and field parameter collection procedures were conducted in accordance with the *Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity* (SAP) (Parsons, 2006c). Samples collected from the six SEAD-16 wells and the five SEAD-17 wells were submitted to TestAmerica (Savannah, GA) for the following analyses:

- Total and dissolved Target Analyte List (TAL) metals, exclusive of mercury, by USEPA SW846 Method 6020; and
- Total and dissolved mercury by USEPA SW846 7470A.

The TestAmerica Savannah, GA laboratory is certified by the Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) and the NELAC National Environmental Laboratory Accreditation Program (NELAP) for the above analyses/analytical methods for both potable and non-potable water.

Quality control (QC) samples, including one duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair, were collected at MW16-7. In the field, pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), conductivity, temperature, and turbidity data were collected from each well during the purging cycle.

3.1.3 Year 7 LTM Sample Filtering

As documented in previous reports, there was the concern that elevated metal concentrations in SEAD-16 and SEAD-17 wells may be associated with higher groundwater turbidity values. With this in mind, both unfiltered and filtered samples were collected for the Year 3 through 7 LTM events: after the purging was complete, a sample was collected directly from the well as an unfiltered sample and then another sample was collected and filtered through a 0.45-micron membrane filter in the field and submitted as the filtered sample.

For contaminants that may be biased by the presence of turbidity, turbidity levels that stabilize below 10 Nephelometric Turbidity Units (NTUs) are considered acceptable for sampling without filtration (EPA, 2002 and 2013). Low turbidity values (< 5 NTU) have been consistently observed in past rounds and during the Year 7 LTM event. Samples collected from the wells during the Year 7 monitoring event had turbidity levels less than or equal to 3.55 NTU (MW16-6); all other samples were less than 1.95 NTU (**Appendix C**). Based on the low turbidity values, and the similarity in the results between the filtered and unfiltered concentrations, especially among the analytes which exceed their screening criteria (e.g., antimony, sodium), the LTM data suggests that particulates present in the groundwater samples do not appear to be significantly contributing to the measured concentrations. Complete data (filtered and unfiltered) results are available in **Appendix D**. In the discussion below, for the sake of simplicity, unless specified, only the total (unfiltered) results will be discussed.

3.1.4 Year 7 Groundwater Results for SEAD-16

A summary of metals detected in groundwater during the Year 7 LTM event for SEAD-16 is presented in **Table 3A**. Groundwater data results for each LTM event are presented in **Appendix D** and the laboratory analytical report for Year 7 is included as **Appendix E**. A discussion of data validation results is

presented in **Appendix F**; there were no non-compliance issues reported. Data validation utilized the EPA Region 2 Standard Operating Procedures (SOPs) revised in March 2013.

Within SEAD-16, total concentrations of antimony and sodium were detected above applicable NYS Class GA standards; the total concentration of iron and the sum of iron and manganese was detected above their applicable NYS Class GA standards. In general, the concentrations from total sample results versus dissolved sample results were comparable. Two exceptions to this were the exceedances of iron and the sum of iron and manganese in the sample from well MW16-5 (**Table 3A**). In these cases, the total and dissolved results were approximately equal to their applicable screening levels; however, the dissolved results were uncharacteristically higher than the total results and exceeded their screening criteria.

Antimony (total) exceeded the NYS Class GA standard of 3 μ g/L in three wells (MW16-2, MW16-4, and MW16-7). The highest concentration of antimony (total) was found at well MW16-7 with a concentration of 15 μ g/L (**Table 3A**). Antimony (total) exceeded the Class GA standard in two other wells (MW16-2 and MW16-4); however, the concentrations were estimated ("J" qualifier) and approximately equal to the GA standard. Antimony was not detected in the other three wells.

Iron (total) did not exceed the NYS Class GA standard (300 μ g/L); however, iron (dissolved) exceeded the NYS Class GA standard from one well (MW16-5) at a concentration of 360 J μ g/L. The concentration (520 J μ g/L) of the sum of iron and manganese (dissolved) in well MW16-5 also exceeded the combined NYS Class GA standard of 500 μ g/L with the primary contributing metal being iron (dissolved) (360 J μ g/L). Although manganese was detected in the groundwater samples collected from the SEAD-16 wells, it was not detected at concentrations above its NYS Class GA standard (300 μ g/L) during the Year 7 LTM event.

Sodium (total) was detected at concentrations above the NYS Class GA standard (20,000 μ g/L) in wells MW16-1, MW16-4, and MW16-7. The highest concentration was detected in well MW16-4 (300,000 μ g/L). Sodium (total) exceedances were also found in both well MW16-1 (63,000 μ g/L) and in well MW16-7 sample and duplicate (29,0000 μ g/L and 33,000 μ g/L, respectively).

In summary, concentrations (total) of two select metals (antimony and sodium) continue to be detected in the groundwater at SEAD-16 at levels that exceed NYS Class GA standards. Iron (dissolved) exceeded its NYS Class GA standard in one well.

3.1.5 Year 7 Groundwater Results for SEAD-17

A summary of metals detected in the Year 7 groundwater samples event for SEAD-17 is presented in **Table 3B**. Groundwater analytical results for each LTM event are presented in **Appendix D** and the laboratory analytical report for Year 7 is included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**; there were no non-compliance issues reported. Data validation utilized the EPA Region 2 SOPs revised in March 2013.

Antimony (total) was detected at a concentration (3.3 J μ g/L) above its NYS Class GA standard (3 μ g/L) in one well (MW17-2) at SEAD-17. In general, dissolved concentrations versus total concentrations were

comparable. No other metals (total or dissolved) exceeded applicable groundwater standards in Year 7 at SEAD-17 (**Table 3B**).

3.1.6 LTM Groundwater Data Trends

An examination of the data trends from the Year 1 to 7 LTM events is provided for SEAD-16 and SEAD-17 in the following discussions. The LTM trends were examined to determine if the LTM results show: 1) an overall decreasing trend; 2) overall compliance with groundwater standards; and 3) their similarity to SEDA background values. Filtered (dissolved) samples have been collected and analyzed since the Year 3 LTM event. Since Year 3, the results from filtered (dissolved) and unfiltered (total) samples have not shown evidence of a connection between concentrations and turbidity. As such, the discussion below will focus on unfiltered (total) results as they are representative of the groundwater conditions at SEAD-16/17. Summaries of metal exceedances detected during the Year 7 groundwater monitoring event for SEAD-16 and SEAD-17 are provided in **Tables 3A** and **3B**, respectively. The data results for the Year 1 through Year 7 LTM events are included as **Appendix D**.

3.1.6.1 LTM Groundwater Trends for SEAD-16

Over the seven years since the completion of the RA at SEAD-16, 49 unfiltered (total) groundwater samples were collected from the six wells located at SEAD-16. The full LTM data set is provided in **Appendix D**. During the seven years of LTM sampling, five metals have exceeded NYS Class GA or EPA MCL standards: antimony, iron, lead, manganese, and sodium.

Groundwater at three wells (MW16-2, MW16-4 and MW16-7) frequently had detections of antimony (total) above the NYS Class GA standard of 3 μ g/L. A plot of antimony concentration versus time illustrates that at MW16-7 antimony was detected above the standard in each event at concentrations ranging from 9.58 μ g/L to 16.3 μ g/L (**Figure 6A**). The concentrations of antimony (total) detected at MW16-2 have fluctuated from just above the standard to a maximum concentration of 7.1 μ g/L; and, concentrations of antimony (total) at MW16-4 have varied from non-detect to a maximum of 6.3 μ g/L (**Figure 6A**). The maximum concentration at both MW16-2 and MW16-4 is below the SEDA average background concentration of 8.2 μ g/L. Examination of **Figure 6A** illustrates that the elevated concentrations of antimony above background and above the standard are isolated to MW16-7.

Lead (total) is not a persistent COC in any of the wells at SEAD-16, as shown in **Figure 6B**. Lead (total) has exceeded the EPA MCL twice during seven years of post-RA monitoring at MW16-7 during the first and second LTM sampling events. Since the last exceedance at MW16-7 in 2008, lead (total) concentrations have remained below the EPA MCL for the last five events. The plot in **Figure 6B** illustrates that with the exception of the noted spike of lead concentrations in events 1 and 2, the concentrations are below the standards, and lead is not a COC.

Exceedances of the NYS Class GA standard for iron (total) were noted 13 times, predominantly in well MW16-5. The highest concentration of iron (total) detected in the groundwater at SEAD-16 was 1,300 J μ g/L at MW16-5 during the Year 5 LTM sampling event, which is less than the SEDA background value for iron of 4,476 μ g/L (**Appendix B**). In general, iron (total) concentrations have decreased below, or are

July 2015
Page 3-4
\MABOS07FS01\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 7 Dec 2014\Draft\Text\Draft Yr7 S1617
Annual Report.docx

approaching, the NYS Class GA standard. All of the concentrations are below the SEDA background value (Appendix B).

Sodium is a persistent contaminant identified in SEAD-16 wells. It has been detected in every sample collected from the site and exceeded its NYS Class GA standard in 31 of the 49 samples (sodium was analyzed in 49 samples (total), but two of the results were rejected during the 2007 data validation). Sodium concentrations detected in the groundwater are currently higher than what was found prior to the RA. The concentrations are possibly affected by the known salt pile operation that is operated by the Seneca County Highway Department (located approximately 1,000 feet upgradient to the east-northeast of SEAD-16). The location of the Seneca County Highway Department salt piles are indicated on **Figure 5**.

The trend over time in the LTM data shows that there is no evidence of an area-wide or expanding plume at SEAD-16. Antimony is a COC at one well, MW16-7; at all other wells, it is below the SEDA site-wide average background concentration, and fluctuating close to or below the NYS Class GA standard. Using the USEPA's statistical program ProUCL, version 5.0.00 (USEPA 2015), a 95% UCL was calculated for the SEAD-16 LTM data set for antimony (**Appendix G**). The value, 5.9 μ g/L, is above the NYS GA Standard, but below the SEDA background value for antimony (**Figure 6A**).

Lead is not considered a COC as all concentrations have been below the EPA MCL for the last five events. Iron is not considered a COC, as iron concentrations are common in the groundwater at Seneca, and the SEAD-16 iron groundwater concentrations are below SEDA site-wide background values. Sodium concentrations are not related to site activities and are likely a result of salt pile operations; sodium is not considered a COC.

3.1.6.2 LTM Groundwater Trends for SEAD-17

Since the completion of the RA at SEAD-17, a total of 35 unfiltered (total) groundwater samples were collected from the five wells located within SEAD-17 (**Appendix D**). During the seven years of LTM sampling, five metals have exceeded NYS Class GA or EPA MCL standards including antimony (total), iron (total), lead (total), manganese (total), and sodium (total) (**Appendix D**). Lead (total) and manganese (total) exceeded their applicable screening levels once and twice, respectively. Sodium (total) exceeded its screening criterion in three wells. Lead (total), manganese (total), and sodium (total), and sodium (total) are not persistent COCs at SEAD-17 and are therefore not discussed below.

Exceedances of the 3 μ g/L NYS Class GA standard for antimony (total) are limited to well MW17-2, as illustrated in **Figure 6A**. The maximum concentration (4.4 J μ g/L) reported for antimony (total) was detected in Year 5 from MW17-2. The concentrations of antimony (total) show a declining trend through time with detected concentrations from the last two monitoring events approximately equal to, or below, the NYS GA standard. All of the antimony concentrations detected during LTM have been below the SEDA background value for antimony (8.2 μ g/L) (**Appendix D**).

Lead (total) is not a persistent COC in any of the wells at SEAD-17, as shown in **Figure 6B**. Lead (total) exceeded the EPA MCL once during seven years of post-RA monitoring at MW17-2 during the third LTM sampling event. Since the last exceedance, lead (total) concentrations have remained below the EPA

MCL. The plot in **Figure 6B** illustrates that with the exception of the noted spike in concentration of lead in event 3, the concentrations are below the standards, and lead is not a COC.

Eight exceedances of the NYS Class GA standard for iron (total) were found in samples collected from four wells (MW17-1 with one exceedance, MW17-2 with two exceedances; MW17-3 with three exceedances; and MW17-4 with two exceedances) (**Appendix D**). The maximum concentration (25,500 J μ g/L) of iron (total) was detected in well MW17-2 during the Year 3 LTM event. Except for the maximum detected concentration, all of the concentrations of iron have been below the SEDA background (4,476 μ g/L).

Overall, post-RA LTM results indicate that groundwater quality at SEAD-17 is not impacted by historic operations conducted in this area. Many of the identified groundwater quality exceedances of sodium appeared either as random occurrences (e.g., sodium at MW17-5 in Year 3) or may be attributable to iron and manganese groundwater concentrations that are identified regionally in Seneca County and consistent with the Seneca groundwater background levels presented in **Appendix B**.

The SEAD-17 Year 7 data continues to support that the groundwater at SEAD-17 has not been impacted by metals released from the former Active Deactivation Furnace site. The most recent concentration of antimony (3.3 J μ g/L), which exceeds the NYS Class GA standard, is an estimated concentration approximately equal to the GA standard and only detected in one well. The 95% UCL for the SEAD-17 LTM data set for antimony is 1.3 μ g/L, which is below both the NYS GA Standard and the SEDA background value for antimony (**Appendix G**).

3.2 Routine Inspections of SEAD-16 and SEAD-17 Monitoring Wells

Observation of the wells at SEAD-16 and SEAD-17 during the Year 7 LTM event indicates that the wells located on the site are in acceptable condition. No obstructions were encountered in the wells at SEAD-16 and SEAD-17 during the Year 7 sampling event.

4.0 REMEDY EVALUATION

As discussed above in **Section 2.5**, approximately 4,427 cy of metal and PAH impacted soil were removed from SEAD-16 and SEAD-17 during the RA conducted in the summer of 2007. The impacted soil was removed to minimize or eliminate the migration of hazardous contaminants from soil to groundwater. Soil that exceeded the site-specific cleanup standards, as based on the confirmatory soil data, was removed from SEAD-16 and SEAD-17.

The long-term groundwater monitoring performed over seven years following the completion of the 2007 RA shows that the soil removal remedy has been effective in minimizing the migration of select metals from soil to groundwater. Pre-RA groundwater quality concerns associated with arsenic, barium, beryllium, chromium, copper, iron, lead, mercury, nickel and thallium have been eliminated, as each of these metals, with the exception of iron and lead, have not been detected in the groundwater at SEAD-16 in excess of the applicable NYS Class GA or EPA MCL standards since the RA was completed. Lead was found twice at levels in excess of the applicable EPA MCL, but these exceedances were confined to a single well (MW16-7) during the Year 1 and Year 2 post-RA LTM sampling events; lead exceedances in MW16-7 have not been detected during subsequent sampling events. While iron and manganese concentrations in excess of NYS Class GA groundwater quality standards are still present, these results appear to be partially affected by turbidity issues or are attributable to the regional groundwater quality, and are not attributable to site activities. Noted sodium exceedances found in the groundwater at SEAD16 appear to originate from the salt storage area located upgradient of SEAD-16 which is operated by the Seneca County Highway Department and are not attributable to site activities. Antimony continues to be detected at concentrations above the applicable NYS Class GA standard, but these exceedances appear to be predominantly limited to two wells (MW16-2 and MW16-7) where concentrations have remained generally consistent since the RA was completed.

The groundwater quality at SEAD-17 has improved since the completion of the RA. The few noted groundwater quality exceedances for metals other than iron and manganese appear to be limited to the initial Year 1 or Year 2 post-RA sampling events or to a sample where a turbidity impact is suspected (e.g., the sample collected from MW17-2 during the Year 3 LTM event) and where groundwater quality has improved since the exceedances were reported. Although the concentrations of iron were identified at concentrations above the applicable NYS Class GA standards and the results are greater than what has been observed historically at the site, there is not sufficient trend information to indicate that there a significant change in groundwater conditions. Iron exceedances reported for SEAD-17 are isolated and are most likely attributable to regional groundwater quality and are not attributable to site activities. Historically (Events 1, 3, 5, and 7) within SEAD-17, antimony has exceeded the NYS Class GA standard in one well (MW17-2) in both unfiltered and filtered samples. All of the exceedances have been less than 1.5 μ g/L over the NYS Class GA standard and the last two exceedances, in Events 5 and 7, the concentrations were estimated. Although antimony has limited exceedances over the NYS Class GA standard and the last two exceedances over the NYS Class GA standard standard, there is no trend in these data or evidence to suggest that these concentrations are different than background (**Appendix B**).

The remedy for SEAD-16 and SEAD-17 includes the implementation and maintenance of LUCs consisting of:

- Prevention of residential housing, elementary and secondary schools, childcare facilities and playground activities; and
- Prevention of access to or uses of the groundwater until concentrations are below the NYS Class GA Groundwater or EPA MCL standards.

As part of the LTM program, SEAD-16 and SEAD-17 were inspected to determine if the LUCs are being maintained. During the Year 7 event, it was confirmed that no residential housing, elementary and/or secondary schools, childcare facilities, or playgrounds have been constructed or established in these AOCs, and no access to or use of groundwater, beyond that which is gained by the existing monitoring well network, was evident at either SEAD-16 or SEAD-17. Access to and use of the groundwater is restricted at the AOC under the terms of the ROD and is not being used as a potable water source. A non-groundwater sourced municipal water supply is available for the Depot and includes the PID area. The groundwater access/use restriction will remain in effect at the PID and SEAD-16/17 until select metal concentrations in groundwater have been reduced to levels below applicable NYS Class GA and EPA MCL standards and until data demonstrating acceptable groundwater quality in the AOC is provided to and approved by the applicable regulatory agencies.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

- The soil excavation remedy at SEAD-16 and SEAD-17 was an effective method for controlling, and in some cases eliminating, the migration of select metals from soil to groundwater based on the evaluation of the results of the seven post-RA LTM sampling events.
- The historical results (Events 3-7) from the LTM data demonstrates that the concentrations of field filtered samples (dissolved) are similar to unfiltered (total) groundwater analytical data. The elevated concentrations of metals observed in earlier events were in some cases the result of elevated turbidity; however, turbidities have been below 10 NTU and total (unfiltered) results are representative of groundwater conditions.
- Post-remediation groundwater monitoring results indicate that there was a limited impact on the groundwater at SEAD-16/17. Iron, lead, and sodium were detected above groundwater standards in a limited number of wells; however, they currently are not considered COCs as they are below SEDA background levels and/or have not been detected above guidance values in the past several events.
- Antimony is a COC in one well, MW16-7; the concentrations at this well are not increasing. The 95% UCL values for the LTM dataset antimony results at SEAD-16 and SEAD-17 are below the background value for antimony at SEDA. Antimony is not a concern at the other wells at SEAD-16 or at SEAD-17.
- The land use and groundwater use restrictions imposed at SEAD-16 and SEAD-17 are maintained as part of both the approved RODs for SEAD 16/17 and the larger Planned Industrial/Office or Warehousing Area ("PID Area") (Parsons, 2004; 2006). There are no signs of unauthorized use or access to the AOCs.

5.2 Recommendations

Based on the current area-wide LUC prohibiting the use of groundwater within the PID Area (includes SEADs 16/17), the Army plans to conclude annual LTM at these sites because of the following:

- Groundwater use is prohibited by the area-wide LUC and an alternate potable water source is available;
- Periodic LUC inspections will continue to insure that the groundwater is not accessed;
- The 95% UCLs for antimony at SEAD-16 and SEAD-17 are below the regional/site background level for antimony;
- There is no ongoing treatment process at either site to continue monitoring for concentration reductions;
- Trends demonstrate that the remedial action performed did not adversely impact groundwater;
- The COCs concentrations are not increasing; and,

• Antimony is not migrating, as evidenced by absence of increasing antimony concentrations in other wells.

Upon acceptance of these recommendations, the wells will not be decommissioned at this time, but will be sampled during the 2021 5-year review. If the trends remain the same or conditions have improved, the wells will be decommissioned.

6.0 REFERENCES

- Army, 2006. Final Land Use Control Remedial Design for SEAD-27, 66, and 64A, Seneca Army Depot, Romulus, New York. December 2006.
- Army, 2010. Addendum 4 Addressing SEAD 1, 2, 5, 16, 17, 59, 71, 121C, and 121I, Land Use Control Remedial Design for SEAD 27, 66, and 64A, Seneca Army Depot Activity, Romulus, New York. April 2010.
- EPA, 2002. Groundwater Sampling Guidelines for Superfund and RCRA Project Managers. Groundwater Forum Issue Paper. May 2002.
- EPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007, March 2009.
- EPA, 2013. Science and Ecosystem Support Division Operating Procedure, Groundwater Sampling. SESDPROC-301-R3. March 2013.
- NYSDEC, 1998 with 2000 and 2004 Addendum. Ambient Water Quality Standard and Guidance Values and Groundwater Effluent Limitations
- Parsons, 1995. Final Expanded Site Inspection, Seven High Priority SWMUs, SEAD 4, 16, 24, 25, 26, and 45. December 1995.
- Parsons, 1999. Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17). March 1999.
- Parsons, 2004. Record of Decision. Site Requiring Institutional Controls in the Planned Industrial/Office Development or Warehousing Areas. Seneca Army Depot Activity. September 2004.
- Parsons, 2006. Record of Decision for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. March 2006.
- Parsons, 2006c. Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP).
- Parsons, 2007. Remedial Design Work Plan and Design Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. July 2007.
- Parsons, 2008. Building Cleaning and Building Demolition Completion Report, SENECA Army Depot Activity, Romulus, New York, Draft Final. November 2008.
- Parsons, 2008. Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. September 2008.
- Parsons, 2009. Final Annual Report (Year 2) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2010. Final Annual Report (Year 3) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).

July 2015
VMABOS07FS01\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 7 Dec 2014\Draft\Text\Draft Yr7 S1617
Annual Report.docx

- Parsons, 2013. Draft Annual Report (Year 4) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2014a. Final Annual Report (Year 5) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2014b. Draft Annual Report (Year 6) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).

TABLES

- Table 1
 SEAD-16 Groundwater Table Elevations Summary
- Table 2
 SEAD-17 Groundwater Table Elevations Summary
- Table 3A SEAD-16 Year 7 Filtered and Unfiltered Groundwater Analyses
- Table 3B SEAD-17 Year 7 Filtered and Unfiltered Groundwater Analyses

.

Table 1 SEAD-16 - Groundwater Table Elevations Summary Draft Annual Report - Year 6 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

	Top of PVC	April	4, 1994	August	27, 1996	December 6, 1996		
Monitoring	Elevation ⁽¹⁾		Water Table	Depth to	Water Table	Depth to	Water Table	
Well		Water	Elevation	Water	Elevation	Water	Elevation	
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 16-1	735.54	3.52	732.02	6.45	729.09	3.25	732.29	
MW 16-2	734.56	3.65	730.91	4.50	730.06	3.71	730.85	
MW 16-3	735.48	4.60	730.88	5.43	730.05	4.64	730.84	
MW 16-4	733.93	NA	NA	4.83	729.10	2.93	731.00	
MW 16-5	733.40	NA	NA	4.76	728.64	2.20	731.20	
MW 16-6	733.56	NA	NA	4.54	729.02	2.90	730.66	
MW 16-7	734.42	NA	NA	5.06	729.36	4.23	730.19	

Post-Remedial Action Groundwater Elevation Data

	Top of PVC	December 20, 2007		2008 Top of	December 9, 2008		Novembe	er 13, 2009	Decembe	r 13, 2010
Monitoring	Elevation ⁽¹⁾	Depth to	Water Table	PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table
Well	(feet)	Water	Elevation	Elevation (4, 5)	Water	Elevation (4,5)	Water	Elevation (5)	Water	Elevation (5)
	(leet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW 16-1	735.54	4.25	731.29	735.54	4.28	731.26	5.76	729.78	3.16	732.38
MW 16-2	734.56	4.20	730.36	733.48	4.20	729.28	4.35	729.13	4.08	729.40
MW 16-3	735.48	NA	NA	735.48	NA	NA	NA	NA	NA	NA
MW 16-4	733.93	3.00	730.93	733.93	3.42	730.51	3.91	730.02	2.78	731.15
MW 16-5	733.40	1.90	731.50	735.82	3.32	732.50	3.10	732.72	1.68	734.14
MW 16-6	733.56	2.66	730.90	733.56	3.47	730.09	3.68	729.88	2.53	731.03
MW 16-7	734.42	4.45	729.97	734.42	4.63	729.79	4.75	729.67	4.41	730.01

	2012 Top of	Decembe	г 10, 2012	Decembe	r 9, 2013	December	15, 2014
Monitoring	PVC	Depth to	Water Table	Depth to	Water Table		Water Table
Well	Elevation (6)	Water	Elevation (6)	Water	Elevation (6)	Depth to Water	Elevation (6)
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW 16-1	735.53	3.15	732.38	2.94	732.59	2.96	732.57
MW 16-2	734.86	4.08	730.78	4.18	730.68	3.8	731.06
MW 16-3	NA	NA	NA	NA	NA	NA	NA
MW 16-4	734.51	2.71	731.80	2.64	731.87	2.66	731.85
MW 16-5	735.36	1.63	733.73	2.26	733.10	1.64	733.72
MW 16-6	734.25	2.37	731.88	2.65	731.60	2.33	731.92
MW 16-7	734.96	4.28	730.68	4.38	730.58	4.08	730.88

(1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.

(2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation phase.

(3) Monitoring well MW16-3 was destroyed during the remedial action conducted at SEAD-16.

(4) PVC riser pipe for wells MW16-2 and MW16-5 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.

(5) MW16-2 and MW16-5 were re-surveyed in Dec 2008 and this data was used for water table elevation calculations for December 9, 2008 through December 13, 2010. MW16-2 Top of PVC elevation is 733.48 ft, and MW16-5 Top of PVC elevation is 735.82 ft.

(6) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for the December 2012 water table elevation calculation. NA = Not Available.

Table 2 SEAD-17 - Groundwater Table Elevations Summary Draft Annual Report - Year 6 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

			April	4, 1994	August	29, 1996	December 6, 1996		
Monitoring	2008 Top of	Top of PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table	
Well	PVC	Elevation (1)	Water	Elevation	Water	Elevation	Water	Elevation	
L	Elevation	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 17-1		736.30	2.80	733.50	7.64	728.66	3.01	733.29	
MW 17-2	1	733.75	3.19	730.56	7.24	726.51	3.45	730.30	
MW 17-3	732.625	732.15	2.38	729.77	7.14	725.01	2.47	729.68	
MW 17-4		734.59	3.00	731.59	7.23	727.36	3.13	731.46	
MW 17-5		733.58	NA	NA	6.92	726.66	2.65	730.93	

Post Remedial Action Groundwater Elevation Data

		December 19, 2007			December 9, 2008		November 11, 2009		December 13, 2010	
Monitoring Well	Top of PVC Elevation ⁽¹⁾ (feet)	Depuillo	Water Table Elevation (feet)	2008 Top of PVC Elevation	Depth to Water (feet)	Water Table Elevation ^(3,4) (feet)	Depth to Water (feet)	Water Table Elevation ⁽⁴⁾ (feet)	Depth to Water (feet)	Water Table Elevation ⁽⁴⁾ (feet)
MW 17-1	736.30	3.33	732.97	736.30	4.25	732.05	5.60	730.70	3.32	732.98
MW 17-2	733.75	3.31	730.44	733.75	4.07	729.68	5.27	728.48	2.2	731.55
MW 17-3	732.15	2.67	729.48	732.625	3.96	728.67	6.15	726.48	2.51	730.12
MW 17-4	734.59	3.40	731.19	734.59	4.05	730.54	5.75	728.84	3.4	731.19
MW 17-5	733.58	2.90	730.68	733.58	3.46	730.12	4.65	728.93	2.79	730.79

	2012 Top of		r 10, 2012	Decembe	r 9, 2013	December 15, 2014	
Monitoring	PVC	Depth to	Water Table	Depth to	Water Table		Water Table
Well	Elevation (5)		Elevation (5)	Water	Elevation (5)	Depth to Water	Elevation (5)
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW 17-1	736.39	3.19	733.20	3.52	732.87	3.26	733.13
MW 17-2	733.65	2.79	730.86	3.15	730.50	2.77	730.88
MW 17-3	732.05	2.4	729.65	2.73	729.32	2.38	729.67
MW 17-4	734.62	3.18	731.44	3.2	731.42	3.22	731.40
MW 17-5	734.12	2.64	731.48	2.79	731.33	2.64	731.48

Notes:

(1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.

(2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation Phase.

(3) PVC riser pipe for MW17-3 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.

(4) MW17-3 was re-surveyed in December 2008 and this data was used for water table elevation calculations for December 9, 2008 through December 13, 2010. MW17-3 Top of PVC elevation is 732.63 ft.

(5) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for December 2012 water table elevation calculation. NA = Not Available.

Table 3A SEAD-16 - Detected Compounds Filtered and Unfiltered Groundwater Analyses Draft Annual Report - Year 7 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

Area		1	SEAD-16							
Loc ID			MW16-1	MW16-1	MW16-2	MW16-2	MW16-4	MW16-4	MW16-5	MW16-5
Matrix			GW							
Sample ID			16LM20042F	16LM20042U	16LM20043F	16LM20043U	16LM20044F	16LM20044U	16LM20045F	16LM20045U
Sample Date			12/21/2014	12/21/2014	12/21/2014	12/21/2014	12/21/2014	12/21/2014	12/20/2014	12/20/2014
QC Type			SA							
Study ID			LTM							
Sample Round		- 1	7	7	7	7	7	7	7	7
Filtered			Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
		Criteria								
Parameter	Unit	Level	Value Qual							
Aluminum	UG/L		23 U	50 U	23 U	50 U	23 U	50 U	23 U	53 J
Antimony	UG/L	3	2.3 U	2 U	4.8 J	4.8 J	3.3 J	3.2 J	2.3 U	2 U
Arsenic	UG/L	10	1.3 U	1.8 J	1.3 J					
Barium	UG/L	1,000	99	94	72	68	170	160	49 J	40 J
Cadmium	UG/L	5	0.095 U	0.13 U	0.095 U	0.13 U	0.11 J	0.13 U	0.095 U	0.13 U
Calcium	UG/L		160,000	150,000	110,000	100,000	220,000	210,000	110,000	92,000
Cobalt	UG/L		0.15 U	0.12 U	0.15 U	0.12 U	1.1	1.1	0.15 U	0.12 U
Copper	UG/L	200	1.3 J	1.9 J	3.3 J	4.2 J	4.3 J	5.8	1.1 U	3.1 J
Iron	UG/L	300	33 U	79 J	33 J	44 U	170	290	360 J	280 J
Iron and Manganese	UG/L	500	11	91 J	33 J	2 UJ	370 J	490 J	520 J	410 J
Lead	UG/L	15	0.2 U	0.5 U	0.2 U	0.87 J	0.27 J	1.5	0.2 U	0.5 U
Magnesium	UG/L		25,000	24,000	12,000	11,000	33,000	32,000	11,000	9,000
Manganese	UG/L	300	11 J	12 J	1 UJ	2 UJ	200 J	200 J	160 J	130 J
Nickel	UG/L	100	2 J	2 U	2.2 J	2.3 J	4 J	3.5 J	2.1 J	2.3 J
Potassium	UG/L		950	890 J	1,500	1,400	2,000	1,900	3,500 J	2,800 J
Sodium	UG/L	20,000	63,000	63,000	11,000	9,900	300,000	300,000	1,900	1,600
Zinc	UG/L		8.3 U	8.4 U	13 J	12 J	14 J	12 J	8.3 U	8.4 U

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micron filter.

4. A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected

J = the reported value is an estimated cocentration

SA = Sample DU = Duplicate Sample

Table 3ASEAD-16 - Detected CompoundsFiltered and Unfiltered Groundwater AnalysesDraft Annual Report - Year 7 for SEAD-16 and SEAD-17Seneca Army Depot Activity

Area			SEAD-16	SEAD-16	SEAD-16	SEAD-16	SEAD-16	SEAD-16
Loc ID			MW16-6	MW16-6	MW16-7	MW16-7	MW16-7	MW16-7
Matrix			GW	GW	GW	GW	GW	GW
Sample ID			16LM20046F	16LM20046U	16LM20047F	16LM20047U	16LM20048F	16LM20048U
Sample Date			12/21/2014	12/21/2014	12/20/2014	12/20/2014	12/20/2014	12/20/2014
QC Type			SA	SA	SA	SA	DU	DU
Study ID			LTM	LTM	LTM	LTM	LTM	LTM
Sample Round			7	7	7	7	7	7
Filtered			Dissolved	Total	Dissolved	Total	Dissolved	Total
		Criteria						
Parameter	Unit	Level	Value Qual					
Aluminum	UG/L		23 U	140	29 J	50 U	23 U	50 U
Antimony	UG/L	3	2.3 U	2 U	16	15	15	14
Arsenic	UG/L	10	1.3 U					
Barium	UG/L	1,000	58	58	110	95	110	100
Cadmium	UG/L	5	0.095 U	0.13 U	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L		83,000	83,000	110,000	100,000	110,000	110,000
Cobalt	UG/L		0.15 U	0.12 U	0.25 J	0.12 U	0.15 U	0.12 U
Copper	UG/L	200	2.3 J	2.8 J	3.2 J	3.6 J	3.3 J	3.8 J
Iron	UG/L	300	57 J	140	52 J	44 U	33 U	44 U
Iron and Manganese	UG/L	500	59 J	148 J	28 J	23 J	38 J	33 J
Lead	UG/L	15	0.2 U	0.5 U	1.8	4.2	1.8	4.1
Magnesium	UG/L		8,300	8,500	23,000	22,000	23,000	21,000
Manganese	UG/L	300	1.8 J	8.4 J	28 J	23 J	38 J	33 J
Nickel	UG/L	100	2.2 J	2 U	3.2 J	2.4 J	2 J	2 U
Potassium	UG/L	1	2,100	2,000	3,700 J	3,500 J	4,600 J	3,900 J
Sodium	UG/L	20,000	8,500	8,300	30,000	29,000	36,000	33,000
Zinc	UG/L		8.3 U	8.4 U	8.3 U	8.4 U	8.7 J	8.4 U

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micron filter.

4. A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected

J = the reported value is an estimated cocentration

SA = Sample DU = Duplicate Sample

MA

Table 3B SEAD-17 - Detected Compounds Filtered and Unfiltered Groundwater Analyses Draft Annual Report - Year 7 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

Area			SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17
Loc ID			MW17-1	MW17-1	MW17-2	MW17-2	MW17-3	MW17-3
Matrix			GW	GW	GW	GW	GW	GW
Sample 1D			17LM20030F	17LM20030U	17LM20031F	17LM20031U	17LM20032F	17LM20032U
Sample Date			12/20/2014	12/20/2014	12/20/2014	12/20/2014	12/20/2014	12/20/2014
QC Type			SA	SA	SA	SA	SA	SA
Study 1D			LTM	LTM	LTM	LTM	LTM	LTM
Sample Round			7	7	7	7	7	7
Filtered			Dissolved	Total	Dissolved	Total	Dissolved	Total
		Criteria						
Parameter	Unit	Level	Value Qual					
Inorganics								
Aluminum	UG/L		23 U	50 U	23 U	50 U	23 U	180
Antimony	UG/L	3	2.3 U	2 U	3.2 J	3.3 J	2.3 U	2 U
Barium	UG/L	1,000	44	41	63	57	41	38
Cadmium	UG/L	5	0.095 U	0.13 U	0.12 J	0.14 J	0.095 U	0.13 U
Calcium	UG/L		81,000	77,000	130,000	120,000	73,000	69,000
Cobalt	UG/L		0.19 J	0.16 J	0.15 U	0.13 J	0.15 U	0.12 J
Copper	UG/L	200	3.5 J	3.6 J	6.4	6.3	13	15
Iron	UG/L	300	190	79 J	33 U	46 J	33 U	160
Iron and Manganese	UG/L	500	200	88 J	2 J	50 J	2.6 J	162 J
Lead	UG/L	15	0.23 J	0.5 U	0.2 U	0.5 U	0.2 U	1.1 J
Magnesium	UG/L		14,000	13,000	13,000	11,000	5,800	5,600
Manganese	UG/L	300	9.6	8.7	2 J	4.1 J	5.1	6.1
Nickel	UG/L	100	2.5 J	2 U	2 U	2.2 J	2.6 J	2 J
Potassium	UG/L		280 J	330 U	1,600	1,600	1,400	1,500
Sodium	UG/L	20,000	3,700	3,500	8,800	7,800	1,900	1,900
Zinc	UG/L		12 J	9 J	28	40	42	44

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micron filter.

4. A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected

J = the reported value is an estimated cocentration

J+ = result is an estimated quantity, biased high

SA = Sample

DU = Duplicate Sample

Table 3BSEAD-17 - Detected CompoundsFiltered and Unfiltered Groundwater AnalysesDraft Annual Report - Year 7 for SEAD-16 and SEAD-17Seneca Army Depot Activity

Area			SEAD-17	SEAD-17	SEAD-17	SEAD-17
Loc ID			MW17-4	MW17-4	MW17-5	MW17-5
Matrix			GW	GW	GW	GW
Sample ID			17LM20033F	17LM20033U	17LM20034F	17LM20034U
Sample Date			12/20/2014	12/20/2014	12/20/2014	12/20/2014
QC Type			SA	SA	SA	SA
Study ID			LTM	LTM	LTM	LTM
Sample Round			7	7	7	7
Filtered			Dissolved	Total	Dissolved	Total
		Criteria				
Parameter	Unit	Level	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics						
Aluminum	UG/L		23 U	50 U	23 U	50 U
Antimony	UG/L	3	2.3 U	2 U	2.3 U	2 U
Barium	UG/L	1,000	27	27	83	92
Cadmium	UG/L	5	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L		80,000	75,000	91,000	100,000
Cobalt	UG/L		0.31 J	0.24 J	0.15 U	0.12 U
Copper	UG/L	200	2.3 J	2.8 J	1.5 J B	2.6 J
Iron	UG/L	300	120	130	33 U	55 J
Iron and Manganese	UG/L	500	260	250	33 U	55 J
Lead	UG/L	15	0.2 U	0.5 U	0.2 U	0.5 U
Magnesium	UG/L		12,000	11,000	14,000	15,000
Manganese	UG/L	300	140	120	1 U	2 U
Nickel	UG/L	100	3 J	2 J	2.8 J	2 U
Potassium	UG/L		480 J	420 J	810	860 J
Sodium	UG/L	20,000	7,700	7,300	4,900	4,900
Zinc	UG/L		8.3 U	8.4 U	8.3 U	8.4 U

 The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

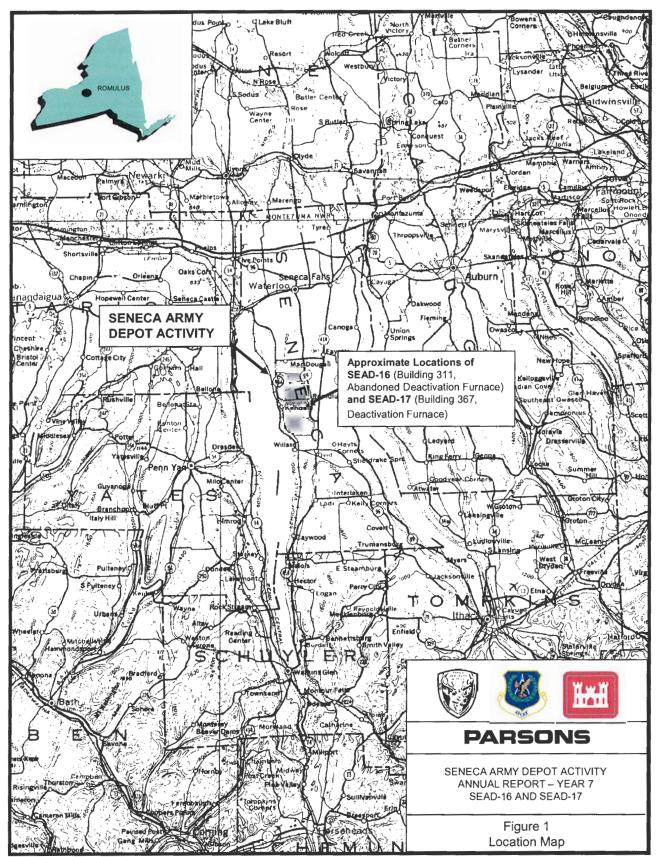
2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micron filter.

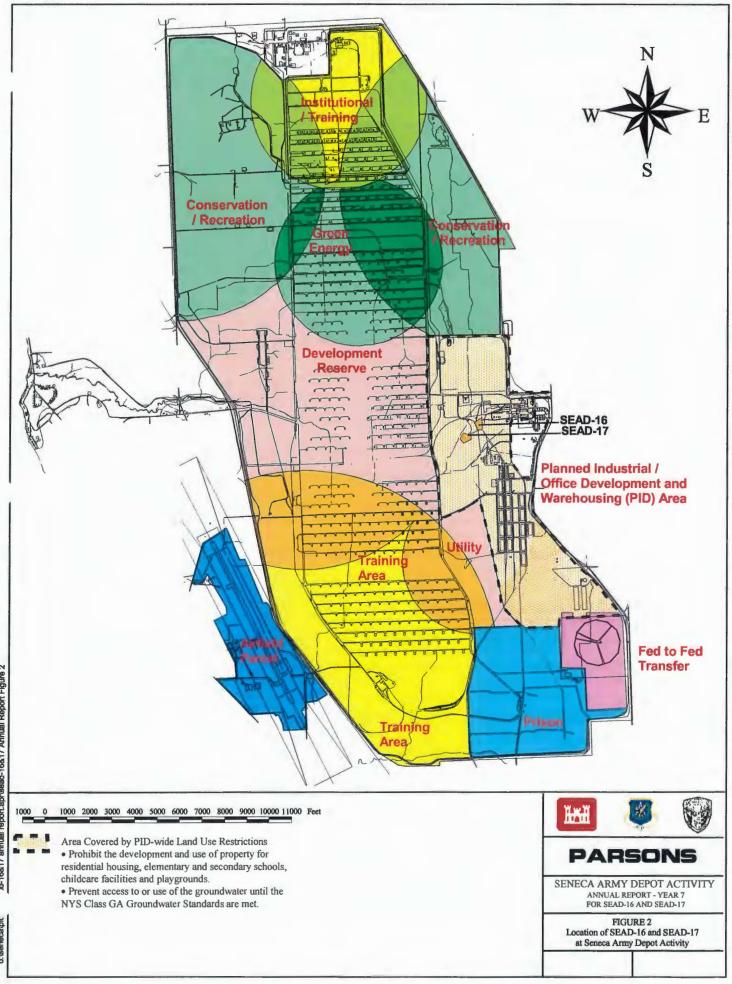
4. A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected

J = the reported value is an estimated cocentration


J+ = result is an estimated quantity, biased high

SA = Sample


DU = Duplicate Sample

FIGURES

- Figure 1 Location Map
- Figure 2 Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
- Figure 3 SEAD-16 Site Plan
- Figure 4 SEAD-17 Site Plan
- Figure 5 SEAD-16 and SEAD-17 Groundwater Flow Trend
- Figure 6A Concentration of Antimony Over Time at MW16-2, MW16-4, MW16-7 and MW17-2
- Figure 6B Concentration of Lead Over Time at MW16-2, MW16-4, MW16-7 and MW17-2

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTMAnnual Report - Yr 7 Dec 2014\Draft\Figures\Figure 1 Loc Map.ppt

xd-16&17 annual report.apr/sead-16&17 Annual Report Figure 2

ſ

o:\seneca\pit

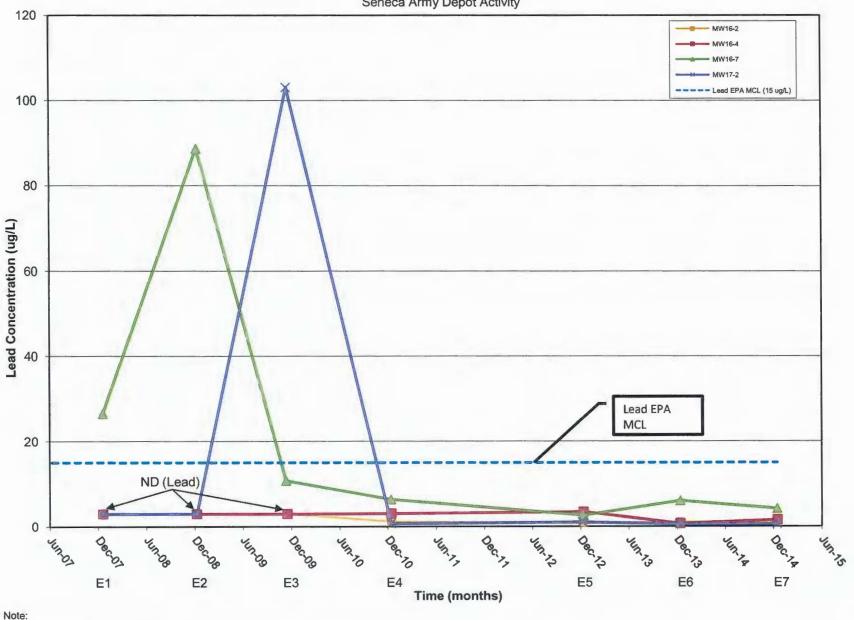


Figure 6B Concentration of Lead Over Time at MW16-2, MW16-4, MW16-7 and MW17-2 SEAD 16/17 Annual Report, Year 7 Seneca Army Depot Activity

APPENDICES

- Appendix A Pre-Remedial Action Monitoring Data
- Appendix B SEDA Background Groundwater Data Summary
- Appendix C Field Forms Year 7 LTM Groundwater Sampling Activities
- Appendix D Post-Remedial Action Monitoring Results (Years 1 through 7)
- Appendix E Laboratory Analytical Report
- Appendix F Data Validation
- Appendix G ProUCL Output Sheets

APPENDIX A

PRE-REMEDIAL ACTION MONITORING DATA

.

APPENDIX C

FIELD FORMS - YEAR 7 LTM GROUNDWATER SAMPLING ACTIVITIES

Dr Ineric Site-Wide Sampling and Analysis Plan for

5 Army Depot Activity

Co. _.t DACA87-02-D-0005 / Delivery Order 0013

			(GROUN	IDWA7	TER E	LEVAT	TON R	EPORT
PARS	DNS			CLIENT:	PARSon	1j			DATE: 12/15/14
PROJECT: LOCATION:	SEAD 1 SEVELA		Difot, R	omeuss a	VY		-	F	NSPECTOR: TIBGANGER + 5. DILLMAN
MONITORING	G EQUIPMENT: DECTECTOR	BGD	TIME	REMARKS	HCANDA	PPCA T		and the second s	COMMENTS: Outliast, MID Jos 2-7" Show mest smacer
WELL	TIME	DE	PTH TO BOT I	CORRECTED WATER LEVEL	MEASURED	INSTALLED	PRODUCT SPEC. GRAV.	(Lock?,	WELL STATUS / COMMENTS Well #?, Surface Disturbance?, Riser snarked?, Condition of: riser, concrete, protective casing, etc.)
16-EI	1455	2.96	7.99					on will	
16-2	1440	3.80	5.86					PUL LIFT	to your to ormic Asing, which
16 - 7	1453	2.66	7.05					8 canco	
16-5	1443	1.64	5.07					Lunen	which proven
16-6	1450	2.33	6.97					windo (ic.
16-7	1447	4,08	6.78					iones . 3	07755
17-1	1510	3.26	10 20					PUC TUC L.	and, isono to o the come
17-2	1524	2.71	7.90					Louis . C	De
17-3	1519	2.38	7.47					ou course	to
17-4	1516	3.22	42.41					Lunco.	PUC HEAVED TUD LOUG. HAR DTO DOW CASING.
17-5	1513	2.64	10,13					Lockes.	
2									
	1					_			

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

3.26 10.20

Section No. Appendix C Revision No. 0 Date: 6/15/2005 Page C-23

S. CE
 Page C-23
 P:\PIT\Projects\Huntsville HTW\QAPP\SAP\Draft\Appendices\APP C - Field Forms\App C5-17.XLS GW ELEVATION

7.9

	CE MONITORING
WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGE: REL. WIND (FROM) GROUND / TIME TEMP WEATHER HUMIDITY VELOCITY DIRECTION SURFACE (24 HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) CONDITI WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = XWELL XWELL XWELL	PUMP #: 2_2 \$ 7 3 S) SAMPLE ID #: /SITE / L L / 2_00 4 7 CE MONITORING
TIME TEMP WEATHER REL. WIND (FROM) GROUND / (24 HR) (APPRX) (APPRX) (APPRX) UNIT VELOCITY DIRECTION SURFACE (24 HR) (APPRX) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) CONDITI WELL VOLUME CALCULATION FACTORS 0NE WELL VOLUME (GAL)= NEWELL VOLUME (GAL)= XWEL	S) SAMPLE ID #: SITE / L L / 2.00 4 7 CE MONITORING
TIME TEMP WEATHER REL. WIND (FROM) GROUND / (24 HR) (APPRX) (APPRX) (APPRX) UNIT VELOCITY DIRECTION SURFACE (24 HR) (APPRX) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) CONDITI WELL VOLUME CALCULATION FACTORS 0NE WELL VOLUME (GAL)= NEWELL VOLUME (GAL)= XWEL	CE MONITORING
(24 HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) CONDITI well volume calculation factors	the second secon
WELL VOLUME CALCULATION FACTORS DIAMETER (INCHES): 0.25 1 2 3 4 6 ONE WELL VOLUME (GAL) = X WEL	ONS INSTRUMENT DETECTO
DIAMETER (INCHES): 0.25 1 2 3 4 6 X WEL	
LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564	(POW - STABILIZED WATER LEVEL) L DIAMETER FACTOR (GAL/FT)
DEPTH TO POINT DEPTH TO SCREEN WELL OF WELL TOP OF LENGTH DEVELOPMENT HISTORIC DATA (TOC) SCREEN (TOC) (FT) TURBIDITY	WELL WELL DEVELOPMENT DEVELOPMEN pH SPEC. COND
8.80 steel	
DATA COLLECTED AT PID READING STATIC STABILIZED WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC)	DEPTH TO PUMP PUMPING STAT INTAKE TIME C) (TOC)
4.27	
RADIATION SCREENING DATA PUMP PRIOR TO SAMPLING (cps) PUMP AFTER SAMPLING (cps)	
	OPERATIONS
TIME WATER PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND (min) LEVEL RATE (ml/min) (GALLONS) OXYGEN (mg/L) (C) (umhos)	PH (mV) (NTU)
144 427 Startfrom 155-25 6122 -> Historusz	23066 -> Hych
152-4.40 170 0.09 7,5 1.21 0	1.22 82
.57 4.38 110 0.07 7.6 1.02 -	7.92 82
1:02 4.38 10 0.07 7.6 1.04 -	1,82 83
1.07 4.40 126 0.09 7.5 1.04 -	7.77 62 19.8
1:12 4.39 125 . 0.09 7.5 1.05 -	1,75 65 15.2
1174.40 125 1 jel 0.10 715 1.05 -	7.73 72 9.86
122440125 0,08 7,5 1.05 -	7.71 84 7.64
1:27440 125 0.07 7.5 1.06	7.12 78 7.0
	1.70 81 6.0
	7.70 81 5.15
	7.69 83 4.63
	7.70 83 3.7/
1.52 4.40 125 0,06 7.5 1.07 -	7.69 85 3.29
	7.70 86 2.82
	7.69 86 1.8
0:10 Callect squale tor Total & Disse ved reletuls	
910 16LM 200424 TOAL	
010 16LM 200424 TONAL 115 16LM 20042E DISS	

	SAMPLING	PR	ESERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER			COUNT, VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE			
2	Metals 6020 & Hg 7470 fi				HDPE			
	incluis 6626 & rig 7476		11102	1 X 250 IIIL	IDIL			
┝─								
-								
7								
	HURBA 230 YSIES GI HACH TURB	1235	8					
	W INFORMATIO	n:						
					مي ^{ريو} بي وف			

SI	ENEC	A ARMY I	DEPOT ACTIVITY			F	PAR	SON	15		WE	LL #: M	N16-2			
PR	OJECT	ſ:	SEAD-16/17 1	TM	Ground	water Sa	mpling	- Round	17			DATE:	12/21/14			
LO	CATIO	N:		J	ROMUL	US, NY				-	INSPECTORS: TIBELAW PUMP #: PERI					
W	EATHE	R/ FIFLD	CONDITIONS CHEC	KLI	ST	(REC	ORD	MAJOR	CHAN	GES)		IF #: IPLE ID #:	Peru			
		T			REL.	WIND				ND / SITE	16LM20043WF					
	ME	TEMP	WEATHER		MIDITY	VELOCIT				FACE	***	MONIT				
111	HR)	(APPRX)	(APPRX) P.C.	-	GEN)	(APPR)		- 360)	FRA		INS	TRUMENT	DETECTOR			
			1.2.				-		-	esna						
GA	AETER (LLONS	INCHES): FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.36 1.38	4 7 0.654	6 1.47 5.564	ONE	WELL VO				ILIZED WATER L ACTOR (GAL/FT)				
ł	IISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		TO		SCREEN ENGTH (FT)		WELL EVELOPM TURBIDIT		DE	WELL VELOPMENT pH	WELL DEVELOPMENT SPEC. COND			
DAT	A COLLE	CTED AT	5.86 PID READING (OPENING WELL)	-	WAT	DEPTH TO STATIC TER LEVEL		:	DEPTH TO STABILIZE	D		TH TO PUMP INTAKE (TOC)	PUMPING START TIME			
					4.3								1100			
RADI	ATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)		1				UMP AFT							
******		MON	ITORING DATA	CC	DLLEC	TED	DURI	NG P			ERA	TIONS				
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLVI	ED	TEMP (C)	SPEC.	COND	pH	T	ORP (mV)	TURBIDITY (NTU)			
(00	4.32	150	(GALLONA)		51 8		YSI		0	RI		BA	HACH			
120	4,34	150			.59	1	4.3	0.29		7,58		132	-			
130	4.34	130			.74	1	4.3	0.3	(7	7.53		-3133	2 20.9			
140	4.37	120	~1.0	6	.08	1	4.3	0.4	04	7.48		124	17.8			
150	4.36	115		G	. 48		4.2	0.4	69	7.46	2	137	6.27			
200	4.36	120		5	.79	1	4.2	0.5		7.44	1	139	4.14			
205	4.36	115		5	,53		1.2	0.5	34	7.47	2	139	2.82			
210	4.31	170	~2.0	5	,76	L	1.3	0.5	46	7.4	3	139	1.51			
115	4.57	170		L	1,84	L	1.3	0.5	42	7,44		139	1.72			
220		155			.43		4.3	6.5	45	7.43	_	141	1.21			
125	4.36	150	~2.5		141		4.3	0.5		7.46		140	0.74			
	4.36	135		4.	38	4	1.3	0.5		7.43		141	0.72			
	4.36	135		_	.42		1.3	0.5	51	7.43	_	141	0.62			
	4.31	135	~3.0		.43		1.3	0.55		7.43	_	140	0.59			
145	4.35	135	~ 3.25	4	.41	L	1.3	0.5	51	7.4:	3	140	0.55			
250			奏 16LM200 4	30	ι -	TUNAL (ret	5								
255			16 CM 200 Y	3F		0152	net.						_			
				1												

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Round 7 Dec 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls 12/11/2014

1.0

20

1.7

	SAMPLING		ERVATIVES	BOTTI	LES	SAMPLE 1		AE _	CHECK	FD RA
	ORDER			COUNT/ VOLUME	TYPE	NUMBER				TE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE					
• • •			111102							
2	Motals 6020 & Hg 7470 filtered	4 deg. C	HNO2	1 x 250 mL	HDPE					
	-922-y									
							1			
					ز خر			· · ·		
							· · ·	,		
7										
							4 .			
	· •.)				•		1			
	MMENTS: (QA/QC?	21389								
	1+00.3A 192761 15185 003217 1+ACH WRB 15	613	, ,	12 I	- ?			•	5ê .	۰.
	1407.3A 192761 15185 003217 14ACH WRB 15	613	1 12					•	18. 223.1	
	1+09.3A 192761 15185 003217 1+ACH WRB 15	21399	1	· · · · ·				•	1235 (1415) 1410) 1410)	• •
	1+00.3A 192761 25185 003217 1+ACH WRB 15	21399	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	· · · · · · · · · · · · · · · · · · ·		۰.		•	1235 (1415) 1410) 1410)	• •
	1409.3A 192761 95185 003217 14ACH WRB 15	613				۰.				• • •
	1400.3A 192761 25185 003217 14ACH WRB 15	21399	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	2		۰.				• • •
	1400.3A 192761 75185 003217 14ACH WRB 15	21399	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	2		۰.				
	1400.3A 192761 75185 003217 14ACH WRB 15	21399	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()			°				
	1400.3A 192761 75185 003217 14ACH WRB 15	21399	1 (1) 10 T (10 T (10)							
	1400.3A 192761 75185 003217 14ACH WRB 15	21399								۰۰۰ ۲۰ ۲۰۹۳ ۲۹۳۶
	1400.3A 192761 75185 003217 14ACH WRB 15	21399								ی د د ایر ایر ایر ایر ایر ایر
	אית שג וא בזגן א גו ג ג ספישניו אמנא שתה וג א INFORMATION:	21399								2000 2000 2000 2000 2000 2000 2000 200
	אית א וא בזגן או גע שתש וג אינע שתש וג WINFORMATION:	21399								ین این ا این ا این این ا این این ا این این ا این این ا این این ا این این ا
	אית שג וא בזגן א גו ג ג ספישניו אמנא שתה וג א INFORMATION:	21399								د بر بر بر بر بر بر بر بر بر بر بر بر بر
	אית א וק זדר א גו גיד סס גוז ואתנא שתה וג WINFORMATION:	21399					•			、 、 、 、 、 、 、 、 、 、 、 、 、 、
	אית א וק זדרן א גו גיד סס גוז ואתנא שתה וג WINFORMATION:	21399				· · ·				د بر بر بر بر بر بر بر بر بر بر بر بر بر

Protect 12 - 1 - 20 - 10 All - 1

ы. 4

C ICII OII CIIII CIIICIILCOIIC	S-1617	GW	SAMPL	ING	RECORD
--------------------------------	--------	----	-------	-----	--------

PAGE 10FZ

SAMPLING RECORD - GROUNDWATER													
SENE	CA ARMY I	DEPOT ACTIVITY	,			PAR	SON	IS		WI	ELL #: M	W 16-	
PROJE	CT:	SEAD-16/17 1	TM	Ground	water S	ampling	- Roun	d 7			DATE: (2/21/14	
LOCAT			ROMULUS, NY							INS		Dillow	
									PUN	AP #:	22893		
WEAT	HER / FIELD	CONDITIONS CHEC	KLIS	Т	(RE	CORD					APLE ID #:		
			REL. WIND (FROM) GROUND/SITE						D / SITE	11	6LM 2	20044	
TIME	TEMP	WEATHER		IDITY		ITY DIR	ECTION		FACE		MONIT	ORING	
(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APPF	<u>(0</u>	- 360)	COND	ITIONS	INS	TRUMENT	DETECTO	
DIAMETE	WELL VOL R (INCHES):	UME CALCULATION FAC 0.25 1 2	TORS	4	6	ONE	WELL VO				ILIZED WATER L		
GALLO	NS / FOOT:	0.0026 0.041 0.163	0.367	0.654	1.47				TELLI, DIRH		ACTOR (GADET)		
LITER	(5/F001	0.010 0.151 0.617	1.389		5.564 TH TO	SCREEN		WELL		-	WELL	WELL	
1116700		OF WELL			POF	LENGTH		EVELOPME		DE	VELOPMENT	DEVELOPMEN	
1115101	UC DATA	(100)		SCREE	N (TOC)	(FT)		TURBIDIT	1		рН	SPEC. CONE	
		7,08											
DATA COL	LECTED AT	PID READING			DEPTH TO STATIC			DEPTH TO		DEP	TH TO PUMP INTAKE	PUMPING STA	
	L SITE	(OPENTNG WELL)			ER LEVEI	(TOC)		ER LEVEL			(TOC)		
				2	,82	-							
	SCREENING ATA	PUMP PRIOR TO SAMPLING (cps)						UMP AFT					
	MON	ITORING DATA	CO	LLEC	TED	DURI	NG P	URGI	NG OP	ERA	TIONS		
(min) LEVE		CUMULATIVE VOL (GALLONS)		UISSOLV		TEMP (C)		COND hos)	pH		ORP (mV)	TURBIDI (NTU)	
05 2.8	-			I-85		22		ibau		23		> Hoch	
		w r remp		0.0						-		0123	
	1 1 1 1 1 1 1 1		-		-	7.0	1.9	~~~~	7.6.		34	14.2	
115 2.9				0,0	. [7,0	1.9		1.	12	16	1 12 1	
20 2.9	3 110		4	0,0	6	6.8	2.	06	7.7	P	-17	8.3	
125 2.9	3 110		6	3,00	2	6. 5	2.	10	7.7	2	-17	6.4	
130 29	13 /10			5.0	5	6.7	2	15	7.7	2	- 22	- 4,4	
135 2.9				0,0	4	6.7	Z		٦,		- 22	3.3	
140 2,9		1 garl		0,0		6.6		23		_	-23	2.7	
145 29)		5.0		6.6		31	7.7		- 15	2.2	
150 2.9				.0-		6.6	2.	34	7.		-20	2,00	
155 2.9				0.04		6.6	2.	35	7.7	3	- 20		
200 2.7		Zgal		1.04	_	6.6		40	7.7	2	-18	1.40	
205-2,9				0,04		6.6		43	7.7	3	= 19	1.42	
210 2.				2.04		6.6	2.		7.7		-19	1.45	
215 2.9	4 140	2.4 ggt		0.04		6.6		47	7.7		- 19	1.17	
220 29			· · · · ·	0,0		6.4		45	7.7		- 12	0.8	
2252.9				0.0		6.6		44	7,7		- 13	1462	
230 25	1					6.7		44	7,		0		
240 29				0.0		67	7	44 46	7.			0.9	
-45 29		3.2 94		0 = 0		6.6	7	46	7.7		- 7	1.02	
-77 211	1 (-)	1- 141		1 - 1		0. 9	· · ·	10		11	(L)	11.04	

	SAMPLING		PRES	SERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER				COUNT: VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470		4 dcg. C	HNO2	1 x 250 mL	HDPE			
2	Metals 6020 & Hg 7470		4 deg. C	HNO2	1 x 250 mL	HDPE			
7									
CO	MMENTS: (QA/	OC?)							
	HORIBA 2								
	75185 (
	HACH TUB	3 1	23	58					
ID	W INFORMATIC	DN:							

FAGE 20FZ

		SAM	PLING F	RE	CO	RI) -	GR	ROU	ND	W	ATEI	2	
S	ENEC	A ARMY	DEPOT ACTIVITY	ł			PAF	SON	15		WE	LL #: ~	16-4	
	CATIO		SEAD-16/17	LTM Groundwater Sampling - Round 7 ROMULUS, NY							DATE: 12/21/14 INSPECTORS: Ailwon PUMP#: 22863			
W	EATHE	ER/ FIELD	CONDITIONS CHEC		T El.	(R WI	and the second second second		GROUN	GES) D / SITE	SAMPLE ID #			
	IME HR)	TEMP (APPRX)	WEATHER (APPRX)		IIDITY EN)	VELO	CITY DIF RX) ((ECTION - 360)		FACE	INST	MONIT TRUMENT	ORING DETECTOR	
	METER	(INCHES):	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163	CTORS 3 0.367	4 0.654	6 1.47	ONE	WELL VO				LIZED WATER L ACTOR (GAL/FT		
	LITERS/		0.010 0.151 0.617 DEPTH TO POINT	1.389	2.475 DEPT	5.564 TH TO	SCREEN		WELL			WELL.	WELL	
1	HISTORIC	DATA	OF WELL (TOC)	1.1. mil=		P OF N (TOC)	LENGTH (FI)		EVELOPME TURBIDIT		DEV	PH	DEVELOPMENT SPEC. COND	
DAT	WELL S	ECTED AT SITE	PID READING (OPENING WELL)			DEPTH STATI	C EL (TOC)		DEPTH TO STABILIZE ER LEVEL	D		TH TO PUMP INTAKE (TOC)	PUMPING START TIME	
RAD	ATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)		2	2.82		1	PL'MP AFTI AMPLING (ER cps)				
			ITORING DATA		LLEC				URGI	NG OP	ERA	TIONS		
TIME (min)	WATER LEVEL	PUMPING RATE (mVmin)	CUMULATIVE VOL (GALLONS)		VGEN (#		TEMP (C)		COND ahos)	pH		ORP (mV)	TURBIDITY (NTU)	
1250	294	125		0	163	3	6.6	2	.45	7.7	7	-1	1.20	
1255	2.94	125			.03		6,6		43	7,7	7	-3	1.00	
2	2.94	125	3.6	0 150	0 -	3	6.6		13 (ve)	7.7	7	-3	0.96	
Col	4 ct	Janp	e 1305	100	F	CTU	3.0	1570	104	met	215			
_			16.64200		u	it	1	05	-		-			
			16LM 200	140	1-	óŤ	13	10						
				-		-					+			
											1			
				-									-	
	-			-	-						_			
				-					-					

	SAMPLING		PRES	SERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
L	ORDER				COUNT VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470		4 deg. C	HNO2	1 x 250 mL	HDPE			
	Mctals 6020 & Hg 7470 f		4 deg. C	HNO2	1 x 250 mL	HDPE			
7									
	OMMENTS: (QA/O	QC?)							
D	W INFORMATIO	N:							

SENEC	A ARMY D	EPOT ACTIVITY	/	PAF	SONS		WELL #: MI	2110-5	
PROJEC	Г:	SEAD-16/17 I	.TM Ground	water Samplin	g - Round 7			2/20/14	
LOCATIO	N:		ROMUI	US, NY		- 1	NSPECTORS:	Dillman	
WEATH	D / FIELD (CONDITIONS CHEC	TVI IST	(PECOPD	MAJOR CHAN		PUMP #: 77 SAMPLE ID #:	893	
WEATH		CONDITIONS CHEC	REL.			ND / SITE	16LMZOUT	15 U/F	
TIME	TEMP	WEATHER	HUMIDITY			FACE	MONITO	ORING	
(24 HR)	(APPRX)	(APPRX)	(GEN)	(APPRX) (- 360) COND	ITIONS I	INSTRUMENT	DETECTOR	
DIAMETER		ME CALCULATION FA	CTORS 3 4	6 ONI			TABILIZED WATER LI TER FACTOR (GAL/FT)		
GALLONS LITERS/	/ FOOT:	0.0026 0.041 0.163 0.010 0.151 0.617	0.367 0.654				,16 = 0,34		
LITERS		DEPTH TO POINT	DEP	TH TO SCREEN	WELL.		WELL	WELL	
HISTORIC	DATA	OF WELL (TOC)		P OF LENGTH N (TOC) (FT)	DEVELOPM TURBIDIT		DEVELOPMENT pH	DEVELOPMENT SPEC. COND	
		5.05							
DATA COLL	ECTED AT	PID READING		DEPTH TO STATIC	DEPTH TO STABILIZI		DEPTH TO PUMP INTAKE	PUMPING START TIME	
WELL		(OPENING WELL)		ER LEVEL (TOC)	WATER LEVEL		(TOC)		
RADIATION S	CREENING	PUMP PRIOR TO	6	.64	PUMP AFT	ER			
DAT		SAMPLING (cps)	l		SAMPLING	(cps)			
TIME WATER	PUMPING	TORING DATA	COLLEC DISSOLV		SPEC. COND	NG OPE	ORP	TURBIDITY	
(min) LEVEL	RATE (ml/min)	(GALLONS)	OXYGEN (I	ng/L) (C)	(umhes)	pH	(mV)	(NTU) NACH 123	
2:53 2.59			455.85	6122	Huribe-US	C ZSCI		141017 125	
2:55 5	fort 1.	-mp					1.3		
3:08 3.38	118		3.90			7,94			
3.42 3.42	102		3.8		0,396	8.0		3.20	
317 3.48	104		3.3		0.386	111/	-80	2.63	
325 3.54	104		2.4	1	0.382	7.94	- 97	1.31	
330 3.67	104	1991	2.2		0.383	1.99	- 103	1.03	
3:35 3:78			166		0.387			0.91	
340 3.88	106		2.0		0.394	7.93	- 121	0.77	
345 3.95		1.	11:20		0.409	7.89		0.79	
350 4.03	100		1,36		0.419	7,83		D.79	
355 429	100		120 1.4		0.426	-1,86			
900 4.20		0	1.32		0.438			1.47	
1 . per		2 - i cyat	1.3		the second se	7.83		1.19	
			4,2	1 1 5	0.473				
415 4.28			1		0.462	7.82	- 177	1.66	
415 4.28	100		1.2						
405 4.28 415 4.28 420 4.43 425 4.52	100		1-13	4.7	0,465	7.82	183	1.08	
415 4.28 420 4.43 425 4.52 430 4.58	100	251	1.13	4.7	0.465	7.82	183 - 186	1.08	
415 4.28 125 4.32 125 4.52 130 4.58 135	100	2.5.jul for inetals	1-13	4.7	0.465	7.82	183 - 186 - 188	1.08	

	SAMPLING		SERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER			COUNT: VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE			
2	Metals 6020 & Hg 7470 filtered	d 4 deg. C	HNO2	1 x 250 mL	HDPE			
							· · · · · · · · · · · · · · · · · · ·	
	the state of the state							
7								
	·					·		
CO	MMENTS: (QA/QC	<u>.</u> ?)						
	HO.2.3A 2	3046						

VS185 6122

HARLI TURIS 12350

IDW INFORMATION:

۹1 ۲

S-1617 GW SAMPLING RECORD	S-1617	GW	SAMPL	ING	RECORD
---------------------------	--------	----	-------	-----	--------

S	ENECA	ARMY	DEPOT ACTIVITY	1			PAR	SON	IS		WI	ELL #: M	W16-6
P	ROJECT	:	SEAD-16/17 1	LTM (Ground	water S	ampling	g - Roun	d 7			DATE:	12/21/14
LC	CATIO	N;		R	OMUI	LUS, NY	ł			_			T BELANG
	TATU		CONDITIONS CHE		T	(D)	CORD	MAIOR	CILAN			1P #: 1PLE ID #:	PERI
	EATHE	R/ FIELD	CONDITIONS CHEC	-	EL.	WIN	ECORD			ND / SITE		LA 200	YGU/F
т	IME	TEMP	WEATHER	HUM	IDITY	VELOC	TTY DIR			FACE		and the second se	ORING
	4 HR)	(APPRX)	1	(G	EN)	(APPI	RX) (0	- 360)		ITIONS	INS	TRUMENT	DETECTOR
082	2	28	Mosny CLOUDY	10	w	-		-		Furen			
		WELL VOI	UME CALCULATION FA	CTOPS		L	ONE	WELL VO		NON	STAR	ILIZED WATER I	EVEL
	METER (NCHES):	0.25 1 2 0.0026 0.041 0.163	3	4 0.654	6 1.47			X	WELL DIAM	ETER I	ACTOR (GAL/FT)
	LITERS/F		0.010 0.151 0.617		2.475	5.564		07-2.		.167	×		2.11901
			DEPTH TO POINT OF WELL		то	TH TO P OF	SCREEN LENGTH		WELL		DE	WELL VELOPMENT	WELL DEVELOPMENT
	HISTORIC	DATA	(TOC)		SCREE	IN (TOC)	(FT)		TURBIDIT	Y		рН	SPEC. COND
			6.87			Contract of			DEPTH TO			TH TO PUMP	PUMPING START
DA	TA COLLE WELL S		PID READING			DEPTH T STATIC	2		STABILIZE	ED	DEF	INTAKE	TIME
	WELL 5	IIE.	(OPENING WELL)		2.5	Y LEVE	L(10C)	WAI	ER LEVEL	-(102)		(TOC)	0830
RAD	IATION SO		PUMP PRIOR TO	******	12.5	1			PUMP AFT				-0
	DATA		SAMPLING (cps)						AMPLING				
TIME	WATER	MON PUMPING	CUMULATIVE VOL		LLEC DISSOLV	TED	DURI		COND	NG OF	PERA	TIONS	TURBIDITY
(min)	LEVEL	RATE (ml/min)	(GALLONS)	1	KYGEN (I		(C)	(un	nhos)	pH	-	(mV)	(NTU)
0830		-	-		SI		YSI		fo	121	-	IJA	HACH
0890	3.84	150			105		5.4		130	7.16	-	227	13.5
0900	4.41	120			,64		5.2	0.4		7.5	_	223	0.93
0905	- Ser	115			.61		5.3	0.4		7.5	-	215	5.36
0910	4.62	110	110		.56		5.3	0.4		7.52	_	214	4.10
2920	5,00	150	•	3	,87		5.5	0.4	21	7.5	2	205	3.82
1925	5:08	130		3	.67		5.6	0.4	123	7.51	1	202	2.73
0530	5,15	120		3	40		5.6	0.4	nc	7.5	2	202	2.56
0135	5.25	120			3.33		517	0.4	26	7.49	6	202	2.43
0940		120	2.0		3.35		5,7	0.4	26	7.4	9	199	2.01
0545		95			2.93		6.2	0.4	26	7.40	0	197	3.66
	5,57	110		-	3.7	C	6.7		36	7.4	8	185	2.99
	5.61	110			3.78		6.4	0.4		7.49	_	175	2.89
	5.64	120	2.5	_	3,8		6.5	0.4		7.4		173	7.79
1005	5,85	130			3.8		6.4	0.4		7.48		158	3.55
			2.75										
1015			16 LM 20046	u		WEIL	r	TIMA	1	and s			
	1		16 cm 200 46		-	FILTER		DIS		125			
1020													

	SAN	IPLING		PRES	SERVATIVES	BOTTL	ES	SAMPLE	TIME	·	CHECKED BY/
		RDER				COUNT/ VOLUME	туре	NUMBER			DATE
		•									
1	Metals 602	0 & Hg 7470		4 deg. C	HNO2	1 x 250 mL	HDPE				
2	Metals 602	0 & Hg 7470	filtered	4 deg. C	HNO2	l x 250 mL	HDPE				
	• • •										
		· \	4		L						
¥.			· · ·								
					A Part	•		the ends	197,61%		
_				- 100,1	ater						
7				 							
	• . •	4		0.27	· · · · · · · · ·	an a					
_				1							
									2		
			L			· · · ·					
	<u> </u>						2 8. N				
		TC. (OA)	CON)							
CO	MMEN'	15: (QA)	QU.								
CO	MMEN	34 1	9 27	6	Itacit	TURB 1	5613				
CO	HORI	34 1 6032	9 27	6	1+Acit	TURB 1	5613				
	HORI YSI	3A 1 6032	17	6						_	11 6 1 7 1 1 5 1 5 1
• ,	YSI	3A 1 6032	9 27 17	6		, , t					1. 6. 7 2. 6 5. 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
•,	HORI YSI	3A 6032	11	6		6 - ¹ 1 - 19	· · · ·				
•,	HORI YSI	3A 6032	11	6		6 - ¹ 1 - 19	· · · ·			· • •	
• ,	HORI YSI	34 1	۲ ک ۲ ک ۲	6		4 - 1 - 1 - 2 - 4 - 2 - 4 - 2	- 1977 - 19 20 - 19 - 19 20 - 19 21 - 19			i i	
• •	HORI YSI	34 1	ר א ר י י	6	83 19 19		· · · ·			i i	
•••••••••••••••••••••••••••••••••••••••	HOR I YSI	34 1	ר ^כ ף יר י		1000 1000 1000 1000 1000 1000 1000 100		· · · · · · · · · · · · · · · · · · ·				
•••••••••••••••••••••••••••••••••••••••	HORI YSI	34 1	ץ די רו י י		1000 1000 1000 1000 1000 1000 1000 100						
•••	Hori Ysi	34 1	ץ די רו י י		1000 1000 1000 1000 1000 1000 1000 100						
•••••••••••••••••••••••••••••••••••••••	Hori Ysi	34 1	ץ די רו י י		2000 - 200 - 20 - 2						n an
•••	Hori Ysi	34 1	ץ די רו י י		1000 1000 1000 1000 1000 1000 1000 100						
· · · · · · · · · · · · · · · · · · ·	Hori Ysi	34 1	ר ^כ ף רו י י י		2000 - 200 - 20 - 2						n an
•••	Hori Ysi	34 1	ר ^כ ף רו י י י								1. 1997 1. 199
· · · · · · · · · · · · · · · · · · ·	Hori Ysi	34 1	ר ² ף רו י י י								1. 1997 1. 199
· · · · · · · · · · · · · · · · · · ·	Hori Ysi	34 6032	ר ² ף רו י י י		2 2 3 1 2 4 7 2 4 7 7 7 7						
· · · · · · · · · · · · · · · · · · ·	Hori Ysi	34 1	רז ף רו ? ? ? ? ? ? ?								
· · · · · · · · · · · · · · · · · · ·	Hori Ysi	3A 6032	רז ף רו ? ? ? ? ? ? ?		2 2 3 1 2 4 7 2 4 7 7 7 7						
· · · · · · · · · · · · · · · · · · ·	Hori Ysi	3A 6032	רז ף רו ? ? ? ? ? ? ?					•			

S	ENEC	A ARMY I	DEPOT ACTIVITY				PAR	SON	15		WE	LL #: M	N16-7
PI	ROJEC	T:	SEAD-16/17 L	TM	Ground	water S	Sampling	- Roun	d 7		-		2/20/14
	CATIC				OMUL			,					T. BELLAK
											PUM	the second se	PERI
W	EATH	ER / FIELD	CONDITIONS CHEC		T EL.	(RI WIN	ECORD			GES) ID / SITE		M20047	MS MSD
Т	IME	ТЕМР	WEATHER		IDITY	VELOC		ECTION		FACE		MONIT	
(24	HR)	(APPRX)	(APPRX)	(G	EN)	(APPI	RX) (0	- 360)		ITIONS	INST	RUMENT	DETECTOR
143	0	27	M. CLONDAN	1.	N	-		-	Eng	W		-	
G		(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4	6 1.47 5.564	ONE	WELL VO				LIZED WATER L ACTOR (GAL/FT)	
			DEPTH TO POINT OF WELL		DEPT		SCREEN LENGTH	D	WELL EVELOPMI	ENT	DE	WELL VELOPMENT	WELL DEVELOPMENT
1	HISTORIC	DATA	(TOC)		SCREE		(FT)		TURBIDIT			pH	SPEC. COND
DAT	TA COLL	ECTED AT SITE	PID READING (OPENING WELL)	-	WAT	DEPTH T STATIC		-	DEPTH TO STABILIZE	D		TH TO PUMP INTAKE (TOC)	PUMPING START TIME
					4.5	1							1450
RAD	IATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						MPLING				
		MON	ITORING DATA	CO	LLEC	TED	DURI	NG P	URGI	NG OP	ERA	TIONS	
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLVE YGEN (m		TEMP (C)		COND ihos)	pH		ORP (mV)	TURBIDITY (NTU)
1450	4.51	-		Y		85	YJI		0	RI		PA	Hotel
500	3.71	150		4	.35		5.8	0.6	20	7.54		100	(.88
505	4.80	100		4	42		61	0.6	24	7.51		104	0.73
515	4.88	160	0.5	the second se	84		6.3	0.6	40	7.5	1	109	0.39
525	4.90	105		2	5.90		6.3	0.6	38	7.5	1	109	0.43
530	4.91	130	1.0		3.58		6.4	0.6	62	7.49		112	0.39
535	4.97	10			2,78		6.5	C.6	64	7.51		112	0.20
540	4,96	100			2.18			0.6		7.5		112	0,18
	4.56		PERI Pump TOPPE		. 86			0.6		7.53		111	0.23
1550	4.94	115	1.75		3.69		6.6	0.6		7.53	5	112	0.37
	4.95			6	.30		6.6	0.6		7.5	>	113	0.31
	4,97		2.0		.34		6.6	0.G	91	7.52		114	0.22
	4.91			С	.31		6.6	c.6	92	7.5		113	0.16
610					5.25		67	0.6		7.5		1.13	0,22
fis	4,97	110	~2.5	0	. 22		6.7			7.5	2	114	0.34
1620	4,47	(10		0	.28		6.7	0.70	53	7.53	3	114	030
					_								_
1630		16 LMZC				_	4200				-		
637			DO474 MS				m20						
637			0047U MSP		40		1420			IP .			
645		ICLM	200481	16	50	16	Lun2	0049	BF				

÷

_	SAMPLING	PRES	ERVATIVES	ВОТТ	TLES	SAMPLE	TIME	CHECKED BY
	ORDER	ļ		COUNT: VOLUMI	е түре	NUMBER		DATE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE			
ľ	tetals 6020 & Hg 7470 filtered	4 deg. C	HNO2	1 x 250 mL	HDPE			
	1934							
	A. CHE THE FASS	+ - '						
+								
+		~	+-g*- 1-1		- Seation - Seat	AL. I S	0.8 C 1	087
-+						<u> </u>		
7								
	•••			· · · · ·	2.2.			
CON	MMENTS: (QA/QC)						
	102.32 1927	6	ita	ICIA TURNS	15613	3		
	YS1 85 0032							
•								, '
			· · · ·	* , *	,			
1			• • • •	15	5 2 3-			3. 2.7
			3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5	۰. ۲.	٠.	•	و مانو ليو افر و
								21 - 12 - 11 - 12 - 1
•, •			\					
:		Ċ.,		· • •	23.		,	
.*		1.24	35.1	: 	2 18 2	a start some is	40 2114	an a
, .		• • • • •	•	- 	•	.* V.,	÷.	20 1 202
DW	INFORMATION:							<u>1 4 1. 19 19 19 19 19</u> 19.
4, 45 3 4 4				•	•			
م. ر	4 47 - 4		YGL.		• • •		•	•
		• • •	•		د . 	, P . ^P		1
							13	
_				14.14			P. 4. 4	• • · · ·
			A			100.221		
		5.						

1) 「キャック・ション」、 きょう しょうほう ひょうかい たいの 教法

	ENEC	A ARMY I	DEPOT ACTIVITY	,			PAR	SON	IS		WELL #: MA	W17-1
	ROJEC		SEAD-16/17 1		Froundw			- Round	d 7			2/20/14 TIBELANG PORI
W	EATH	ER / FIELD	CONDITIONS CHEC		Г ЕL.	(RI WIN	ECORD				SAMPLE ID #: 17 LMZO	030U/F
	IME	TEMP	WEATHER				TTY DIR			FACE		ORING
	4 HR)	(APPRX)				(APPI		- 360)			INSTRUMENT	DETECTO
11	15	27	Morry classy	L	w	5		25	TRAC			
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654	6 1.47 5.564	ONE	WELL VO			STABILIZED WATER TER FACTOR (GAL/FT	
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTH TOP SCREEN	OF	SCREEN LENGTH (FT)		WELL EVELOPME TURBIDIT		WELL DEVELOPMENT pH	WELL DEVELOPMENT SPEC. COND
DA	TA COLLE WELL S	SCTED AT	PID READING (OPENING WELL)		WATE	DEPTH 1 STATIC R LEVE	2		DEPTH TO STABILIZE ER LEVEL	D	DEPTH TO PUMP INTAKE (TOC)	PUMPING STAR TIME
		_			3.73	_						1230
RAI	DATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						UMP AFT			
			ITORING DATA	_	LLECT		DURI		URGI	NG OP	ERATIONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		YGEN (mg		TEMP (C)	SPEC.		pH	ORP (mV)	TURBIDIT (NTU)
230	3.73		-		1.51		YJI	H	-0	21	BA	HACH
240	14.20	250		1.	88		6.1	0.2	93	7.81	120	6.08
245	4.n	120		1.	78		6.1	0.2	87	7.77	114	5194
255	4.08	150		1	58		6.8	0.28	36	7.69	91	3.26
300	4.02	100	0.5	L,	69		6.8	0,2	86	7.69	CI	3.12
		100		1	62		6.9	0.2	.87	7.68	56	3.02
	4.05	100			-					1 1		12.00
305	405	105			.62		6.9	0. Z	89	7.66		2,67
305	405		1.0	1	.62		6.9			7.66	53	2,67
305 310 315	4.06	105	1.0	1	.62		6.9	0. 2	70		53 48	2,67
305 310 315 320	405 4.06 4.07	105	1.0	1	. 62 161 '61		6.9 6.9 6.9	0. Z . Z 0.Z9	70	7.66 7.65 7.64	53 48 41	2,67 2.42 2.16
305 310 315 320 325	415 4.06 4.07 4.08	105 100 100	1.0		.62		6.9 6.9 6.9 6.8	0. Z . Z 0.29 0.10	202	7.66	53 48 41 26	2,67 2.42 2.16 1.93
305	405 4.00 4.07 4.08 4.08 4.08	105 100 100 100	1.0		62 161 161 57 .59		6.9 6.9 6.9 6.8 6.8	0. 2 . 20 0.29 0.10 0.2	202	7.66 7.65 7.64 7.66	53 48 41 26 3 22	2,67 2.42 2.16
305 310 315 320 325 330	405 4.00 4.07 4.07 4.07 4.07	105 100 100 100			62 161 161 57 .59 .58		6.9 6.9 6.9 6.8	0. Z . Z 0.29 0.10	70 2 75 75 .99 23	7.66 7.65 7.64 7.66 7.6 7.59	53 48 41 26 3 22 12	2,67 2.42 2.16 1.93 1.79
305 310 315 320 325 330 1335 340	415 4.06 4.07 4.08 4.07 4.07 4.07 4.07	105 100 100 100 100			62 161 161 57 .59		6.9 6.9 6.9 6.8 6.7	0. Z . Z 0.29 0.29 0.1 0.2 0.3	70 2 73 73 73 73 79 23 23 46	7.66 7.65 7.64 7.66 7.6	53 48 41 26 3 22 12 6	2,67 2.42 2.16 1.93 1.79 1.63
305 310 315 320 325 330 335 340 345	415 4.06 4.08 4.08 4.07 4.07 4.07 4.07	105 100 100 100 100 100 100 100			.62 .61 .57 .59 .58 .58		6.9 6.9 6.9 6.9 6.8 6.7 6.5	0. 2 . 20 0.29 0.10 0.2 0.3 0.3	70 2 75 75 49 23 46 50	7.66 7.65 7.64 7.66 7.6 7.6 7.59	53 48 41 26 3 22 12	2,67 2.42 2.16 1.93 1.79 1.63 1.52
305 310 315 320 325 330 335 340 345	4.05 4.00 4.07 4.07 4.07 4.07 4.07 4.07 4.07	105 100 100 100 100 100 100 100 100 100			62 161 161 57 .59 .59 .58		6.9 6.9 6.9 6.9 6.8 6.7 6.5 6.5	0. 2 . 2 0.29 0.1 0.3 0.3 0.3	20 2 13 13 13 13 23 23 23 23 23 23 23 23 23 23 23 23 23	7.66 7.65 7.64 7.66 7.6 7.6 7.59 7.59 7.57	53 48 41 26 3 22 12 6 5 6	2,67 2.42 2.16 1.93 1.79 1.63 1.52 1.48
305 310 315 320 325 330 335 340 340 340	4.05 4.06 4.08 4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.07	105 100 100 100 100 100 100 100 100 100	1.5		.62 .61 .57 .59 .59 .58 .57 .58	4	6.9 6.9 6.9 6.9 6.8 6.5 6.5 6.5	0. 2 . 2 0.29 0.29 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1	20 2 13 13 13 13 23 23 23 23 23 23 23 23 23 23 23 23 23	7.66 7.65 7.64 7.66 7.6 7.59 7.59 7.57 7.57	53 48 41 26 3 22 12 6 5 6	2,67 2.42 2.16 1.93 1.79 1.63 1.52 1.48

	SAMPLING		PRES	SERVATIVES	BC	DTTLI	ES	SAMPLE	TIME	CHECK	ED B
_	ORDER				COUNT, VOL	UME	TYPE	NUMBER		DA	TE
1	Metals 6020 & Hg 7470		4 deg. C	HNO2	1 x 250 n	ηL	HDPE				
	Metals 6020 & Hg 7470	filtered	4 dieg. C	HNO2	1 x 250 n	л.	HDPE				
<u> </u>	E MA ' I		Tung. C	10.02					, <u>,</u>		
ie ¹	J. C. S. C M.	:									
				a share and a share a	a **	en .	·64.2	2 0 0 1 2 1	est, the		117
7_											
_									·		
_											
0	MMENTS: (QA)	002					4.				
U				Harri	710 0	15	113				
	HUZ.BA 19			Line H	10.012	13	6.2				
۰.	YS1 003			•	., .					20.2	2 * 1
									1 M.)		
1		;• :	•	•	• •					•	• •
-		5		•					,	0.1	ام و
÷			• •	SKI,				,)			
	i itali inge	۹	у., М.,	1.37			а. А.			23.94	
				107. 1971 -			• •				
· 、	1.11 1.51	•	•	•			•	١		\$_`}	
		:		<u>_{</u> = \$	(* * * * * * * * * * * * * * * * * * *		1. 1.1				. 1
1 4	V • •				24		•				
		v. 1.							(: *) * *		r.)
DŅ	V INFORMĂȚIC	DN:					3.2				5
•			2 7							, • · ·	
•	. N. 2	• •	•	5.4 F	Č.				, 1		,
			** e *	•	ć .						1997 1997 - 1997 1997 - 1997
			•		,						,
_				<i>i</i>				·			
_								يور موليو تاو			
							4.99.2	• • • • • •	1 3 12		

WELL #: MW 17-2		NS	SON	PAR			TIVITY	DEPOT AC	A ARMY I	ENEC.	S
DATE: 12/20/14		nd 7	- Round	Sampling	ndwater S	TM Groun	D-16/17 L	SEA	Г:	ROJECT	PI
NSPECTORS: - 136-ANG	-			۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	ULUS, N	ROMU			N:	CATIO	LO
PUMP #: <u>??e&1</u> SAMPLE ID #:	GFS)	R CHAN	MAIOR	FCORD	(R	KI IST	S CHEC	CONDITION	P/ FIFI D	FATHE	W
17LM 20031 U/F	D / SITE				WIN	REL.	is chiec.	Condition	K/ HELD	LAITE	
MONITORING	FACE			TTY DIR		HUMIDITY	HER	WEAT	TEMP	IME	Т
INSTRUMENT DETECTOR			- 360)		(APP)	(GEN)	(X)	(APPE	(APPRX)	HR)	
		FAUE	0	+	10	000		M.C.	27	,	101
STABILIZED WATER LEVEL) FER FACTOR (GAL/FT) J	AL) = [(POW	OLUME (GA	WELL VO	ONE	54 1.47	TORS 3 4 0.367 0.654 1.389 2.475	2 1 0.163	UME CALCUL 0.25 1 0.0026 0.04 0.010 0.15	(INCHES): / FOOT:	METER (ALLONS	G
WELL WELL DEVELOPMENT DEVELOPMENT pH SPEC. COND	5.4.4 E	WELL DEVELOPME TURBIDITY		SCREEN LENGTH (FT)	EPTH TO TOP OF REEN (TOC)	T	TO POINT WELL TOC)	OF (DATA	HISTORIC	
DEPTH TO PUMP INTAKE TIME	ED	DEPTH TO STABILIZE			DEPTH STATIO		READING		CTED AT		DA
(TOC) JU 35	(100)	TER LEVEL	WAL	L(10C)		3.4	ING WELL)	(OPEN	NIE .	WELL S	
1. 42.23		PUMP AFTE			-		PRIOR TO LING (cps)		CREENING	LATION S	RAD
CRATIONS				DUDI	CTED	COLLE		ITORING		DATA	
ORP TURBIDIT (m\') (NTU)	рн	C. COND	SPEC.	TEMP (C)	LVED	DISSOL	VE VOL	CUMULATI (GALLO	PUMPING RATE (ml/min)	WATER LEVEL	TIME (min)
1 BA HACH	on	4		Yri	6	Y 51 86		-	-	3.41	1035
144 4.43	7.60		.5	6.3	-	0.55		0	170	4.44	045
147 3.87	7.50		0.5	5.9		0.66	Sec. 1		115	4.45	050
139 2.45	7.57		0.5	6.0		0.60	5	0.7	150	4,92	00
137 1.46	7.56		0.5	6.0		0.56			140	5.25	1105
134 1.22	7.57	595		6.0		0.85		1.0	150	5.64	110
131 1102	7.58	594		6.0	-	0.67			130	5.82	115
131 0.97	7.57	596		6.1	3	0.63				5.91	
130 0.75	7.5	599	0.5	6.1	2	0.62		1.5	130	5,94	1125
							-	~ 1.75			
\$	iru	UNF	14	2003	7 cm	版17		strat			130
						Tort					10
	kres	Int	IF	2003	LM	17					135

	SAMPLING	PRESE	RVATIVES	BOTTL	ES	SAMPLE	TIME	CHECH	KED BY
	ORDER	1		COUNT VOLUME	TYPE	NUMBER		D.	ATE
	1 . T. 1								
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE				
2.	Motals:6020 & Hg 7470 filtered	4 deg. C	HNO2	1 x 250 mL	HDPE				
	1.19.21			1.000					
									_
3.	i stantnastij tik								
							1		
		1.0.14.3			1.4.		n p;		,
		Prints.	147	se set	× .		3. P. 1	•	,54 - - 2
			1						
7	<u>+</u>	-							
			_						_
							28		
-									
					112.				
	YS185 00		6 1		э ў У.,				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	÷.	10 H		1, r			11	
1	S.C. State		1947 A. 1	1 -	2 + 2			م الم الم الم الم الم الم الم الم الم ال	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.0 5.0	с. н. С. н.	5 f	a f 1		n n n	
		24.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.5	. 8			1997 - A. S.	3.11
,	* *	0.1	318.2	3.00	6.5	· .		e 11:22	· · · ·
									× .
					£ .+				, +- <u>9</u> 2
3								*	
•	1	14 s	, , K*+	• r	45 A			5.55	
							a - + 1		
m	WINFORMATION					-			
	W INFORMATION:	1 200 5014	in St	18222 (8)	AN ISP		n en en		12.
			,	Paris, Sa	a 1. 6.5 m				
D									
		13 633		1 2160 KM	r phan				- 5 - F - 1
J		19 193	10 B	12 -51 000 - ML	n pris n B B				2 8 1,
D		19 193	an the second se	13 (7:00) - 7 4 .	т роло - д р				3 6 1,

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Round 7 Dec 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls 12/11/2014

.

10 M

S-1617 GW SAMPLING RECORI	3-1617	1617 GW S	SAMPLING	RECORD
---------------------------	--------	-----------	----------	--------

S	ENEC	A ARMY I	DEPOT ACTIVITY	1		F	PAR	SON	15	-	WE	ELL #: MU	117-3
PH	ROJECT	·:	SEAD-16/17 1	TM (Groundw	ater Sa	ampling	- Round	d 7	_			2-20-14
LO	CATIO	N:		R	OMULI	US, NY				-			T. BERMIG
W	FATHE	R / FIFLD	CONDITIONS CHEC	KIIS	T	(RE	CORD	MAJOR	CHAN	(GES)		1P #: P 1PLE ID #:	Eul
	LATHL	TIELD	CONDITIONS CHEC		EL.	WINI	the second se			VD / SITE		M 2003	2 4/8
T	IME	TEMP	WEATHER	1			TY DIR			FACE		MONIT	the second s
	HR)	(APPRX)	(APPRX)	(G		(APPR O		- 360)	COND	ITIONS	INS	TRUMENT	DETECTOR
087	0	41	orchema	160	~	0		-	-1900				
G	METER (ALLONS	INCHES): FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654	6 1.47 5.564	ONE	WELL VO				LIZED WATER L ACTOR (GAL/FT)	
	IISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTI TOP SCREEN	OF	SCREEN LENGTH (FT)		WELL EVELOPM TURBIDIT		DE	WELL VELOPMENT pH	WELL DEVELOPMENT SPEC. COND
DAT	A COLLE		PID READING (OPENING WELL)			DEPTH TO STATIC R LEVEL			DEPTH TO STABILIZE ER LEVEL	ED	DEP	TH TO PUMP INTAKE (TOC)	PUMPING START TIME
					2.5	9							0845
RAD	LATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						UMP AFT				
		MON	ITORING DATA	СО	LLEC	FED	DURI	NG P	URGI	NG OP	ERA	TIONS	
TIME (min)	WATER	PUMPING RATE (mt/min)	CUMULATIVE VOL (GALLONS)		DISSOLVE XYGEN (mg		TEMP (C)		COND hes)	рН		ORP (mV)	TURBIDITY (NTU)
2845	2.59	, , ,			-YS1 8		711	Hon		Hor	18A	Hon	1tacl.
0655	3.79	155	0	1	2,94		6.9	0.34	0	7,23	3	187	2.34
900	3,48	120			3.02		6.8	0.32	10	7.30	1	191	1,68
105	3.62	140	0.5	-	3.40		6.48	0.33	14	7.38	3	188	1.73
0180	3,64	115		1	2.44		6.8	0.3	36	7.41		184	1.84
0915	3.62	95			3.45		6.5	0.3	38	7.40	1	(80	3.52
720	358	115			3.08		615	0.75	0	7.4	2	178	3.67
525	3.60	115	1.0		3.06		64	0.34	18	7.48	3	172	7.07
0570		80			3.07		6.3	0.3	19	7.40	6	173	7.12
1975		BO		-	2.87		6.7	0.34	50	7.46		169	2.01
1940	3.48	75			2.78		6.3	0.34	9	7,76		168	2.04
7470	3.78	75			2.80		G.1	0.3	50	7.4	7	164	1.80
	3.49	75	~ 115		2.78		G.1	0.35		7.4		164	1.76
	3.50	20			2,73		6.1	0.3	49	7.4	1	164	1.95
			~2.0										
			SAURCE	171	M200	32	u	MET	Ars				
1955			SAMPLE		M200 M200			MET		DISS			

	SAMPLING		PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER				COUNT VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470		4 deg. C	HNO2	1 x 250 mL	HDPE			
÷,	Metals 6020 & Hg 7470		4 deg. C	HNO2	1 x 250 mL	HDPE			
- <u>_</u>	Metals 0020 & Tig 7470	nitered	4 002. 0	nivoz	1 X 250 IIIL	IIDI L			
	11. 28 26 3 14	21.1							
				ar v 5 2	<i>р</i> ,	ه وفرد	1999 a 19	1	1999 - S.
7									
				· ·					
		<u> </u>							
	1.5.5	· · · ·			1	e			
	HUR.BA 192			10.00	H TU20	156	. 2		
	Y S1 603	217			,,	1 4 4 4			19. 19.
	Y S1 603	217			,,	1 4 4 4	, 2		•
•	Y S1 603	217			,,	1 4 4 4	v		 S€ 1 - ggt % g 1 - ggt %
	YS1 603	217	2	12 - 24 24 - 4 27 25 2 4 5	1 - 1 - 1 2 - 1 2		v	• •	 March 1998 March 1997 March 1997
	Y S1 603	217	· · · · · · · · · · · · · · · · · · ·		 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		v	3	e de la gale en la transie la de la fri a de la transie
	Y S1 603	217					v	3	 ACC QAN ACC QAN ACC AND <
	Y S1 603	217					v	3	 An opposite An opposite An opposite An opposite An opposite
	Y S1 603	217					v	3	 ACC QAN ACC QAN ACC AND <
	Y S1 603	217					v	3	 ACC QAN ACC QAN ACC AND <
	Y S1 603	217					v	3	
D	Υ 51 603 WINFORMATIC	217					v	3	
	Y S1 603	217 DN:					v	3	
Ū,	Υ 51 603 WINFORMATIC	217 DN:						3	
Ū,	Υ 51 603 WINFORMATIC	217 DN:						,	
D	Υ 51 603 WINFORMATIC	217 DN:					· · · · · · · · · · · · · · · · · · ·	3	

and a second product of

	-			S-1617 GV								Page 1	
		SAM	PLING R	RECO					IND				
SI	ENEC.	A ARMY I	DEPOT ACTIVITY		F	PAF	ISON	15		WELL	#: PC	W 17-4	
	ROJECT		SEAD-16/17 L			mplin	g - Roun	d 7	-	DAT		12/20/14	
LO	CATIO	N:		ROMUI	LUS, NY				·	INSPECTO PUMP #:	ORS:	Dillon	
W	EATHE	R / FIELD	CONDITIONS CHEC	KLIST	(REC	ORD	MAJOR	CHAN	GES)	SAMPLE	ID #:		
				REL.	WIND				D/SITE		-	_0033	
	IME	TEMP	WEATHER	HUMIDITY	VELOCI				FACE			FORING	
(24	HR)	(APPRX)	(APPRX)	(GEN)	(APPR)		- 360)	COND	ITIONS	INSTRUM	ENI	DETECTOR	
		NELL VOL	UME CALCULATION FAC	TOPE			WELLVO			STABILIZED	WATED	LEVELY	
GA	METER (ALLONS	(INCHES): / FOOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 4 0.367 0.654 1.389 2.475	6 1.47 5.564	U.N.	WELL VU			ETER FACTOR			
			DEPTH TO POINT OF WELL			ENGTH	0	WELL DEVELOPMENT				WELL DEVELOPMENT	
ł	HISTORIC	DATA	(TOC)		EN (TOC)	(FT)		TURBIDIT		рН		SPEC. COND	
		1010			DEPTH TO			DEPTH TO		DEPTH TO		PUMPING START	
DAT	WELL S	STED AT	PID READING (OPENING WELL)	WAT	STATIC	(TOC)		STABILIZE		INTAKI (TOC)	1	TIME	
discours.					3,38)							
RAD	LATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)					PUMP AFT					
		MON	ITORING DATA	COLLEC	TED	DUR	ING P	URGI	NG OP	ERATIO	NS		
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	DISSOLV OXYGEN (TEMP (C)		COND	pH		ORP (mV)	TURBIDITY (NTU)	
1.30	3.38	sta-	+ ivan	UNI GLIT	mg 2)	(0)			- P.		(
11:35	3.89	170	1.40										
11.41	2,89	170		1.91	c	5.4	-						
1:44	3.90	170		1.76		5.9	0.5	572	7.91	2 8	1		
1:50	3.90	170		1,83		Laic	0.5		7.94		15	-	
155	3.96	11.1		2.40		6.0	0.5	74	7.91		9		
	3.98					6.1		0.567 7.			D		
105	23.98 165 14.00 165 1.5 gal		2,03		6.1	0:5	166	7.9		-1	2.92		
	04.03 165 1.2 921		2.47		6,1		559	7.92			1.52		
	54.05 165		2,6		6.1		49	7,9					
	4.07	165		2.5		6.0		-31	7.91				
	-4.09	165	2.4 0.1	2.92		6.0		517	7.91		5	1.36	
	4.11	165	- gert	2,61		6.0		500	7.9		_	1,68	
	4.16	165		2,74	5 1	,10		172	7.14		0	1.73	
	4,18	165		2.9	8	6.0	0.0	161	7.90	1 3	7	1.70	
	4.19	165	3.2 yol	3.3		5.9	0.4	150	7.94	-	35	1.75	
	4.20	168	,	3.4	7	5.9	6,4	36	7.90			1.34	
1255	4.27	168		3.6.	3 3	5.8	0,1	128	7,7	5 3		1.36	
1300	4.25	165	3. 4 yal	3.6	7 5	5.8		124	4.9	4 3		1.32	
	4.27		. ,	3.9		-8	4.2		7.91	5 2	9	1.44	
310	4.29	165		3.49	8 4	5.9	O.L	-112	7.90	1 2	7		

11042

	SAMPLING	PRESE	RVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY
	ORDER			COUNT: VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE			
2	Metals 6020 & Hg 7470 filtered	4 ćeg. C	HNO2	1 x 250 mL	HDPE			
		┼_┷						
┝								
┣			· · · · · · · · · · · · · · · · · · ·					
┝								
7						· · · · · · · · · · · · · · · · · · ·		
┢─								
		1					·	
CC	OMMENTS: (QA/QC?							
	HORBA Z							
	YS185 6	122						
	HALH TUR	B 17	-35%					
π	WINFORMATION:							

Page 20FZ		2-	9	i	2	OF	2
-----------	--	----	---	---	---	----	---

SE	ENECA	ARMY I	DEPOT ACTIVITY	7			PAR	SON	15		WE	LL #: 14	17-4
	OJECT		SEAD-16/17 I		Froundw OMULU	_		- Roun	d 7	-		ECTORS:	2/20/14 Dillingon 7.893
WI	EATHE	R / FIELD	CONDITIONS CHEC	KLIS	Т	(R)	ECORD	MAJOR	CHAN	GES)		PLE ID #:	- 312
				-	EL.	WIN		ROM)		ND / SITE	17	LM 2	0033
-	ME	TEMP	WEATHER			ELOC		ECTION	11	FACE		MONIT	
(24	HR)	(APPRX)	(APPRX)	(G	EN) (APP	RX) (0	- 360)	COND	ITIONS	INST	RUMENT	DETECTOR
GA	IETER (LLONS / .ITERS/F	INCHES): FOOT:	UME CALCULATION FAI 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	2.475	6 1.47 5.564		WELL VO	x			LIZED WATER L ACTOR (GAL/FT)	1
н	ISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTH TOP SCREEN	DF	SCREEN LENGTH (FT)		WELL EVELOPM TURBIDIT		DEV	WELL ELOPMENT pH	WELL DEVELOPMENT SPEC. COND
	A COLLEG	CTED AT ITE	PID READING (OPENING WELL)			EPTH 1 STATIC LEVE			DEPTH TO STABILIZE ER LEVEL	D		h to pump intake (TOC)	PUMPING STAR TIME
RADI	ATION SC DATA	CREENING	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT				
		MON	ITORING DATA	CO	LLECT	ED	DURI	NG P	URGI	NG OF	PERA'	TIONS	
TIME (min)	WATER	PUMPING RATE (mVmin)	CUMULATIVE VOL (GALLONS)		VISSOLVED		TEMP (C)		COND nhos)	pH		ORP (mV)	TURBIDITY (NTU)
315	4,30	165			1.51		5.7	0.4		7.9	4	28	1,45
320	4.31	165	5		4.80)	5.7	0.0	106	7.9	3	28	1.92
325	4.32	165			4,94		57	0.4		8.0	16	19	1.91
330	4.33	165		1	4.92	_	57		106		6.	25	1.87
335	4.32	115		-	5.12	-	5.7		102	79	7	24	171
	4.35	165			5.08	-	5.7	0,		7.98	2	23	1,52
345	439	165	57 1	<u> </u>	1.46		5-7	0,3		7.9		23	1.51
	4.41		211 901		4,45		5.7			7.9			1.41
355	4.42	170	10.1		1.69				594	7,9		23	1.38
-			6.5 gal			1-	5.7				6	24	1.20
400			Infiltion S	burg	26	4	641	200	033	u_	-		
140	2 4	ilbert	Filtered 5	en	162	17	LM	20	5055	F	-		
												1.00	
				-	_								
	-												
-				-									
													-
	_								_			46.67	_
						_							1

S-1617 GW SAMPLING RECORD

	SAMPLING	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER			COUNT! VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE			
	Mctals 6020 & Hg 7470 file	red 4 deg. C	HNO2	1 x 250 mL	HDPE			
								· · ·
7								
					·			
<u> </u>								
	MARTENTS (OA)O	<u>()</u>						
	MMENTS: (QA/Q	C:)						
TD	W INFORMATION	:						
\vdash								
						······		

SI	ENECA	ARMY	DEPOT ACTIVIT	Y			PAR	SON	IS		WE	LL #: M	w17-5
PF	ROJECT	:	SEAD-16/17	LTM G	Ground	water S	Sampling	- Round	d 7	_		DATE: 12	120/14
LO	CATIO	N:		R	OMUL	US, NY	Y			-	INSE	ECTORS:	Dillmon
W	FATUE		CONDITIONS CHE	CKUS	T	(P)	ECORD	MAIOR	CHAN	CES)	PUM	IP#: IPLE ID #:	
**	EATHE		CONDITIONS CHE		EL.	WIN				D/SITE			034U/F
T	ME	ТЕМР	WEATHER	HUM	IDITY	VELOC	TTY DIR	ECTION	SUR	FACE		MONIT	ORING
(24	HR)	(APPRX)	(APPRX)	(G	EN)	(APP)	RX) (0	- 360)	COND	ITIONS	INST	RUMENT	DETECTOR
GA	METER (ALLONS / LITERS/F	NCHES): FOOT:	UME CALCULATION F/ 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367 1.389	4 0.654 2.475	6 1.47 5.564		WELL VO	x	AL) =](POW WELL DIAM	- STABI ETER F.	LIZED WATER L ACTOR (GAL/FT)	1
1	IISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPT TOP SCREET	OF	SCREEN LENGTH (FT)	1	WELL EVELOPMI TURBIDIT		DE	WELL VELOPMENT pH	WELL DEVELOPMENT SPEC. COND
			10.14										
DAT	A COLLE		PID READING (OPENING WELL)			DEPTH I STATIC	2		DEPTH TO STABILIZE ER LEVEL	D		TH TO PUMP INTAKE (TOC)	PUMPING STAR TIME
					2	.80	1						
RAD	ATION SC DATA		PUMP PRIOR TO SAMPLING (cps)				ł		UMP AFT				
		MON	ITORING DATA		LLEC			NG P		NG OP	ERA	TIONS	
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		UISSOLVE		TEMP (C)		COND hos)	рН		ORP (mV)	TURBIDIT (NTU)
53	2,84	8:0		Pun		E 61	22		JJ52	02300	60 -	3	ligh zic
1.09	3.00			11	.64		7.3			7.38	3	164	
.15	297	190		12		/	7.3	0,4	37	7.58	_	137	
1:25	2.16	180			.35		7.9	64		7.6	_	125	
1:35	2.96	170			69		7,8		61	7.75	-	117	
9.45	296	165			107		7.7	0.4	-	7.72	3	118	8.2
9:50	296	160			3.54		7.7		65	7.8	2	109	3.0
	296	160	2.1 gal		3.28		7.8	6,4		7.8	_	10 3	6.14
	2.96	160	()	_	3.36		-7.8	04		7.8		107	5.11
	2.96	170			3,4%		7.7	04		7.8		105	4.65
010	2.96	170	3 gol		3.56		7.7	_	73	7.8		167	3.41
015	2.97	170		_	3.45		7.7	0.4		7.8		103	2.78
	2.97	175			3.41		7.7	6.4		7.8		103	2.91
		115	3.3 yal	3	1.32		7.8	0,4		7.8		124	365
	2.97	170			3.31		7.8	0.4		7.8		105	2.73
1035	2.97	170		-	3.35	-	7.8	2.1		7.8	_	10'5	1.78
	2.97	170	Holgorf		.30		7.8	0.4		7.8		104	1.74
				-					10/22		_	15	
10	45	cuili	it Sann	4 1	3.1	101	- 1	2.11	-1		16-	//	H-
10	45	Cull	17LM200341		VALT						10-	1/	H*

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Round 7 Dec 2014\Field Forms\Field Sampling Forms\Field Forms for OB & S-25 GW.xls 12/11/2014 word .

S-1617 GW SAMPLING RECORD

	SAMPLING	PRES	ERVATIVES	BOTTL	ES	SAMPLE	TIME	CHECKED BY/
	ORDER			COUNT/ VOLUME	TYPE	NUMBER		DATE
1	Metals 6020 & Hg 7470	4 deg. C	HNO2	1 x 250 mL	HDPE			
2	Metals 6020 & Hg 7470 filtered	4 deg. C	HNO2	1 x 250 mL	HDPE			
	ny ang anting the start	_	_					
				j				
7								
L								
	MMENTS. (04/00)	2)						
	MMENTS: (QA/QC							
	ITORIBA 23							
	YS185 G12	2						
	ItACH TURB	123	54					
π	W INFORMATION:							

a wanter topen when to all and the second se

`

APPENDIX D

POST-REMEDIAL ACTION MONITORING RESULTS (YEARS 1 THROUGH 7)

Describe	Area Loc ID Matrix Sample ID Sample Date OC Type Study ID Sample Round Filtered	Unit	Maximum			Number of	Number	Number of Samples	SEAD-16 MW16-1 GW 16LM20000 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-1 GW 16LM20001 12/20/2007 DU LTM 1 Totał	SEAD-16 MW16-1 GW 16LM20013 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-1 GW 16LM20014FIL 11/13/2009 SA LTM 3 Dissolved	SEAD-16 MW16-1 GW 16LM20014UNFIL 11/13/2009 SA LTM 3 Total	SEAD-16 MW16-1 GW 16LM20021FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-16 MW16-1 GW 16LM20021UNF 12/16/2010 SA LTM 4 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics Aluminum		UG/L	577				30	84	61.4 J	91.6 J	148 J	24 U	45 J	23 U	50 U
Antimony		UG/L	16.3	GA	3	40	47	84	1 U	1.02	0.95 J	24 U 1 U	45 J 1 U	23 U 2.3 U	2 U
Arsenic		UG/L	2.7	MCL	10	40	-47	84	4.2 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U
Barium		UG/L	290	GA	1,000	0	84	84	60.4	59	125	105	104	110	97 J
Beryllium		UG/L	0	MCL	4	õ	0	84	0.27 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	ő	4	84	0.36 U	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U
Calcium		UG/L	275,000		0	Ū	84	84	107.000 J	105,000 J	176,000	111,000 J	110,000 J	140,000	130,000
Chromium		UG/L	3.6	GA	50	0	5	84	0.84 U	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U
Cobalt		UG/L	2			-	32	84	0.89 U	0.89 U	1.1 U	1.1 U	1.1 U	1.1	1.1
Copper		UG/L	34.7	GA	200	0	64	84	1.3 U	1.3 U	1.3 U	1.6 J	1.6 J	1.1 U	1.1 U
Iron		UG/L	1,300	GA	300	21	58	84	35.8 J	68.3	93.3	19 UJ	19 UJ	77 J	100 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	39 J	73	105	1 J	2.4 J	131	152
Lead		UG/L	88.6	MCL.	15	2	37	84	2.9 U	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U
Magnesium		UG/L	35,200				81	81	16,100 J	15,900 J	25,800	18,000	17,900	21,000	20,000 J
Manganese		UG/L	631	GA	300	1	78	84	3.3	5	11.8	1 J	2.4 J	54	52
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.12 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	49	84	1.2 U	1.2 U	1 U	1.8 J	1.2 J	2.8 J	2.7 J
Potassium		UG/L	7,010				78	78	886 R	907 R	1,340 J	1,110	1,100	1,200	1,100
Selenium		UG/L	0	GA	10	0	0	84	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	84	10	<u> </u>	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	24,200 J	25,300 J	182,000	8,000 J	8,000 J	170,000 J	160,000 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.03 U	0.03 U	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	84	0.78 U	0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U
Zinc		UG/L	34.4				33	84	4.4 J	7.8 J	5.8 J	3.6 U	3.6 U	8.3 U	8.8 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of		Number of Samples	SEAD-16 MW16-1 GW 16LM20028F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-1 GW 16LM20028U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-1 GW 16LM20035F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-1 GW 16LM20035U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-1 GW 16LM20042F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW16-1 GW 16LM20042U 12/21/2014 SA LTM 7 Total	SEAD-16 MW/16-2 GW 16LM20002 12/20/2007 SA LTM 1 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics								84	23 UJ	50 UJ	23 UJ	50 UJ	23 U	50 U	98.8 J
Aluminum		UG/L UG/L	577 16.3	GA	2	40	30 47	84	23 UJ	2 UJ	2.3 UJ	2 UJ	2.3 U	20	3.36
Antimony Arsenic		UG/L	2.7	MCL	3 10	40	8	84	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 U	1.3 U	4.2 U
Barlum		UG/L	290	GA	1,000	0	84	84	78 J	78 J	63 J	69 J	99	94	64.6
Beryllium		UG/L	290	MCL	1,000	0	0	84	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.27 U
Cadmium		UG/L	0.46	GA	-	0	4	84	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.36 U
Calcium		UG/L	275,000	GA	5	0	84	84	120,000 J	120,000 J	140,000 J	130,000 J	160.000	150,000	143,000 J
Chromium		UG/L	3.6	GA	50	0	5	84	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	0.84 U
Cobalt		UG/L	2	GA	50	0	32	84	0.15 UJ	0.16 3	0.9 J	0.94 J	0.15 U	0.12 U	0.89 U
Copper		UG/L	34.7	GA	200	0	64	84	5.2 J	5 UJ	1.2 J	1.1 UJ	1.3 J	1.9 J	4.5 J
Iron		UG/L	1,300	GA	300	21	58	84	33 UJ	44 UJ	260 J	280 J	33 U	79 J	49.5 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	34 U	46 U	352 J	378 J	11	91	53 J
Lead		UG/L	88.6	MCL	15	2	37	84	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ	0.2 U	0.5 U	2.9 U
Magnesium		UG/L	35,200	MOL	10	~	81	81	18.000 J	18,000 J	22,000 J+	22,000 J	25,000	24,000	15,600 J
Manganese		UG/L	631	GA	300	1	78	84	1 UJ	2 UJ	92 J	98 J	11	12	3.4
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.12 U
Nickel		UG/L	5.5	GA	100	0	49	84	2.3 J	2 UJ	3.6 J	2 UJ	2 J	2 U	1.2 U
Potassium		UG/L	7,010			•	78	78	900 J	870 J	810 J	790 J	950	890 J	2,050 R
Selenium		UG/L	0	GA	10	0	0	84	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	6.1 U
Silver		UG/L	ő	GA	50	õ	Ő	84	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	1 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	63.000 J	62,000 J	57,000 J	60,000 J	63,000	63,000	49,600 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.03 U
Vanadium		UG/L	2.3		_	-	7	84	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	0.78 U
Zinc		UG/L	34.4				33	84	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 U	8.4 U	8.2 J

Notes:

The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample 4. Rejected values are not included in the number of samples analyzed.

Page 2 of 21

Parameter	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered	Unit	Maximum Value	Criteria		Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	SEAD-16 MW16-2 GW 16LM20007 12/9/2008 SA LTM 2 Total Value Qual	SEAD-16 MW16-2 GW 16LM20015FiL 11/11/2009 SA LTM 3 Dissolved Value Qual	SEAD-16 MW16-2 GW 16LM20015UNFIL 11/11/2009 SA LTM 3 Total Value Qual	SEAD-16 MW16-2 GW 16LM20022FiL 12/15/2010 SA LTM 4 Dissolved Value Qual	SEAD-16 MW16-2 GW 16LM20022UNF 12/15/2010 SA LTM 4 Total Value Qual	SEAD-16 MW16-2 GW 16LM20023FiL 12/15/2010 DU LTM 4 Dissolved Value Qual	SEAD-16 MW16-2 GW 16LM20023UNF 12/15/2010 DU LTM 4 Total Value Qual
inorganics		Offic_	Valuo	Source	Laver	EAGeodaticos	Delected	Allalyzeu	Value Quai	Value Quai	Value Qual	Value Quar	Value Qual	Value Qual	Value Qual
Aluminum		UG/L	577				30	84	97.1 J	24 U	205	23 U	50 U	23 U	50 U
Antimony		UG/L	16.3	GA	3	40	47	84	5.53	3.6	3.6.	6.1	6.6	6.1	6
Arsenic		UG/L	2.7	MCL	10	0	8	84	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U	1.3 U
Barium		UG/L	290	GA	1,000	0	84	84	69.7	71.9	72.7	68	77 J	67	69 J
Beryllium		UG/L	0	MCL	4	0	0	84	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	0	4	84	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U	0.13 U
Calcium		UG/L	275,000				84	84	138,000	118,000 J	117,000 J	100,000 J	110,000 J	96,000	100,000
Chromium		UG/L	3.6	GA	50	0	5	84	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt		UG/L	2				32	84	1.1 U	1.1 U	1.1 U	0.15 U	0.12 U	0.15 U	0.12 U
Copper		UG/L	34.7	GA	200	0	64	84	4 J	3.4 J	5.1 J	4.4 J	5.9	4.5 J	5.1
Iron		UG/L	1,300	GA	300	21	58	84	26.1 J	19 UJ	197 J	33 U	89 J	33 U	63 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	27	39.5	260.7 J	12	105	12	76
Lead		UG/L	88.6	MCL	15	2	37	84	2.9 U	2.9 U	2.9 U	0.21 J	1.3 J	0.2 U	0.97 J
Magnesium		UG/L	35,200				81	81	15,700	12,600	12,300	12,000	14,000 J	11,000	12,000 J
Manganese		UG/L	631	GA	300	1	78	84	0.84 J	39.5	63.7	12	16	12	13
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.148 J	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	49	84	1.6 J	2.2 J	2.6 J	2 U	2 J	2.2 J	2.2 J
Potassium		UG/L	7,010				78	78	2,410 J	3,170	3,140	2,300 J	2,500 J	2,200 J	2,200 J
Selenium		UG/L	0	GA	10	0	0	84	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	84	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	63,500	19,500 J	18,800 J	33,000 J	34,000 J	31,000 J	32,000 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	84	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U	3.2 U
Zinc		UG/L	34.4				33	84	10.2	11.1	11.3	11 J	14 J	12 J	12 J

Notes: 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

Is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample DU = Duplicate Sample

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number of Times	Number of Samples	SEAD-16 MW16-2 GW 16LM20029F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-2 GW 16LM20029U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-2 GW 16LM20036F 12/16/2013 SA LTM 6 Dissolved	SEAD-16 MW16-2 GW 16LM20036U 12/16/2013 SA LTM 6 Total	SEAD-16 MW16-2 GW 16LM20043F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW16-2 GW 16LM20043U 12/21/2014 SA LTM 7 Total	SEAD-16 MW16-4 GW . 16LM20003 12/20/2007 SA LTM 1 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics															
Aluminum		UG/L	577				30	84	23 UJ	50 UJ	23 UJ	50 UJ	23 U	.50 U	167 J
Antimony		UG/L	16.3	GA	3	40	47	84	7.8 J	7.1 J	3.6 J	3.2 J	4.8 J	4.8 J	5.11
Arsenic		UG/L	2.7	MCL	10	0	8	84	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 U	1.3 U	4.2 U
Barium		UG/L	290	GA	1,000	0	84	84	65 J	62 J	70 J	66 J	72	68	44.5
Beryllium		UG/L	0	MCL	4	0	0	84	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.27 U
Cadmium		UG/L	0.46	GA	5	0	4	84	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.36 U
Calcium		UG/L	275,000				84	84	110,000 J	100,000 J	120,000 J	100,000 J	110,000	100,000	87,100 J
Chromium		UG/L	3.6	GA	50	0	5	84	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	1 J
Cobalt		UG/L	2				32	84	0.15 UJ	0.12 UJ	0.23 J	0.23 J	0.15 U	0.12 U	0.89 U
Copper		UG/L	34.7	GA	200	0	64	84	4.5 J	5 J	4 J	4.7 J	3.3 J	4.2 J	5.4 J
Iron		UG/L	1,300	GA	300	21	58	84	33 UJ	44 UJ	33 UJ	44 UJ	33 J	44 U	95.4
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	34 U	46 U	19 J	19 J	34 U	46 U	127
Lead		UG/L	88.6	MCL	15	2	37	84	0.24 J	0.66 J	0.38 J	1.1 J	0.2 U	0.87 J	2.9 U
Magnesium		UG/L	35,200				81	81	13,000 J	11,000 J	14,000 J+	13,000 J	12,000	11,000	9,440 R
Manganese		UG/L	631	GA	300	1	78	84	1 UJ	2 UJ	19 J	19 J	1 U	2 U	31.2
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.12 U
Nickel		UG/L	5.5	GA	100	0	49	84	2.2 J	2 UJ	2 UJ	2 UJ	2.2 J	2.3 J	1.2 U
Potassium		UG/L	7,010				78	78	2,200 J	1,900 J	1,800 J	1,700 J	1,500	1,400	1,300 R
Selenium		UG/L	0	GA	10	0	0	84	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	84	0.25 UJ	0.18 UJ	0.25 UJ	0,18 UJ	0.25 U	0.18 U	1 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	20,000 J	17,000 J	22,000 J	21,000 J	11,000	9,900	40,800 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.03 U
Vanadium		UG/L	2.3				7	84	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	0.78 U
Zinc		UG/L	34.4				33	84	9.5 J	8.8 J	24 J	12 J	13 J	12 J	5.3 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mci.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation gualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criterla	Number of	Number of Times	Number of Samples	SEAD-16 MW16-4 GW 16LM20008 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-4 GW 16LM20009 12/9/2008 DU LTM 2 Total	SEAD-16 MW16-4 GW 16LM20016FIL 11/17/2009 SA LTM 3 Dissolved	SEAD-16 MW16-4 GW 16LM20016UNFIL 11/17/2009 SA LTM 3 Total	SEAD-16 MW16-4 GW 16LM20024FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-16 MW16-4 GW 16LM20024UNF 12/16/2010 SA LTM 4 Total	SEAD-16 MW16-4 GW 16LM20030F 12/15/2012 SA LTM 5 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	577	~	~		30	84	104 J	101 J	24 U	68 J	23 U	50 U	23 UJ
Antimony		UG/L	16.3	GA	3	40	47 8	84	2.89	2.94	6	6.3	2.3 U	20	4 J
Arsenic		UG/L	2.7	MCL	10	0		84	3.7 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.5 J
Barium		UG/L	290	GA	1,000	0	84	84	290	279	129	123	220	240 J	240 J
Beryllium		UG/L	0	MCL GA	4	0	0	84	0.33 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ
Cadmium		UG/L	0.46	GA	5	0	4	84 84	0.33 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U 210.000	0.095 UJ 230.000 J
Calcium		UG/L UG/L	275,000	~	50	•	84 5	84	275,000 0.88 U	267,000 0.88 U	130,000 J 0.9 U	125,000 J	210,000	2.5 U	230,000 J 2.5 UJ
Chromium			3.6 2	GA	50	0		84	1.1 U	1.1 U	0.9 U 1.8 J	0.9 U 2 J	2.5 U 0.7	0.71	2.5 UJ 1.9 J
Cobalt		UG/L		~	000	0	32	84	4.4 J	4.2 J	2.4 J	6.2 J	0.7 1.4 J	2.8 J	4.1 J
Copper		UG/L	34.7	GA	200	0	64								
Iron		UG/L	1,300	GA	300	21	58	84	57 J	38.4 J	329 J	419 J	130 J	150 J	130 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	65	46 J	417.7 J	513.5 J	260	290 3	270 J
Lead		UG/L	88.6	MCL	15	2	37	84	2.9 U	2.9 U	2.9 U	2.9 U	0.7 J	32.000 J	0.2 UJ 34,000 J
Magnesium		UG/L	35,200	~	000		81	81 84	35,200 7,7	34,500 8	16,800	16,000 94.5	31,000 130	140	140 J
Manganese		UG/L	631	GA	300	1	78 3	84			88.7			0.091 U	0.091 UJ
Mercury		UG/L	0.507	GA	0.7	0			0.12 U	0.12 U 1.9 J	0.1 U 1.7 J	0.1 U	0.091 U 2.2 J	2.3 J	2.6 J
Nickel		UG/L	5.5	GA	100	U	49	84	2.2 J			1.4 J			3.200 J
Potassium		UG/L	7,010	~	10	•	78	78	3,830 J	3,690 J	3,270	3,270	2,600 J	2,600 J	
Selenium		UG/L	0	GA	10	0	0	84	6.1 U	6.1 U 1.3 U	6.1 U 1.3 U	6.1 U 1.3 U	1 U 0.25 U	1.1 U 0.18 U	1 UJ 0.25 UJ
Silver		UG/L	0	GA	50	0		84	1.3 U						
Sodium		UG/L	550,000	GA	20,000	52	82	82 [434,000	419,000	380,000 J 0.2 U	363,000 J	540,000 J 0.5 U	550,000 J 0,25 U	340,000 J 0,5 UJ
Thallium		UG/L	0.03	MCL	2	0	1	84	0.09 U	0.09 U		0.2 U 1.1 J	0.5 U 3.8 U	0.25 U 3.2 U	
Vanadium		UG/L	2.3				00	84	0.98 U	0.98 U	1.1 J			3.2 U 13 J	3.8 UJ 12 J
Zinc		UG/L	34.4				33	84	14.6 J	9.8 J	3.6 U	3.6 U	9.2 J	13 J	12 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample DD Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number of Times	Number of Samples	SEAD-16 MW16-4 GW 16LM20030U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-4 GW 16LM20037F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-4 GW 16LM20037U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-4 GW 16LM20044F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW16-4 GW 16LM20044U 12/21/2014 SA LTM 7 Total	SEAD-16 MW16-5 GW 16LM20004 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-5 GW 16LM20010 12/10/2008 SA LTM 2 Total
Parameter		Unit	Value	Source		Exceedances		Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
norganics															
Aluminum		UG/L	577				30	84	50 UJ	23 UJ	50 UJ	23 U	50 U	160 J	563
Antimony		UG/L	16.3	GA	3	40	47	84	3.9 J	2.3 UJ	2 UJ	3.3 J	3.2 J	1.82	4.23
Arsenic		UG/L	2.7	MCL	10	0	8	84	1.3 J	1.3 UJ	1.3 UJ	1.3 U	1.3 U	4.2 U	3.7 U
Barium		UG/L	290	GA	1,000	0	84	84	230 J	140 J	150 J	170	160	38.9	22
Beryllium		UG/L	0	MCL	4	0	0	84	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.27 U	0.33 U
Cadmium		UG/L	0.46	GA	5	0	4	84	0.23 J	0.095 UJ	0.15 J	0.11 J	0.13 U	0.36 U	0.33 U
Calcium		UG/L	275,000				84	84	220,000 J	210,000 J	190,000 J	220,000	210,000	89,000 J	53,100
Chromium		UG/L	3.6	GA	50	0	5	84	2.5 UJ	2.5 UJ	3.6 J	2.5 U	2.5 U	1.1 J	1.2 J
Cobalt		UG/L	2				32	84	1.9 J	1 J	0.94 J	1.1	1.1	0.89 U	1.1 U
Copper		UG/L	34.7	GA	200	0	64	84	11 J	1.2 J	1.5 J	4.3 J	5.8	3.1 J	10.6
ron		UG/L	1,300	GA	300	21	58	84	140 J	350 J	380 J	170	290	1,200	699
ron+Manganese		UG/L	1,430	GA	500	20	78	84	280 J	580 J	590 J	370	490	1,238	731
_ead		UG/L	88.6	MCL	15	2	37	84	3.4 J	0.28 J	0.65 J	0.27 J	1.5	2.9 U	10.1
Magnesium		UG/L	35,200				81	81	32,000 J	33,000 J+	31,000 J	33,000	32,000	9,380 R	6,050
Manganese		UG/L	631	GA	300	1	78	84	140 J	230 J	210 J	200	200	37.6	32.4
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.12 U	0.12 U
Nickel		UG/L	5.5	GA	100	0	49	84	3.2 J	3.3 J	2.9 J	4 J	3.5 J	1.2 U	2.6 J
Potassium		UG/L	7,010				78	78	3,100 J	2,500 J	2,400 J	2,000	1,900	4,420 R	2,610 J
Selenium		UG/L	0	GA	10	0	0	84	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	84	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	1 U	1.3 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	310,000 J	290,000 J	270,000 J	300,000	300,000	8,410 R	2,180
Thallium		UG/L	0.03	MCL	2	0	1	84	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.03 U	0.09 U
Vanadium		UG/L	2.3				7	84	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	1.2 J	2.3 J
Zinc		UG/L	34.4				33	84	11 J	8.3 UJ	8.4 UJ	14 J	12 J	34.4	10.3

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of		Number of Samples	SEAD-16 MW16-5 GW 16LM20017FIL 11/16/2009 SA LTM 3 Dissolved	SEAD-16 MW16-5 GW 16LM20017UNFIL 11/16/2009 SA LTM 3 Total	SEAD-16 MW16-5 GW 16LM20025FiL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-5 GW 16LM20025UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-5 GW 16LM20031F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-5 GW 16LM20031U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-5 GW 16LM20038F 12/16/2013 SA LTM 6 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics		UG/L	577				30	84	24 U	164 J	23 U	160	23 UJ	50 UJ	23 UJ
Aluminum Antimony		UG/L	16.3	GA	3	40	47	84	1 U	1 U	2.3 U	2 U	2.3 UJ	2 UJ	2.3 UJ
Arsenic		UG/L	2.7	MCL	10	40	8	84	3.7 U	3.7 U	1.3 U	1.3 U	2.6 J	2.7 J	1.3 UJ
Barlum		UG/L	290	GA	1.000	0	84	84	42.8	42	34	33 J	34 J	39 J	40 J
Beryllium		UG/L	0	MCL	1,000	ő	0	84	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ
Cadmium		UG/L	0.46	GA	5	ő	4	84	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ
Calcium		UG/L	275.000	94	5	Ŭ	84	84	115,000 J	110,000 J	90,000	86,000	97.000 J	96,000 J	100,000 J
Chromium		UG/L	3.6	GA	50	0	5	84	0.9 U	0.9 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	2	UA.	00	U	32	84	1.1 U	1.1 U	0.15 U	0.12 U	0.22 J	0.23 J	0.15 UJ
Copper		UG/L	34.7	GA	200	0	64	84	1.3 U	1.3 U	1.1 U	1.1 U	1.1 J	5 UJ	1.1 UJ
Iron		UG/L	1,300	GA	300	21	58	84	800 J	1,150 J	480 J	660 J	1,100 J	1,300 J	440 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	970 J	1.323 J	680	820	1,230 J	1,430 J	870 J
Lead		UG/L	88.6	MCL	15	2	37	84	2.9 U	2.9 U	0.2 U	0.77 J	0.2 UJ	0.5 UJ	0.2 UJ
Magnesium		UG/L	35,200				81	81	12,200	11,800	10,000	9,700 J	9,900 J	9,800 J	10,000 J+
Manganese		UG/L	631	GA	300	1	78	84	170	173	200	160	130 J	130 J	230 J
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.1 U	0.1 U	0.091 U	0.091 U	0.1 J	0.091 UJ	0.091 UJ
Nickel		UG/L	5.5	GA	100	0	49	84	1.8 J	2 J	2 U	2 U	2.1 J	2 UJ	2 UJ
Potassium		UG/L	7,010				78	78	2,370	2,380	2,200 J	2,100 J	2,100 J	2,100 J	2,300 J
Selenium		UG/L	0	GA	10	0	0	84	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ
Silver		UG/L	0	GA	50	0	0	84	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ
Sodium		UG/L	550,000	GA	20,000	52	82	82	2,700 J	2,800 J	1,800 J	1,800 J	1,600 J	1,500 J	1,400 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.2 U	0.2 U	0.5 U	0.25 U	0.5 ŲJ	0.25 UJ	0.5 UJ
Vanadium		UG/L	2.3				7	84	1 U	1.1 J	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ
Zinc		UG/L	34.4				33	84	3.6 U	3.6 U	8.3 U	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed J = the reported value is an estimated concentration

J+= result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-5 GW 16LM20038U 12/16/2013 SA LTM 6 Total	SEAD-16 MW16-5 GW 16LM20039F 12/17/2013 DU LTM 6 Dissolved	SEAD-16 MW16-5 GW 16LM20039U 12/17/2013 DU LTM 6 Total	SEAD-16 MW16-5 GW 16LM20045F 12/20/2014 SA LTM 7 Dissolved	SEAD-16 MW16-5 GW 16LM20045U 12/20/2014 SA LTM 7 Total	SEAD-16 MW16-6 GW 16LM20005 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-6 GW 16LM20011 12/9/2008 SA LTM 2 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Quai	Value Quai	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	577				30	84	50 UJ	23 UJ	50 UJ	23 U	53 J	168 J	189 J
Antimony		UG/L	16.3	GA	3	40	47	84	2 UJ	2.3 UJ	2 UJ	2.3 U	2 U	1 U	0.92 J
Arsenic		UG/L	2.7	MCL	10	0	8	84	1.3 UJ	1.3 UJ	1.3 UJ	1.8 J	1.3 J	4.2 U	3.7 U
Barlum		UG/L	290	GA	1,000	0	84	84	38 J	41 J	41 J	49 J	40 J	31.8	39.1
Beryllium		UG/L	0	MCL	4	0	0	84	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.27 U	0.33 U
Cadmium		UG/L	0.46	GA	5	0	4	84	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.36 U	0.33 U
Calcium		UG/L	275,000				84	84	88,000 J	110,000 J	95,000 J	110,000	92,000	80,400 J	84,300
Chromium		UG/L	3.6	GA	50	0	5	84	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	0.84 U	0.88 U
Cobalt		UG/L	2				32	84	0.12 UJ	0.15 UJ	0.12 UJ	0.15 U	0.12 U	0.89 U	1.1 U
Copper		UG/L	34.7	GA	200	0	64	84	1.1 UJ	1.1 UJ	1.1 UJ	1.1 U	3.1 J	3.4 J	2.1 J
iron		UG/L	1,300	GA	300	21	58	84	510 J	490 J	530 J	360 J	280 J	418	153
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	660 J	710 J	720 J	520 J	410 J	441	158
Lead		UG/L	88.6	MCL	15	2	37	84	0.5 UJ	0.22 J	0.5 UJ	0.2 U	0.5 U	2.9 U	2.9 U
Magnesium		UG/L	35,200				81	81	9,500 J	11,000 J+	10,000 J	11,000	9,000	7,100 R	7,380
Manganese		UG/L	631	GA	300	1	78	84	170 J	220 J	190 J	160 J	130 J	23.3	4.8
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.12 U	0.12 U
Nickel		UG/L	5.5	GA	100	0	49	84	2 UJ	2 UJ	2 UJ	2.1 J	2.3 J	1.2 U	1 U
Potassium		UG/L	7,010				78	78	1,900 J	2,300 J	2,100 J	3,500 J	2,800 J	2,690 R	2,310 J
Selenium		UG/L	0	GA	10	0	0	84	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	84	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	1 U	1.3 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	1,300 J	1,400 J	1,300 J	1,900	1,600	6,110 R	9,200
Thallium		UG/L	0.03	MCL	2	0	1	84	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.03 U	0.09 U
Vanadium		UG/L	2.3				7	84	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	0.86 J	0.98 U
Zinc		UG/L	34.4				33	84	8.4 UJ	8.3 UJ	8.4 UJ	8.3 U	8.4 U	5.5 J	3.7 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area Loc ID Matrix Sample Do Sample Date QC Type Study ID Sample Round Filtered		Maximum		Criteria	Number of		Number of Samples	SEAD-16 MW16-6 GW 16LM20018FIL 11/17/2009 SA LTM 3 Dissolved	SEAD-16 MW16-6 GW 16LM20018UNFIL 11/17/2009 SA LTM 3 Total	SEAD-16 MW16-6 GW 16LM20026FIL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-6 GW 16LM20026UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-6 GW 16LM20032F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-6 GW 16LM20032U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-6 GW 16LM20040F 12/17/2013 SA LTM 6 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics Aluminum		1104	577				00	04	107 J	442	00.11	C4 1	00.111	200	00.111
Antimony		UG/L UG/L	16.3	GA	3	40	30 47	84 84	0.9 J	442 1 U	23 U 2.3 U	61 J 2 U	23 UJ 2.3 UJ	300 J 2 UJ	23 UJ 2.3 UJ
Arsenic		UG/L	2.7	MCL	10	40	8	84	3.7 U	3.7 U	1.3 U	1.3 U	1.3 UJ	1.3 J	1.3 UJ
Barlum		UG/L	290	GA	1.000	0	84	84	78.5	80.2	44	50 J	41 J	45 J	53 J
Beryllium		UG/L	0	MCL	4	0	0	84	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ
Cadmium		UG/L	0.46	GA	5	0	4	84	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ
Calcium		UG/L	275,000	GA	5	0	84	84	112,000 J	112.000 J	68.000	78.000	70.000 J	74.000 J	92,000 J
Chromium		UG/L	3.6	GA	50	0	5	84	0.9 U	0.9 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ
Cobait		UG/L	2	GA	50	0	32	84	1.1 U	1.1 U	0.15 U	0.12 U	0.18 J	0.43 J	0.35 J
Copper		UG/L	34.7	GA	200	0	64	84	1.9 J	2.5 J	1.5 J	2 J	4.5 J	5 UJ	1.1 UJ
Iron		UG/L	1,300	GA	300	21	58	84	55 J	440 J	33 U	110 J	33 J	790 J	180 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	153.4 J	515 J	2.1 J	113.5 J	43 J	816 J	340 J
Lead		UG/L	88.6	MCL	15	2	37	84	2.9 U	2.9 U	0.2 U	0.5 U	0.2 UJ	0.5 UJ	0.2 UJ
Magnesium		UG/L	35,200			-	81	81	9,970	9,950	6,600	7.600 J	7,200 J	7.600 J	9.500 J+
Manganese		UG/L	631	GA	300	1	78	84	98.4	75	2.1 J	3.5 J	10 J	26 J	160 J
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.1 U	0.1 U	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	5.5	GA	100	0	49	84	1.2 J	2.6 J	2 U	2 U	2 UJ	2 J	2 UJ
Potassium		UG/L	7,010				78	78	2,380	2,580	1,500	1.800	2,400 J	2,400 J	1,900 J
Selenium		UG/L	0	GA	10	0	0	84	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ
Silver		UG/L	0	GA	50	0	0	84	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ
Sodium		UG/L	550,000	GA	20,000	52	82	82	22,000 J	20,600 J	7,600 J	8,400 J	8,700 J	8,000 J	14,000 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.008 U	0.008 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ
Vanadium		UG/L	2.3				7	84	1 U	1.3 J	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ
Zinc		UG/L	34.4				33	84	3.6 U	3.6 U	8.3 U	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ

Notes: 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.htm#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number	Number of Samples	SEAD-16 MW16-6 GW 16LM20040U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-6 GW 16LM20046F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW16-6 GW 16LM20046U 12/21/2014 SA LTM 7 Total	SEAD-16 MW16-7 GW 16LM20006 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-7 GW 16LM220012 12/10/2008 SA LTM 2 Total	SEAD-16 MW16-7 GW 16LM20019FIL 11/12/2009 SA LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20019UNFII 11/12/2009 SA LTM 3 Total
Parameter		Unit	Value	Source		Exceedances		Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics															
Aluminum		UG/L	577				30	84	50 UJ	23 U	140	45.9 J	577	32_J	182 J
Antimony		UG/L	16.3	GA	3	40	47	84	2 UJ	2.3 U	2 U	9.58	13.6	15.2	15.7
Arsenic		UG/L	2.7	MCL	10	0	8	84	1.3 UJ	1.3 U	1.3 U	4.2 U	3.7 U	3.7 U	3.7 U
Barlum		UG/L	290	GA	1,000	0	84	84	58 J	58	58	170	122	83.6	81.6
Beryllium		UG/L	0	MCL	4	0	0	84	0.15 UJ	0.25 U	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U
Cadmium		UG/L	0.46	GA	5	0	4	84	0.13 UJ	0.095 U	0.13 U	0.46 J	0.33 U	0.3 U	0.3 U
Calcium		UG/L	275,000				84	84	84,000 J	83,000	83,000	194,000	133,000	85,000 J	84,600 J
Chromium		UG/L	3.6	GA	50	0	5	84	2.5 UJ	2.5 U	2.5 U	0.84 U	1.6 J	0.9 U	0.9 U
Cobalt		UG/L	2				32	84	0.34 J	0.15 U	0.12 U	1.6 J	1.1 J	1.1 U	1.1 U
Copper		UG/L	34.7	GA	200	0	64	84	1.1 UJ	2.3 J	2.8 J	34.7	20.2	3.1 J	5 J
Iron		UG/L	1,300	GA	300	21	58	84	210 J	57 J	140	29.2 J	770	19 UJ	135 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	360 J	58.8 J	148.4	660 J	990	136	244 J
Lead		UG/L	88.6	MCL	15	2	37	84	0.54 J	0.2 U	0.5 U	26.5	88.6	4.4 J	12.1
Magnesium		UG/L	35,200				81	81	9,500 J	8,300	8,500	32,000 J	25,100	15,900	16,500
Manganese		UG/L	631	GA	300	1	78	84	150 J	1.8 J	8.4	631	220	136	109
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.091 UJ	0.091 U	0.091 U	0.507	0.12 U	0.1 U	0.1 U
Nickel		UG/L	5.5	GA	100	0	49	84	2 UJ	2.2 J	2 U	5.5 J	2.6 J	1.9 J	1.7 J
Potassium		UG/L	7,010				78	78	1,800 J	2,100	2,000	5,480 J	5,670 J	6,520	5,780
Selenium		UG/L	0	GA	10	0	0	84	1.1 UJ	1 U	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	84	0.18 UJ	0.25 U	0.18 U	10	1.3 U	1.3 U	1.3 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	13,000 J	8,500	8,300	68,400 J	74,900	52,100 J	47,100 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.25 UJ	0.5 U	0.25 U	0.03 J	0.09 U	0.2 U	0.2 U
Vanadium		UG/L	2.3				7	84	3.2 UJ	3.8 U	3.2 U	0.78 U	0.98 U	1 U	1 U
Zinc		UG/L	34.4				33	84	8.4 UJ	8.3 U	8.4 U	3.6 U	8.6 J	3.6 U	3.6 U

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available. 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

\\MABOS07

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area Loc ID Matrix Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number of Times	Number of Samples	SEAD-16 MW16-7 GW 16LM20020FIL 11/12/2009 DU LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20020UNFIL 11/12/2009 DU LTM 3 Total	SEAD-16 MW16-7 GW 16LM20027FIL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-7 GW 16LM20027UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-7 GW 16LM20033F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20033U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20034F 12/15/2012 DU LTM 5 Dissolved
Parameter		Unit	Value	Source		Exceedances	Detected		Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics		onic	(diab	000100	2010.	2100000011000	0000000	, analyzed	Taioo addi	Fundo alour	fondo arter				
Akuminum		UG/L	577				30	84	25 J	116 J	23 U	50 U	23 UJ	50 UJ	23 UJ
Antimony		UG/L	16.3	GA	3	40	47	84	13.9	16.3	15	16	13 J	13 J	13 J
Arsenic		UG/L	2.7	MCL	10	0	8	84	3.7 U	3.7 U	1.3 U	1.3 U	1.3 J	1.3 UJ	1.3 UJ
Barlum		UG/L	290	GA	1,000	0	84	84	83.9	80.3	69	71 J	100 J	100 J	99 J
Beryllium		UG/L	0	MCL	4	0	0	84	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ
Cadmium		UG/L	0.46	GA	5	0	4	84	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ
Calcium		UG/L	275,000				84	84	81,900 J	82,800 J	82,000	86,000	110,000 J	100,000 J	100,000 J
Chromium		UG/L	3.6	GA	50	0	5	84	0.9 U	0.9 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	2				32	84	1.1 U	1.1 U	0.15 U	0.12 U	0.23 J	0.22 J	0.24 J
Copper		UG/L	34.7	GA	200	0	64	84	3.5 J	4.1 J	1.8 J	2.7 J	4.1 J	8.3 J	1.7 J
Iron		UG/L	1,300	GA	300	21	58	84	19 UJ	61 J	33 U	45 J	33 UJ	44 UJ	33 UJ
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	152	168 J	35	79	92 J	90 J	98 J
Lead		UG/L	88.6	MCL	15	2	37	84	4.9 J	9.4	1 J	6.3	1.3 J	2.5 J	2.3 J
Magnesium		UG/L	35,200				81	81	14,800	16,200	18,000	19,000 J	21,000 J	21,000 J	20,000 J
Manganese		UG/L	631	GA	300	1	78	84	152	107	35	34	92 J	90 J	98 J
Mercury		UG/L	0.507	GA	0.7	0	3	84	0.1 U	0.1 U	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	5.5	GA	100	0	49	84	2 J	1.1 J	2 U	2 U	2 UJ	2.2 J	2 UJ
Potassium		UG/L	7,010				78	78	7,010	5,630	2,800 J	2,700 J	5,300 J	5,200 J	5,100 J
Selenium		UG/L	0	GA	10	0	0	84	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ
Silver		UG/L	0	GA	50	0	0	84	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ
Sodium		UG/L	550,000	GA	20,000	52	82	82	55,900 J	46,100 J	29,000 J	28,000 J	35,000 J	32,000 J	33,000 J
Thallium		UG/L	0.03	MCL	2	0	1	84	0.2 U	0.2 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ
Vanadium		UG/L	2.3				7	84	1 U	1 U	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ
Zinc		UG/L	34.4				33	84	3.6 U	3.6 U	8.3 U	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.htmi#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number of Times	Number of Samples	SEAD-16 MW16-7 GW 16LM20034U 12/15/2012 DU LTM 5 Total	SEAD-16 MW16-7 GW 16LM20041F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-7 GW 16LM20041U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-7 GW 16LM20047F 12/20/2014 SA LTM 7 Dissolved	SEAD-16 MW16-7 GW 16LM20047U 12/20/2014 SA LTM 7 Total	SEAD-16 MW16-7 GW 16LM20048F 12/20/2014 DU LTM 7 Dissolved	SEAD-16 MW16-7 GW 16LM20048U 12/20/2014 DU LTM 7 Total
Parameter		Unit	Value	Source		Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
norganics															
Aluminum		UG/L	577				30	84	50 UJ	23 UJ	50 UJ	29 J	50 U	23 U	50 U
Antimony		UG/L	16.3	GA	3	40	47	84	14 J	16 J	15 J	16	15	15	14
Arsenic		UG/L	2.7	MCL	10	0	8	84	1.3 UJ	1.3 UJ	1.3 UJ	1.3 U	1.3 U	1.3 U	1.3 U
Barium		UG/L	290	GA	1,000	0	84	84	100 J	100 J	100 J	110	95	110	100
Beryllium		UG/L	0	MCL	4	0	0	84	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	0	4	84	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.095 U	0.13 U
Calcium		UG/L	275,000				84	84	110,000 J	120,000 J	110,000 J	110,000	100,000	110,000	110,000
Chromium		UG/L	3.6	GA	50	0	5	84	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt		UG/L	2				32	84	0.24 J	0.19 J	0.2 J	0.25 J	0.12 U	0.15 U	0.12 U
Copper		UG/L	34.7	GA	200	0	64	84	5.6 J	3.4 J	2.5 J	3.2 J	3.6 J	3.3 J	3.8 J
ron		UG/L	1,300	GA	300	21	58	84	44 UJ	33 UJ	44 UJ	52 J	44 U	33 U	44 U
ron+Manganese		UG/L	1,430	GA	500	20	78	84	91 J	16 J	15 J	80 J	23 J	38 J	33 J
Lead		UG/L	88.6	MCL	15	2	37	84	2.6 J	1.9 J	6 J	1.8	4.2	1.8	4.1
Magnesium		UG/L	35,200				81	81	22,000 J	26,000 J+	27,000 J	23,000	22,000	23,000	21,000
Manganese		UG/L	631	GA	300	1	78	84	91 J	16 J	15 J	28 J	23 J	38 J	33 J
Mercury		UG/L	0.507	GA	0.7	0	з	84	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	49	84	2.4 J	2 UJ	2 UJ	3.2 J	2.4 J	2 J	2 U
Potassium		UG/L	7,010				78	78	5,400 J	3,100 J	2,900 J	3,700	3,500	4,600	3,900
Selenium		UG/L	0	GA	10	0	0	84	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	84	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	0.25 U	0.18 U
Sodium		UG/L	550,000	GA	20,000	52	82	82	32,000 J	28,000 J	27,000 J	30,000	29,000	36,000	33,000
Thallium		UG/L	0.03	MCL	2	0	1	84	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	84	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	3.8 U	3.2 U
Zinc		UG/L	34.4				33	84	8.4 UJ	8.3 UJ	8.4 UJ	8.3 U	8.4 U	8.7 J	8.4 U

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated. 3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

Rejected values are not included in the number of samples analyzed.

Page 12 of 21

Parameter	Area Loc ID Matrix Sample Da Sample Date QC Type Study ID Sample Round Filtered	Unit	Maximum Value	Criteria Source		Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	SEAD-17 MW17-1 GW 17LM20000 12/20/2007 SA LTM 1 Total Value Qual	SEAD-17 MW17-1 GW 17LM20005 12/11/2008 SA LTM 2 Total Value Qual	SEAD-17 MW17-1 GW 17LM20010FiL 11/18/2009 SA LTM 3 Dissolved Value Qual	SEAD-17 MW17-1 GW 17LM20010UNFIL 11/18/2009 SA LTM 3 Total Value Qual	SEAD-17 MW17-1 GW 17LM20016FIL 12/17/2010 SA LTM 4 Dissolved Value Qual	SEAD-17 MW17-1 GW 17LM20016UNF 12/17/2010 SA LTM 4 Total Value Qual	SEAD-17 MW17-1 GW 17LM20020F 12/11/2012 SA LTM 5 Dissolved Value Qual
Inorganics		UIII	value	Source	Levei	Exceedances	Delected	Analyzeu	Value Qual	value Quai	Value Quar	Value Quai		Value Gual	Value Quar
Aluminum		UG/L	19,600				22	60	204	219	37 J	59 J	23 U	50 U	23 UJ
Antimony		UG/L	4.4	GA	3	6	14	60	1 U	1 U	1 U	1 U	2.3 U	2 U	2.3 UJ
Arsenic		UG/L	7.8	MCL	10	õ	2	60	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 Ŭ	1.3 UJ
Barium		UG/L	251	GA	1,000	ň	60	60	70	79	99.1	99	61	63 J	28 J
Beryllium		UG/L	1.2	MCL	4	õ	1	60	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ
Cadmium		UG/L	1.7	GA	5	ŏ	4	60	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ
Calcium		UG/L	195,000		•	•	60	60	98,300 J	95,600	109,000 J	108,000 J	96,000	100,000	53,000 J
Chromium		UG/L	37.2	GA	50	0	4	60	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 UJ
Cobalt		UG/L	10.5				39	60	0.89 U	1.1 U	1.1 U	1.1 U	0.15 U	0.3 J	0.32 J
Copper		UG/L	46.7	GA	200	0	32	60	1.3 U	1.3 U	1.3 U	1.3 U	1.1 U	1.1 J	4.7 J
Iron		UG/L	25,500	GA	300	14	46	60	106	126	19 UJ	42 J	33 U	270 J	47 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	119	141	38.9	67.6 J	4.2 J	312	54.2 J
Lead		UG/L	103	MCL	15	1	10	60	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 UJ
Magnesium		UG/L	27,300				57	57	21,800 J	20,600	24,300	24,000	19,000	20,000 J	7,200 J
Manganese		UG/L	911	GA	300	2	56	60	13.2	14.9	38.9	25.6	4.2 J	42	7.2 J
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.14 J
Nickel		UG/L	34	GA	100	0	21	60	1.2 U	1.3 J	1 U	1 U	2 U	2 U	2 UJ
Potassium		UG/L	7,810				54	55	614 R	462 J	260 J	254 J	690	690 J	380 J
Selenium		UG/L	0	GA	10	0	0	60	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 UJ
Silver		UG/L	0	GA	50	0	0	60	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ
Sodium		UG/L	366,000	GA	20,000	4	56	56	7,790 R	8,380	7,300 J	7,400 J	6,000 J	6,200 J	2,400 J
Thallium		UG/L	0.08	MCL	2	0	2	60	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U	0.5 UJ
Vanadium		UG/L	32.8				2	60	0.78 U	0.98 U	1 U	10	3.8 U	3.2 U	3.8 UJ
Zinc		UG/L	935				33	60	4.7 J	4 J	3.6 U	3.6 U	8.3 U	8.4 U	8.3 UJ

Notes:

Notes: 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not gualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

Appendix D Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17

Seneca Army Depot Activity

	Area Loc ID Matrix Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number	Number of Samples	SEAD-17 MW17-1 GW 17LM20020U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-1 GW 17LM20025F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-1 GW 17LM20025U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-1 GW 17LM20030F 12/20/2014 SA LTM 7 Dissolved	SEAD-17 MW17-1 GW 17LM20030U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-2 GW 17LM20001 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-2 GW 17LM20006 12/10/2008 SA LTM 2 Total
Parameter		Unit	Value	Source		Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics		Onix		000100	20101	ERCOCOUNTOOD	00100100	/ 1101/1200	tores acou						
Aluminum		UG/L	19,600				22	60	50 UJ	23 UJ	50 UJ	23 U	50 U	110 J	142 J
Antimony		UG/L	4.4	GA	3	6	14	60	2.7 J	2.3 UJ	2 UJ	2.3 U	2 U	3.44	2.76
Arsenic		UG/L	7.8	MCL	10	0	2	60	1.3 UJ	1.3 J	1.3 UJ	1.3 U	1.3 U	4.2 U	3.7 U
Barium		UG/L	251	GA	1,000	0	60	60	28 J	60 J	56 J	44	41	58.8	51.8
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.27 U	0.33 U
Cadmium		UG/L	1.7	GA	5	0	4	60	0.44 J	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.36 U	0.33 U
Calcium		UG/L	195,000				60	60	55,000 J	120,000 J	91,000 J	81,000	77,000	110,000 J	112,000
Chromium		UG/L	37.2	GA	50	0	4	60	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	0.84 U	2.9 J
Cobalt		UG/L	10.5				39	60	0.37 J	0.34 J	0.29 J	0.19 J	0.16 J	0.89 U	1.1 U
Copper		UG/L	46.7	GA	200	0	32	60	5.4 J	1,1 UJ	1.1 UJ	3.5 J	3.6 J	6.2 J	4.4 J
Iron		UG/L	25,500	GA	300	14	46	60	90 J	800 J	680 J	190	79 J	140	115
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	98.1 J	897 J	765 J	199.6	87.7	160	121
Lead		UG/L	103	MCL	15	1	10	60	1.1 J	0.2 UJ	0.5 UJ	0.23 J	0.5 U	2.9 U	2.9 U
Magnesium		UG/L	27,300				57	57	7,700 J	24,000 J+	19,000 J	14,000	13,000	11,000 R	11,200
Manganese		UG/L	911	GA	300	2	56	60	8.1 J	97 J	85 J	9.6	8.7	20.5	6.1
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.12 U	0.12 U
Nickel		UG/L	34	GA	100	0	21	60	2 UJ	2 UJ	2 UJ	2.5 J	2 U	1.2 U	2.8 J
Potassium		UG/L	7,810				54	55	410 J	500 J	400 J	280 J	330 U	1,690 R	1,260 J
Selenium		UG/L	0	GA	10	0	0	60	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	60	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	1 U	1.3 U
Sodium		UG/L	366,000	GA	20,000	4	56	56	2,500 J	6,000 J	4,800 J	3,700	3,500	6,620 R	7,860
Thallium		UG/L	0.08	MCL	2	0	2	60	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.03 U	0.09 U
Vanadium		UG/L	32.8				2	60	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	0.78 U	0.98 U
Zinc		UG/L	935				33	60	8.4 UJ	8.3 UJ	8.4 UJ	12 J	9 J	72 J	27.6

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation gualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area Loc ID Mabix Sample ID Sample Date QC Type Study ID Sample Round Filtered	Unit	Maximum Value	Criteria Source		Number of Exceedances		Number of Samples Analyzed	SEAD-17 MW17-2 GW 17LM20011FIL 11/17/2009 SA LTM 3 Dissolved Value Qual	SEAD-17 MW17-2 GW 17LM20011UNFIL 11/17/2009 SA LTM 3 Total Value Qual	SEAD-17 MW17-2 GW 17LM20015FIL 12/16/2010 SA LTM 4 Dissolved Value Qual	SEAD-17 MW17-2 GW 17LM20015UNF 12/16/2010 SA LTM 4 Total Value Qual	SEAD-17 MW17-2 GW 17LM20021F 12/11/2012 SA LTM 5 Dissolved Value Qual	SEAD-17 MW17-2 GW 17LM20021U 12/11/2012 SA LTM 5 Total Value Quał	SEAD-17 MW17-2 GW 17LM20026F 12/15/2013 SA LTM 6 Dissolved Value Qual
Parameter Inorganics		Unit	vaiue	Source	Level	LACOCUAICES	Derected	CIRCITATED	Value duai	Value studi	Yaido dadai	Venue aluer	Y GIGO SECON	vanao atalar	- and - alger
Aluminum		UG/L	19,600				22	60	88 J	19,600	23 U	51 J	23 UJ	50 UJ	23 UJ
Antimony		UG/L	4.4	GA	3	6	14	60	2.2	3.7	2.3 U	2 U	4 J	4.4 J	2.3 UJ
Arsenic		UG/L	7.8	MCL	10	õ	2	60	3.7 U	7.8 J	1.3 U	1.3 U	1.3 UJ	1.3 UJ	1.3 UJ
Barlum		UG/L	251	GA	1,000	0	60	60	82.3	251	54	58 J	69 J	68 J	46 J
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.3 U	1.2 J	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ
Cadmium		UG/L	1.7	GA	5	0	4	60	0.3 U	1.7	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ
Calcium		UG/L	195,000				60	60	154,000 J	195,000 J	140,000	150,000	120,000 J	120,000 J	180,000 J
Chromium		UG/L	37.2	GA	50	0	4	60	0.9 U	37.2	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	10.5				39	60	1.1 U	10.5	0.32 J	0.46 J	0.39 J	0.42 J	0.44 J
Copper		UG/L	46.7	GA	200	0	32	60	2.9 J	46.7	1.5 J	1.9 J	7.7 J	7.8 J	1.1 UJ
Iron		UG/L	25,500	GA	300	14	46	60	19 UJ	25,500 J	33 U	130 J	33 UJ	44 UJ	520 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	1.5 J	25,929 J	23	173	12 J	14 J	594 J
Lead		UG/L	103	MCL	15	1	10	60	2.9 U	103	0.2 U	0.6 J	0.2 UJ	0.99 J	0.2 UJ
Magnesium		UG/L	27,300				57	57	18,200	23,300	18,000	19,000 J	12,000 J	12,000 J	24,000 J+
Manganese		UG/L	911	GA	300	2	56	60	1.5 J	429	23	43	12 J	14 J	74 J
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.1 U	0.1 U	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	34	GA	100	0	21	60	1.2 J	34	2 U	2 U	2 UJ	2 UJ	2 UJ
Potassium		UG/L	7,810				54	55	2,390	7,810	1,300 J	1,300	2,500 J	2,500 J	1,100 J
Selenium		UG/L	0	GA	10	0	0	60	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ
Silver		UG/L	0	GA	50	0	0	60	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ
Sodium		UG/L	366,000	GA	20,000	4	56	56	19,800 J	20,300 J	14,000 J	14,000 J	8,400 J	8,400 J	16,000 J
Thallium		UG/L	0.08	MCL	2	0	2	60	0.008 U	0.2 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ
Vanadium		UG/L	32.8				2	60	1 U	32.8	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ 11 J
Zinc		UG/L	935				33	60	28.6	935	17 J	21	24 J	26 J	11 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high

R = the result was rejected due to QA/QC considerations UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17

Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round								SEAD-17 MW17-2 GW 17LM20026U 12/15/2013 SA LTM 6	SEAD-17 MW17-2 GW 17LM20031F 12/20/2014 SA LTM 7	SEAD-17 MW17-2 GW 17LM20031U 12/20/2014 SA LTM 7	SEAD-17 MW17-3 GW 17LM20002 12/20/2007 SA LTM 1	SEAD-17 MW17-3 GW 17LM20007 12/10/2008 SA LTM 2	SEAD-17 MW17-3 GW 17LM20012FIL 11/18/2009 SA LTM 3	SEAD-17 MW17-3 GW 17LM20012UNFIL 11/18/2009 SA LTM 3
	Filtered					Number	Number	Number	Total	Dissolved	Total	Total	Total	Dissolved	Total
			Maximum			of	of Times	of Samples							
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	19,600				22	60	50 UJ	23 U	50 U	106 J	386	141 J	1,550 J
Antimony		UG/L	4.4	GA	3	6	14	60	2 UJ [3.2 J	3.3 J	1 U	1 U	1 U	1.5
Arsenic		UG/L	7.8	MCL	10	0	2	60	1.3 UJ	1.3 U	1.3 U	4.2 U	3.7 U	3.7 U	3.7 U
Barium		UG/L	251	GA	1,000	0	60	60	47 J	63	57	39	29.3	49.4	54.5
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.15 UJ	0.25 U	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U
Cadmium		UG/L	1.7	GA	5	0	4	60	0.13 UJ	0.12 J	0.14 J	0.36 U	0.33 U	0.3 U	0.3 U
Calcium		UG/L	195,000				60	60	150,000 J	130,000	120,000	69,000 J	67,200	99,400 J	95,900 J
Chromium		UG/L	37.2	GA	50	0	4	60	2.5 UJ	2.5 U	2.5 U	0.84 U	0.88 U	0.9 U	5.2
Cobalt		UG/L	10.5				39	60	0.38 J	0.15 U	0.13 J	0.89 U	1.1 U	1.5 J	1.7 J
Copper		UG/L	46.7	GA	200	0	32	60	1.1 UJ	6.4	6.3	2.6 J	2.8 J	2.5 J	7.9 J
iron		UG/L	25,500	GA	300	14	46	60	470 J	33 U	46 J	133	1,300	827 J	2,690 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	534 J	2 J	50.1 J	170	1,573	968 J	2,858 J
Lead		UG/L	103	MCL	15	1	10	60	0.5 UJ	0.2 U	0.5 U	2.9 U	2.9 U	2.9 U	8.6
Magnesium		UG/L	27,300				57	57	22,000 J	13,000	11,000	7,560 R	7,400	9,850	9,170
Manganese		UG/L	911	GA	300	2	56	60	64 J	2 J	4.1 J	36.7	273	141	168
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.091 UJ	0.091 U	0.091 U	0.12 U	0.12 U	0.1 U	0.1 U
Nickel		UG/L	34	GA	100	0	21	60	2 UJ	2 U	2.2 J	1.2 U	1.8 J	3.1 J	4.5 J
Potassium		UG/L	7,810				54	55	1,000 J	1,600	1,600	2,620 R	1,840 J	1,290	1,590
Selenium		UG/L	0	GA	10	0	0	60	1.1 UJ	1 U	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	60	0.18 UJ	0.25 U	0.18 U	1 U	1.3 U	1.3 U	1.3 U
Sodium		UG/L	366,000	GA	20,000	4	56	56	14,000 J	8,800	7,800	4,550 R	5,500	7,500 J	6,200 J
Thallium		UG/L	0.08	MCL	2	0	2	60	0.25 UJ	0.5 U	0.25 U	0.03 U	0.09 U	0.008 U	0.008 U
Vanadium		UG/L	32.8				2	60	3.2 UJ	3.8 U	3.2 U	0.78 U	0.98 U	1 U	1.7 J
Zinc		UG/L	935				33	60	9.3 J	28 J	40 J	27 J	14.2	21.1	45.7

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-17 MW17-3 GW 17LM20017FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-3 GW 17LM20017UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-3 GW 17LM20022F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-3 GW 17LM20022U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-3 GW 17LM20027F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-3 GW 17LM20027U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-3 GW 17LM20032F 12/2014 SA LTM 7 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Quai	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics															
Aluminum		UG/L	19,600				22	60	23 U	50 U	23 UJ	50 UJ	23 UJ	50 UJ	23 U
Antimony		UG/L	4.4	GA	3	6	14	60	2.3 U	2 U	2.3 UJ	2 UJ	2.3 UJ	2 UJ	2.3 U
Arsenic		UG/L	7.8	MCL	10	0	2	60	1.3 U	1.3 U	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 U
Barlum		UG/L	251	GA	1,000	0	60	60	37	38 J	37 J	36 J	52 J	53 J	41
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U
Cadmium		UG/L	1.7	GA	5	0	4	60	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U
Calcium		UG/L	195,000				60	60	90,000	93,000	74,000 J	67,000 J	130,000 J	110,000 J	73,000
Chromium		UG/L	37.2	GA	50	0	4	60	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U
Cobait		UG/L	10.5				39	60	0.63	0.7	0.15 UJ	0.12 UJ	0.31 J	0.3 J	0.15 U
Copper		UG/L	46.7	GA	200	0	32	60	1.1 U	1.1 U	3.3 J	5 UJ	1.3 J	1.1 J	13
Iron		UG/L	25,500	GA	300	14	46	60	730 J	770 J	33 UJ	44 UJ	33 UJ	110 J	33 U
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	890	940	34 U	46 U	2.3 J	112 J	5.1
Lead		UG/L	103	MCL	15	1	10	60	0.2 U	0.5 U	0.24 J	0.78 J	0.35 J	0.5 UJ	0.2 U
Magnesium		UG/L	27,300				57	57	9,900	10,000 J	6,100 J	5,800 J	15,000 J+	15,000 J	5,800
Manganese		UG/L	911	GA	300	2	56	60	160	170	1 UJ	2 UJ	2.3 J	2 J	5.1
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U
Nickel		UG/L	34	GA	100	0	21	60	2 U	2 U	2 UJ	2 UJ	2 UJ	2 UJ	2.6 J
Potassium		UG/L	7,810		1.111		54	55	1,200 J	1,200	1,800 J	1,700 J	870 J	840 J	1,400
Selenium		UG/L	0	GA	10	0	0	60	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U
Silver		UG/L	0	GA	50	0	0	60	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U
Sodium		UG/L	366,000	GA	20,000	4	56	56	6,000 J	6,100 J	3,300 J	3,100 J	11,000 J	10,000 J	1,900
Thallium		UG/L	0.08	MCL	2	0	2	60	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U
Vanadium		UG/L	32.8			-	2	60	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U
Zinc		UG/L	935				33	60	8.3 U	12 J	29 J	26 J	35 J	33 J	42 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.htmi#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, blased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date OC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number	Number of Times	Number of Samples	SEAD-17 MW17-3 GW 17LM20032U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-4 GW 17LM20003 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-4 GW 17LM20008 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-4 GW 17LM20013FiL 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-4 GW 17LM20013UNFIL 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-4 GW 17LM20018FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-4 GW 17LM20018UNF 12/16/2010 SA LTM 4 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
inorganics						,									
Aluminum		UG/L	19,600				22	60	180	50.2 J	125 J	28 J	70 J	23 U	50 U
Antimony		UG/L	4.4	GA	3	6	14	60	2 U	1 U	0.62 J	1 U	1 U	2.3 U	2 U
Arsenic		UG/L	7.8	MCL	10	0	2	60	1.3 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U
Barium		UG/L	251	GA	1,000	0	60	60	38	32.5	35.9	36.3	36.6	- 27	28 J
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U
Cadmium		UG/L	1.7	GA	5	0	4	60	0.13 U	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U
Calcium		UG/L	195,000				60	60	69,000	74,900 J	74,700	96,600 J	97,600 J	90,000	88,000
Chromium		UG/L	37.2	GA	50	0	4	60	2.5 U	1 J	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U
Cobalt		UG/L	10.5				39	60	0.12 J	0.89 U	2.4 J	1.5 J	1.3 J	0.96	1.1
Copper		UG/L	46.7	GA	200	0	32	60	15	1.8 J	1.8 J	1.3 U	1.3 U	1.1 U	1.1 U
Iron		UG/L	25,500	GA	300	14	46	60	160	45.4 J	1,760	60 J	142 J	240 J	260 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	166.1	59 J	2,671	258 J	355 J	370	400
Lead		UG/L	103	MCL	15	1	10	60	1.1 J	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U
Magnesium		UG/L	27,300				57	57	5,600	10,400 R	10,200	12,900	13,000	13,000	13,000 J
Manganese		UG/L	911	GA	300	2	56	60	6.1	13.7	911	198	213	130	140
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.091 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U
Nickel		UG/L	34	GA	100	0	21	60	2 J	1.2 U	2.6 J	2.2 J	2.4 J	2 U	2 U
Potassium		UG/L	7,810				54	55	1,500	838 R	1,190 J	844	866	540	530 J
Selenium		UG/L	0	GA	10	0	0	60	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	60	0.18 U	1 Ų	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U
Sodium		UG/L	366,000	GA	20.000	4	56	56	1,900	28,500 J	15,500	10,400 J	10,500 J	12,000 J	12,000 J
Thallium		UG/L	0.08	MCL	2	0	2	60	0.25 U	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U
Vanadium		UG/L	32.8				2	60	3.2 U	0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U
Zinc		UG/L	935				33	60	44 J	5.1 J	6.7 J	3.6 U	3.6 U	8.7 J	8.4 U

Notes:

Notes: 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifler.

[empty cell] = data is not qualified U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

\\MABOS07'

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 7) Draft Annual Report - Year 7 for SEAD 16 and SEAD 17

Seneca Army Depot Activity

	Area Loc ID Matrix Sample Date QC Type Study ID Sample Round								SEAD-17 MW17-4 GW 17LM20023F 12/11/2012 SA LTM 5	SEAD-17 MW17-4 GW 17LM20023U 12/11/2012 SA LTM 5	SEAD-17 MW17-4 GW 17LM20028F 12/15/2013 SA LTM 6	SEAD-17 MW17-4 GW 17LM20028U 12/15/2013 SA LTM 6	SEAD-17 MW17-4 GW 17LM20033F 12/20/2014 SA LTM 7	SEAD-17 MW17-4 GW 17LM20033U 12/20/2014 SA LTM 7	SEAD-17 MW17-5 GW 17LM20004 12/20/2007 SA LTM 1
	Filtered					Number	Number	Number	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
			Maximum			of	of Times	of Samples							
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qu					
Inorganics Aluminum		UG/L	19,600				22	60	23 UJ	50 UJ	23 UJ	50 UJ	23 U	50 U	98.5 J
Antimony		UG/L	4.4	GA	3	6	14	60	23 UJ	2 UJ	23 UJ 2.3 UJ	2 UJ	2.3 U	2 U	98.5 J 1 U
Anumony		UG/L	7.8	MCL	10	0	2	60	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 U	1.3 U	4.2 U
Barium		UG/L	251	GA	1.000	0	60	60	65 J	67 J	20 J	23 J	27	27	86.7
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.27 U
Cadmium		UG/L	1.7	GA	5	0	4	60	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.36 U
Calcium		UG/L	195,000	GA	5	0	60	60	83.000 J	87.000 J	96,000 J	93.000 J	80,000	75,000	97,100 J
Chromium		UG/L	37.2	GA	50	0	4	60	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	0.84 U
Cobalt		UG/L	10.5	On	00	0	39	60	0.21 J	0.25 J	1 J	1.1 J	0.31 J	0.24 J	0.89 U
Copper		UG/L	46.7	GA	200	0	32	60	1.1 J	5 UJ	1.1 UJ	1.1 UJ	2.3 J	2.8 J	1.3 U
Iron		UG/L	25,500	GA	300	14	46	60	33 UJ	72 J	810 J	810 J	120	130	91.7
ron+Manganese		UG/L	25,929	GA	500	13	56	60	9.5 J	83 J	1,090 J	1,090 J	260	250	128
ead		UG/L	103	MCL	15	1	10	60	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ	0.2 U	0.5 U	2.9 U
Magnesium		UG/L	27,300				57	57	15,000 J	15.000 J	15,000 J+	15,000 J	12,000	11,000	15,800 J
Manganese		UG/L	911	GA	300	2	56	60	9.5 J	11 J	280 J	280 J	140	120	36.5
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.12 U
Nickel		UG/L	34	GA	100	0	21	60	2 UJ	2.1 J	2 UJ	2 UJ	3 J	2 J	1.2 U
Potassium		UG/L	7,810				54	55	750 J	780 J	450 J	430 J	480 J	420 J	972 R
Selenium		UG/L	0	GA	10	0	0	60	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	60	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	1 U
Sodium		UG/L	366,000	GA	20,000	4	56	56	8,900 J	8,600 J	7,800 J	7,800 J	7,700	7,300	7,950 R
Thallium		UG/L	0.08	MCL	2	0	2	60	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.03 U
Vanadium		UG/L	32.8				2	60	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	0.78 U
Zinc		UG/L	935				33	60	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 U	8.4 U	4.7 J

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2. Data validation qualifier. [empty cell] = data is not qualified U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

 R = the result vs ar resultate quality, based light
 R = the result was rejected due to QA/QC considerations
 UJ = detection limit is estimated.
 Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

\\MABOS07F501\Projects\PIT\Proj

	Area								SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17
	Loc ID								MW17-5	MW17-5	MW17-5	MW17-5	MW17-5	MW17-5	MW17-5
	Matrix								GW	GW	GW	GW	GW	GW	GW
	Sample ID								17LM20009	17LM20014FIL	17LM20014UNFIL	17LM20019FIL	17LM20019UNF	17LM20024F	17LM20024U
	Sample Date								12/11/2008	11/17/2009	11/17/2009	12/16/2010	12/16/2010	12/11/2012	12/11/2012
	QC Type								SA	SA	SA	SA	SA	SA	SA
	Study ID								LTM	LTM	LTM	LTM	LTM	LTM	LTM
	Sample Round								2	3	3	4	4	5	5
	Filtered		Maximum	Criteria	Criteria	Number	Number of Times	Number of Samples	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
Parameter		Unit	Value	Source		Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics															
Aluminum		UG/L	19,600				22	60	125 J	29 J	98 J	23 U	50 U	23 UJ	50 UJ
Antimony		UG/L	4.4	GA	3	6	14	60	0.56 J	1	1	2.3 U	2 U	2.3 UJ	2 UJ
Arsenic		UG/L	7.8	MCL	10	0	2	60	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 UJ	1.3 UJ
Barium		UG/L	251	GA	1,000	0	60	60	82.9	166	168	81	82 J	24 J	26 J
Beryllium		UG/L	1.2	MCL	4	0	1	60	0.33 U	2 U	2 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ
Cadmium		UG/L	1.7	GA	5	0	4	60	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ	0.13 UJ
Calcium		UG/L	195,000				60	60	97,300	184,000 J	185,000 J	100,000	110,000	68,000 J	75,000 J
Chromium		UG/L	37.2	GA	50	0	4	60	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ
Cobalt		UG/L	10.5				39	60	1.1 U	1.1 U	1.1 U	0.17 J	0.19 J	0.31 J	0.31 J
Copper		UG/L	46.7	GA	200	0	32	60	1.5 J	1.3 U	1.3 U	1.1 U	1.1 U	3.7 J	5 UJ
iron		UG/L	25,500	GA	300	14	46	60	76	19 UJ	34 J	83 J	110 J	44 J	160 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	85	24.3	61.4 J	118	145	82 J	219 J
Lead		UG/L	103	MCL	15	1	10	60	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 UJ	0.5 UJ
Magnesium		UG/L	27,300				57	57	15,600	27,100	27,300	17,000	18,000 J	9,900 J	11,000 J
Manganese		UG/L	911	GA	300	2	56	60	8.9	24.3	27.4	35	35	38 J	59 J
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.12 J	0.091 UJ
Nickel		UG/L	34	GA	100	0	21	60	1.2 J	1.7 J	1.8 J	2 U	2 U	2 UJ	2 UJ
Potassium		UG/L	7,810				54	55	824 J	1,920	1,960	1,600 J	1,600	460 J	460 J
Selenium		UG/L	0	GA	10	0	0	60	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ
Silver		UG/L	0	GA	50	0	0	60	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ
Sodium		UG/L	366,000	GA	20,000	4	56	56	7,360	364,000 J	366,000 J	8,200 J	8,300 J	9,400 J	9,100 J
Thaliium		UG/L	0.08	MCL	2	0	2	60	0.09 U	0.08 J	0.08 J	0.5 U	0.25 U	0.5 UJ	0.25 UJ
Vanadium		UG/L	32.8				2	60	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 UJ	3.2 UJ
Zinc		UG/L	935				33	60	41.6	3.6 U	3.6 U	20	8.4 U	8.3 UJ	8.4 UJ

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier. [empty cell] = data is not qualified

U = compound not detected at concentration listed J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value. SA = Sample

DU = Duplicate Sample

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of			SEAD-17 MW17-5 GW 17LM20029F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW/17-5 GW 17LM20029U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-5 GW 17LM20034F 12/20/2014 SA LTM 7 Dissolved	SEAD-17 MW17-5 GW 17LM20034U 12/20/2014 SA LTM 7 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics											00.11	50 11
Aluminum		UG/L	19,600				22	60	23 UJ	50 UJ	23 U 2.3 U	50 U 2 U
Antimony		UG/L	4.4	GA	3	6	14	60	2.3 UJ	2 UJ	2.3 U 1.3 U	1.3 U
Arsenic		UG/L	7.8	MCL	10	0	2 60	60	1.3 UJ 75 J	1.3 UJ 86 J	83	92
Barium		UG/L	251	GA	1,000	0	1	60			0.25 U	0.15 U
Beryllium		UG/L	1.2	MCL	4	0	•	60	0.25 UJ	0.15 UJ	0.095 U	0.13 U
Cadmium		UG/L	1.7	GA	5	0	4	60	0.095 UJ	0.13 UJ	91,000	100,000
Calcium		UG/L	195,000				60	60	110,000 J	100,000 J		
Chromium		UG/L	37.2	GA	50	0	4	60	2.5 UJ	2.5 UJ	2.5 U	2.5 U
Cobalt		UG/L	10.5				39	60	0.2 J	0.22 J	0.15 U	0.12 U 2.6 J
Copper		UG/L	46.7	GA	200	0	32	60	1.1 UJ	1.1 UJ	1.1 U	
Iron		UG/L	25,500	GA	300	14	46	60	350 J	140 J	33 U	55 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	374 J	167 J	34 U	46 U
Lead		UG/L	103	MCL	15	1	10	60	0.2 UJ	0.5 UJ	0.2 U	0.5 U
Magnesium		UG/L	27,300				57	57	18,000 J+	17,000 J	14,000	15,000
Manganese		UG/L	911	GA	300	2	56	60	24 J	27 J	1 U	2 U
Mercury		UG/L	0.14	GA	0.7	0	2	60	0.091 UJ	0.091 UJ	0.091 U	0.091 U
Nickel		UG/L	34	GA	100	0	21	60	2 UJ	2 UJ	2.8 J	2 U
Potassium		UG/L	7,810				54	55	1,200 J	1,100 J	810	860 J
Selenium		UG/L	0	GA	10	0	0	60	1 ŲJ	1.1 UJ	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	60	0.25 UJ	0.18 UJ	0.25 U	0.18 U
Sodium		UG/L	366,000	GA	20,000	4	56	56	5,400 J	5,300 J	4,900	4,900
Thallium		UG/L	0.08	MCL	2	0	2	60	0.5 UJ	0.25 UJ	0.5 U	0.25 U
Vanadium		UG/L	32.8				2	60	3.8 UJ	3.2 UJ	3.8 U	3.2 U
Zinc		UG/L	935				33	60	8.3 UJ	8.4 UJ	8.3 U	8.4 U

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

.

APPENDIX E

LABORATORY ANALYTICAL REPORT

Laboratory Reports have been provided on the CD version of this report.

APPENDIX F

DATA VALIDATION

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Event 7
LAB:	TestAmerica
SDG:	680-108543-1 (aka J108543)
FRACTION:	Metals (SW846 6020A)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes	Cooler temp < 10 C. pH < 2. Holding Time Hg < 28 days, all other metals < 180 days from collection.	Coolers were received at 2.5°C by the laboratory. All samples were received in good condition based on the laboratory login report. Samples were properly preserved and had pH < 2. Samples were analyzed within 12 days from collection.	No
Calibration	Yes	r^2 ≥ 0.995 CCV every 10 samps or 2 hours ICV/CCV %R btw 90-110%	Calibrations available, taken every ten samples, and within recovery limits (90-110%). Initial Calibration Verification (Batch #680-365321) for Total metals was conducted on 12/29/14 at 13:09. The ICV and subsequent CCVs for metals were all within accetance criteria. Associated samples -1 through -9. ICV (Batch #680-365538) for Total metals was conducted on 12/29/14 at 13:09. The ICV and subsequent CCVs for metals were all within accetance criteria. Associated samples -10 through -13. ICV (Batch #680-365878) for Dissolved metals was conducted on 1/2/15 at 13:37. The ICV and subsequent CCVs for metals were all within accetance criteria. ICV (Batch #680-366197) for Dissolved metals was conducted on 1/6/15 at 13:37. The ICV and subsequent CCVs for metals were all within accetance criteria.	No
Blanks (prep blank, ICB, CCB)	No	Method blanks: 1 per 20 project samples.	Initial Calibration Blank (ICB) (Batch #680-365321) analyzed on 12/29/14 at 13:14 for Total metals and all metals were non- detected. CCBs (Batch #680-365321) were analyzed from 12/30/13 at 00:54 to 14:10 for Total metals every ten samples; all CCBs were non-detect for Total metals. ICB (Batch #680-365538) analyzed on 12/29/14 at 23:28 for Total metals and all metals were non-detected. CCBs (Batch #680-365538) were analyzed from 12/29/14 at 12:02 to 13:02 for Total metals every ten samples; all CCBs were non-detect for Total metals. ICB (Batch #680-365578) were analyzed from 12/29/14 at 12:02 to 13:02 for Total metals every ten samples; all CCBs were non-detect for Total metals. ICB (Batch #680-365878) were analyzed on 1/2/15 at 13:43 for Dissolved metals and all metals were non-detected. CCBs (Batch #680-365878) were analyzed from 1/2/15 at 15:41 to 19:50 for Dissolved metals every ten samples; all CCBs were non-detect for Dissolved metals except Na (68.9 J ug/L, CCB at 19:18). No action was taken on sample -25 since the sample result was greater than 9x the CRQL. ICB (Batch #680-366197) analyzed on 1/6/15 at 13:43 for Dissolved metals and all metals were non-detected. CCBs (Batch #680-366197) were analyzed from 1/6/15 at 18:02 to 19:27 for Dissolved metals every ten samples; all CCBs were non-detect for Dissolved metals. Two Preparation blank were analyzed for Total metals and all results were non-detect. Three Preparation blank were analyzed for Total metals and all results were non-detect. Three Preparation blank were analyzed for Dissolved metals and all results were non-detect except in MB 680-365318/1-A (on 1/2 at 17:13) detected Cu at 2.33 J ug/L. Sample -25 was analyzed after the MB was analyzed and detected Cu at 1.5 J ug/L. Qualify sample -25 Cu results as the CRQL and change to non-detect (5 U).	Yes
CRDL Standard	Yes	CRDL results btw 70-130%	CRDL analyses for all remaining metals conducted at the beginning and end of the analysis. All met requirements.	No
Laboratory Control Sample	Yes	LCS/LCSD: 1 per 20 project samples or each preparation batch. LCS limits within 80-120%.	Two aqueous LCS results were within the limits for Total metals (of 12 unfiltered project samples). Three aqueous LCS results were within the limits for Dissolved metals (of 12 filtered project samples).	No
Duplicates	No	RPD < 20% or Absolute Diff < RL when samp/dup value < 5x RL	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20047U and its duplicate 16LM20048U, and filtered sample 16LM20047F and its duplicate 16LM20048F. All RPDs were within acceptance limits except for the following: Mn for 16LM20047/48 had RPDs 36% (unfiltered) and 30% (filtered), qualify results as J for all samples; K for 16LM20047/48F had 22% RPD, qualify results as J for both samples. A lab duplicate was not analyzed for this SDG.	Yes

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Event 7
LAB:	TestAmerica
SDG:	680-108543-1 (aka J108543)
FRACTION:	Metals (SW846 6020A)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Matrix Spike/Matrix Spike Duplicates	No	MS/MSD: 1 per 20 project samples or each preparation batch. Recoveries within lab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits 75- 125%	Two unfiltered MS/MSD samples were associated with this SDG; sample 16LM20047U and 17LM20032U. All spike metal recoveries were within the recovery except Zn (MSD 140%) with 29% RPD, and Ca, Mg, and Na initial conc was >4x spike conc. The RPD limits were within the limits except for Zn. One filtered MS/MSD sample was associated with this SDG; sample 16LM20047F. All spike metal recoveries were within the recovery, and Ca, Mg, and Na initial conc was >4x spike conc. The RPD limits were within the limits. The post digestion spike was performed on unfiltered 16LM20047U and 17LM20032U. Only sample 17LM20032U had recoveries were above the limit for Ca (128%). The post digestion spike was performed on filtered 16LM20047F. All recoveries were within the limits. Qualify Zn results as J if > MDL. No action was taken since Ca, Mg, and Mn results were >4x the spike amount.	Yes
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%.	All concentrations detected in all samples within the ICP Linear Range. No action was taken.	No
ICP Tune Analysis	Yes	RSD < 5%	Tune Analysis was conducted on 12/29/14. All isotopes of each analyte had a RSD < 5%.	No
Internal Standard	Yes	Intensity within 60-125%	IS from 12/29/14 to 12/30/14 had %RI within acceptance limits. IS from 1/2/15 to 1/3/15 had %RI within acceptance limits. IS from 1/6/15 to 1/7/15 had %RI within acceptance limits.	No
Serial Dilution	Yes	Performed on samples of a similar matrix or 1 per 20 samples. %D ≤ 10% conc ≥ 25xDL (7470A/7471A) and 10x IDL (6010B) for 5 fold dilution.	Sample 16LM20047U serial dilution for all metal with %D < 10% and sample conc > 50xMDL met requirements. Sample 17LM20032U serial dilution for all metal with %D < 10% and sample conc > 50xMDL met requirements. Sample 16LM20047F serial dilution for all metal with %D < 10% and sample conc > 50xMDL met requirements.	No
Total/Dissolved Comparison	No	%RPD less than 20%	Samples with Total and Dissolved results that have detected Dissolved concentrations greater than the Total and have a Dissolved concentration > 5xMDL. All sample results met this requiment except for in samples: 16LM20045U/16LM20045F for Ba (20%), Fe (25%), Mn (21%), and K (22%). Qualify these samples results as J.	Yes
Field Duplicate Precision	No	%RPD less than 20%	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20047U and its duplicate 16LM20048U, and filtered sample 16LM20047F and its duplicate 16LM20048F. All RPDs were within acceptance limits except for: 16LM20047/48U for Mn (36% RPD), where the parent (23 ug/L) and the duplicate (33 ug/L) were both detected; 16LM20047/48F for: AI (23% RPD), where the parent sample had detect (29 J ug/L) but the duplicate was non-detect (23 U ug/L); Co (50% RPD), where the parent sample had detect (0.25 J ug/L) but the duplicate was non-detect (0.15 U ug/L); Fe (45% RPD), where the parent sample had detect (52 J ug/L) but the duplicate was non-detect (33 U ug/L); Fe (45% RPD), where the parent (28 ug/L) and the duplicate (38 ug/L) were both detected; Ni (46% RPD), where the parent (28 ug/L) and the duplicate (2 J ug/L) were both detected; Ni (46% RPD), where the parent (3.2 J ug/L) and the duplicate (2 J ug/L) were both detected; and K (22% RPD), where the parent (3700 ug/L) and the duplicate (4600 ug/L) were both detected.	No

RT = Retention Time; %D = Percent Deviation; %RPD = Relative Percent Difference; %RSD = Percent Relative Standard Deviation; RRF = Relative Response Factor; CCV = Continuing Calibration Verification TCL = Target Compound List; MS = Matrix Spike; MSD = Matrix Spike Duplicate;

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Event 7
LAB:	TestAmerica
SDG:	680-108543-1 (aka J108543)
FRACTION:	Metals (SW846 7470A)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable Ilmits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes	Cooler temp < 10 C. Holding Time Hg < 28 days, all other metals < 180 days from collection.	Coolers were received at 2.5°C by the laboratory. All samples were received in good condition based on the laboratory login report. Samples were property preserved and had pH < 2. Samples were analyzed within 10 days from collection.	No
Calibration	Yes	r^2 ≥ 0.995 CCV every 10 samps or 2 hours ICV/CCV %R btw 80-120% (specific to Hg)	Calibrations available, taken every ten samples, and within recovery limits (80-120%). Initial Calibration Verification (ICV) for Total Hg associated was conducted on 12/29/14 at 17:46. The ICV and subsequent CCVs for Total Hg were all within acceptance criteria. ICV for Dissolved Hg associated was conducted on 12/30/14 at 17:08. The ICV and subsequent CCVs for Dissolved Hg were all within acceptance criteria.	No
Blanks (prep blank, ICB, CCB)	Yes	Method blanks: 1 per 20 project samples.	ICB analyzed on 12/20/14 at 17:49 for Hg Method 7470A. CCBs were analyzed from 12/20/14 at 19:28 to 20:46 for Total and Dissolved Hg every ten samples; all CCBs were non-detect for Hg (MDL = 0.1 and RL = 0.2 ug/L). ICB analyzed on 12/30/14 at 17:11 for Hg Method 7470A. CCBs were analyzed from 12/30/14 at 17:33 to 18:01 for Dissolved Hg every ten samples; all CCBs were non-detect for Hg (MDL = 0.1 and RL = 0.2 ug/L). One Preparation blank analyzed for Total Hg, it was non-detect. One Preparation blank analyzed for Dissolved Hg, it was non-detect.	No
CRDL Standard	Yes	CRDL results btw 70-130%	CRDL analyses for Hg conducted at the beginning and end of the analysis. All met requirements.	No
Laboratory Control Sample	Yes	LCS/LCSD: 1 per 20 project samples or each preparation batch. LCS limits within 80-120%.	One aqueous LCS/LCSD set were analyzed and their results were within the limits for Total Hg (of 12 unfiltered project samples). One aqueous LCS/LCSD set were analyzed and their results were within the limits for Dissolved Hg (of 12 filtered project samples).	No
Duplicates	No	RPD < 20% or Absolute Diff < RL when samp/dup value < 5x RL	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20047U and its duplicate 16LM20048U, and filtered sample 16LM20047F and its duplicate 16LM20048F. Both sample duplicate pairs Hg results were non-detect; therefore no action was taken. A lab duplicate was not analyzed for this SDG.	No
Matrix Spike/Matrix Spike Duplicates	Yes	MS/MSD: 1 per 20 project samples or each preparation batch. Recoveries within lab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits 75-125%		No
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%	ICP Interference Check was performed and all recoveries were within acceptance limits.	No
Serial Dilution	NA	Performed on samples of a similar matrix or 1 per 20 samples. %D ≤ 10% conc ≥ 25xDL (7470A/7471A) and 10x IDL (8010B) for 5- fold dilution.	A serial dilution was not performed on this analysis.	NA
Total/Dissolved Comparison	Yes	%RPD less than 20%	All samples Total and Dissolved results were non-detect. No action was taken.	No
Field Duplicate Precision	Yes	%RPD less than 20%	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20047U and its duplicate 16LM20048U, and filtered sample 16LM20047F and its duplicate 16LM20048F. Both sample duplicate pairs Hg results were non-detect: therefore no action was taken.	No

RT = Retention Time; %D = Percent Deviation; %RPD = Relative Percent Differance; %RSD = Percent Relative Standard Deviation; RRF = Relative Response Factor; CCV = Continuing Calibration Verification TCL = Target Compound List; MS = Matrix Spike; MSD = Matrix Spike Duplicate;

APPENDIX G

PROUCL OUTPUT SHEETS

,

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2					
3	User Selected Options				
	Date/Time of Computation	6/26/2015 11:48:10 AM			
э	From File	SEAD16_Antimony4UC	xls		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	Result				
11					
12				Statistics	
13	Total	Number of Observations	84	Number of Distinct Observations	36
14		Number of Detects	48	Number of Non-Detects	36
15	N	umber of Distinct Detects	34	Number of Distinct Non-Detects	3
16		Minimum Detect	0.9	Minimum Non-Detect	1
17		Maximum Detect	16.3	Maximum Non-Detect	2.3
18		Variance Detects	29.19	Percent Non-Detects	42.86%
19		Mean Detects	7.916	SD Detects	5.403
20		Median Detects	6.05	CV Detects	0.683
21		Skewness Detects	0.365	Kurtosis Detects	-1.508
22		Mean of Logged Detects	1.762	SD of Logged Detects	0.877
23					
24				t on Detects Only	
25		hapiro Wilk Test Statistic	0.847	Shapiro Wilk GOF Test	
	5% 51	hapiro Wilk Critical Value	0.947	Detected Data Not Normal at 5% Significance Level Lilliefors GOF Test	
27		% Lilliefors Critical Value	0.181	Detected Data Not Normal at 5% Significance Level	
28	0		-	at 5% Significance Level	
29					
30	Kaplan	Mojor (KM) Statistics usi	og Normal C	ritical Values and other Nonparametric UCLs	
31		Mean	4.951	Standard Error of Mean	0.585
32		SD	5.299	95% KM (BCA) UCL	5.988
33		95% KM (t) UCL	5.924	95% KM (Percentile Bootstrap) UCL	5.927
34	1 	95% KM (z) UCL	5.924	95% KM Bootstrap t UCL	5.963
35	с С	00% KM Chebyshev UCL	6.706	95% KM Chebyshev UCL	7.501
36		.5% KM Chebyshev UCL	8.604	99% KM Chebyshev UCL	10.77
37					
38		Gamma GOF	Tests on De	etected Observations Only	
39		A-D Test Statistic	1.428	Anderson-Darling GOF Test	
40		5% A-D Critical Value	0.764	Detected Data Not Gamma Distributed at 5% Significance	Level
41		K-S Test Statistic	0.186	Kolmogrov-Smirnoff GOF	
42		5% K-S Critical Value	0.13	Detected Data Not Gamma Distributed at 5% Significance	Level
43				ributed at 5% Significance Level	
44					
45		Gamma	Statistics on	Detected Data Only	
46		k hat (MLE)	1.78	k star (bias corrected MLE)	1.683
		Theta hat (MLE)	4.447	Theta star (bias corrected MLE)	4.704
		nu hat (MLE)	170.9	nu star (bias corrected)	161.5
49 50	MI	E Mean (bias corrected)	7.916	MLE Sd (bias corrected)	6.102
50		(
51				······································	

T	A	В	T	С	1	D		E	F	G	Н		1	T	J		K		L
52								Gamm	a Kaplan-M	eier (KM) S	tatistics								
53							k ha	at (KM)	0.873							nu	hat (KM	(N	146.7
54		App	oroxima	te Chi s	Square	Value	e (146	.67, α)	119.7			Adju	sted C	hi Sq	Jare Va	lue (1	46.67,	β)	119.3
55	95% Gamma Approximate KM-UCL (use when n>=50)							n>=50)	6.067		95% Gamma Adjusted KM-UCL (use when n<50)		0)	6.089					
56										L									
57						G	amm	a ROS	Statistics us	sing Impute	d Non-De	tects							
58			GRC	S may	not be	used	when	data se	et has > 50%	6 NDs with r	many tied of	observ	ations	at mu	Itiple D	Ls			
59					GROS	S may	not be	e used v	when kstar of	of detected of	lata is sma	all suc	has <	0.1					_
60				For	such s	ituatio	ons, G	ROS m	ethod tends	to yield infla	ated value	s of U	CLs an	d BT\	/s				
61		For ga	amma c	listribut	ed det	ected	data,	BTVsa	nd UCLs ma	ay be compu	ited using	gamm	a distr	butio	n on KN	A estir	nates		
62							Mi	nimum	0.01								Mea	an	4.942
63							Ma	ximum	16.3						1		Media	an	3.051
64					_			SD	5.379					-			C	V	1.088
65							k hat	(MLE)	0.5					k sta	(bias d	correc	ted ML	E)	0.49
66						The	ta hat	(MLE)	9.889				The	ta sta	(bias d	correc	ted MLI	E)	10.09
67						r	nu hat	(MLE)	83.96					n	u star (bias c	orrecte	d)	82.29
68				ML	E Mea	an (bia	as corr	ected)	4.942					M	E Sd (bias c	orrecte	d)	7.061
69		-	_	-		-							Adjust	ed Le	vel of S	Signifi	cance (β)	0.0471
70		Ap	proxim	ate Chi	Squar	re Valu	ue (82	.29, α)	62.39			Adj	usted	Chi So	quare V	alue (82.29,	β)	62.08
71	95%	6 Gamm	a Appr	oximate	UCL	(use w	vhen r	>=50)	6.519		95%	Gamn	na Adjı	sted	UCL (u	se wh	en n<5	0)	6.55
72										1				-				_	
73						Lo	gnon	nal GO	F Test on D	etected Ob	servations	Only					_		
74				S	hapiro	Wilk T	Fest S	tatistic	0.882			SI	napiro	Wilk (GOF Te	est	-		
75				5% Sł	napiro	Wilk C	Critical	Value	0.947	D	etected Da	ata No	t Logn	ormal	at 5% :	Signifi	cance I	Leve	1
76					Lillie	efors T	Fest S	tatistic	0.174				Lilliefo	rs GC	F Test				
77				5	% Lillie	efors C	Critical	Value	0.128	D	etected Da	ata No	t Logn	ormal	at 5% :	Signifi	cance l	Leve	1
78						De	tected	I Data I	Not Lognom	nal at 5% S	ignificance	Leve	1		-			_	
79		_																	
80				-		Lo	gnorn	nal ROS	S Statistics	Using Imput	ed Non-D	etects		_					
81					Mea	n in Oi	riginal	Scale	5.086				-		Mea	an in L	og Sca	le	1.061
82					SI) in O	riginal	Scale	5.246						S	D in L	og Sca	le	1.115
83		95% t	UCL (a	ssume	s norm	ality o	of ROS	data)	6.039				959	% Per	centile	Boots	trap UC	L	5.973
84				9	95% B	CA Bo	otstra	p UCL	6.106						95% B	ootstr	ap t UC	L	6.132
85					95%	H-UCI	L (Log	ROS)	7.166										
86			_	1.1		-				1							_		
87					10000				DL/2 S	tatistics									~
88			_	DL/2	lormal							D	1/2 Log	j-Trai	sforme	əd			
89					Mean	n in Oi	riginal	Scale	4.943					-	Mea	n in L	og Sca	le	0.983
90					S) in Or	riginal	Scale	5.336						S	D in L	og Sca	le	1.137
91			-	95% t L	ICL (As	ssume	es nor	mality)	5.911						95	5% H-	Stat UC	L	6.853
92				DL/2	s not a	recor	mmen	ded me	thod, provi	ded for com	parisons a	and his	storica	reas	ons			1	
									10-					-					a lie

	A	B	С	D	E	F	G	Н		J	K	L
94					Nonparam	etric Distribu	ition Free UC	CL Statistics				
95				Data do n	ot follow a D	Discernible D	istribution at	5% Significa	ance Level			
96												
						Suggested	UCL to Use					
98				95%	5 KM (t) UCL	5.924			95%	6 KM (% Boo	otstrap) UCL	5.927
<u> </u>								1				

99	
100	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.
101	Recommendations are based upon data size, data distribution, and skewness.
102	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).
103	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.
104	

	A B C	D E	F	G H I J K	L
1		UCL Statis	tics for Data	Sets with Non-Detects	
2		A stars and other			
3	User Selected Options				
4	Date/Time of Computation	6/26/2015 11:36:09 AM			
5	From File	SEAD17_Antimony4UCL	xls		
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000		· · · · · · · · · · · · · · · · · · ·	
9					
10	Result				
11					
12				Statistics	45
13	l otal	Number of Observations	60	Number of Distinct Observations	15
14		Number of Detects	14	Number of Non-Detects	46
15	N	umber of Distinct Detects	13	Number of Distinct Non-Detects	3
16		Minimum Detect	0.56	Minimum Non-Detect	1
17		Maximum Detect	4.4	Maximum Non-Detect	2.3
18		Variance Detects	1.714	Percent Non-Detects	76.67%
19		Mean Detects	2.456	SD Detects	1.309
20		Median Detects	2.73	CV Detects	0.533
21		Skewness Detects	-0.204	Kurtosis Detects	-1.415
22		Mean of Logged Detects	0.708	SD of Logged Detects	0.706
23					
24				t on Detects Only	
25		hapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test	
26	5% SI	hapiro Wilk Critical Value	0.874	Detected Data appear Normal at 5% Significance Leve	91
27		Lilliefors Test Statistic	0.153	Lilliefors GOF Test	
28	5	% Lilliefors Critical Value	0.237	Detected Data appear Normal at 5% Significance Leve	əl
29		Detected Data a	appear Nom	nal at 5% Significance Level	
30		140.0			
31	Kaplan-			ritical Values and other Nonparametric UCLs	
32		Mean	1.102	Standard Error of Mean	0.143
33		SD	0.993	95% KM (BCA) UCL	1.499
34		95% KM (t) UCL	1.341	95% KM (Percentile Bootstrap) UCL	1.473
35		95% KM (z) UCL	1.337	95% KM Bootstrap t UCL	1.363
36		00% KM Chebyshev UCL	1.531	95% KM Chebyshev UCL	1.725
37	97.	.5% KM Chebyshev UCL	1.995	99% KM Chebyshev UCL	2.524
38		0	Tosts an D	etected Observations Only	
39		A-D Test Statistic	0.672	Anderson-Darling GOF Test	
40		5% A-D Critical Value	0.672	Detected data appear Gamma Distributed at 5% Significance	
41		K-S Test Statistic	0.743	Kolmogrov-Smirnoff GOF	
42		5% K-S Critical Value	0.212	Detected data appear Gamma Distributed at 5% Significance	
43				stributed at 5% Significance Level	
44					
45		Commo	Statistics on	Detected Data Only	
46		k hat (MLE)	2.783	k star (bias corrected MLE)	2.234
47		Theta hat (MLE)	0.883	Theta star (bias corrected MLE)	1.099
48		nu hat (MLE)	77.91	nu star (bias corrected)	62.55
49		E Mean (bias corrected)	2.456	MLE Sd (bias corrected)	1.643
50	IVIL		2.400		
51					

	A B C D E	F	G H I J K eier (KM) Statistics	L
52				147.6
53	k hat (KM)	1.23	nu hat (KM)	147.6
54	Approximate Chi Square Value (147.55, α) 95% Gamma Approximate KM-UCL (use when n>=50)	120.5 1.349	Adjusted Chi Square Value (147.55, β) 95% Gamma Adjusted KM-UCL (use when n<50)	1.356
-		1.545	33 % Gamma Adjusied RM-OOL (use when riso)	1.550
50	Gamma ROS	Statistics us	ing Imputed Non-Detects	
57 58	GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs	
59	GROS may not be used w	vhen kstar o	f detected data is small such as < 0.1	
60	For such situations, GROS me	ethod tends	to yield inflated values of UCLs and BTVs	
61	For gamma distributed detected data, BTVs ar	nd UCLs ma	y be computed using gamma distribution on KM estimates	
62	Minimum	0.01	Mean	1.033
63	Maximum	4.4	Median	0.684
64	SD	1.132	CV	1.096
65	k hat (MLE)	0.54	k star (bias corrected MLE)	0.524
66	Theta hat (MLE)	1.914	Theta star (bias corrected MLE)	1.972
67	nu hat (MLE)	64.74	nu star (bias corrected)	62.84
68	MLE Mean (bias corrected)	1.033	MLE Sd (bias corrected)	1.427
69			Adjusted Level of Significance (β)	0.046
70	Approximate Chi Square Value (62.84, α)	45.6	Adjusted Chi Square Value (62.84, β)	45.24
71	95% Gamma Approximate UCL (use when n>=50)	1.423	95% Gamma Adjusted UCL (use when n<50)	1.434
72				
73	Lognormal GOF	F Test on D	etected Observations Only	
74	Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test	
75	5% Shapiro Wilk Critical Value	0.874	Detected Data Not Lognormal at 5% Significance Leve	el
76	Lilliefors Test Statistic	0.228	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.237	Detected Data appear Lognormal at 5% Significance Le	vel
78	Detected Data appear A	pproximate	Lognormal at 5% Significance Level	
79				
80	Lognormal ROS	Statistics L	Jsing Imputed Non-Detects	
81	Mean in Original Scale	1.135	Mean in Log Scale	-0.199
82	SD in Original Scale	1.023	SD in Log Scale	0.799
	95% t UCL (assumes normality of ROS data)	1.356	95% Percentile Bootstrap UCL	1.364
83		1.000		
	95% BCA Bootstrap UCL	1.398	95% Bootstrap t UCL	1.402
84				1.402
84 85	95% BCA Bootstrap UCL	1.398		1.402
84 85 86	95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	1.398 1.409		1.402
84 85 86 87	95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	1.398 1.409	95% Bootstrap t UCL	
84 85 86 87 88	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I	1.398 1.409 KM Estimate	95% Bootstrap t UCL	1.225
84 85 86 87 88 89	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged)	1.398 1.409 KM Estimate -0.157	95% Bootstrap t UCL es when Detected data are Lognormally Distributed 95% H-UCL (KM -Log)	1.225
84 85 86 87 88 89 90	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged) KM SD (logged)	1.398 1.409 KM Estimato -0.157 0.629	95% Bootstrap t UCL es when Detected data are Lognormally Distributed 95% H-UCL (KM -Log)	1.402 1.225 1.984
83 84 85 86 87 88 89 90 91 92	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged) KM SD (logged)	1.398 1.409 KM Estimato -0.157 0.629	95% Bootstrap t UCL as when Detected data are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	1.225
84 85 86 87 88 89 90 91 92	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged) KM SD (logged)	1.398 1.409 KM Estimate -0.157 0.629 0.102	95% Bootstrap t UCL as when Detected data are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	1.225
84 85 86 87 88 90 91 92 93	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	1.398 1.409 KM Estimate -0.157 0.629 0.102	95% Bootstrap t UCL es when Detected data are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) atistics	1.225 1.984
84 85 86 87 88 89 90 91 92 93 94	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal	1.398 1.409 KM Estimate -0.157 0.629 0.102 DL/2 St	95% Bootstrap t UCL es when Detected data are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) atistics DL/2 Log-Transformed	1.225 1.984
84 85 86 87 88 89 90	95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribution and I KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale	1.398 1.409 KM Estimato -0.157 0.629 0.102 DL/2 St 1.293	95% Bootstrap t UCL es when Detected data are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) atistics DL/2 Log-Transformed Mean in Log Scale	0.0801

	A	В	С	D	E	F	G	Н	I	J	K	L	
99	Nonparametric Distribution Free UCL Statistics												
100	Detected Data appear Normal Distributed at 5% Significance Level												
101													
102	Suggested UCL to Use												
103				95%	KM (t) UCL	1.341		95% KM (Percentile Bootstrap) UCL 1.473					
104			-		-	-							
105	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
106	Recommendations are based upon data size, data distribution, and skewness.												
107	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).												
108	Но	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
109													