

ANNUAL REPORT 2012 – YEAR 5

ABANDONED DEACTIVATION FURNACE (SEAD-16) AND ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS April 2013

DRAFT

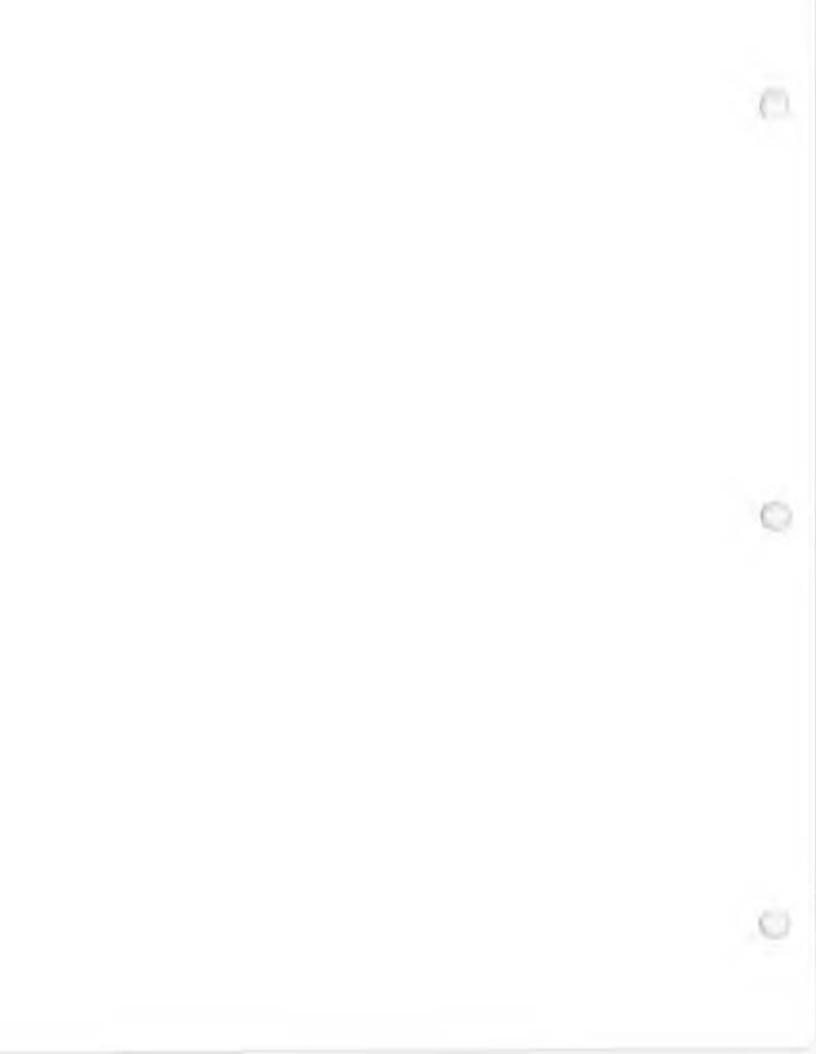
ANNUAL REPORT 2012 - YEAR 5

FOR THE ABANDONED DEACTIVATION FURNACE (SEAD-16) AND THE ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY, ROMULUS, NY

Prepared for:

U.S. ARMY CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE, ALABAMA

and


SENECA ARMY DEPOT ACTIVITY

ROMULUS, NY

Prepared by:

PARSONS 100 High Street Boston, MA 02110

Contract Number W912D4-08-D-003 Task Order 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

TABLE OF CONTENTS

List of	f Figures	ii
List of	f Append	licesii
1.0	INTRO	DDUCTION
2.0	SITE	BACKGROUND
	2.1	Site Description
	2.2	Site Hydrology
		2.2.1 SEAD-16
		2.2.2 SEAD-17
	2.3	Pre-Remedial Action Soil and Groundwater Conditions for SEAD-162-2
	2.4	Pre-Remedial Action Soil and Groundwater Conditions for SEAD-172-3
	2.5	Remedial Action Summary
3.0	LONC	G TERM MONITORING RESULTS
	3.1	Summary of Year 1 LTM Event
	3.2	Summary of Year 2 LTM Event
	3.3	Summary of Year 3 LTM Event
	3.4	Summary of Year 4 LTM Event
	3.5	Year 5 LTM Event
		3.5.1 Year 5 LTM Sample Collection
		3.5.2 Year 5 LTM Sample Filtering
	3.6	Year 5 Groundwater Elevations for SEAD-16 and SEAD-17
	3.7	Summary of Year 5 Groundwater Data for SEAD-16
	3.8	Summary of Year 5 Groundwater Data for SEAD-17
	3.9	Groundwater Data Trends
		3.9.1 Review of Groundwater Trends at SEAD-16
		3.9.2 Review of Groundwater Trends at SEAD-17
	3.10	Routine Inspections for SEAD-16 and SEAD-17 Monitoring Wells
4.0	REME	EDY EVALUATION
March 2	013	Page i

\\Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

Page ii

5.0	CON	CLUSIONS AND RECOMMENDATIONS	
	5.1	Conclusions	5-1
	5.2	Recommendations	
6.0	REFE	RENCES	6-1

LIST OF TABLES

Table 1	Groundwater Table Elevation Summary - SEAD-16
Table 2	Groundwater Table Elevation Summary - SEAD-17
Table 3	SEAD-16 - Comparison of Year 5 Geochemical Parameters
Table 4	SEAD-17 - Comparison of Year 5 Geochemical Parameters
Table 5A	Year 5 Filtered and Unfiltered Groundwater Analyses at SEAD-16
Table 5B	Year 5 Filtered and Unfiltered Groundwater Analyses at SEAD-17

LIST OF FIGURES

- Figure 1 Seneca Army Depot Activity Location Map
- Figure 2 Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
- Figure 3 Site Plan SEAD-16
- Figure 4 Site Plan SEAD-17
- Figure 5 SEAD-16 and SEAD-17 Groundwater Flow Trend

LIST OF APPENDICES

- Appendix A Historic Groundwater Data
- Appendix B SEDA Background Groundwater Data Summary
- Appendix C Field Forms Year 5 LTM Groundwater Sampling Activities
- Appendix D Complete Groundwater Data Results (Years 1 through 5)
- Appendix E Laboratory Analytical Report
- Appendix F Data Validation

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

1.0 INTRODUCTION

This 2012 Annual Report – Year 5 for the former Abandoned Deactivation Furnace (SEAD-16) and the former Active Deactivation Furnace (SEAD-17) sites at the Seneca Army Depot Activity (SEDA or the Depot) in Romulus, Seneca County, New York provides a review of annual groundwater monitoring data collected in December 2012, comparisons of the 2012 data to other pre- and post-remedial action (RA) groundwater sampling events, recommendations for future long-term monitoring (LTM) at SEAD-16 and SEAD-17, and the annual review of the effectiveness of the remedy implemented at the sites in 2007.

In accordance with the Record of Decision (ROD) for SEAD-16 and SEAD-17 (Parsons, 2006) and the *Remedial Design Work Plan and Design Report* (Parsons, 2007) (Final Work Plan), a RA was completed in August 2007 for SEAD-16 and SEAD-17, or the areas of concern (AOCs). The RA consisted of the excavation, stabilization (as warranted), and disposal of soil contaminated with selected metals (antimony, arsenic, cadmium, copper, lead, mercury, thallium, and zinc) at levels above identified risk-based action levels from both AOCs. In addition, soil at SEAD-16 that was also contaminated with polyaromatic hydrocarbons (PAHs) at concentrations in excess of risk-based action levels was excavated, stabilized (if warranted), and disposed at a licensed landfill. The RA implemented is documented in the *Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17)* (Parsons, 2008). The RA at SEAD-16 involved the removal of approximately 1,862 cubic yards (cy) of soil impacted with metals and PAHs. The RA at SEAD-17 involved the removal of approximately 2,565 cy of metals-impacted soil.

The ROD for SEAD-16 and SEAD-17 also requires the implementation, maintenance, inspection, and periodic reporting of land use controls (LUCs) prohibiting use of the land at the AOCs for residential purposes and access to and use of groundwater until applicable cleanup standards are met. Applicable cleanup standards refer to the lowest enforceable standard recorded either on New York State Class GA (NYS Class GA) Ambient Water Quality Standards or United States Environmental Protection Agency (EPA) maximum contaminant levels (EPA MCLs). Once groundwater cleanup standards are achieved, the groundwater use restrictions may be eliminated upon approval of the EPA and the New York State Department of Environmental Conservation (NYSDEC). SEAD-16 and SEAD-17 are located within the Planned Industrial/Office Development and Warehousing (PID) area, which has area-wide LUCs that prohibit the development and use of the property for residential housing, elementary and secondary schools, childcare facilities, and playgrounds; and, prohibits access to and use of groundwater until concentrations have been reduced to levels that allow for unlimited exposure and unrestricted use.

The Land Use Control Remedial Design (LUC RD) Addendum #4 identifies and implements the LUCs required by the SEAD-16 and SEAD-17 ROD at the identified AOCs, as well as other AOCs (SEADs 1, 2, 5, 59, 71, 121C, and 121I) in the PID area. The LUC objectives for SEAD-16 and SEAD-17 are to prevent access to or use of groundwater until New York State GA groundwater standards are achieved, and to prohibit residential housing, elementary and secondary schools, child care facilities and playground activities at the sites. Implementation of the LUCs at SEAD-16 and SEAD-17 may include lease restrictions, an environmental easement, deed restrictions, zoning, periodic certification, and a five-year review as is defined in the *Final Land Use Control Design for SEAD-27, 66, and 64A* (Army, 2006). The

March 2013 Page 1-1 \Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

LUC RD for SEAD-27, 66 and 64A is also known as the *LUC RD for the Planned Industrial/Office Development or Warehousing Area* that proposed the establishment of an area-wide set of land use restrictions for the PID/Warehouse Area to simplify institutional control implementation by having a single set of land use restrictions for the PID/Warehouse Area, which are consistent with its anticipated industrial land use. The periodic certification will be submitted to the NYSDEC and EPA to document that the LUCs at SEAD-16 and SEAD-17 are unchanged and that no activities have occurred that impair or violate the ability of the LUCs to protect public health and the environment.

Long-term groundwater monitoring is being performed at SEAD-16 and SEAD-17 as part of the postclosure monitoring and maintenance (PCMM) operations in accordance with the ROD and as outlined in the Final Work Plan. Results for the first year (Year 1) LTM event performed in December 2007 are documented in the *Final Construction Completion Report for the Abandoned Deactivation Furnace* (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008). The Year 2 LTM event was performed in December 2008, with results documented in the *Final Annual Report – Year 2* (Parsons, 2009). Results for the Year 3 LTM sampling event conducted in November 2009 are documented in the *Final Annual Report – Year 3* (Parsons, 2010). The Year 4 LTM sampling event was conducted in December 2010 for both AOCs, with the results presented in the Draft *Final Annual Report – Year 4* (Parsons, 2011). No LTM sampling event was conducted in 2011 due to budgetary constraints. This report presents and discusses the results for Year 5's LTM event, which was conducted in December 2012.

2.0 SITE BACKGROUND

2.1 Site Description

SEDA, a 10,587-acre former military facility located in Seneca County near Romulus, New York, is located between Seneca Lake and Cayuga Lake in Seneca County, and is bordered by New York State Highway 96 to the east, New York State Highway 96A to the west, and sparsely populated farmland to the north and south. The facility was wholly owned by the United States Government and was operated by the Department of the Army between 1941 and 2000; since 2000, portions of the Depot have been transferred to other parties for reuse. SEDA's primary mission was the receipt, storage, maintenance, and supply of military items. A location map for SEDA is presented as **Figure 1**.

SEAD-16 and SEAD-17 are located in the east-central portion of the SEDA, within SEDA's former ammunition storage area in an area where vehicular and pedestrian access is restricted. SEAD-16 and SEAD-17 are located in the portion of SEDA where land is presently designated for future PID uses. The locations of SEAD-16 and SEAD-17 are shown in **Figure 2**.

Both AOCs were historically used for the demilitarization of various small arms munitions. The munitions deactivation process involved heating the munitions in a rotating steel kiln. The heat would cause the munitions to detonate once the detonation temperature was reached. The byproducts produced during this detonation were then either swept out of the kiln through the stack or expelled from the kiln as bottom ash or debris.

SEAD-16, the former Abandoned Deactivation Furnace, was used from approximately 1945 until the mid 1960s when its use ceased and the site was vacated. The site consisted of 2.6 acres of fenced land with grasslands in the north, east, and west; a storage area for empty boxes and wooden debris located to the west; and an unpaved roadway in the south. Building S-311, which previously housed the deactivation furnace, was located at the approximate center of this area, and was demolished as part of the RA at SEAD-16. Documentation of demolition activities is presented in the *Building Cleaning and Building Demolition Completion Report* (Parsons, 2008). Building S-366, known as the Process Support Building, is located to the northeast of former Building S-311, and is currently unused and vacant. In addition to Building S-366, two sets of SEDA railroad tracks and utilities are presently on-site.

SEAD-17, the former Active Deactivation Furnace, was constructed to replace the Abandoned Deactivation Furnace at SEAD-16. However, SEAD-17 was inactive after 1989 as a result of Resource Conservation and Recovery Act (RCRA) permitting issues. SEAD-17 formerly consisted of the deactivation furnace, associated air pollution control equipment, and a support building (Building S-367), which were demolished or dismantled during the RA. Details and results of the demolition are documented in the *Building Cleaning and Building Demolition Completion Report* (Parsons, 2008). The former SEAD-17 deactivation furnace facility and support building were surrounded by a crushed shale road, beyond which lie grasslands. An unpaved gravel road to the north permits vehicular access to SEAD-17.

2.2 Site Hydrology

The hydrogeologic setting of SEAD-16 and SEAD-17 is described in detail in Sections 3.1.6 and 3.2.6, respectively, of the *Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace*

March 2013 Page 2-1 \Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

(SEAD-16) and the Active Deactivation Furnace (SEAD-17) (Parsons, 1999). A brief summary of hydrogeologic conditions and chemical impacts as described in the RI Report is presented below.

2.2.1 SEAD-16

Three groundwater monitoring wells (MW16-1, MW16-2, and MW16-3) were installed as part of the Expanded Site Investigation (ESI) conducted at SEAD-16 in 1993/1994. Four additional groundwater monitoring wells (MW16-4, MW16-5, MW16-6, and MW16-7) were installed during the RI. As summarized in the *Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17)* (Parsons, 2008), MW16-3 was destroyed during the RA construction activities, and was not replaced as groundwater conditions on the southwest side of Building S-311 are adequately characterized by MW16-2 and MW16-5. The locations of the six existing groundwater monitoring wells and the former MW16-3 are shown on Figure 3.

Prior to the completion of the RA in August 2007, depth to groundwater was measured at SEAD-16 three times (April 1994, August 1996, and December 1996). Groundwater flow generally trends to the west based on previous subsurface investigations conducted at SEDA. Data from previous investigations suggest that a groundwater divide exists near, and approximately parallel to, Route 96 near Romulus, New York, indicating that the groundwater in the SEAD-16 area flows west. Based on available groundwater elevation data, it appears that there may be a regional groundwater high southwest of former Building S-311, which may contribute to local fluctuations in groundwater flow.

Horizontal hydraulic conductivities were determined for five wells screened in the till/weathered shale zone at SEAD-16. The saturated thickness in the till/weathered shale aquifer measured less than 2 feet when tested in September 1996. Hydraulic conductivity values for the shallow till/weathered shale aquifer ranged from 2.8 x 10^{-3} cm/sec to 2.5 x 10^{-2} cm/sec; the geometric mean was 7.3 x 10^{-3} cm/sec.

2.2.2 SEAD-17

Four groundwater monitoring wells (MW17-1, MW17-2, MW17-3, and MW17-4) were installed as part of the ESI conducted at SEAD-17. One additional groundwater monitoring well, MW17-5, was installed during the RI. The locations of the five groundwater monitoring wells installed at SEAD-17 are shown on **Figure 4**. Prior to the completion of the RA, depth to groundwater was measured at SEAD-17 in April 1994, August 1996, and December 1996 (the same time groundwater levels were measured at SEAD-16). Interpretation of groundwater elevation data indicates that groundwater flows to the southwest.

A horizontal hydraulic gradient of 0.01 ft/ft was calculated between monitoring wells MW17-1 and MW17-3. Hydraulic conductivities were found to range from 2.9×10^{-3} cm/sec to 1.4×10^{-2} cm/sec.

2.3 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-16

Pre-Remedial Action Soil Conditions

The primary historic constituents of concern (COCs) at SEAD-16 for soil included arsenic, copper, lead, and zinc. The highest concentrations of soil contamination resulted from operations that were performed within and in close proximity to the former Abandoned Deactivation Furnace Building (S-311) and the Process Support Building (Bld. 366). Carcinogenic PAHs were detected in soils found at discrete

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

locations within the AOC, with the highest concentrations detected in the surface soil samples collected adjacent to the northwestern corner of the former Abandoned Deactivation Furnace Building. Metals (antimony, copper, lead, mercury, and zinc) were found at concentrations greater than the site-specific cleanup goals in soil located in portions of the surrounding man-made drainage ditches.

Pre-Remedial Action Groundwater Conditions

Prior to completion of the RA, three rounds of low-flow groundwater sampling were conducted at SEAD-16, including one round in April 1994 as part of the ESI investigation activities, and two rounds in August and December 1996 as part of the RI activities. Compounds detected in the groundwater samples are presented in **Appendix A**. Refer to the RI Report for complete groundwater analyses. Metals were detected above either the applicable NYS Class GA standards or EPA MCLs. Concentrations exceeding applicable standards were less than or close to SEDA background concentrations, except for the exceedances of sodium. A summary of SEDA background groundwater data providing summary statistics (including maximum and average concentrations, the standard deviation for the collected data, and the frequency of detection) is provided in **Appendix B**. The Final Work Plan (Parsons, 2007) summarized that although metals had been detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities. This conclusion was based on a comparison of results to the background groundwater data collected from unaffected parts of SEDA.

2.4 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-17

Pre-Remedial Action Soil Conditions

The primary historic COCs in the soil at SEAD-17 were metals including antimony, arsenic, copper, lead, mercury, and zinc. The concentrations of metals were highest in samples collected closest to the location of the former Active Deactivation Furnace and its support building, particularly near the southwestern corner of the building.

Pre-Remedial Action Groundwater Conditions

Prior to the completion of the RA, three rounds of groundwater sampling were conducted at SEAD-17, concurrent with the sampling conducted at SEAD-16 as identified above. Compounds detected in the groundwater samples collected during the low-flow sampling events in 1996 are presented in **Appendix A**. Metals were detected at concentrations above the applicable NYS Class GA standards or EPA MCLs; however, these concentrations were lower than SEDA background concentrations, except for sodium. (See SEDA background groundwater data summary in **Appendix B**.) The Final Work Plan summarized that, although metals had been detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities. This conclusion is based on a comparison of results to groundwater data collected from non-impacted areas of SEDA.

2.5 Remedial Action Summary

The selected remedy for SEAD-16 and SEAD-17 required the following:

- Excavation of soil impacted with metals and PAHs at concentrations greater than the site-specific cleanup standards;
- Stabilization of excavated soil exceeding the toxicity characteristic leaching procedure;
- Disposal of the material in an off-site landfill;
- Backfilling the excavated areas with clean backfill;
- Performing groundwater monitoring for select metals until groundwater concentrations do not exceed the applicable NYS Class GA or EPA MCL standards;
- Establishing and maintaining LUCs to prevent access to or use of groundwater and to prevent residential use of the land until cleanup standards are met; and
- Performing a review of the selected remedy every five years to evaluate if the remedy remains protective of the public health and the environment in accordance with Section 121(c) of the Comprehensive Environmental Remediation and Cleanup Liability Act (CERCLA).

The excavation of the impacted soil at SEAD-16 and SEAD-17 began on July 9, 2007 and was completed on August 2, 2007. Approximately 1,862 cy of impacted soil was removed from SEAD-16 and approximately 2,565 cy of impacted soil was removed from SEAD-17. The limit of the excavations performed at SEAD-16 is shown on **Figure 3** and for SEAD-17 on **Figure 4**.

Soil was excavated from both SEAD-16 and SEAD-17 until confirmatory soil samples collected from the sidewalls (when appropriate), the excavation floor, and the perimeter yielded analytical results below site-specific cleanup standards. The depth of excavation completed at SEAD-16 varied from 1 to 3 feet below ground surface (bgs) and the excavation depth at SEAD-17 varied from 1 to 2 feet bgs. The impacted soil from SEAD-16 and SEAD-17 was transported off-site, and was disposed as non-hazardous material at the Ontario County Landfill in Flint, New York.

Deeper excavations at SEAD-16 and SEAD-17, including excavation areas surrounding the railroad tracks, were backfilled with clean bank-run gravel. SEAD-16 and SEAD-17 were graded to promote positive drainage. The areas at SEAD-17 that were vegetated prior to the RA were seeded to restore the vegetation. SEAD-16 was not seeded since it was not previously vegetated.

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

3.0 LONG TERM MONITORING RESULTS

3.1 Summary of Year 1 LTM Event

The first post-RA groundwater LTM event (Year 1) was performed at SEAD16 and SEAD-17 between December 19, 2007 and December 21, 2007. The results of the Year 1 event are reported in the *Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17)* (Parsons, 2008). Only unfiltered groundwater samples were collected and analyzed during this sampling event. Well MW16-3 was removed during the RA and was not sampled.

In summary, at SEAD-16 five metals (antimony, iron, lead, manganese, and sodium) were detected at concentrations above the respective NYS Class GA or EPA MCL standards in one or more of the wells, including antimony in wells MW16-2, MW16-4, and MW16-7; iron in wells MW16-5 and MW16-6; lead in well MW16-7; manganese in well MW16-7; and sodium in wells MW16-1, MW16-2, MW16-4, and MW16-7). At SEAD-17, two metals (antimony and sodium) were each detected once in different wells (MW17-2 and MW17-4, respectively) at concentrations above the respective NYS Class GA groundwater standards. Concentrations of other metals detected at SEAD-16 and SEAD-17 were below the applicable NYS Class GA groundwater and EPA MCL standards. With the noted exception of sodium concentrations detected at SEAD-16, concentrations detected at both SEAD-16 and SEAD-17 were below SEDA background concentrations. The *Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17)* (Parsons, 2008) concluded that the groundwater did not appear to be impacted by historic site activities.

3.2 Summary of Year 2 LTM Event

The second post-RA LTM event (Year 2) was performed at SEAD-16 and SEAD-17 between December 9, 2008 and December 11, 2008. The results of the Year 2 event were reported in *Final Annual Report* – *Year 2* (Parsons, 2009). Only unfiltered groundwater samples were collected and analyzed during the Year 2 sampling event.

Four metals (antimony, iron, lead, and sodium) were detected in wells at SEAD-16 at concentrations above the respective NYS Class GA or EPA MCL standards, including antimony in wells MW16-2, MW16-5, and MW16-7; iron in wells MW16-5 and MW16-7; lead in well MW16-7; and sodium in wells MW16-1, MW16-2, MW16-4, and MW16-7. At SEAD-17, two metals (iron and manganese) were detected at concentrations above the applicable NYS Class GA standards in wells MW17-3 (iron and manganese) and MW17-4 (iron). Concentrations of other metals detected at SEAD-16 and SEAD-17 were below the applicable NYS Class GA or EPA MCL standards. *The Final Annual Report – Year 2* (Parsons, 2009) concluded that the groundwater does not appear to be impacted by historic site activities and there does not appear to be an indicator of deteriorating conditions at SEAD-16 and SEAD-17.

3.3 Summary of Year 3 LTM Event

The third post-RA LTM event (Year 3) was performed at SEAD-16 and SEAD-17 between November 12, 2009 and November 18, 2009. The results of the Year 3 event were reported in *Draft Final Annual*

Report – Year 3 (Parsons, 2010). Both filtered (i.e., dissolved) and unfiltered (i.e., total) samples were collected and characterized during this sampling event.

Three metals (antimony, iron, and sodium) were detected in unfiltered groundwater samples from SEAD-16 at concentrations above the applicable NYS Class GA standards in wells MW16-2 and MW16-7 (antimony); in wells MW16-4, MW-16-5, and MW16-6 (iron); and in wells MW16-1, MW16-2, MW16-4, and MW16-7 (sodium). At SEAD-17, antimony, iron, manganese, lead, and sodium were detected in the unfiltered sample collected from well MW17-2 at concentrations above the applicable NYS Class GA or EPA MCL standards; iron was detected above its NYS Class GA standard in the filtered samples collected from MW17-3; and sodium was detected above its NYS Class GA standard in the filtered and unfiltered samples at MW17-5.

Filtered and unfiltered sample results for SEAD-16 were similar for antimony and sodium in the wells as indicated above; however, unfiltered results for iron were somewhat higher than the filtered samples in wells MW16-4 and MW-16-5. Filtered and unfiltered sodium concentrations were similar in the SEAD-17 wells, but filtered and unfiltered iron concentrations in wells MW17-2 and MW17-3 were significantly different, with the unfiltered concentrations the highest in both cases.

Concentrations of the other metals detected at SEAD-16 and SEAD-17 were below the applicable NYS Class GA or EPA MCL standards. Similar to the results of the Year 2 LTM event, the *Draft Final* Annual Report – Year 3 (Parsons, 2010) concluded that the groundwater does not appear to be impacted by historic site activities and there does not appear to be an indication that conditions are deteriorating at SEAD-16 and SEAD-17.

3.4 Summary of Year 4 LTM Event

The Year 4 LTM groundwater sampling event was conducted at SEAD-16 and SEAD-17 between December 13, 2010 and December 17, 2010. Filtered and unfiltered groundwater samples were collected from the six monitoring wells located at SEAD-16, and from the five monitoring wells located at SEAD-17. Concentrations of metals (including antimony, sodium, and iron) exceeding the applicable NYS Class GA standards were detected in the filtered and unfiltered samples collected from five of the six wells (MW16-1, MW16-2, MW16-4, MW16-5, and MW16-7) sampled at SEAD-16. Antimony and sodium were detected above the applicable NYS Class GA standard in MW16-2 and MW16-7; sodium was detected above the applicable NYS Class GA standard in MW16-1 and MW16-4; and iron was detected above the applicable NYS Class GA standard in MW16-1 and MW16-4; and iron was detected above the applicable NYS Class GA standard in MW16-5. Concentrations of antimony and sodium were similar for unfiltered and filtered samples, with the highest concentrations of antimony and sodium detected in MW16-7 and MW16-4, respectively. Iron exceedances were found in the unfiltered and filtered amples collected from MW16-5.

At SEAD-17, inorganic constituents were detected at concentrations below the applicable NYS Class GA and EPA MCL standards in both the filtered and unfiltered samples collected from the five monitoring wells with the exception of MW17-3. Similar to the results of the Year 3 LTM event, iron was the only metal detected above the applicable NYS Class GA standard in both unfiltered and filtered samples collected from MW17-3.

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

Similar to the results of previous LTM events, the Draft Final Annual Report 2010 - Year 4 (Parsons, 2011) concluded that although there were exceedances of select metals found at both SEAD-16 and SEAD-17, the groundwater does not appear to be impacted by historic site activities and therefore does not appear to indicate that groundwater conditions are deteriorating at either SEAD-16 and SEAD-17.

3.5 Year 5 LTM Event

The Year 5 post-RA LTM event was conducted at SEAD-16 and SEAD-17 from December 11, 2012 through December 15, 2012. Filtered and unfiltered groundwater samples were collected from six monitoring wells located at SEAD-16 and from five monitoring wells located at SEAD-17. This is the third sampling event that includes the collection of filtered and unfiltered samples.

Field forms completed for the Year 5 sampling event are included in Appendix C. Prior to the collection of groundwater samples from each of the monitoring wells, groundwater elevation measurements were collected at each of the wells to be sampled. Groundwater elevation data for the Year 5 LTM event, as well as historic data, are presented in Table 1 and Table 2 for SEAD-16 and SEAD-17, respectively.

Year 5 LTM Sample Collection 3.5.1

Samples for the Year 5 LTM event were collected using low flow sampling techniques. A peristaltic pump was used in place of a bladder pump to collect the groundwater samples due to anticipated winter weather conditions, including possible standing air temperatures below 32 degrees Fahrenheit (0 degrees Celsius). A peristaltic pump is recommended for freezing conditions since the bladder pump recharge cycle sequence allows water to freeze in the exposed portion of the sample tubing, which may inhibit sample collection efforts if ice plugs form in the tubing.

Sample collection, handling and custody, holding times, and field parameter collection procedures were conducted in accordance with the Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP) (Parsons, 2006c). Samples collected from the six SEAD-16 wells and the five SEAD-17 wells were submitted to TestAmerica (Savannah, GA) for the following analyses:

- Total Analyte List (TAL) metals, exclusive of mercury, by USEPA SW846 Method 6020; and .
- Mercury by USEPA SW846 7470A. •

TestAmerica's Savannah, GA laboratory is certified by the Department of Defense's (DoD's) Environmental Laboratory Accreditation Program (ELAP) and the NELAC National Environmental Laboratory Accreditation Program (NELAP) for the above analyses/analytical methods for both potable and non-potable water.

Quality control (QC) samples, including one duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair, were collected at MW16-7. In the field, pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), conductivity, temperature, and turbidity data were collected from each well during the purging cycle; filtered turbidity data was collected for each location after the filtered sample was collected; and pH, ORP, DO, conductivity, temperature, and turbidity data were also collected from each well after samples had been collected to assess overall sample sequence stability. A summary of the

pre- and post-sampling field parameters is provided in **Table 3** and **Table 4** for SEAD-16 and SEAD-17, respectively.

3.5.2 Year 5 LTM Sample Filtering

As documented in Final Annual Report - Year 2 (Parsons, 2009), Draft Final Annual Report - Year 3 (Parsons, 2010), and Draft Final Annual Report 2010 - Year 4 (Parsons, 2011) some of the metal concentrations that exceed NYS Class GA or EPA MCL standards in SEAD-16 and SEAD-17 wells may be associated with the groundwater turbidity fluctuations encountered in the wells at the time of sampling. For example, several of the samples (e.g., MW16-1, MW16-4, MW16-7, MW17-1, and MW17-4) collected during the Year 3 monitoring event had very low levels of turbidity [i.e., less than 1 Nephelometric Turbidity Unit (NTU)] which resulted in similar metal concentrations reported for both the filtered and unfiltered samples. Conversely, certain metals (most notably aluminum, iron, and manganese in many wells) and specific metals such as lead (as detected in MW16-7, MW17-2 and MW17-3) appear to be affected by filtering, which suggests that the reported metal results may be due to the presence of soil in the samples analyzed. Concentrations measured for several metals (antimony, calcium, magnesium, potassium and sodium) are unaffected either by variations in turbidity level or by sample filtering, suggesting that these metals may be present as dissolved species in the groundwater. With this in mind, both unfiltered and filtered samples were collected for the Year 5 LTM event: samples were collected directly from the well as unfiltered samples, and then another sample was collected and filtered through a 0.45-micron membrane filter was used to collect the filtered sample.

Both the filtered and unfiltered samples from SEAD-16 and SEAD-17 wells were analyzed for TAL metals by the methods listed in Section 3.5.1. The unfiltered and filtered concentrations of metals detected in samples collected from SEAD-16 and SEAD-17 wells is shown in Table 5A and Table 5B, respectively.

Turbidity levels recorded immediately prior to sample collection ranged from 0.48 NTU (MW16-4) to 3.6 NTUs (MW17-1). Turbidity levels recorded after the collection of both unfiltered and filtered samples ranged from 0.87 NTU (MW16-1) to 3.28 NTU (MW17-1). Filtered water turbidity levels ranged from 0 NTU to 0.4 NTU, as would be expected after passing through a 0.45-micron membrane filter.

Review of the Year 5 data supports the conclusions drawn from interpretation of Year 3 and 4 data, and show that in cases where groundwater turbidity level is low, the difference between the metals concentrations for both filtered and unfiltered samples is minimal. Samples collected from MW16-1, MW16-4, MW16-7, MW17-1, and MW17-4 during the Year 5 monitoring event had very low turbidity levels (i.e., less than 1.7 NTU) which resulted in similar metal concentrations reported for both the filtered and unfiltered samples from these wells. Concentrations of some metals, such as iron, detected in six wells (M16-4, MW16-5, MW16-6, MW17-1, MW17-4 and MW17-5) showed decreases in concentration that may be attributed to filtering. Concentrations measured for several metals (i.e., antimony, calcium, magnesium, potassium and sodium) appear to be unaffected by either variation in turbidity levels or by sample filtering, suggesting that these metals are dissolved in the groundwater.

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

3.6 Year 5 Groundwater Elevations for SEAD-16 and SEAD-17

Groundwater elevations were measured on December 11, 2012 at SEAD-16, and on December 15, 2012 at SEAD-17. Groundwater elevation data, including historic groundwater elevation data, for SEAD-16 and SEAD-17 is presented as Table 1 and Table 2, respectively.

Groundwater elevation data collected during previous investigations indicate that groundwater generally flows to the southwest at SEAD-16; however, historical groundwater elevation data also indicate that localized variation in groundwater flow direction may be due to higher groundwater elevations observed to the northeast and southwest of Building 311. During the most recent (Year 5) LTM event, and similar to the Year 4 LTM groundwater flow observations at SEAD-16, groundwater elevation data suggest that there is a groundwater low in the vicinity of the former Building 311 location. The higher groundwater elevations to the northeast and southwest of the apparent groundwater low in the vicinity of Building 311 result in two apparent local groundwater flow directions (to the southeast and northwest, respectively) as shown on Figure 5.

Based on the most recent elevation data (December 2012), groundwater at SEAD-17 appears to flow generally to the west-southwest as shown on Figure 5, which is consistent with historical groundwater flow observations at SEAD-17.

3.7 Summary of Year 5 Groundwater Data Analysis for SEAD-16

A summary of metals detected in groundwater during the Year 5 LTM event for SEAD-16 is presented in Table 5A. Complete groundwater data results are presented in Appendix D. A discussion of data validation results is presented in Appendix F; there were no non-compliance issues reported. Concentrations of metals including antimony, iron, and sodium were detected above applicable NYS Class GA standards in both filtered and unfiltered samples, including metals exceedances for filtered samples from five of the six wells, and unfiltered sample exceedances from the six wells.

Antimony exceeded the NYS Class GA standard of 3 µg/L for both the filtered and unfiltered samples collected from three wells (MW16-2, MW16-4, and MW16-7). The highest concentrations of antimony were found at well MW16-7, where concentrations of 13.5 µg/L and 13 µg/L, were found in the unfiltered and filtered samples, respectively. Antimony concentrations measured in the unfiltered versus filtered samples collected from MW16-2 were also comparable, with the unfiltered sample yielding a concentration of 7.1 µg/L, and the filtered sample's concentration was 7.8 µg/L. Unfiltered and filtered samples from MW16-4 yielded the lowest concentrations of 3.9 μ g/L and 4 μ g/L, respectively.

Iron exceeded the NYS Class GA standard (300 µg/L) in the unfiltered and filtered samples analyzed from well MW16-5, with unfiltered and filtered sample concentrations of 1,300 µg/L and 1,100 µg/L, respectively. Iron additionally exceeded the NYS GA standard at a concentration of 790 μ g/L in the unfiltered sample collected from MW16-6.

Concentrations of the sum of iron and manganese compounds detected in unfiltered and filtered samples collected from well MW16-5 also exceeded the combined NYS Class GA standard of 500 µg/L with the primary contributing metal being iron. Although manganese was detected in the unfiltered and filtered

Page 3-5 \\Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

groundwater samples collected from the six SEAD-16 wells, it was not detected at concentrations above its NYS Class GA standard (300 µg/L) during the Year 5 LTM event.

Sodium was detected at concentrations above the NYS Class GA standard (20,000 µg/L) in unfiltered and filtered samples collected from SEAD-16 wells MW16-1, MW16-4, and MW16-7. The highest concentrations were detected in the unfiltered and filtered samples collected from well MW16-4 at concentrations of 310,000 µg/L and 340,000 µg/L, respectively. Sodium exceedances were also found in the MW16-1 unfiltered and filtered samples at concentrations of 62,000 µg/L and 63,000 µg/L, respectively; and in the MW16-7 filtered and unfiltered samples at concentrations of 35,000 µg/L and 32,000 µg/L, respectively. The duplicate of MW16-7 had similar sodium concentrations.

In summary, select metals including antimony, iron, and sodium continue to be detected in the groundwater at SEAD-16 at levels that exceed NYS Class GA standards. In general, however, there does not appear to be evidence of an area-wide or expanding plume at SEAD-16, as illustrated by the generally stable occurrence of metals concentrations identified across the groundwater monitoring well network during the LTM sampling events. Access to and use of the groundwater is restricted at the AOC under the terms of the ROD and the groundwater is not being used as a potable water source. A nongroundwater sourced municipal water supply is available for SEDA and currently includes the PID area. The groundwater access/use restriction will remain in effect at SEAD-16 until the select metal concentrations in groundwater have been reduced to levels below applicable NYS Class GA and EPA MCL standards, and until data demonstrating acceptable groundwater quality in the AOC is provided to and approved by the applicable regulatory agencies.

3.8 Summary of Year 5 Groundwater Data Analysis for SEAD-17

A summary of metals detected in the Year 5 groundwater samples event for SEAD-17 is presented in Table 5B. Complete groundwater analytical results are presented in Appendix D. Concentrations of metals in MW17-1, MW17-3, MW17-4, and MW17-5 were detected below the applicable NYS Class GA and EPA MCL standards in both the filtered and unfiltered samples. Antimony was detected at concentrations exceeding the NYS Class GA standard of 3µg/L in the filtered and unfiltered samples collected from MW17-2 at concentrations of 4 (J) μ g/L and 4.4 (J) μ g/L, respectively (note that the concentrations reported are followed by the "J" qualifier, which indicates that the reported value is estimated).

The SEAD-17 Year 5 data continues to demonstrate that the groundwater at SEAD-17 has not been impacted by metals released from the former Active Deactivation Furnace site. Although the concentrations of antimony were identified at concentrations above the applicable NYS Class GA standards, the results are similar to what has been observed historically at the site, and indicate that there has not been a significant change in groundwater conditions. Access to and use of the groundwater is restricted at the AOC under the terms of the ROD, and is not being used as a potable water source. A non-groundwater sourced municipal water supply is available for the Depot, and currently includes the PID area. The groundwater access/use restriction will remain in effect at SEAD-17 until select metal concentrations in groundwater have been reduced to levels below applicable NYS Class GA and EPA

Page 3-6 \\Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

MCL standards, and until data demonstrating acceptable groundwater quality in the AOC is provided to and approved by the applicable regulatory agencies.

3.9 Groundwater Data Trends

A comparison of data collected during the Years 1 to 5 LTM events to groundwater conditions noted prior to the RA is provided for SEAD-16 and SEAD-17 in the following discussions. Summaries of metal exceedances detected during the Year 5 groundwater monitoring event for SEAD-16 and SEAD-17 is provided in **Table 5A** and **Table 5B**, respectively. The complete data set for Year 1 through Year 5 LTM events is included as **Appendix D**.

3.9.1 Review of Groundwater Trends for SEAD-16

ESI and RI Data

Review of SEAD-16 data presented in the RI Report indicated that one or more concentrations measured for 14 metals (including arsenic, antimony, barium, beryllium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, sodium, and thallium) in 19 unfiltered groundwater samples collected during the ESI (performed in 1993/1994) and/or the RI (performed in 1999) exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 39 total instances where groundwater concentrations exceeded NYS Class GA or EPA MCL standards, 22 exceedances were associated with samples collected with peristaltic pumps (e.g., for the ESI sampling event) while the remaining 17 exceedances were found in samples collected using low-flow bladder pumps. Sample turbidities recorded during the RI sampling events were significantly lower than those recorded during the ESI sampling event, and thus are believed to be more representative of the water quality located at the site prior to the RA. Examination of the RI groundwater data shows that six metals were detected at concentrations in excess of NYS Class GA or EPA MCL standards in effect at the time of analysis:

- antimony (detected 2 times);
- iron (detected 5 times);
- lead (detected 1 time);
- manganese (detected 2 times);
- sodium (detected 3 times); and
- thallium (detected 4 times).EPA MCL

Of these detections, antimony was detected at concentrations above the applicable NYS Class GA standard only in well MW16-3, with a maximum concentration of 12.3 μ g/L. Iron was found at elevated concentrations in three wells: MW16-1 (at a maximum concentration of 2,400 J¹ μ g/L), MW16-2, and MW16-3. Lead was detected only in MW16-3 at a maximum concentration of 24.1 J μ g/L; manganese was detected at elevated concentrations only in MW16-6 with a maximum level of 1,380 μ g/L; sodium was detected in two wells (MW16-5 and MW16-6) with a maximum concentration of 409,000 μ g/L

¹ The "J" data qualifier is used to indicate that the reported concentration is estimated.

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

detected at MW16-6; and thallium was detected in three wells including (MW16-2, MW16-5, and MW16-6), with a maximum concentration of $11 \mu g/L$ detected at MW16-6.

Post-Remedial Action Data

Over the six years since the completion of the RA at SEAD-16, a total of 56 groundwater samples, including 38 unfiltered and 18 filtered groundwater samples have been collected from the six wells located on SEAD-16. Amongst the 56 characterized groundwater samples, there have been eighty-one exceedances of individual applicable NYS Class GA or EPA MCL standards. These exceedances were primarily distributed across five metals consisting of antimony (28 exceedances), iron (14 exceedances), lead (two exceedances), manganese (one exceedance), and sodium (36 exceedances). Of the 81 exceedances, 22 were detected in the filtered samples and 46 were detected in unfiltered samples.

Antimony concentrations exceeding the NYS Class GA standard of 3 μ g/L have been detected 28 times and most frequently have been detected in two wells, MW16-2 and MW16-7. Antimony detections above the NYS Class GA standards have inconsistently been found in well MW16-4 (five times, including two filtered from LTM events 4 and 5 and three unfiltered from LTM events1, 3, and 5); and in MW16-5 (one unfiltered sample). Filtered and unfiltered sample results for antimony from wells MW16-2 and MW16-7 are generally comparable, suggesting that the metal is present as a dissolved species. The highest concentrations are found consistently in well MW16-7 where the overall maximum concentration (16.3 μ g/L) was detected in the sample/duplicate collected during the Year 3 sampling event in 2009. This maximum concentration is approximately equivalent to what was detected in the groundwater at the former MW16-3 prior to the RA.

Exceedances of the NYS Class GA standard for iron were noted 14 times, distributed across wells MW16-4 through MW 16-7 over the five LTM sampling events. Iron concentrations noted in filtered samples are generally lower than concentrations found in unfiltered samples indicating that the iron concentrations are somewhat dependant of turbidity levels present in the groundwater at the time of sampling. The highest post RA concentration of iron detected in the groundwater at SEAD-16 is 1,300 μ g/L (MW16-5, Year 5 LTM sampling event), which is roughly half of what was detected in the groundwater at the site prior to the RA.

Lead has been detected less frequently (22 of 56 LTM samples) and at lower concentrations (two exceedances post RA) in groundwater during the five years of post-RA monitoring. The two noted post-RA exceedances of the lead EPA MCL both occurred in well MW16-7 during the first and second LTM sampling events. Both of these samples were unfiltered, and since the last exceedance at MW16-7, lead levels in both the filtered and the unfiltered samples collected from this well have trended downward.

Sodium is a persistent contaminant identified in SEAD-16 wells, as it has been detected in every sample collected from the site, and at levels in excess of its NYS Class GA standard in 36 of the 54 samples. Sodium concentrations detected in the groundwater are currently higher than what was found prior to the RA, with concentrations possibly affected by the known county highway salt pile operation that is operated by the Seneca County Highway Department (located approximately 1,000 feet upgradient to the east-northeast of SEAD-16).

March 2013

\\Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

Although enough data points are available to perform a limited statistical analysis [e.g., using the combined SEAD-16 pre-RA (1 to 3 samples per well) and post-RA (5 samples per well) datasets], the overall limited availability of data points and the high percentage of non-detects in the metal constituents results would not be conducive to providing a comprehensive evaluation. A review of the EPA's *Groundwater – Unified Guidance* (EPA 2009) document provides numerous statistical methodologies; however, although the present number of data points could be used to perform a statistical analysis. The guidelines recommend 10 to15 distinct data points for accurate and meaningful results. Based on the limited data available the results would be inconclusive since there are at most five distinct data points for antimony in two of the wells (MW16-2 and MW16-7). Following the additional annual LTM events it is anticipated that a sufficient number of data points will be available to conduct a statistical analysis of the post-RA sampling data.

3.9.2 Review of Groundwater Trends at SEAD-17

ESI and RI Data

Review of SEAD-17 data presented in the RI Report indicated that one or more concentrations measured for five metals (i.e., iron, lead, sodium, and thallium) in 12 unfiltered groundwater samples exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 16 instances where groundwater concentrations exceeded the NYS Class GA or EPA MCL standards, 10 were associated with samples collected with a peristaltic pump (ESI sampling event) while the remaining six were found in samples collected using low-flow sampling with a bladder pump. As was indicated above for SEAD-16, sample water turbidities recorded during the RI sampling events were lower than those recorded during the ESI sampling event, and thus the analytical results from the RI samples are believed to be more representative of the water quality present at SEAD-17. Examination of the RI groundwater data indicates that only three metals (iron, sodium, and thallium) were detected at concentrations above NYS Class GA or EPA MCL standards in effect at the time of analysis. Of these detections, iron was detected at an elevated concentration in one well (MW17-1 at a concentration of 572 J μ g/L); sodium was detected in two wells (MW17-1 at a maximum concentration of 7.1 μ g/L, and at MW17-5).

Post-Remedial Action Data

Since the completion of the RA at SEAD-17, a total of 40 groundwater samples including 25 unfiltered and 15 filtered groundwater samples have been collected from the five wells located on SEAD-17. Eighteen exceedances of NYS Class GA or EPA MCL standards primarily distributed across five metals have been detected, including antimony (four exceedances), iron (seven exceedances), lead (one exceedance), manganese (two exceedances), and sodium (four exceedances). Of the 20 NYS Class GA or EPA MCL standard exceedances, five exceedances were detected in the filtered samples and 15 were detected in unfiltered samples. No exceedances of NYS Class GA or EPA MCL standards have been detected in well MW17-1 since the start of the post-RA LTM activities. Eight exceedances have been found in MW17-2; five exceedances have been found in well MW17-3 (with each of these exceedances of the NYS Class GA standard for iron); three exceedances in MW17-4; and two sodium exceedances found in MW17-5.

^{\\}Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

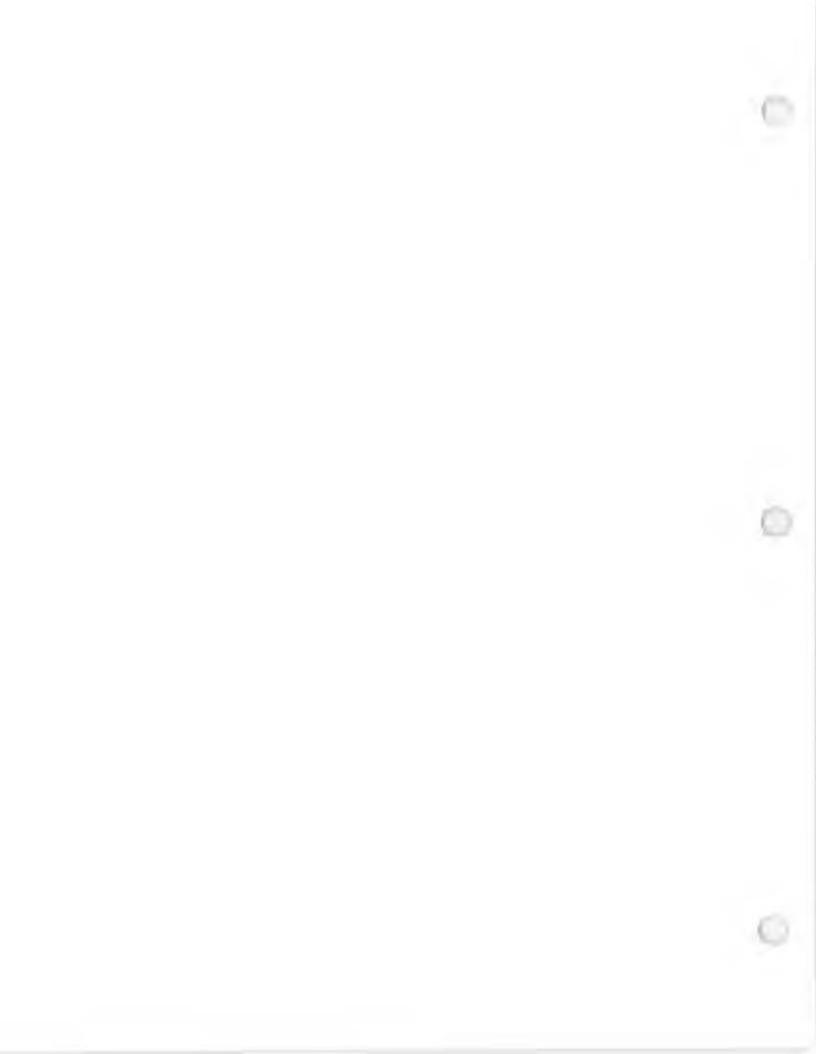
Exceedances of the 3 µg/L NYS Class GA standard for antimony were detected at MW17-2 in the unfiltered samples during the first and third sampling events; and during the most recent (2012) sampling event in both the filtered and unfiltered samples. The unfiltered sample from MW17-2 collected during the Year 3 event (2009) did not contain antimony concentrations in excess of the 3 µg/L EPA MCL standard. The maximum concentration reported for antimony was 3.7 µg/L detected in the MW17-2 Year 3 unfiltered sample. Exceedances of the NYS Class GA standard for iron were noted seven times in samples collected from three wells (MW17-2 with one exceedance; MW17-3 with five exceedances; and one exceedance at MW17-4). The maximum iron concentration was detected in the unfiltered sample collected from MW17-2 during the third sampling event (2009). Iron was not detected in the filtered sample collected during this event. This result therefore is presumed attributable to the elevated turbidity of the sample at the time of collection, which may also have impacted the other metal detections also reported (antimony, lead, and manganese) in this sample. Iron concentrations detected in five samples collected from MW17-3 (including three unfiltered and two filtered samples) were all above the applicable 300 µg/L NYS Class GA standard. Iron results from the filtered and unfiltered samples collected during the third (2009) LTM sampling event suggest that turbidity may have impacted the results for these analyses; however, iron in the filtered samples collected during this LTM event still exceeded the NYS Class GA standard.

Lead has been detected above the EPA MCL standard only once on the site since the completion of the RA in MW17-2 (unfiltered sample collected during the third LTM sampling event in 2009). Lead was not detected in the filtered sample, as the lead concentration in this sample was not above 2.9 μ g/L U2.

Manganese concentrations reported for samples collected from MW17-2 (in the unfiltered sample collected during the Year 3 LTM sampling event in 2009) and MW17-4 (in the unfiltered sample collected during the Year 2 LTM sampling event in 2008) exceeded the NYS Class GA standard of 300 μ g/L. The sample collected from MW17-4 yielded the highest manganese concentration of 911 μ g/L.

Sodium was detected at levels in excess of the 20,000 μ g/L NYS Class GA standard four times in samples collected from MW17-2, MW17-4 and MW17-5. Of these detections, the sample results from MW17-5 are the most notable as the filtered/unfiltered samples collected during the Year 3 LTM sampling event (2009) both were in excess of 360,000 μ g/L. Sodium results for the Year 2 (2008) and Year 4 (2010) LTM events for this well were all below 10,000 μ g/L, suggesting the Year 3 (2009) results are possibly a seasonal anomaly.

In general, post-RA LTM results indicate that groundwater quality at SEAD-17 is not impacted by historic operations conducted in this area. Many of the identified groundwater quality exceedances appear to be affected by turbidity issues (e.g., samples collected from MW17-2), while other exceedances of iron, manganese, and sodium appeared either as random occurrences (e.g., sodium at MW17-5) or may be attributable to iron and manganese groundwater concentrations that are identified regionally in Seneca County. Similar to SEAD-16, based on the limited data for SEAD-17 including pre-RA (1 to 3 samples per well) and post-RA (5 samples per well) datasets, the generally limited available data points and the


² A "U" data qualifier was used to indicate that the analytical results for lead in the unfiltered sample were not detected at a concentration above 2.9 μ g/L.

Page 3-10
VBosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr
5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

high percentage of non-detects in the metal constituents results would yield inconclusive results. A review of the EPA's Groundwater – Unified Guidance (EPA, 2009) document provides numerous statistical methodologies which recommend more data points than are presently available. Once a sufficient number of data points has been obtained, a statistical analysis of the post-RA sampling data can be conducted.

3.10 Routine Inspections of SEAD-16 and SEAD-17 Monitoring Wells

Observation of the wells at SEAD-16 and SEAD-17 during the Year 5 LTM event indicates that the wells located on the site are in acceptable condition. No root material or other obstructions were observed in the wells at SEAD-16 and SEAD-17 during the Year 5 sampling event.

4.0 REMEDY EVALUATION

As discussed above in **Section 2.5**, approximately 4,427 cy of metal and PAH impacted soil were removed from SEAD-16 and SEAD-17 during the RA conducted in the summer of 2007. The impacted soil was removed to minimize or eliminate the migration of hazardous contaminants from soil to groundwater. Soil that exceeded the site-specific cleanup standards, as based on the confirmatory soil data, was removed from SEAD-16 and SEAD-17.

The long-term groundwater monitoring performed over five years following the completion of the 2007 RA shows that the soil removal remedy has been effective in minimizing the migration of select metals from soil to groundwater. Pre-RA groundwater quality concerns associated with arsenic, barium, beryllium, chromium, copper, iron, lead, mercury, nickel and thallium have been eliminated, as each of these metals, with the exception of lead, have not been detected in the groundwater at SEAD-16 in excess of the applicable NYS Class GA or EPA MCL standards since the RA was completed. Lead was found twice at levels in excess of the applicable EPA MCL, but these exceedances were confined to a single well (MW16-7) during the Year 1 and Year 2 post-RA LTM sampling events; lead exceedances in MW16-7 have not been detected during subsequent sampling events. While iron and manganese concentrations in excess of NYS Class GA groundwater quality standards are still present, these results appear to be partially affected by turbidity issues or are attributable to the regional groundwater quality, and are not attributable to site activities. Noted sodium exceedances found in the groundwater at SEAD-16 appear to originate from the salt storage area located upgradient of SEAD-16 which is operated by the Seneca County Highway Department. Antimony continues to be detected at concentrations above the applicable NYS Class GA standard, but these exceedances appear to be limited to two wells where concentrations have remained generally consistent since the RA was completed.

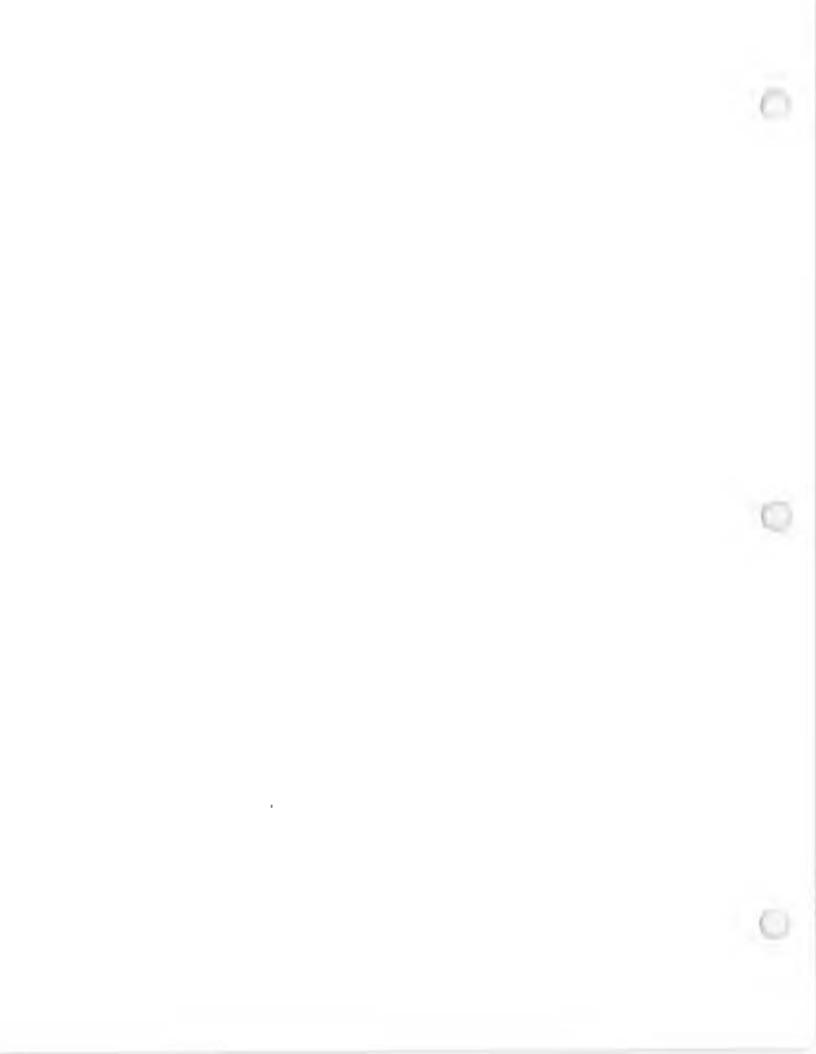
The groundwater quality at SEAD-17 appears to have improved since the completion of the RA. The few noted groundwater quality exceedances for metals other than iron and manganese appear to be limited to the initial Year 1 or Year 2 post-RA sampling events or to a sample where a turbidity impact is suspected (e.g., the sample collected from MW17-2 during the Year 3 LTM event), and where groundwater quality has improved since the exceedances were reported. The noted iron exceedances reported for SEAD-17 are isolated and are most likely attributable to regional groundwater quality.

The remedy for SEAD-16 and SEAD-17 includes the implementation and maintenance of LUCs consisting of:

- Prevention of residential housing, elementary and secondary schools, childcare facilities and playground activities; and
- Prevention of access to or uses of the groundwater until concentrations are below the NYS Class GA Groundwater or EPA MCL standards.

As part of the LTM program, SEAD-16 and SEAD-17 were inspected to determine if the LUCs are being maintained. During the Year 5 event, it was confirmed that no residential housing, elementary and/or secondary schools, childcare facilities, or playgrounds have been constructed or established in these

AOCs, and no access to or use of groundwater, beyond that which is gained by the existing monitoring well network, was evident at either SEAD-16 or SEAD-17.

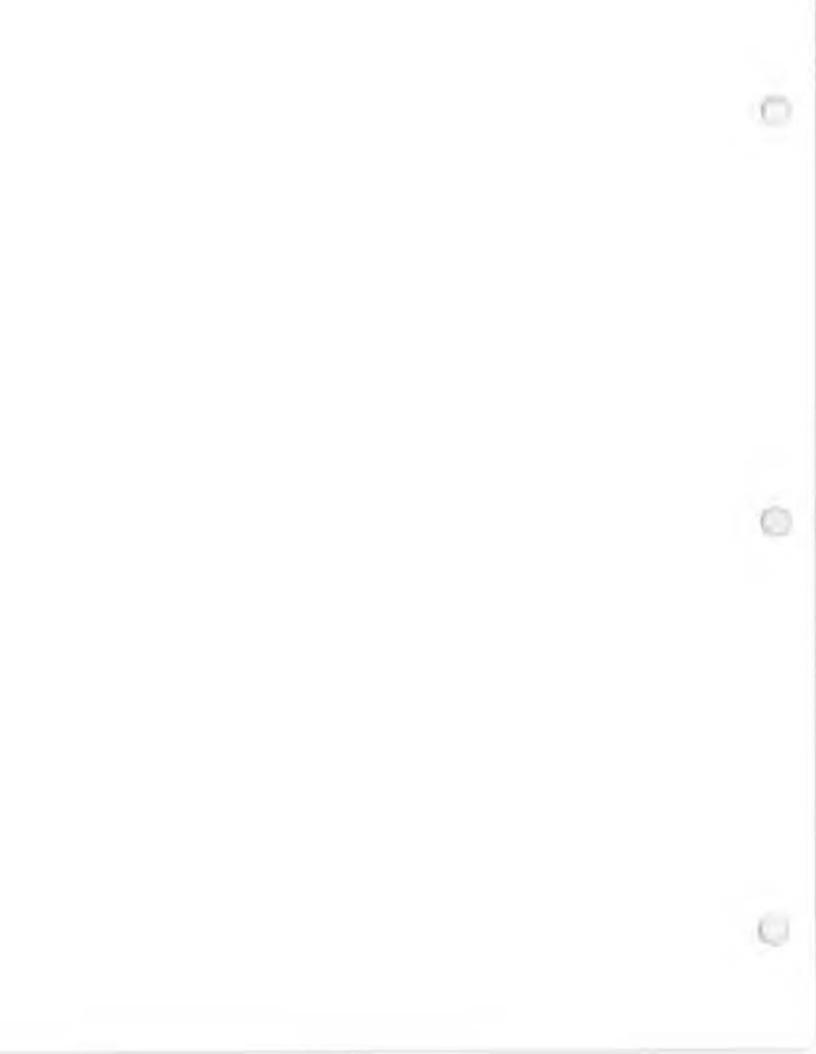

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

- The soil excavation remedy at SEAD-16 and SEAD-17 has been effective controlling, and in some cases eliminating, the migration of select metals from soil to groundwater based on evaluation of the results of the five post-RA LTM sampling events.
- The results of the Year 5 LTM event continue to demonstrate that field filtering may be an effective tool for identifying and evaluating an association between turbidity impacts and groundwater analytical data.
- Post-remediation groundwater monitoring results indicate that the groundwater has not been impacted by site activities, although concentrations were detected above the NYS Class GA or EPA MCL standards.
- The land use and groundwater use restrictions imposed at SEAD-16 and SEAD-17 are maintained and there are no signs of unauthorized use or access to the AOCs.

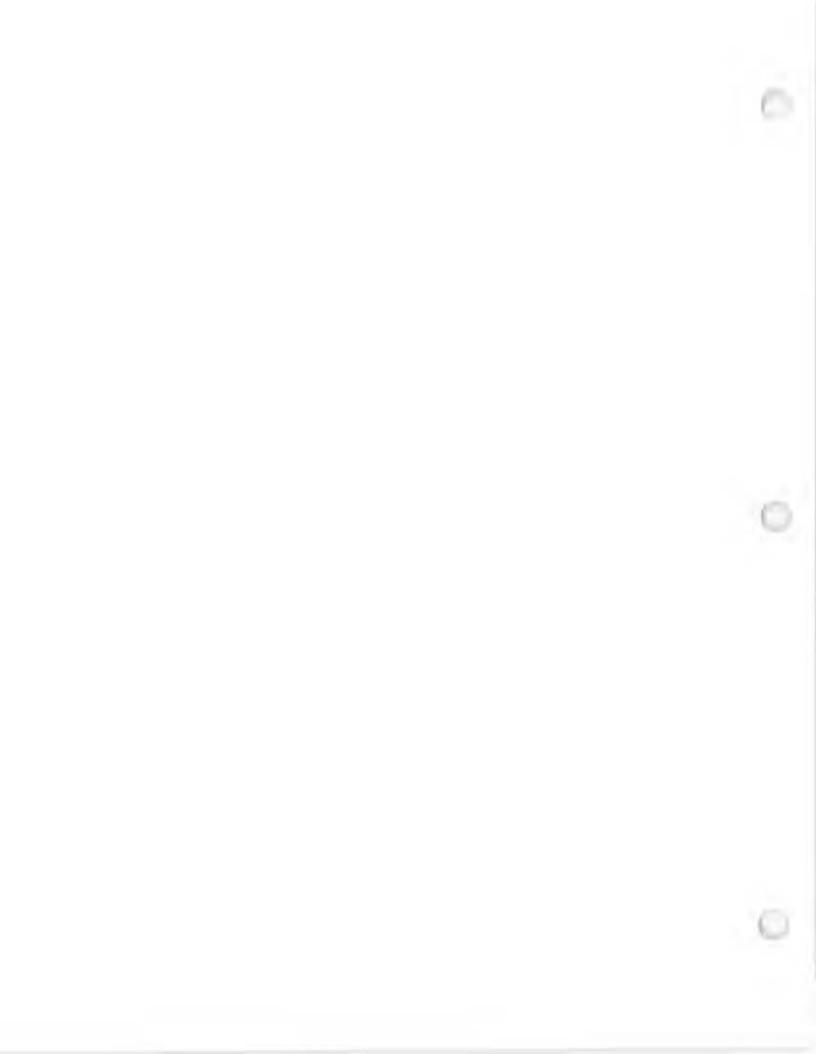
5.2 Recommendations

Based on evaluation of the pre-RA groundwater data and the data collected during Years 1 through 5 of the post-RA LTM program at SEAD-16 and SEAD-17, the Army recommends that groundwater monitoring continue on an annual basis at SEAD-16 and SEAD-17.



Page 6-1

6.0 REFERENCES


- Army, 2006. Final Land Use Control Remedial Design for SEAD-27, 66, and 64A, Seneca Army Depot, Romulus, New York. December 2006.
- Army, 2010. Addendum 4 Addressing SEAD 1, 2, 5, 16, 17, 59, 71, 121C, and 121I, Land Use Control Remedial Design for SEAD 27, 66, and 64A, Seneca Army Depot Activity, Romulus, New York. April 2010.
- EPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007, March 2009.
- NYSDEC, 1998 with 2000 and 2004 Addendum. Ambient Water Quality Standard and Guidance Values and Groundwater Effluent Limitations
- Parsons, 1995. Final Expanded Site Inspection, Seven High Priority SWMUs, SEAD 4, 16, 24, 25, 26, and 45. December 1995.
- Parsons, 1999. Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17). March 1999.
- Parsons, 2006. Record of Decision for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. March 2006.
- Parsons, 2006c. Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP).
- Parsons, 2007. Remedial Design Work Plan and Design Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. July 2007.
- Parsons, 2008. Building Cleaning and Building Demolition Completion Report, SENECA Army Depot Activity, Romulus, New York, Draft Final. November 2008.
- Parsons, 2008. Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. September 2008.
- Parsons, 2009. Final Annual Report (Year 2) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2010. Final Annual Report (Year 3) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2011. Draft Annual Report (Year 4) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).

^{\\}Bosfs02\Projects\PIT\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

TABLES

- Table 2
 Groundwater Table Elevation Summary SEAD-17
- Table 3
 SEAD-16 Comparison of Year 5 Geochemical Parameters
- Table 4
 SEAD-17 Comparison of Year 5 Geochemical Parameters
- Table 5A
 Year 5 Filtered and Unfiltered Groundwater Analyses at SEAD-16
- Table 5B Year 5 Filtered and Unfiltered Groundwater Analyses at SEAD-17

Table 1 SEAD-16 - Groundwater Table Elevations Summary SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

		April -	4, 1994	August	27, 1996	December 6, 1996		
	Top of PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table	
Monitoring	Elevation (1)	Water	Elevation	Water	Elevation	Water	Elevation	
Well	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 16-1	735.54	3.52	732.02	6.45	729.09	3.25	732.29	
MW 16-2	734.56	3.65	730.91	4.50	730.06	3.71	730.85	
MW 16-3	735.48	4.60	730.88	5.43	730.05	4.64	730.84	
MW 16-4	733.93	NA	NA	4.83	729.10	2.93	731.00	
MW 16-5	733.40	NA	NA	4.76	728.64	2.20	731.20	
MW 16-6	733.56	NA	NA	4,54	729.02	2.90	730.66	
MW 16-7	734.42	NA	NA	5.06	729.36	4.23	730.19	

Post-Remedial Action Groundwater Elevation Data

		Decembe	r 20, 2007	December 9, 2008		November 13, 2009		December 13, 2010		December 10, 2012		
Monitoring	Top of PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table	Top of PVC	Depth to	Water Table
Well	Elevation (1)	Water	Elevation	Water	Elevation (4.5)	Water	Elevation (5)	Water	Elevation (5)	Elevation (6)	Water	Elevation (6)
	(feet)	(fect)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(fect)	(feet)	(feet)	(feet)
MW 16-1	735.54	4.25	731.29	4.28	731.26	5.76	729.78	3.16	732.38	735.53	3.15	732.38
MW 16-2	734.56	4.20	730.36	4.20	729.28	4.35	729.13	4.08	729.40	734.86	4.08	730.78
MW 16-3	735.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW 16-4	733.93	3.00	730.93	3.42	730.51	3.91	730.02	2.78	731.15	734.51	2.71	731.80
MW 16-5	733.40	1.90	731.50	3.32	732.50	3.10	732.72	1.68	734.14	735.36	1.63	733.73
MW 16-6	733.56	2.66	730.90	3.47	730.09	3.68	729.88	2.53	731.03	734.25	2.37	731.88
MW 16-7	734.42	4.45	729.97	4.63	729.79	4.75	729.67	4.41	730.01	734.96	4.28	730.68

Notes:

(1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.

(2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation phase.

(3) Monitoring well MW16-3 was destroyed during the remedial action conducted at SEAD-16.

(4) PVC riser pipe for wells MW16-2 and MW16-5 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.

(5) MW16-2 and MW16-5 were re-surveyed in Dec 2008 and this data was used for water table elevation calculations. MW16-2 Top of PVC elevation is 733.48 ft, and MW16-5 Top of PVC elevation is 735.82 ft.

(6) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for the December 2012 water table elevation calculation. NA = Not Available.

Table 2 SEAD-17 - Groundwater Table Elevations Summary SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

		April	4, 1994	August	29, 1996	December 6, 1996		
Monitoring Well	Top of PVC Elevation ⁽¹⁾ (feet)	Depth to Water (feet)	Water Table Elevation (feet)	Depth to Water (feet)	Water Table Elevation (feet)	Depth to Water (feet)	Water Table Elevation (feet)	
MW 17-1	736.30	2.80	733.50	7.64	728.66	3.01	733.29	
MW 17-2	733.75	3.19	730.56	7.24	726.51	3.45	730.30	
MW 17-3	732.15	2.38	729.77	7.14	725.01	2.47	729.68	
MW 17-4	734.59	3.00	731.59	7.23	727.36	3.13	731.46	
MW 17-5	733.58	NA	NA	6.92	726.66	2.65	730.93	

Post Remedial Action Groundwater Elevation Data

		December 19, 2007		December 9, 2008		November 11, 2009		December 13, 2010		December 10, 2012		
Monitoring Well	Top of PVC Elevation ⁽¹⁾ (feet)	Depth to Water (feet)	Water Table Elevation (feet)	Depth to Water (feet)	Water Table Elevation ^(3,4) (feet)	Depth to Water (feet)	Water Table Elevation ⁽⁴⁾ (feet)	Depth to Water (feet)	Water Table Elevation ⁽⁴⁾ (feet)	Top of PVC Elevation ⁽⁵⁾ (feet)	Depth to Water (feet)	Water Table Elevation ⁽⁵⁾ (feet)
MW 17-1	736.30	3.33	732.97	4.25	732.05	5.60	730.70	3.32	732.98	736.39	3.19	733.20
MW 17-2	733.75	3.31	730.44	4.07	729.68	5.27	728.48	2.2	731.55	733.65	2.79	730.86
MW 17-3	732.15	2.67	729.48	3.96	728.67	6.15	726.48	2.51	730.12	732.05	2.4	729.65
MW 17-4	734.59	3.40	731.19	4.05	730.54	5.75	728.84	3.4	731.19	734.62	3.18	731.44
MW 17-5	733.58	2.90	730.68	3.46	730.12	4.65	728.93	2.79	730.79	734.12	2.64	731.48

Notes:

(1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.

(2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation Phase.

(3) PVC riser pipe for MW17-3 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.

(4) MW17-3 was re-surveyed in December 2008 and this data was used for water table elevation calculations. MW17-3 Top of PVC elevation is 732.63 ft.

(5) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for December 2012 water table elevation calculation. NA = Not Available.

Table 3SEAD-16 - Year 5 Geochemical Parameters Before and After Sample Collection ComparisonSEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring ReportSeneca Army Depot Activity

	Geo param						
	collection	Dissolved					
	Before/After	Oxygen	ORP	Temperature	Turbidity	pН	Conductivity
Well ID	Sampling	(mg/L)	(mV)	(°C)	(NTU)	(Std units)	(S/m)
MW16-1	Before	0.47	175	8.7	1.04	6.99	0.805
	After	0.3	154	8.9	0.87	6.9	0.806
MW16-2	Before	4.23	59	7.4	1.2	7.26	0.52
	After	4.13	67	7.4	3.01	7.12	0.526
MW16-4	Before	0.2	-48	6.8	0.48	7.31	2.71
	After	0.21	-46	6.7	1.01	7.33	2.83
MW16-5	Before	0.3	-127	5.8	0.94	7.21	0.373
	After	0.3	-138	6	1.39	7.2	0.383
MW16-6	Before	1.03	-76	8.2	1.67	7.49	0.317
	After	1.27	-70	8.6	3.58	7.49	0.307
MW16-7	Before	0.86	55	8.8	1.14	7.34	0.639
	After	0.86	40	8.9	1.29	7.37	0.651

Table 4 SEAD-17 - Year 5 Geochemical Parameters Before and After Sample Collection Comparison SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Well ID	Geo param collection Before/After Sampling	Dissolved Oxygen (mg/L)	ORP (mV)	Temperature (°C)	Turbidity (NTU)	pH (Std units)	Conductivity (S/m)
MW17-1	Before	1.43	-21	8.8	3.6	7.6	0.265
	After	1.26	-20	8.9	3.28	7.62	0.273
MW17-2	Before	2.3	112	8.6	2.17	7.39	0.501
	After	1.9	109	8.7	2.16	7.39	0.499
MW17-3	Before	2.22	198	8.7	1.9	7.36	0.281
	After	2.25	200	8.8	2.02	7.35	0.291
MW17-4	Before	0.62	4	7.7	1.6	7.35	0.36
	After	0.58	4	7.7	1.85	7.32	0.341
MW17-5	Before	1.67	34	8	1.87	7	0.427
	After	0.94	34	8.2	2.01	7.11	0.429

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Tables\Table 3 n 4 Rnd-5_Pre_n_Post_Sample_Geo_Params.xls 3/23/2013

Table 5A Year 5 Filtered and Unfiltered Groundwater Results at SEAD-16 SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered Status:		Maximum	Frequency	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-1 GW 16LM20028F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-1 GW 16LM20028U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-2 GW 16LM20029F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-2 GW 16LM20029U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-4 GW 16LM20030F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-4 GW 16LM20030U 12/15/2012 SA LTM 5 Total
Parameter Aluminum	Units UG/L	Value 300	Detection	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Antimony	UG/L	14	7% 57%	3	8	1	14 14	23 U	50 U	23 U	50 U	23 U	50 U
Arsenic	UG/L	2.7	43%	10	0	8	14	2.3 U	20	7.8	7.1	4 J	3.9 J
Barium	UG/L	240	100%	1000	0	14	14	1.3 U 78	1.3 U 78	1.3 U 65	1.3 U	1.5 J	1.3 J
Beryllium	UG/L	0	0%	4	0	0	14	0.25 U	0.15 U		62	240	230
Cadmium	UG/L	0.23	7%	5	0	0	14	0.095 U	0.13 U	0.25 U 0.095 U	0.15 U	0.25 U	0.15 U
Calcium	UG/L	230000	100%	5	0	14	14	120,000	120,000		0.13 U	0.095 U	0.23 J
Chromium	UG/L	0	0%	50	0	0	14	2.5 U	2.5 U	110,000 2.5 U	100,000	230,000	220,000
Cobalt	UG/L	1.9	79%	50	0	11	14	0.15 U	0.16 J	0.15 U	2.5 U	2.5 U	2.5 U
Copper	UG/L	11	100%	200	0	14	14	5.2	3.3 J	4.5 J	0.12 U	1.9	1.9
Iron	UG/L	1300	43%	300	3	6	14	33 U	44 U	4.5 J 33 U	5 44 U	4.1 J 130	11
Iron and Manganese	UG/L	1430	71%	500	3	10	14	33 U 34 U	44 U 46 U	33 U 34 U	44 U 46 U	270	140
Lead	UG/L	3.4	50%	15	0	7	14	0.2 U	46 U 0.5 U				280
Magnesium	UG/L	34000	100%	15	0	14	14			0.24 J	0.66 J	0.2 U	3.4
Manganese	UG/L	140	71%	300	0	14	14	18,000 1 U	18,000 2 U	13,000	11,000	34,000	32,000
Mercury	UG/L	0.1	8%	0.7	0	10	13	0.091 U	0.091 U	1 U 0.091 U	20	140	140
Nickel	UG/L	3.2	57%	100	0	0	13	2.3 J	2 U	2.2 J	0.091 U 2 U	0.091 U 2.6 J	0.091 U 3.2 J
Potassium	UG/L	5400	100%	100	0	14	14	900	870 J				
Selenium	UG/L	0	0%	10	0	0	14	900 1 U	1.1 U	2,200	1,900	3,200	3,100
Silver	UG/L	0	0%	50	0	0	14	0.25 U	0.18 U	10	1.1 U	10	1.1 U
Sodium	UG/L	340000	100%	20000	8	14	14			0.25 U	0.18 U	0.25 U	0.18 U
Thallium	UG/L	340000	0%	20000	8	14	14	63,000 0.5 U	62,000	20,000	17,000	340,000	310,000
Vanadium	UG/L	0	0%	2	0	0	14	3.8 U	0.25 U	0.5 U	0.25 U 3.2 U	0.5 U	0.25 U
Zinc	UG/L	12	29%			0	14	3.8 U 8.3 U	3.2 U	3.8 U		3.8 U	3.2 U
Turbidity (pre)	NTU	3.58	100%			4	14	0.87	8.4 U	9.5 J	8.8 J	12 J	11 J
Turbidity (post)	NTU	1.67	100%			14	14	0.87	0.87	3.01	3.01	1.01	1.01
r mounty (host)	1410	1.07	100%			/	/ L		1.04	and the second s	1.2		0.48

Notes:

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micro filter.

4. A blank in the Criteria Level column indicates no standard established for that compound. SA = Sample

U = compound was not detected

J = the reported value is an estimated cocentration DU = Duplicate Sample

Table 5A

Year 5 Filtered and Unfiltered Groundwater Results at SEAD-16 SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report

Seneca Army Depot Activity

Area Loc ID							Γ	SEAD-16 MW16-5	SEAD-16 MW16-5	SEAD-16 MW16-6	SEAD-16 MW16-6
Matrix								GW	GW	GW	GW
Sample ID								16LM20031F	16LM20031U	16LM20032F	16LM20032U
Sample Date								12/15/2012	12/15/2012	12/15/2012	12/15/2012
QC Type								12/15/2012 SA	SA	12/15/2012 SA	12/15/2012 SA
Study ID								LTM	LTM	LTM	LTM
Sample Round								5	5	5	5
Filtered Status:			Frequency		Number	Number	Number	Dissolved	Total	Dissolved	Total
Fillered Status.		Maximum	of	Criteria	of	of Times	of Samples	Dissolved	TOTAL	Dissolved	Iotai
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qua
Aluminum	UG/L	300	7%	Leves	Excernances	Detected	14	23 U	50 U	23 U	300
Antimony	UG/L	14	57%	3	8	8	14	2.3 U	2 U	2.3 U	2 U
Arsenic	UG/L	2.7	43%	10	ő	6	14	2.6	2.7	1.3 U	1.3 J
Barium	UG/L	240	100%	1000	ő	14	14	34	39	41	45
Beryllium	UG/L	0	0%	4	0	0	14	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	0.23	7%	5	ő	1	14	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L	230000	100%		°	14	14	97,000	96.000	70.000	74,000
Chromium	UG/L	0	0%	50	0	0	14	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L	1.9	79%			11	14	0.22 J	0.23 J	0.18 J	0.43 J
Copper	UG/L	11	100%	200	0	14	14	1.1 J	3 J	4.5 J	4.1 J
Iron	UG/L	1300	43%	300	3	6	14	1,100	1,300	33 J	790
Iron and Manganese	UG/L	1430	71%	500	3	10	14	1,230	1,430	43 J	816
Lead	UG/L	3.4	50%	15	0	7	14	0.2 U	0.5 U	0.2 U	0.5 U
Magnesium	UG/L	34000	100%			14	14	9,900	9,800	7,200	7,600
Manganese	UG/L	140	71%	300	0	10	14	130	130	10	26
Mercury	UG/L	0.1	8%	0.7	0	1	13	0.1 J	0.091 U	0.091 U	0.091 U
Nickel	UG/L	3.2	57%	100	0	8	14	2.1 J	2 U	2 U	2 J
Potassium	UG/L	5400	100%			14	14	2,100	2,100	2,400	2,400
Selenium	UG/L	0	0%	10	0	0	14	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	0	0%	50	0	0	14	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	340000	100%	20000	8	14	14	1,600	1,500	8,700	8,000
Thallium	UG/L	0	0%	2	0	0	14	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L	0	0%			0	14	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L	12	29%			4	14	8.3 U	8.4 U	8.3 U	8.4 U
Turbidity (pre)	NTU	3.58	100%			14	14	1.39	1.39	3.58	3.58
Turbidity (post)	NTU	1.67	100%			7	7		0.94		1.67

Notes:

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micro filter.

4. A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected SA = Sample

J = the reported value is an estimated cocentration DU = Duplicate Sample

P:PTIVProjects/Huntsville Cont W912DY-08-D-0003/T0#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr 5/Draft/Clients comments/Table 5A n 6A S-16 Rnd-5 Fil vs Unfil.xls/Table 5A S-16 Rnd-5 Metals

Table 5A Year 5 Filtered and Unfiltered Groundwater Results at SEAD-16 SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered Status: Parameter	Units	Maximum Value	Frequency of Detection	Criteria Level	Number of Exceedances	Number of Times Detected	Number of Samples	SEAD-16 MW16-7 GW 16LM20033F 12/15/2012 SA LTM 5 Dissolved Value Qual	SEAD-16 MW16-7 GW 16LM20034F 12/15/2012 DU LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20033U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20034U 12/15/2012 DU LTM 5 Total
Aluminum	UG/L	300	7%	Level	Exceedances	Detected	Analyzed 14	23 U	Value Quai 23 U	Value Qual 50 U	Value Qual 50 U
Antimony	UG/L	14	57%	3	8	8	14	13	13	13	14
Arsenic	UG/L	2.7	43%	10	0	6	14	1.3 J	1.3 U	1.3 U	1.3 U
Barium	UG/L	240	100%	1000	0	14	14	100	99	100	100
Beryllium	UG/L	0	0%	4	õ	0	14	0.25 U	0.25 U	0.15 U	0.15 U
Cadmium	UG/L	0.23	7%	5	õ	1	14	0.095 U	0.095 U	0.13 U	0.13 U
Calcium	UG/L	230000	100%		-	14	14	110,000 J	100,000	100,000 J	110,000
Chromium	UG/L	0	0%	50	0	0	14	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L	1.9	79%			11	14	0.23 J	0.24 J	0.22 J	0.24 J
Copper	UG/L	11	100%	200	0	14	14	4.1 J	1.7 J	8.3	5.6
Iron	UG/L	1300	43%	300	3	6	14	33 U	33 U	44 U	44 U
Iron and Manganese	UG/L	1430	71%	500	3	10	14	92	98	90	91
Lead	UG/L	3.4	50%	15	0	7	14	1.3 J	2.3	2.5	2.6
Magnesium	UG/L	34000	100%			14	14	21,000	20,000	21,000 J	22,000
Manganese	UG/L	140	71%	300	0	10	14	92	98	90	91
Mercury	UG/L	0.1	8%	0.7	0	1	13	0.091 U J	0.091 U	0.091 U	0.091 U
Nickel	UG/L	3.2	57%	100	0	8	14	2 U	2 U	2.2 J	2.4 J
Potassium	UG/L	5400	100%			14	14	5,300	5.100	5,200	5,400
Selenium	UG/L	0	0%	10	0	0	14	1 U	1 U	1.1 U	1.1 U
Silver	UG/L	0	0%	50	0	0	14	0.25 U	0.25 U	0.18 U	0.18 U
Sodium	UG/L	340000	100%	20000	8	14	14	35,000	33,000	32,000	32,000
Thallium	UG/L	0	0%	2	0	0	14	0.5 U	0.5 U	0.25 U	0.25 U
Vanadium	UG/L	0	0%			0	14	3.8 U	3.8 U	3.2 U	3.2 U
Zinc	UG/L	12	29%			4	14	8.3 U	8.3 U	8.4 U	8.4 U
Turbidity (pre)	NTU	3.58	100%			14	14	1.29	1.29	1.29	1.29
Turbidity (post)	NTU	1.67	100%			7	7			1.14	1.14

Notes:

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micro filter.

4. A blank in the Criteria Level column indicates no standard established for that compound.

U == compound was not detected SA = Sample

J = the reported value is an estimated cocentration DU = Duplicate Sample

P-PTTProjects/Huntsville Cont W912DY-08-D-0003/TO#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr 5/Dmft/Clients comments/Table 5A n 6A 5-16 Rmd-5 Fil vs Unfil.xis/Table 5A S-16_Rmd-5_Metals

Table 5B Year 5 Filtered and Unfiltered Groundwater Results at SEAD-17 SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Area							Γ	SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17
Loc ID								MW17-1	MW17-1	MW17-2	MW17-2	MW17-3	MW17-3
Matrix								GW	GW	GW	GW	GW	GW
Sample ID								17LM20020F	17LM20020U	17LM20021F	17LM20021U	17LM20022F	17LM20022U
Sample Date								12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012	12/11/2012
QC Type								SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM
Sample Round					NT	N1	N7	5	5	5	5	5	5
Filtered Status			Frequency	o	Number	Number	Number	Dissolved	Total	Dissolved	Total	Dissolved	Total
D	Units	Maximum	of Detection	Criteria	of	of Times	of Samples	Malua Oval	Malua Qual	Mature Owned	144.0		
Parameter Aluminum	Units UG/L	Value	O%	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Quai	Value Qual	Value Qual
	UG/L UG/L	0	30%	2		0	10	23 U	50 U	23 U	50 U	23 U	50 U
Antimony Arsenic	UG/L	4.4	0%	3 10	2	3	10	2.3 U	2.7 J	4 J	4.4 J	2.3 U	2 U
Barium	UG/L	0 69	100%		0	10	10	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
	UG/L	0		1000	0	0	10	28	28	69	68	37	36
Beryllium		0.44	0%	4	-	0	10	0.25 U	0.15 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L		10%	5	0	1	10	0.095 U	0.44 J	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L	120000	100%			10	10	53,000	55,000	120,000	120,000	74,000	67,000
Chromium	UG/L	0	0%	50	0	0	10	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L	0.42	80%			8	10	0.32 J	0.37 J	0.39 J	0.42 J	0.15 U	0.12 U
Copper	UG/L	7.8	100%	200	0	10	10	4.7 J	5.4	7.7	7.8	3.3 J	3.2 J
Iron	UG/L	160	50%	300	0	5	10	47 J	90 J	33 U	44 U	33 U	44 U
Iron and Manganese	UG/L	219	80%	500	0	8	10	54.2 J	98.1 J	12	14	34 U	46 U
Lead	UG/L	1.1	40%	15	0	4	10	0.2 U	1.1 J	0.2 U	0.99 J	0.24 J	0.78 J
Magnesium	UG/L	15000	100%			10	10	7,200	7,700	12,000	12,000	6,100	5,800
Manganese	UG/L	59	80%	300	0	8	10	7.2	8.1	12	14	1 U	2 U
Mercury	UG/L	0.14	20%	0.7	0	2	10	0.14 J	0.091 U	0.091 U	0.091 U	0.091 U	0.091 U
Nickel	UG/L	2.1	10%	100	0	1	10	2 U	2 U	2 U	2 U	2 U	2 U
Potassium	UG/L	2500	100%			10	10	380 J	410 J	2,500	2,500	1,800	1,700
Selenium	UG/L	0	0%	10	0	0	10	1 U	1.1 U	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	0	0%	50	0	0	10	0.25 U	0.18 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	9400	100%	20000	0	10	10	2,400	2,500	8,400	8,400	3,300	3,100
Thallium	UG/L	0	0%	2	0	0	10	0.5 U	0.25 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L	0	0%			0	10	3.8 U	3.2 U	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L	29	40%			4	10	8.3 U	8.4 U	24	26	29	26
Turbidity (pre)	NTU	3.28	100%			10	10	3.28	3.28	2.16	2.16	2.02	2.02
Turbidity (post)	NTU	3.6	100%			5	5		3.6		2.17		1.9

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

2. Shading indicates a concentration above the GA or MCL groundwater standard.

3. Dissolved samples were field filtered using a 0.45 micro filter.

4. A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected

J = the reported value is an estimated cocentration DU = Duplicate Sample

P: PITProjects/Huntsville Cont W912DY-08-D-0003/TO#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr S/Draft/Clients comments/Table 5B n 6B S-17 Rnd-5 Fil vs Unfil.xis/Table 5B S-17 Rnd-5 Metals

SA = Sample

Page 1 of 2

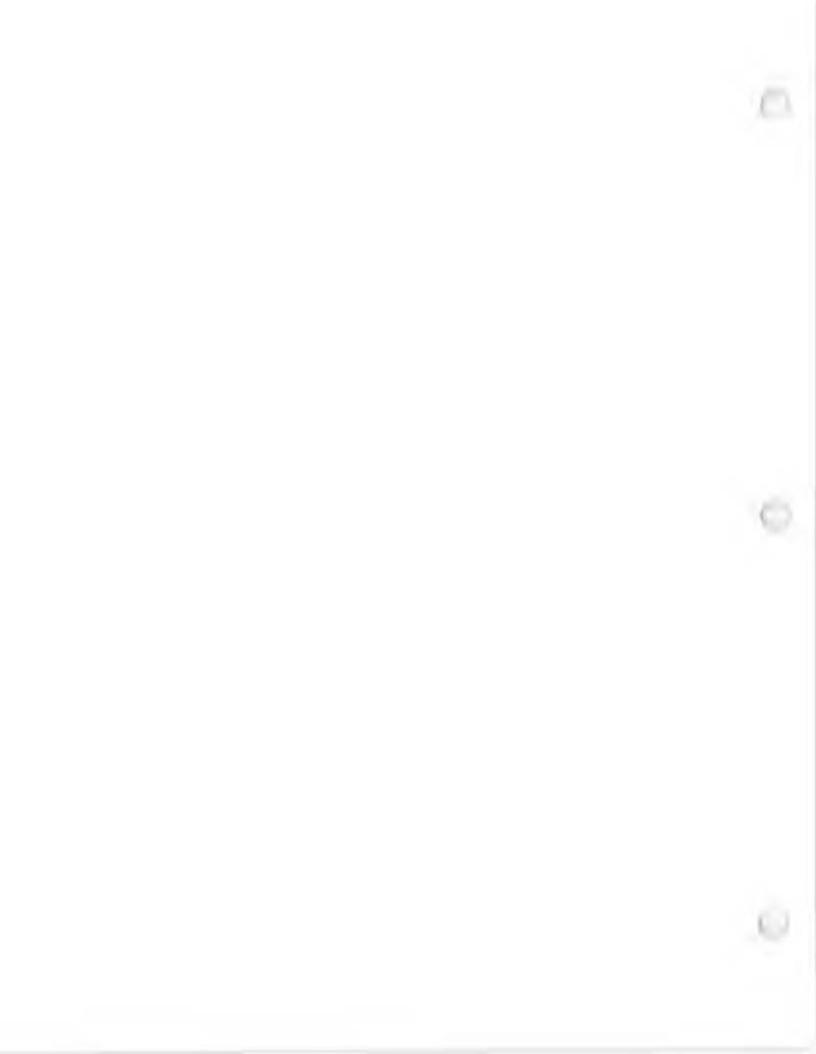
Table 5B Year 5 Filtered and Unfiltered Groundwater Results at SEAD-17 SEAD-16 & SEAD-17 Year 5 Annual Groundwater Monitoring Report Seneca Army Depot Activity

Area								SEAD-17	SEAD-17	SEAD-17	SEAD-17
Loc 1D								MW17-4	MW17-4	MW17-5	MW17-5
Matrix								GW	GW	GW	GW
Sample ID								17LM20023F	17LM20023U	17LM20024F	17LM20024U
Sample Date								12/11/2012	12/11/2012	12/11/2012	12/11/2012
QC Type								SA	SA	SA	SA
Study 1D								LTM	LTM	LTM	LTM
Sample Round								5	5	5	5
Filtered Status			Frequency		Number	Number	Number	Dissolved	Total	Dissolved	Total
		Maximum	of	Criteria	of	of Times	of Samples				
Parameter	Units	Value	Detection	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual
Aluminum	UGL	0	0° n			0	10	23 U	50 U	23 U	50 U
Antimony	UG:L	4.4	30° a	3	2	3	10	2.3 U	2 U	2.3 U	2 U
Arsenie	UG/L	0	00.0	10	0	0	10	1.3 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	69	100%	1000	()	10	10	65	67	24	26
Beryllium	UGL	0	00 1	4	()	0	10	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	0.44	10°.	5	0	1	10	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L	120000	100°.0			10	10	83,000	87,000	68,000	75,000
Chromium	UG/L	0	0 ^u a	50	0	0	10	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L	0.42	80°.0			8	10	0.21 J	0.25 J	0.31 J	0.31 J
Copper	UGL	7.8	100° u	200	0	10	10	1.1 J	4.7 J	3.7 J	2.1 J
Iron	UG.L	160	50° o	300	0	5	10	33 U	72 J	44 J	160
Iron and Manganese	UG/L	219	80%	500	0	8	10	9.5	83	82 J	219
Lead	UG/L	1.1	40° o	15	0	-4	10	0.2 U	0.5 U	0.2 U	0.5 U
Magnesium	UGL	15000	100° o			10	10	15,000	15,000	9,900	11,000
Manganese	UG L	59	80 ⁶ n	300	0	8	10	9.5	11	38	59
Mercury	UGL	0.14	20° a	0.7	0	2	10	0.091 U	0.091 U	0.12 J	0.091 U
Nickel	UG/L	2.1	10 ⁿ .o	100	0	1	10	2 U	2.1 J	2 U	2 U
Potassium	UG/L	2500	100° v			10	10	750	780 J	460 J	460 J
Selenium	UG/L	0	0.60	10	0	0	10	1 U	1.1 U	1 U	1.1 U
Silver	UG.L	0	0°.u	50	0	U	10	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	9400	100% 0	20000	0	10	10	8,900	8,600	9,400	9,100
Thallium	UG/L	0	() ¹⁰ a	2	0	0	10	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG.L	0	$0^n \sigma$			0	10	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L	29	-40" a			4	10	8.3 U	8.4 U	8.3 U	8.4 U
Turbidity (pre)	NTU	3.28	100° o			10	10	1.85	1.85	2.01	2.01
Turbidity (post)	NTU	3.6	100%			5	5		1.6		1.87

1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)

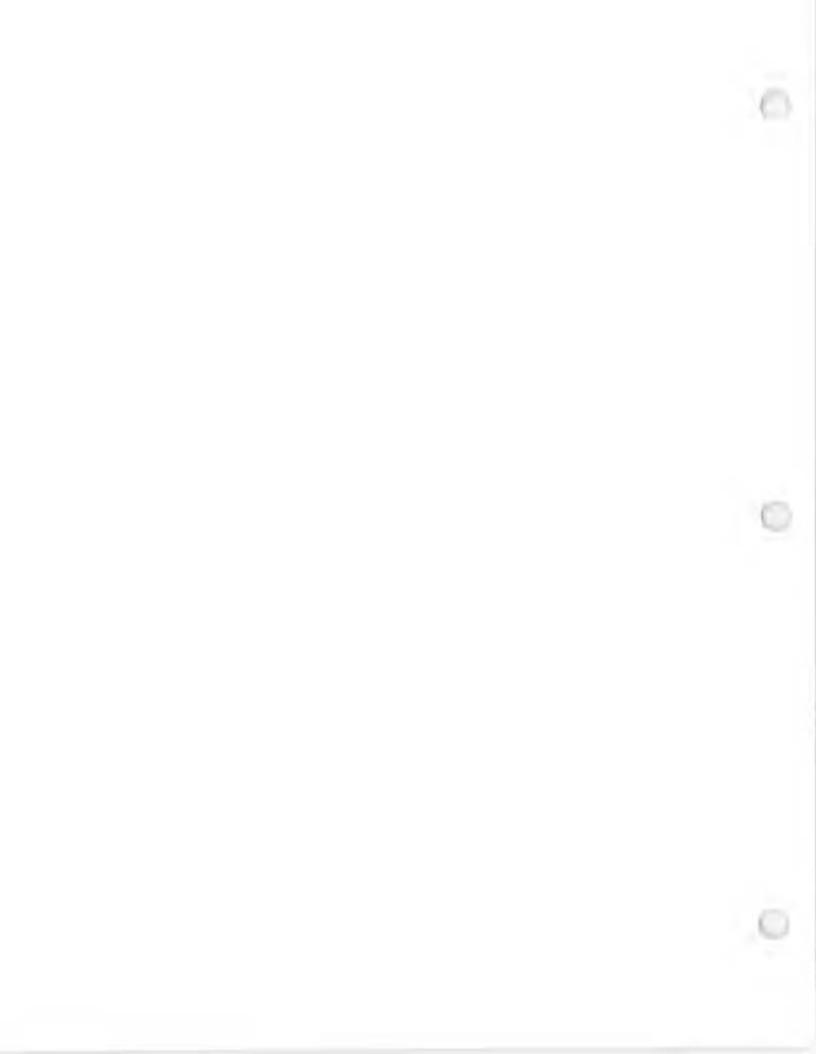
and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mel.html#inorganic.html

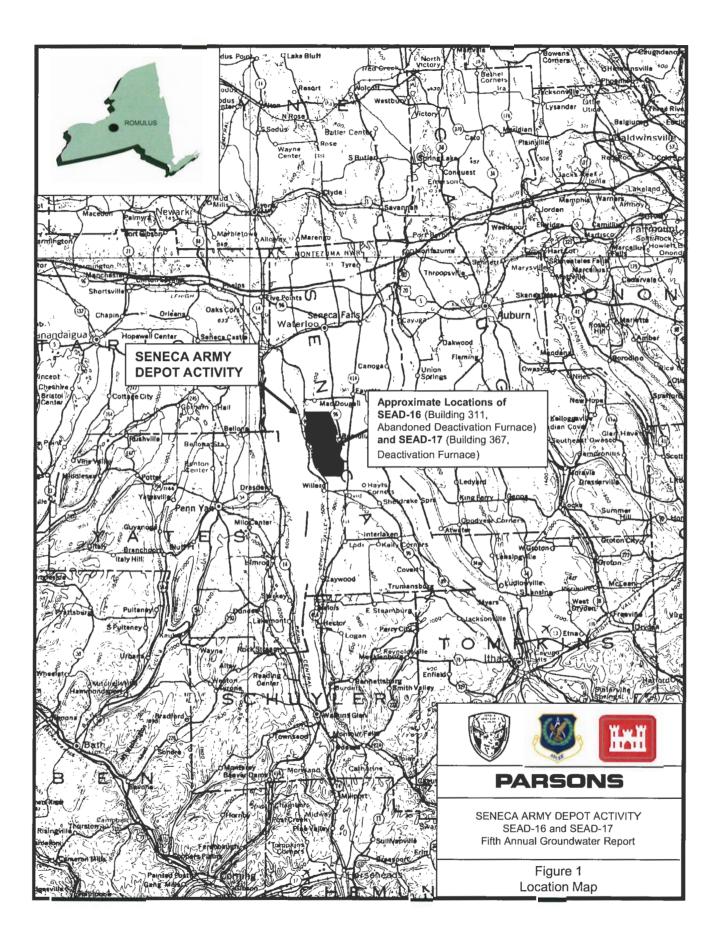
2. Shading indicates a concentration above the GA or MCL groundwater standard.


3. Dissolved samples were field filtered using a 0.45 micro filter.

4. A blank in the Criteria Level column indicates no standard established for that compound,

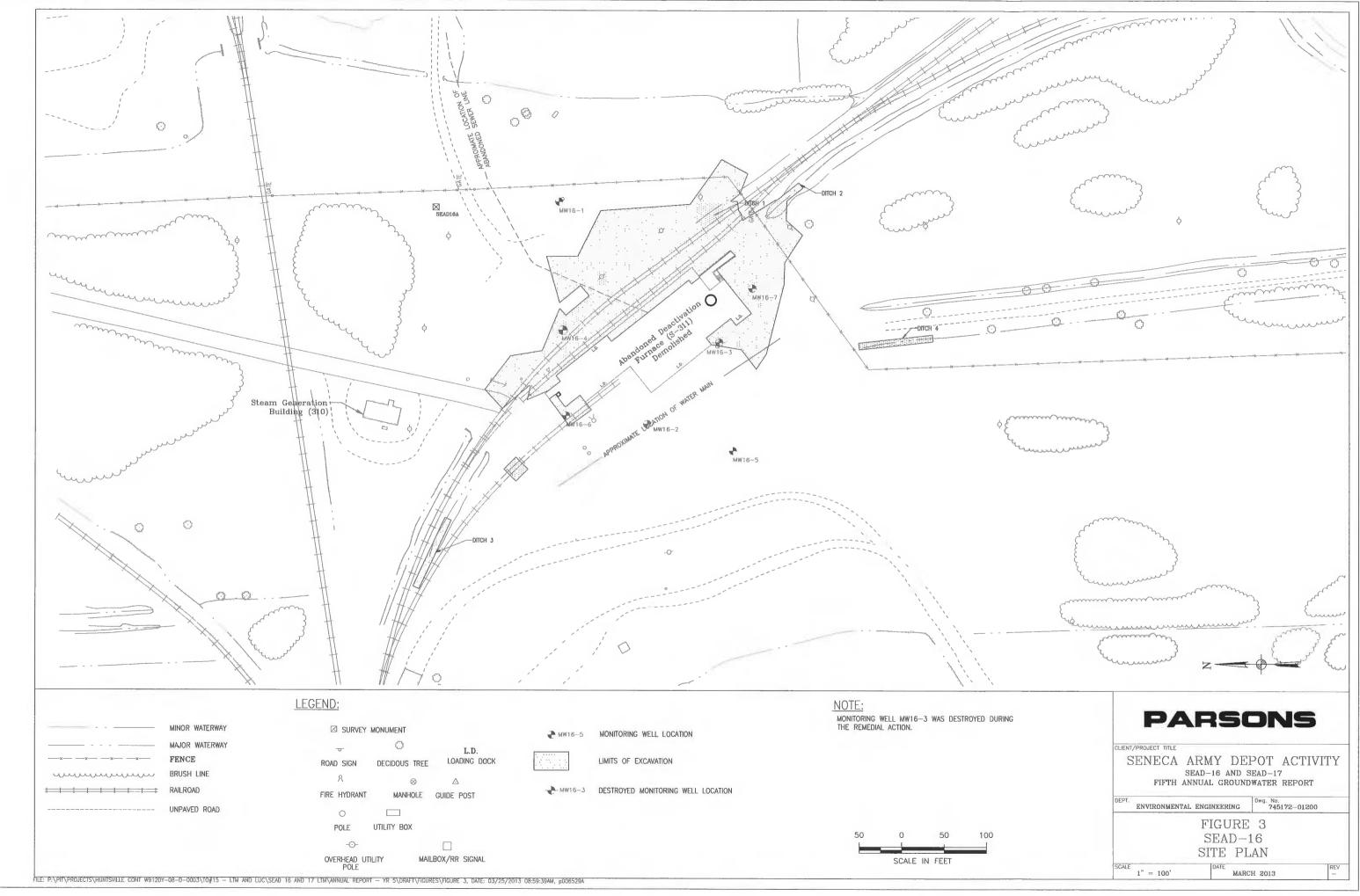
U = compound was not detected SA = Sample


J the reported value is an estimated cocentration DU Duplicate Sample


P. PTPProjects Huntsville Cont W912DV-08-D-0003/TO#15 - 1 TM and LUC SEAD 16 and 17 LTM-Annual Report - Yr 5 Draft Clients comments Table 5B n 6B S-17 Rnd-5 Fil vs Unfil.sls-Table 5B S-17 Rnd-5 Metals



FIGURES

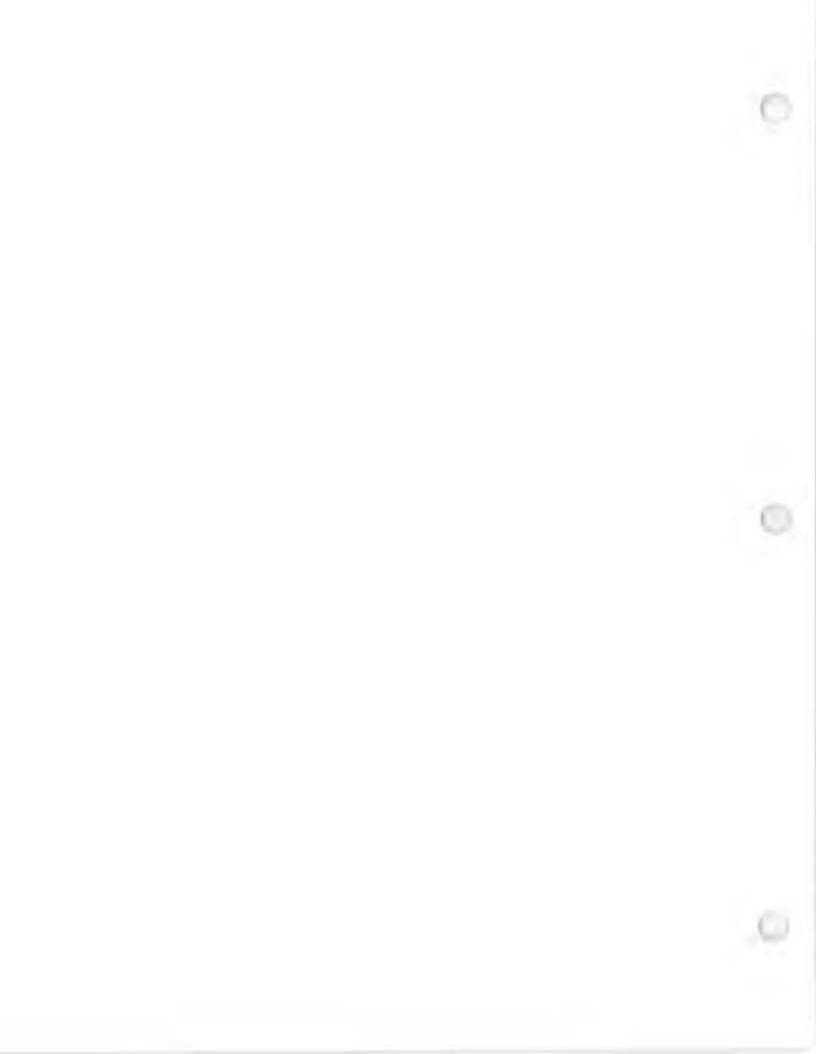

- Figure 1 Seneca Army Depot Activity Location Map
- Figure 2 Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
- Figure 3 Site Plan SEAD-16
- Figure 4 Site Plan SEAD-17
- Figure 5 SEAD-16 and SEAD-17 Groundwater Flow Trend

o:\seneca\pid luc\sead-16&17 annual report.apr\sead-16&17 Annual Report Figure 2

۱

)

APPENDICES


- Appendix A Historic Groundwater Data
- Appendix B SEDA Background Groundwater Data Summary
- Appendix C Field Forms Year 5 LTM Groundwater Sampling Activities
- Appendix D Complete Groundwater Data Results (Years 1 through 5)
- Appendix E Laboratory Analytical Report
- Appendix F Data Validation

APPENDIX A

HISTORIC GROUNDWATER DATA

March 2013 Appendices
\\Bosfs02\Projects\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr
5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

	ACTION	LOC_ID SAMP ID QC CODE STUDY ID MATRIX SAMPLE DATE	: : : :	MW16-6 16155 SA ROUND2 WATER 2/8/1996	MW16-7 16104 SA RI ROUND1 WATER 8/28/1996	MW16-7 16158 SA RI ROUND2 WATER 12/8/1996	MW16-7 16159 DU RI ROUND2 WATER 12/8/1996
PARAMETER	LEVEL	SOURCE ⁽¹⁾	UNI	VALUE Q	VALUE Q	VALUE Q	VALUE Q
SEMIVOLATILE ORGANICS							
3-Nitroaniline	5	GA	UG/I	25 U	25 J	25 U	25 U
4-Chloroaniline	5	GA	UG/I	10 U	10 J	10 U	10 U
Benzo[ghi]perylene			UG/I	10 U	10 U	10 U	10 U
Dibenz[a,h]anthracene			UG/I	10 U	10 U	10 U	10 U
Diethyl phthalate			UG/I	10 U	10 U	10 U	10 U
Indeno[1,2,3-cd]pyrene			UG/I	10 U	10 U	10 U	10 U
OTHER ANALYSES							
Nitrate/Nitrite Nitrogen	10	GA	MG/	0.01 U	0.83	0.24	0.23
Percent Solids (Metals)				0	0	0	0
Total Petroleum Hydrocarbons			MG/	0.73	0.41 U	0.46 U	1.3
NITROAROMATICS							
1,3-Dinitrobenzene	5	GA	UG/I	0.26 U	0.26	0.26 U	0.26 U
2,4-Dinitrotoluene	5	GA	UG/I	0.26 U	0.26 U	0.26 U	0.26 U
METALS							
Aluminum			UG/I	170 U	12.4	67.4 U	52.9 U
Antimony	3	GA	UG/I	3 U	15.7 U	8.9 U	10 U
Arsenic	10	MCL	UG/I	4.4 U	4 U	4.4 U	4.4 U
Barium	1,000	GA	UG/I	80.2 U	89.2	59.1 U	60.2 U
Beryllium	4	MCL	UG/I	0.2 U	0.21	0.2 U	0.2 U
Cadmium	5	GA	UG/I	0.6 U	0.3 U	0.6 U	0.6 U
Calcium			UG/I	84,900	109,000	114,000	117,000
Chromium	50	GA	UG/I	1 U	1	1 U	1 U
Cobalt			UG/I	1.3 U	1.2	1.3 U	1.3 U
Copper		GA	UG/I	1.1 U	5.1	1.4 U	2.I U
Iron	300	GA	UG/I	290	23.4	174	160
Lead	15	MCL	UG/I	I.5 U	8.4	9.9	9.2
Magnesium			UG/I	12,800	16,900	22,600	23,200
Manganese	300	GA	UG/I	1,380	85.7	43.2	44.3
Mercury	0.7	GA	UG/I	0.1 U	0.1 U	0.1 U	0.1 U
Nickel	100	GA	UG/I	2.5 U	2.2	2.5 U	2.5 U
Potassium			UG/I	2230 U	3220	2090 U	2160 U
Selenium		GA	UG/I	4.7 UJ	2.4 U	4.7 UJ	4.7 UJ
Sodium	20,000		UG/I	40.64(000)	12,000	9,940	10,200
Thallium	2	MCL	UG/I	4.1 U	412		4.1 U
Vanadium			UG/I	1.6 U	1.2	1.6 U	1.6 U
Zinc			UG/I	10.5 U	2.9 R	2.2 U	7.3 U

Notes:

 The criteria values are NYSDEC Class GA Groundwater Standards (T Maximum Contamination Limit (MCL), Source http://www.epa.gov/s

2. Shading indicates a concentration above groundwater standard.

3. A blank in the action level column indicates no Class GA and/or MCL

U = compound was not detected

J = the reported value is and estimated concentration

R = the compound was rejected

	Groundwater 12/11/1996	
PARAMETER SEMIVOLATILE	VALUE	Q
Benzo[a]pyrene	10	U
Benzo[ghi]perylene	10	U
Dibenz[a,h]anthrace	10	U
Indeno[1,2,3-cd]pyi	10	U
OTHER ANALYS		
Nitrate/Nitrite Nitro	0.02	
Percent Solids (Met	0	
NITROAROMAT		
Tetryl	0.26	U
METALS		
Aluminum	59	U
Antimony	3	U
Arsenic	4.4	_
Barium	62.6	
Beryllium	0.2	
Cadmium	0.6	
Calcium	81100	
Chromium	-	U
Cobalt	1.3	
Copper	1.3	
Iron	134	
Lead	1.5	U
Magnesium	13600	
Manganese	62	
Mercury	0.1	
Nickel	2.5	
Potassium	1070	
Selenium		UJ
Silver	1.5	U
Sodium Thallium	8,970	
Vanadium	8.6	
	1.6	
Zinc	4.4	U

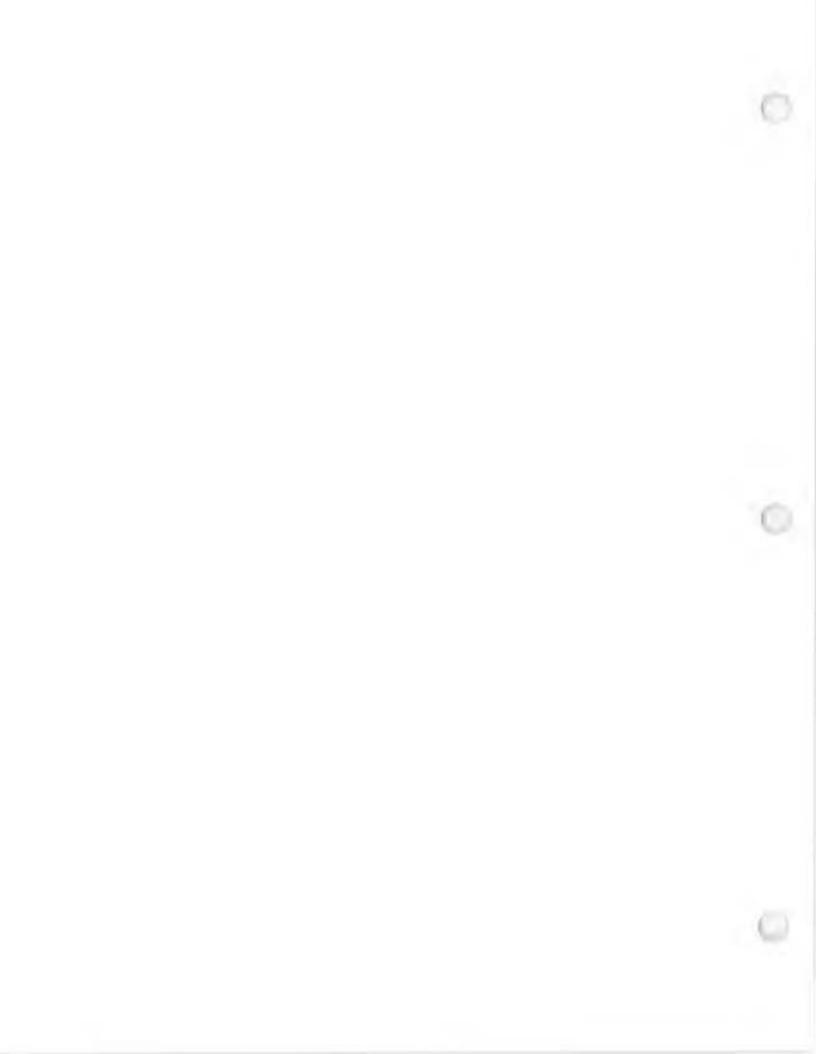
MW17-5

RI ROUND2

SA

16170

Notes:

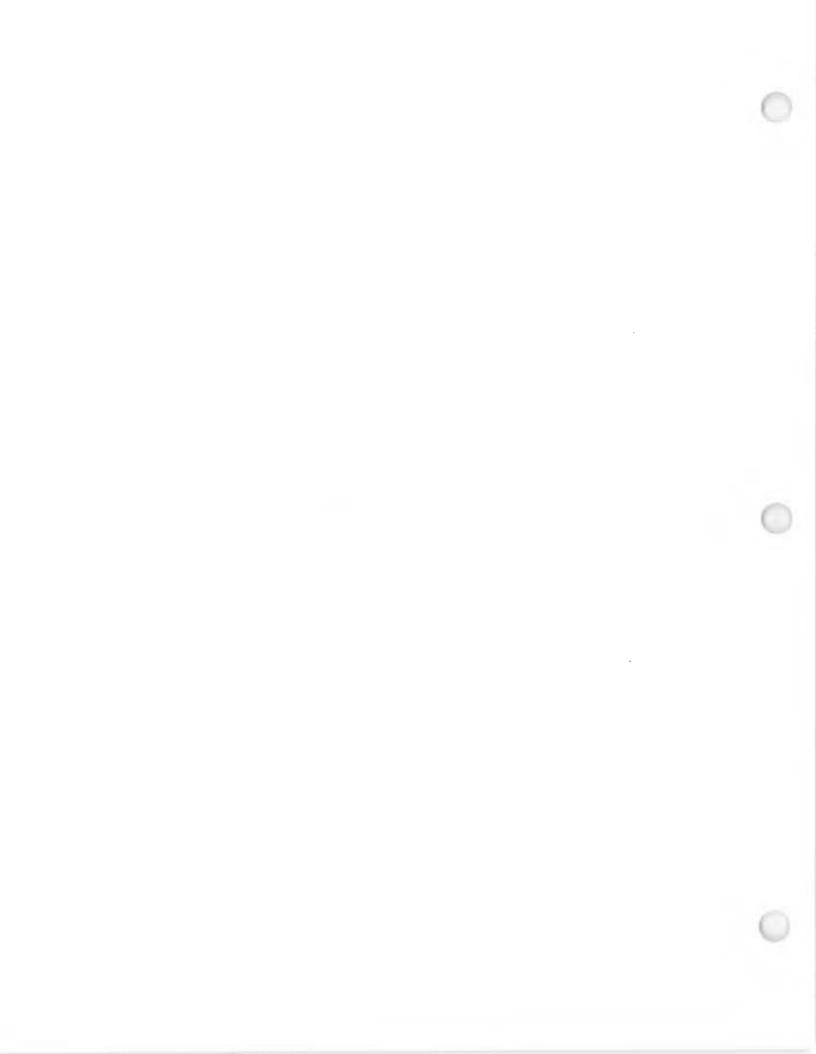

 The criteria value Maximum Conta
 Shading indicates
 A blank in the act
 Wells MW17-2,

 $\begin{array}{l} U = \text{compound was} \\ J = \text{the reported valu} \\ R = \text{the compound v} \end{array}$

APPENDIX B

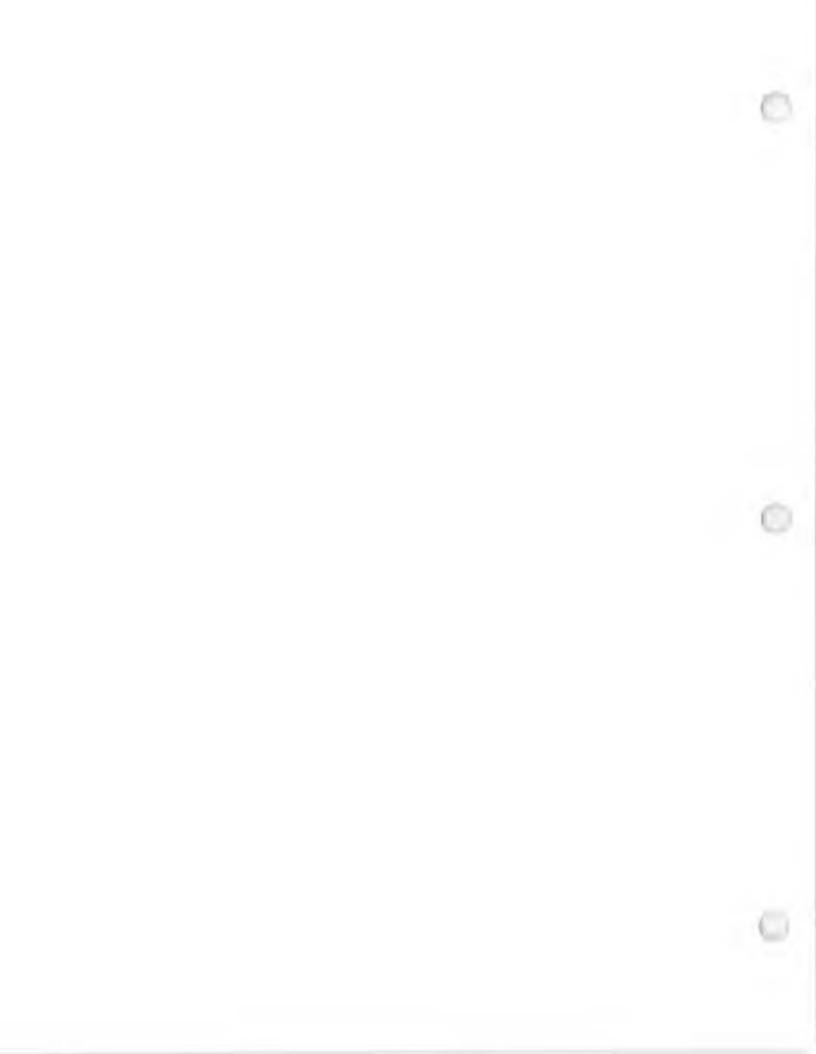
SEDA BACKGROUND GROUNDWATER DATA SUMMARY

Appendix B SEDA Background Groundwater Concentrations SEAD-16 & SEAD-17 Fifth Annual Groundwater Monitoring Report Seneca Army Depot Activity


					FREQUENCY		TYPE	NUMBER	NUMBER	NUMBER
			AVERAGE	STANDARD	OF	CRITERIA	OF	OF	OF	OF
PARAMETER	UNIT	MAXIMUM	CONCENTRATION	DEVIATION	DETECTION	VALUE	CRITERIA	EXCEEDENCES	DETECTS	ANALYSES
Aluminum	UG/L	42,400	2,732	8,207	87%	50	MCL	25	27	31
Antimony	UG/L	52.7	8.2	13.9	13%	3	GA	3	4	31
Arsenic	UG/L	10	1.7	2.2	13%	5	MCL	2	4	31
Barium	UG/L	337	78.2	62.6	94%	1000	GA	0	29	31
Beryllium	UG/L	2.2	0.2	0.4	13%	4	MCL	0	4	31
Cadmium	UG/L	0	0.5	0.5	0%	5	GA	0	0	31
Calcium	UG/L	181,000	115,619	25,274	100%			0	31	31
Chromium	UG/L	69.4	4.7	13.4	48%	50	GA	1	15	31
Cobalt	UG/L	34.6	3.7	7.4	45%			0	14	31
Copper	UG/L	32.5	3.3	6.9	48%	200	GA	0	15	31
Cyanide	UG/L	2.8	NA	NA	3%	200	GA	0	1	31
lron	UG/L	69,400	4,476	13,429	100%	300	GA	22	31	31
Lead	UG/L	34.8	2.5	6.3	32%	15	MCL	1	10	31
Magnesium	UG/L	58,200	28,568	13,848	100%			0	31	31
Manganese	UG/L	1120	224	254	97%	50	SEC	22	30	31
Mercury	UG/L	0.06	0.04	0.02	23%	0.7	GA	0	7	31
Nickel	UG/L	99.8	7.3	18.7	61%	100	GA	0	19	31
Potassium	UG/L	10,200	3,833	3,010	94%			0	29	31
Selenium	UG/L	3.6	1.5	0.7	19%	10	GA	0	6	31
Silver	UG/L	0.98	1.0	1.0	6%	50	GA	0	2	31
Sodium	UG/L	59,400	14,601	13,877	97%	20000	GA	7	30	31
Thallium	UG/L	4.7	1.5	1.2	13%	2	MCL	4	4	31
Vanadium	UG/L	70.8	5.2	13.5	52%			0	16	31
Zinc	UG/L	143	23.1	34.5	84%	5000	MCL	0	26	31

GA = NYSDEC Ambient Water Quality Standards for a source of Drinking Water from Groundwater (TOGS 1.1.1)

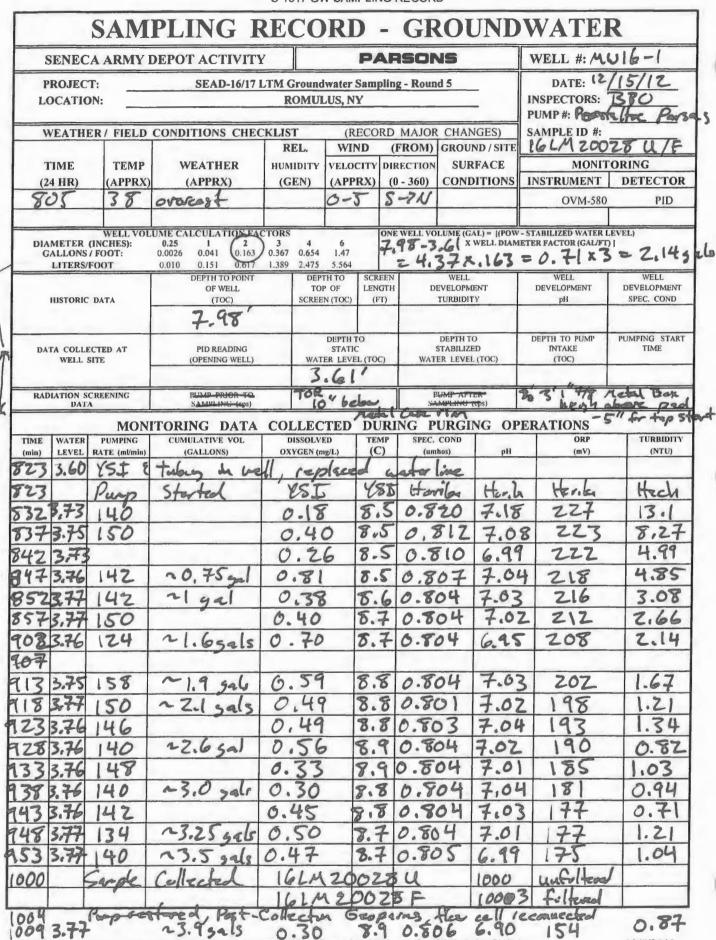
MCL = Maximum Contaminant Level - Drinking Water Standards and Health Advisory (EPA 822-B-00-001)


SEC = Secondary Drinking Water Regulations - Drinking Water Standards and Health Advisory (EPA 822-B-00-001)

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix B\APPENDIX B.xls

APPENDIX C

FIELD FORMS - YEAR 5 LTM GROUNDWATER SAMPLING ACTIVITIES



				morn			TTTTA	TON	PAGE LOF
			(IDWA.	IEK E	LEVA	TION R	
PARS		12 1.1	-	CLIENT:					DATE: 12/10/12
PROJECT:	SEAD-	6/17 L	TM Roa	nd S			-	P	ROJECT NO:
LOCATION:	G EQUIPMENT					EL INDICATOR	-	11	NSPECTOR: BBO/SD
INSTRUMENT	DECTECTOR	BGD	TIME	REMARKS	INSTRU			ON FACTOR	TEANS 40%, and 5-15and W-7E
									Tenges 40%, usedy 5-15aph W-7E southernal, rach showers, wet grown carter
								0	wornight rain
WELL	TIME	DEP	TH TO TOCI	CORRECTED WATER LEVEL	MEASURED KJW	INSTALLED POW	PRODUCT SPEC. GRAV.	(لىمىلە: 1	WELL STATUS / COMMENTS Well IP, Surface Distantion, Rater analysis, Cradition of France, projective cosing, etc.)
16-2	124	4.08	5.85					Locked	w/ cap
16-6	126	7,37	6.83					Loched	al cap
16-4	928	271	7.00					Loched	, cap of, stude inside cive
16-1	931	3.15	7.98				•	Loched	v/ cap
16-7	934	4,28	6.76					Loched	la/cap
16-5	937	1.63	5.05					Locked	lu/cup
17-2	943	2,79	6.85					Ladered	lalap
7-3	945	2.40	7.47	-				Loche	du/cap
7-4	947	3.18	8.44					Lales	I need replacement well cop
7-5	950	2.64	10.13					Lodies	(w/ cap
17-1	953	3.19	10.20					Locher	h needs well cap
		-							
					_				

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

Section No. Appendix C Revision No. 0 Date: 6/15/2005 Page C-23

Page C-23
P:1PITVProjects/Huntsville HTW/QAPP/SAP/Drait/Appendices/APP C - Field Forms/App C5-17 XLS GW ELEVATION

10

178

u

0

l

C:\Documents and Settings\c0010112\My Documents\Field Forms\Field Forms for OB & S-25 GW.xls

12/5/2012

	SI	ENECA	A ARMY	DEPOT ACTIVITY	Y			PAF	ISON	IS		WELL #: M	W16-Z
-	PR	OJECT	`:	SEAD-16/17	LTM G	round	water S	Samplin	g - Round	15		DATE: 12	2/15/12
	LO	CATIO	N:		R	OMUL	US, NY	¥			-	INSPECTORS:	
┝──	11/2	FATUE		CONDITIONS CHE	CKLIS	<u>г</u>	(D)	ECORD	MAJOR	CHAN	GES)	PUMP #: SAMPLE ID #:	
<u> </u>		CATIL				EL.	WIN			the second se	D/SITE	IGLM ZOO	294/
	TI	ME	ТЕМР		HUM	IDITY		CITY DIF	I		FACE		TORING
<u> </u>	<u>`</u>	HR)	(APPR)		<u>(G</u>	EN)	(APPI	<u> </u>	- 360) E-76	COND	ITIONS	INSTRUMENT	DETECTO
\vdash	5	52	37	overces t			5-1		670			OVM-580) PID
D		1ETER (LLONS /	INCHES):	0.25 1 2 0.0026 0.041 0.163	STORS 3 0.367	4 0.654	6 1.47	5.	タビール	34 XX	WELL DIAME	stabilized water ter factor (Gal/F	T)
-	1	JTERS/F	оот	0.010 0.151 0.617 DEPTH TO POINT	1.389	2.475	5.564 HETO	SCREEN	1.21	WELL	43 - 0	WELL	WELL
	н	ISTORIC	DATA	OF WELL (TOC)		TOP	OF N (TOC)	LENGTH (FT)	1	EVELOPMI		DEVELOPMENT	DEVELOPME SPEC. CON
	*1			5.85'		050000		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				pra a	
	DAT	A COLLE		PID READING (OPENING WELL)		MIA T	DEPTH T STATIC			DEPTH TO STABILIZE ER LEVEL	Ð	DEPTH TO PUMP INTAKE (TOC)	PUMPING ST/ TIME
		HELL 3		(OILINIU WELL)			.34			an anyth		(100)	<u>†</u>
F	ADI		REENING	PUMP PRIOR TO		•		<u> </u>		UMP AFT			1
	_	DATA		SAMPLING (cps)			TED	DUD		MPLING (EDATIONS	
TIM	E	WATER	PUMPING	CUMULATIVE VOL	D	LLEC	ED	TEMP	SPEC,	COND	U UP	ERATIONS ORP	TURBID
(mir		LEVEL 4.35			OX	YGEN (n	ig/L)	(C)	(um	hos)	pH	(mV)	(NTU)
140		2133	YSI 2	ch fl	uel	/ /st		YSI	Her.		Hunk	Hereby	Heel
101		438	162	STRUTTA		31		7.0	0.2		7.6		540
41		4.40	160		5	71		7.1	0.Z		7.40		202
147		424	156	~ 0.9 gal		.48		7.1	0.2		7.4		83.3
142	6	4.40	154			.25		7.1	0.3		7.38		18.9
	_		144	nlilgal		.12			0.31		7.28		8.11
		1.38				,04		7.2	0.4		7.31		3.7
			150			.93			0.41		7.29		3.6
			150	22.0 gals		.84			0.4		7.2		3.30
			154	- civ-jais		77			0.4		7.28	57	1.8-
		4.37	148			71		17	0.4		7.29		1.20
	_		156	22.5gals		66		7.7	0.4		7.30		1.26
		1.37	148			,59			0.40		7.27		1.30
151		4.37	1-10			38		7.5 7.4	0.5		7.26		0.9
			148	~3.0 gals		32		7.4	0.5		7.23		1.47
	-+	4.37			Ц	17		7.4	0.5		7.2		1.0
		4.37				18		7.4	0.5		7.27		1.4
		4.37		~3.75		23		7.4			7.2	the second se	1.20
				////				7.1					
153	3	5	ples	Collected	16L	MZ	00	294	15	33		eLA20020	1= 153

Ŧ

		SAM	PLING F	E	CO	R) -	GR	Ol	JND	WA	ATER	٢
S	ENEC	CA ARMY	DEPOT ACTIVITY	(PAF	ISON	IS		WEL	L #: M	6-4
	ROJEC		SEAD-16/17			lwater ! LUS, N		g - Roun	d 5	-	INSPE	ATE: \Z CTORS: #: Person	/15/12 D
W	EATH	ER/ FIELD	CONDITIONS CHEC	KLIS	T	(R		MAJOR	CHAN	(GES)	SAMP	LE ID #:	
				R	EL.	WIN	D (FROM)		ND / SITE	161	M200	
	IME	TEMP	WEATHER		IDITY	VELOC		RECTION		FACE	TRUCTOR	MONIT	
(24	HR)	(APPRX) (APPRX)	(0	EN)	(APP)	R(A) (() - 360)	CUNL	ITIONS	INSTR	OVM-580	DETECTO PID
GA		(INCHES): / FOOT:	LUME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564		WELL VO	x		ETER FAC	ZED WATER LI TOR (GAL/FT)	1
Н	USTORIC	C DATA	DEPTH TO POINT OF WELL (TOC)	_	TO	TH TO P OF N (TOC)	SCREEN LENGTH (FT)		WELL EVELOPM TURBIDIT		DEVE	VELL LOPMENT pH	WELL DEVELOPMEN SPEC. COND
DAT	A COLLI WELL	ECTED AT Site	PID READING (OPENING WELL)		WAT	DEPTH 1 STATIC ER LEVE	2		DEPTH TO STABILIZI ER LEVEI	ED	IN	TO PUMP TAKE FOC)	PUMPING STAF TIME
			1,32 stickup		1	2.8	0						
RADI	ATION S DAT	CREENING	PUMP PRIOR TO SAMPLING (cps)	PUMP AFTER SAMPLING (cps)									
		MON	ITORING DATA	CO	LLEC	TED	DURI	ING P	URGI	NG OP	ERAT	IONS	
TIME (min)	WATER LEVEL	PUMPING RATE (mt/min)	CUMULATIVE VOL (GALLONS)		DISSOLV. (YGEN (I		TEMP (C)	SPEC.	COND hos)	pH		ORP (mV)	TURBIDIT (NTU)
132	216	57	ART IVMP	FI	A	PUR	65						
140	2.98	200		0-	#3	0.13	7.6	1.1	7	7.3	3	-82	
145	293	110			6.1	5	7.1	1.2		7.3		- 85	5.42
150	293	116			0,2		7,2	1.2	.9	7,3	3	- 31	3.36
155	2.93	118			D. 3	3	7.2	1.3	6	7.30		-70	2.41
200	2.93	116			0.3	3	7.1	1.4	6	7.29		-62	1,69
205	293	118			0.3	D	7.1	2.0	5	7.27		- 55	1.38
210	2.93	120			0.2	8	7.0	2.	19	7.27		-52	1.14
245	293	118			0.2	.4	2.0	2.1	10	7.29		-48	0.86
220	2.94	120			0.10	5	6.9	2.5	10	7.29		-47	1.21
225	2.94	124			0.1		6.9	2.4		7.30		-47	1.74
230	271	125			0.20		6.9	2.1		7.3	0	-47	0.59
235	2.94	128			0.21		6.8	2.	67	7,30		-47	0.77
240	2.94	128			0.19		6.8	2.1	69	7.32		48	0.55
245	2.94	128	2.5 gel		0.21	0	6.8	2.7	11	7.31		-48	0.48
250	>	Col	-LECT SAM	PLI	3 f	FOR		TAL		Issolu		netal	5
300		128	POST SAMPLE		0,2		6.7	2,	83	7.33		-46	1.01

12/5/2012

S	AM	PLING R	EC	ORI) -	GR	οι	IND	WATE	R
SENECA	ARMY I	DEPOT ACTIVITY	·		PAR	SON	15		WELL #: M	116-5
PROJECT:		SEAD-16/17 1		DATE: 12	/15/12					
LOCATION	:		ROM	ULUS, N	Y				INSPECTORS: PUMP #:	
WEATHER	/ FIELD	CONDITIONS CHEC	KLIST	(R	ECORD	MAJOR	CHAN	GES)	SAMPLE ID #:	
			REL.	WI	ND (I	FROM)			16LMZOC	
TIME (24 HR)	TEMP (APPRX)	WEATHER (APPRX)	HUMIDIT (GEN)		CITY DIR	ECTION - 360)		FACE	MONIT INSTRUMENT	ORING DETECTOR
(24 IIK)		(ATTKA)	(GER)	(AII		- 300)	COND	110/15	OVM-580	
DIAMETER (IN GALLONS/F	(CHES): OOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 4 0.367 0.6 1.389 2.4	54 1.47	ONE	WELL VO			- STABILIZED WATER I ETER FACTOR (GAL/FT	
LITERS/FO	01	DEPTH TO POINT	Г	EPTH TO	SCREEN		WELL		WELL.	WELL
HISTORIC D	АТА	OF WELL (TOC)		TOP OF REEN (TOC)	LENGTH (FT)		TURBIDIT		DEVELOPMENT pH	DEVELOPMENT SPEC. COND
		5.05'								
DATA COLLECT	TED AT	PID READING		DEPTH STATI			DEPTH TO STABILIZE		DEPTH TO PUMP INTAKE	PUMPING START TIME
WELL SIT	E	(OPENING WELL)	· · ·	ATER LEVI	EL (TOC)	WAT	ER LEVEL	(TOC)	(TOC)	
RADIATION SCR	EENING	PUMP PRIOR TO	icky	1.04	2		UMP AFT			<u> </u>
DATA		SAMPLING (cps)					MPLING (
TIME WATER	MON PUMPING	CUMULATIVE VOL	DISSO	ECTED	DURI TEMP		COND	NG OP	ERATIONS ORP	TURBIDITY
	ATE (mVmin)	(GALLONS)		AA	RG	(uni	hos)	pH	(mV)	(NTU)
8:301.89	21	ART PUM	Z,		6.2	0.3	UU	6.99	75	
8:35 2.14 8:40 2.14	1/2				6.2	0.3		6.94	25	
	100		2.5	3	5.6		02	7.01	- 62	5.79
	102			9	5.6	6.2		7.01		3.7 8
	105			5	5.6	0.2	99	7 4	1 -1.6	3,15
9:00 2.35	110		3.	, 4	5.6			7.10	-69	2,52
	108			8	5.5		03	7.17		1,62
	100			.6	5.4		303	7.18		1,70
9:15 268	100			.6	5.4			7.19		1.85
9:20 2.80	100		3.	2	5.4	0.3		7.17	-73	2.41
9:25 2.98	104	1.50 gol	4		5.3		306	7.21	-75	1.57
	102	• 5	3.	4	3.4	0.	308	7.22		1,50
	102		٤.	6	5.3	D. 7		7.21	- 80	1.65
	104		2,	0	5.3	0.7	121	7.21	- 35	1.06
9:45 3.23	104	2.1 gol	1.		5.3	0,3		7.27	2 -88	1.49
9:50 3.29	08		0,	•	5.3		331	7.22		0.95
	108		0.		5.4	0.3		7.27		0.74
	08		0,		5.4	0.3	39	7.2		1.62
10:05 3.42	80		<u>b</u> .	6	5.5	0.3	45	7.2		1.07
10:10 3.45	108		U	• 6	5.5	0.	17	7.21	- 100	1.12

SI	ENEC	A ARMY I	DEPOT ACTIVITY	1		P	AF	SON	15		WE	LL #: M	016-5
	ROJEC"		SEAD-16/17 1	DATE: 12/15/12 INSPECTORS: 5.0:11									
W	EATHE	R / FIELD	CONDITIONS CHEC	KLIS	Т	(RECO	ORD	MAJOR	CHAN	IGES)		PLE 1D #:	
				1	EL.	WIND	_			ND / SITE	16	LM 20	\$314/
TI	ME	TEMP	WEATHER	HUM	IDITY	ELOCITY	DIR	ECTION		FACE		MONIT	
(24	HR)	(APPRX)	(APPRX)	<u>(</u> G	EN)	(APPRX)	(0	- 360)	COND	ITIONS	INST	RUMENT	DETECTO
				-			+					OVM-580	PID
GA	IETER (LLONS	INCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654	6 1.47 5.564	ONE	WELL VOI				IZED WATER L CTOR (GAL/FT	
н	ISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTH TOP SCREEN	OF LE	REEN NGTH FT)		WELL EVELOPMENT TURBIDITY		WELL DEVELOPMENT pH		WELL DEVELOPMENT SPEC. COND
DATA COLLECTED AT WELL SITE			PID READING (OPENING WELL)	S		EPTH TO STATIC LEVEL (TO	DC)	DEPTH TO STABILIZED WATER LEVEL (TOC)		D	DEPTH TO PUMP INTAKE (TOC)		PUMPING STAR TIME
RADI	ATION SO	CREENING	PUMP PRIOR TO SAMPLING (cps)						UMP AFT				
	Patr		TORING DATA	CO	LLECT		URI	b	URGI		FRAT	TIONS	
TIME	WATER	PUMPING	CUMULATIVE VOL	I	DISSOLVED	TH	IMP	SPEC.	COND			ORP	TURBIDITY
(min)	LEVEL	RATE (ml/min)	(GALLONS)	03	YGEN (mg/	L) (1	C)	(um)		7.2	1	(mV) -105	(NTU)
113	2510	112	> gen	e	10-6	255	2-	03	57	7.2	1		1.03
1:20	263	112		0	0.05	0.5 5.		0.3		7.21		- 109	1.13
1.000	30/	112			-		.6		102	7.2		- 115	1,26
030	3.14	112	25 0		2.5		6	0.3	19	7.2		128	1.92
035	313	116	7. J gal		2,4	5.	_	0. 9	12	7.2		-123	0.94
640	3.82	116			2,3	5.		0.3		2 -	-01 1	-127	1
045	3.90	Ce	LLECT SHA	APL	EF	662	51	5501	red	2 Te	PTer	met	als
055	4.05	118	POST SHAPLE	0	.3	6.1	0	6.3	83	7.20	-	-138	1.39

12/5/2012

SAMPLING RECORD - GROUNDWATER													
SENECA	WELL #: MW16-6												
PROJECT:		SEAD-16/17 1	.TM G	roundw	ater !	Samplin	g - Roun	d 5			/15/12		
LOCATION	INSPECTORS: PUMP #:	5 Dillman											
WEATHER	SAMPLE ID #:												
				EL.	WIN		FROM)			16LMZ00			
TIME	TEMP	WEATHER (APPRX)			velo (APP		RECTION	[FACE	MONIT INSTRUMENT	DETECTOR		
(24 HR)	(APPRX)	(APPKA)	(6	EIN)	(AFF	кл) (() - 360)	COND		OVM-580			
										0111900	110		
DIAMETER (IN	NCHES):	UME CALCULATION FAC 0.25 1 2	3	4	6	ON	E WELL VO			STABILIZED WATER I TER FACTOR (GAL/FT			
GALLONS / F LITERS/FO		0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	0.654 2.475	1.47 5.564								
		DEPTH TO POINT OF WELL		DEPTI TOP		SCREEN LENGTH	D	WELL	NT	WELL DEVELOPMENT	WELL DEVELOPMENT		
HISTORIC D	ATA	(TOC)		SCREEN	(TOC)	(FT)		TURBIDIT	Y	pH	SPEC. COND		
		6.83'											
DATA COLLECT		PID READING			STATE	С	DEPTH TO STABILIZED			DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIME		
WELL SIT	E	(OPENING WELL)	PVC 2			8 /	WATER LEVEL ((100)	(TOC)			
RADIATION SCR DATA	EENING	PUMP PRIOR TO SAMPLING (cps)			-# 0	0		PUMP AFT					
DATA SAMPLING (cps) SAMPLING (cps) MONITORING DATA COLLECTED DURING PURGING OPERATIONS													
TIME WATER	PUMPING ATE (ml/min)	CUMULATIVE VOL (GALLONS)	D	ISSOLVE YGEN (mg)	TEMP (C)	SPEC.	COND ahos)	pH	ORP (mV)	TURBIDITV (NTU)		
(min) LEVED R 1410 2 5T	ART (Ump FOR P					(un	11105)	pn	(iiv)	((((())))))		
1415 3.23	124												
1420 372	92		2.	20	,	7.6	0.3	319	7.94	11			
1425 3.90	100			.63		7.6	0.3		77	9 20			
1430 4.06	100			. 6 2		7.6		307	7.7	1 19	66.7		
1435 4.14	100			55	•	7.8	0.305 7		7.6	8 11	31.9		
1540 4.33	98			.44	/	7.8	0.1	306	7.62	19	11.2		
1445 4.43	\$8		1	. 38		7.8	D.	306	7.60	0 -31	6.37		
14504.50	96			12		7.8		305	7.60		6.24 4.83		
1455 4.58	96			.14		7.8	0.	306	7.58		4.83		
1500 4.65	96			.94		7.8	0.	307	7.5	7 -40	3.42		
1505 4.76	98	1.25 gal		7		7.8	υ.	307	7.5	7 - 42			
	100)		.80		7.8		309	7.5	7 - 44	2.05		
	100		l	28,0	5	7.9	0.	312	7.5				
1520 5.07	106			.85		7.9	0.	315	7.5		2,11		
	108		0	,84		8.0	0.	318	7.5	3 - 67	2.32		
1530 5.29	106		C	2.87	7	8,1		317	7.52	72	_ 1,78		
1535 5.40	108	2 gal		9.90	1	8.2	υ.	317	7.50		1,92		
1540550	108	-	1	03		9.2		317	7.4		667		
1545	_ Coll	ect Sample.	fur	T	TA	LÉ	Dis	solv	ed m	etyls			
15986.04	108	POST SAMPLE		.27		8.6	0,	307	7.40	1 -70	3.58		

	ARMY	DEPOT ACTIVITY	Y		PA	RSO	NS		WELL #	: MC	116-7	
PROJECT:		SEAD-16/17	LTM G	roundwate	er Sampli	ng - Rour	nd 5	_	DATE	: 12	15/12	
LOCATION			RC	MULUS,	NY			-	INSPECTO PUMP #:			
WEATHER	/ FIELD	CONDITIONS CHEC	CKLIST		(RECOR	D MAJOI	R CHAN	IGES)	SAMPLE II		4100 1940	
			RE		IND	(FROM)	-		16LMZ			
TIME (24 HR)	TEMP (APPRX)	WEATHER (APPRX)	HUMI (GE			IRECTION $(0 - 360)$		FACE	INSTRUMI	- 1	DRING DETECTOR	
1038	37	Partly Same	(01			2-5	60			4-580	PID	
	_			8-	76							
DIAMETER (IN GALLONS / F LITERS/FO	CHES): OOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367	4 6 0.654 1.4 2.475 5.50	7 6	76-4	.56 x	WELL DIAM	STABILIZED W ETER FACTOR (C 7,36 ×	GAL/FT)	evel) 1.08 gels	
		DEPTH TO POINT OF WELL		DEPTH TO TOP OF	SCREE				WELL DEVELOPMENT		WELL DEVELOPMENT	
HISTORIC D.	ATA	(TOC)		SCREEN (TO	C) (FT)		TURBIDIT	Y	рН		SPEC. COND	
		6.76	_	DEPI	н то	-	DEPTH T	0	DEPTH TO PL	IND	PUMPING START	
· · · · · · · · · · · · · · · · · · ·	VELL SITE (OPENING WELL)				TIC EVEL (TOC)		STABILIZE TER LEVEL	ED	INTAKE (TOC)		TIME	
Brand Sore	0			4.5				()	16.7		1052	
RADIATION SCR DATA	and the second	PUMP PRIOR TO SAMPLING (cps)					PUMP AFT					
	MON	ITORING DATA	COL	LECTE	D DU				ERATION	S		
	PUMPING	CUMULATIVE VOL	DI	SSOLVED	TEMI (C)	SPEC.	. COND		01	RP	TURBIDITY	
(min) LEVEL R.	St ?	(GALLONS)	all	GEN (mg/L)	1	11	nhos)	pH	(m	IV)	(NTU)	
052 1	uno s	-landed	Y	SI	1251	- 1	rih	Herde	Hora	he	Hack	
0584.71	86		3.	20	8.0	0.5		1.5	4 19	3	43.6	
103 475 1	.00		3,	04	8.0			3.38	190	0	37.7	
1084.81	07		2.	91	8.	0.5	-16	7.29	1 18	1	17.7	
113 4.84			2.	81	8.	0.5	-16	7.3	1 171		9.64	
	05	20.5gal	2,	69	8.2	0.5	18	7,24	164	1	7.02	
1234,88	_		2,6	33	8.2	0.5	22	7.34		1	5.74	
	112	20,95al	2,5			0.5		7.32	2 14		5.31	
	63			50	8.1			7.3		_	4.99	
	.03		2.		8.5			7.3:			5.76	
	110	~1.3 gab		99		0.5		7.30			5.44	
	AC			60	8.6			7.3			4.04	
1484.92	.05		1 7	39		6.5		7.31			3.06	
1484.92	10		6.0	1		A	17	7.35	90		2.87	
1484.92 1534.92 1584.93	10	~1.9 sals	1.2	26	8.7			7.22	10		the second se	
148 4.92 153 4.92 158 4.93 203 4.93	10		1.2	36	8.7	0.6	08	7.36	90		2.45	
148 4.92 153 4.92 158 4.93 203 4.93 208 4.93	10	~1.9 gals	1.2	26 36 10	8.7	0.6	08	7.36	90		2.45	
148 4.92 153 4.92 158 4.93 203 4.93 208 4.93 208 4.93 213 4.93	10			26 36 10 29	8.7	0.6	08 14 18	7.36 7.35 7.32	90 84 82		2.45 2.06 1.53	
1484.92 1534.92 1584.93	10			26 36 10 29	8.7	0.6	08 14 18 22	7.36	90		2.45	

1

C:\Documents and Settings\c0010112\My Documents\Field Forms\Field Forms for OB & S-25 GW.xls

12/5/2012

Page	Z	of	Z
------	---	----	---

		SAM	PLING R	E	CO	RD	- (GR	lOL	IND	W	ATEI	R
SI	ENEC	A ARMY I	DEPOT ACTIVITY				PAR	SON	JS		WE	ll #: M	w16-7
	ROJECT CATIO		SEAD-16/17 L	DATE: 12/15/12 INSPECTORS: 13130 PUMP #: Perstaltac									
WI	EATHE	R/ FIELD	CONDITIONS CHEC			(RE			CHAN		SAM	PLE ID #:	
					EL.	WIN		,	1	D/SITE	161	M200	
	ME HR)	TEMP (APPRX)	WEATHER (APPRX)		idity EN)	VELOC	TTY DIF	ECTION - 360)		FACE ITIONS	INST	MONIT RUMENT	ORING DETECTOR
122		37	Partly sunay			0-5		-7W	COND	TIONS	11151	OVM-580	PID
1.0-4			1									0111 500	
GA	ALLONS	(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564		WELL VO	X			LIZED WATER I ACTOR (GAL/FT)]
I	HSTORIC	DATA	DEPTH TO POINT OF WELL (TOC)	DEPTH TO TOP OF SCREEN (TO		P OF	SCREEN LENGTH (FT)	D	WELL DEVELOPMENT TURBIDITY		WELL DEVELOPMENT pH		WELL DEVELOPMENT SPEC. COND
DATA COLLECTED AT WELL SITE			PID READING (OPENING WELL)			DEPTH T STATIC ER LEVE		DEPTH TO STABILIZED WATER LEVEL (TOC)		DEPTH TO PUMP INTAKE (TOC)		PUMPING START TIME	
RADI	ATION S	CREENING A	PUMP PRIOR TO SAMPLING (cps)						PUMP AFT AMPLING (
			ITORING DATA			TED				NG OI	'ERA		
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		ISSOLV YGEN (I		темр (С)	1	. COND nhos)	pH		ORP (mV)	TURBIDITY (NTU)
1233	4.93	107	22.9 sals	1	0.9	4	8.8	0.6	,28	7.3	z	68	1.15
238	4.94			0	.91	6	8.8	0.6	31	7.30	1	64	0.56
243	4.93			l.	08	•	8.8	0,6		7.36		61	0.75
748	494		~3.3 gas	1.	01		8.8			7.34		58	0.55
1253	4.93			0	.10)	8.8	0.6	37	7.3		56	0.94
1258	4.93		23,5 gals		.80		8.8	0.6		7.3		55	1,14
303		Samples	Cullected										
			16LM20033				1305						
			16LM 200 33					1313	3				
			16LM 20033				1305						
			16LM20033	FN	5			1313	3				
			16LM20033				1305						
			16LM 20033				1305	1317	3				
			16LM2003				1311						
			16 LM 2003	łF			13H	131	6				
1331		Post-S	apple Cellect									nneetro	(
336	4.90		24.0 gels	0	.86	,	8.9	0.6	51	7.3	7	40	1,29
-7	SMA	Il clum	p of act ra	ots	C4	ne h	p 4	DO	pre	e L	han	renove	od

0

S	ENEC	A ARMY	DEPOT ACTIVITY	(F	PAF	ISON	IS		WEL	L #: Al	w17-1
	ROJEC		SEAD-16/17 J		Groundw		mplin	g - Round	15	-	D. INSPE	ATE: 12 CTORS:	/11/12 BBO/SD
W	EATH	ER / FIELD	CONDITIONS CHEC	KLIS	T	(REC	ORD	MAJOR	CHAN			LE ID #:	
				R	EL.	WIND	()	FROM)			17-6	12002	
	IME	TEMP	WEATHER			VELOCIT		ECTION		RFACE	-		TORING
	4 HR) 3 7	(APPRX)	(APPRX)	(G	EN)	(APPRX	- in the	- 360) U-75E	CONL	DITIONS		UMENT	DETECTOR
1-1	T	0)				3-10	-					OVM-580	PID
	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FA 0.25 I 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654	6 1.47 5.564	10	2-3;	3 ×.	AL) = ((POW- WELL DIAME	TER FACT	FOR (GAL/FT	3=3.3751
	HISTORIC	DATA	DEPTH TO POINT OF WELL (TOC)		DEPTH TOP SCREEN	OF L	CREEN ENGTH (FT)		WELL DEVELOPMENT TURBIDITY		DEVEL	ELL OPMENT oh	WELL DEVELOPMENT SPEC. COND
			10.20'										
DA	TA COLLI WELL	ECTED AT SITE	PID READING (OPENING WELL)	PID READING			TOC)	DEPTH TO STABILIZED WATER LEVEL (TOC)			INT	TO PUMP AKE OC)	PUMPING START TIME
					3.	30'							
RAD	LATION S	CREENING	PUMP PRIOR TO SAMPLING (cps)						UMP AFT				
		MON	ITORING DATA	CO	LLEC	TED I	URI	NG PI	IRGI	NG OPE	RATI	ONS	
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	I	DISSOLVEI (YGEN (mg		TEMP (C)	SPEC. (um)	COND	рН		ORP (mV)	TURBIDITY (NTU)
500	3.28	12222	ETubas in h	ell							-		
500		Punp	Started	-									
507	3.49	~120		L	.15	8	.8	0.2	59	7.46		-58	23.5
512	3.52			6	,03	8	1.7	0.2	28	7.50) -	.64	18.6
517	3.57	~104		1.	.05	2	5.7	0.2	58	7.52		-62	13.4
522	355			1.	44	8	1.7	0.2	58	7.53	- 1	-57	10.6
527	3.55		2/52/	1.	68	8	.7	0.2	57	7.54	4 -	-54	8,85
532	3.56	~110		1.	78	8	7.7	0.25	57	7.55	5 .	-51	7.47
	3.58				78		1.8	0.2	57	7.5		46	6.86
	3.60				79		5.8	0.2		7.54		43	6.43
	3.60		~ 1.5gals		82		.8	0.2		7.54		40	5.51
	3.61				76		.8	0.2		7.58		37	4.40
	361				66		.8	0.2		7.58		34	6.40
	3,61		~Z.Ogals		,59		.8	0.26		7.59		31	7.13
	3.61				.43			0.26		7.50	1 -	28	3.51
	3.62				48			0.24		7.60		26	4.70
	3.63				.46			0.2		7.60	-	24	3.51
	3.63		~2.5006		49			0.26		7.60	-	23	3.83
	3.63		0.0946		.26	and the second division of the second divisio	-	0.2	_	7.60		22	3.77
be 1	1.04		~2.8 9 = 5				_	0.20		7.60		21	3,60
	3.63		AZ.DA -IC		43	X	NA I			T, 977	-		

12/5/2012

380

SENECA	ARMY D	DEPOT ACTIVITY			PAR	SONS		WELL #: MC	W17-2
PROJECT:	_	SEAD-16/17 L	TM Ground	water S	ampling	- Round 5		DATE: 12	111/12
LOCATION	:		ROMU					INSPECTORS:	
WEATHER	/ FIELD	CONDITIONS CHEC	VIICT	(D)	COPD	MAJOR CHAN	ICES)	PUMP #: Reaston SAMPLE ID #:	Personal Providence
WEATHER	C/ FIELD	CONDITIONS CHEC	REL.	WIN		ROM) GROU	ND/SITE	17LM 200	221
TIME	TEMP	WEATHER	HUMIDITY	VELOC	TTY DIR		RFACE		ORING
(24 HR)	(APPRX)	(APPRX)	(GEN)	(APP)			DITIONS	INSTRUMENT	DETECTOR
840	34	light sam she		0-5	SIE	-756		OVM-580	PID
DIAMETER (II GALLONS / F LITERS/FC	NCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 4 0.367 0.654 1.389 2.475	6 1.47 5.564	ONE			STABILIZED WATER I TER FACTOR (GAL/FI	
tona USZ#	-	DEPTH TO POINT OF WELL		TH TO P OF	SCREEN LENGTH	WELL		WELL DEVELOPMENT	WELL DEVELOPMENT
ST 75 #	DATA	(TOC)		EN (TOC)	(FT)	TURBIDI		рН	SPEC. COND
satur Lac 1 #	1018951	6.85							
DATA COLLEC WELL SIT		PID READING (OPENING WELL)	WA	DEPTH T STATIO	2	DEPTH 1 STABILIZ WATER LEVE	ED	DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIME
			2	.86	1				
RADIATION SCH DATA	REENING	PUMP PRIOR TO SAMPLING (cps)				PUMP AF SAMPLING			
	MON	TORING DATA	COLLEG	TED	DURI	NG PURG	ING OPI	ERATIONS	
TIME WATER (min) LEVEL R	PUMPING LATE (ml/min)	CUMULATIVE VOL	DISSOL		TEMP (C)	SPEC. COND		ORP	TURBIDITY
(min) LEVEL R	YST. 1	(GALLONS) tuba In Vell	OXYGEN (mg/L)	(0)	s (amnos)	pH	(mV)	(NTU)
025 395 1	Pump S	tarted	YSI		YSI	Horby	Harbe	Horiba	Hech
1000	223 7110		75		8.1	6,559	7.46	223	
035 4.01	160		7.8		8.2	0.556	7.43	221	5.25
10-10-4.06	100		618	2	8.3	1.55.3	7.39	201	
1045 4.13	100		6.8		5.4	0.552	. 7,36		3.63
1050 4.22	100	.75 341	1.5	-	24	0.551	-1.36		3.31
155 4.28	100	* 12 40-1	5.9		2.4	0,547	7.35	99	2.84
1100 4.30	100				3.4	0.549	7.28		
105 4.36	100		6.2			0.547	7.35	the second se	2.86
1109 4.40	100		51	/	3,4	0.546	7.34	35	2.71
114 4.44	-	17.1	5.2		7.8	0.546	7,35		
	100	1.7 gal	4.3		8.0			64	2.80
the second se	100		7:0	-		0.531	7,35		
124 4.45	100		2.5		8.2	0.527	7.36		2.85
130 4.54	001		3.6		8.3	0.517	7.36		2.63
135 4.59	102		3.4	7	8.4	0.514	7.37		2.50
1140 4.63	100		3.	5	8.5	0.510	7.3		2.36
145 4.69	100		2.	1	85	0,507	7.38		Z.59
150 4.75	102		1/	1	3.5	0.504	7.30		1.38
155 4.80	102		1,9		8.5	0.5052	740		2.08
200 4.83	100	3.5 402	21	5	8.6	0.501	7.39	112	2.17

POST SAMPLE Reading :

SEN	ECA ARI	AY DI	POT ACTIVITY	Y			PAP	1501	IS		WELL #: A	1017-3
PROJ	ECT:		SEAD-16/17	LTM G	roundv	vater S	Samplin	ıg - Roun	d 5	_	DATE:	12/11/12
LOCA	TION:			R	OMUL	US, NY	Y	_		_	INSPECTORS:	
WFA	THER / FI		ONDITIONS CHE	CKLIST	Г	(R)	ECORD	MAJOR	CHAN	IGES)	PUMP#: 01 SAMPLE ID #	9002 le
WLA			Chornonis che		EL.	WIN		(FROM)		ND / SITE	17LM20	
TIME		MP	WEATHER					RECTION		RFACE		ITORING
(24 HF	(AP	PRX)	(APPRX)	(G	EN)	(APP)	RX) (0 - 360)	CONI	DITIONS	INSTRUMENT	-
											OVM-58	BO PID
GALLO	WEL ER (INCHES DNS / FOOT: ERS/FOOT): 0	AE CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	CTORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564	ON	E WELL VO			STABILIZED WATEI TER FACTOR (GAL/	
			DEPTH TO POINT OF WELL		DEPTH		SCREEN		WELL	ENT	WELL DEVELOPMENT	WELL DEVELOPMENT
HISTO	DRIC DATA	-	(TOC)		SCREEN	(TOC)	(FT)		TURBIDIT	Y	рН	SPEC. COND
			7.47'	-		_						
	DLLECTED AT		PID READING			STATIC	:	5	DEPTH T	ED	DEPTH TO PUMP INTAKE	PUMPING START TIME
WE	ELL SITE	-	(OPENING WELL)			R LEVE		WAT	ER LEVE	L (10C)	(TOC)	1
	ON SCREENING	;	PUMP PRIOR TO SAMPLING (cps)						UMP AFT			
		ONIT	ORING DATA	COL	LECT	red	DUR	ING P			ERATIONS	<u></u>
TIME WA'			CUMULATIVE VOL (GALLONS)		ISSOLVEI		TEMP (C)	SPEC.		pH	ORP (mV)	TURBIDITY (NTU)
300 2.			RT PUMP	FOR	PUR							
306 3,2	0 104			3	7.4	31	8.1	6.2	61	7,64	160	
3113.3	7 130			4	.36		8.1	0,2	57	7.50	1 166	4.06
315 3.4	19 120			6	.11		8.2	0.25		7.50	171	4.06
320 3.6	0 120			4	1.29		8.3	0.2		7.49	172	
325 3.6	6 110			4	1.43		8.3	0,2	58	7,46	175	5,34
30 3.7	3 106	100		4	.09		8.2		57	7.44	177	3.98
335 3.0			Igal		.71		3.1	D.2	58	7.42	- 180	3.32
3403.8		,		3	.76		8.2	0.2		7.41	185	2.61
345 3.9	14 106			3.	29		8.3		62	7.38	187	2,79
350 3,9	9 106			2	189		8.4	0.2	63	7.39	188	1.68
355 4.0	5 106			3	,01		8.4	6.2	65	7.39	189	1.77
100 4.	11/04			3	,49		8.3	6.21	65	7.38	189	1.61
165 4.1				2	,86		8.4	0,2	67	7.38	191	1.87
10 4.1				2	,59		8.5	0.2	71	7,38	191	1.92
415 4.			2 gal	7	.39		8.5	0.2	74	7,30	0 193	1,96
420 4.2	20 106		~	2.	25	12	8.6	0,2		7.30	6 195	1.76
425 4.2				2	.15		8.6	0.2		7.30	0 197	1.66
-1304.3	3 100	2		2	, 22		8.7	0.2	.31	7.36		1.90
		-	- A. D.				4 1	1.1	211	n e		. ()
435	COLL	-40	TSAMPL	Ct	UR	1	reta	0,2	Filte.	ed 5	Vatilter ZOO	241

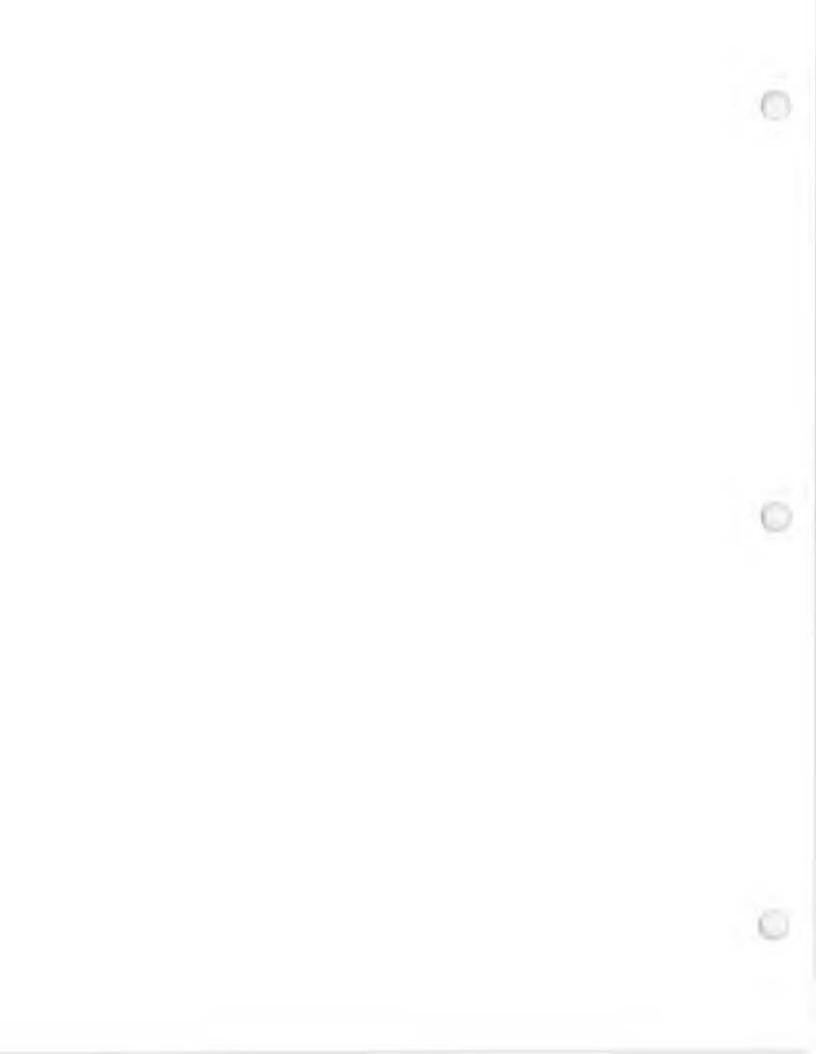
POST SAMPLE READENDS

C:\Documents and Settings\c0010112\My Documents\Field Forms\Field Forms for OB & S-25 GW.xls

12/5/2012

SENECA	ARMY I	DEPOT ACTIVITY			PA	RSON	15		WELL #:	nu	17-4
PROJECT:		SEAD-16/17 L	TM Gr	oundwater	Sampli	ng - Roun	d 5			12/	the second se
LOCATION	l:		RO	MULUS, N	Y				INSPECTO	RS: BB	0
											tic Pup
WEATHER	R/ FIELD	CONDITIONS CHEC	KLIST REI) MAJOR (FROM)		GES) (D/SITE	SAMPLE II		7
TIME	ТЕМР	WEATHER	HUMIE			RECTION		FACE		ONITOR	
(24 HR)	(APPRX)	(APPRX)	(GE			(0 - 360)		ITIONS	INSTRUME		DETECTOR
1220	33	13ht same		5-1	ON	W-75E			OVN	1-580	PID
DIAMETER (H GALLONS / I LITERS/FC	NCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 163 0.010 0.151 0.617	3 0.367 (4 6 0.654 1.47 2.475 5.564	8	UU	78 X X	WELL DIAME	STABILIZED W. ETER FACTOR (C () 85	ATER LEVI GAL/FT) 🗶 3	
		DEPTH TO POINT OF WELL		DEPTH TO TOP OF	SCREE LENGT		WELL	ENT	WELL DEVELOPME	NT	WELL DEVELOPMENT
HISTORIC E	DATA	(TOC)		SCREEN (TOC)	(FT)	1	TURBIDIT		pH		SPEC. COND
		8,44									
DATA COLLEC	TED AT	PID READING		DEPTH			DEPTH TO STABILIZE		DEPTH TO PU INTAKE	IMP P	UMPING START TIME
WELL SI		(OPENING WELL)		WATER LEV	EL (TOC)	1	ER LEVEL		(TOC)		
				3.23							
RADIATION SCI DATA	REENING	PUMP PRIOR TO SAMPLING (cps)					PUMP AFT AMPLING (
	MON	ITORING DATA	COL	LECTED	DU	RING P		NG OP	ERATION	S	
TIME WATER (min) LEVEL F	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		SSOLVED GEN (mg/L)	TEMI (C)	SPEC.	COND	pH		RP IV)	TURBIDITY (NTU)
227 3.19	YSIS	tube he wel	/	GEN (mg/L)				pri			(
227	P		Y	SI	45	L Her	-0-	Hore	a Hor.	-	Hack
232 3.44	2110	Havted		.95	7.7			7.1			11.8
247 3,43				12	7.0			1.10	1 32		6.94
	~110			95	8.0			7,10			8,13
	- 110		0.		8.0		_	7.12			4.18
252 3.43		A 5 1.									
2573.44	(1.4	20.5 gals		.84	8.0			1 1 1 0			3.27
	~110			75	8.0			7.17			2.01
3073.43				94	7.9			7.2			1.51
312 3,45		~1.1 gals		72	7.0			7.2			1.40
317 3,45	-110	~1.5 sels		80		30.4		7.2			1.07
3223,46			0.3		7.8	0.4		7,29			1.98
3273,46			0.	64	7.7	10.4	.07	1.30	3 8		1.92
3328,47			0.		7.7	- 0.4	00	7.30			1.36
3373,46	-104	22,0915		62		. 0.3		7.3		,	1.50
342 3,46	•			64		0.3		7.33			1.19
347 3.46		22.5gels		63	7.8			7.34			3,18
3523.46				57		- 0.3		7.34		-	1.19
3573.47		27.75 gals	0.6		7.7		60	7.35			1.60
		Cit S gals	0.1		111	1013		Tiss			1160
405 5	1.		17	1 1	077		UNC	171	M2007	17 5	1409
	noles -	Collected		LMZO						UF	דידו
11 715	reader	Cll color Geo - 3 - 15 gs/c0010112/My Docu	Par D.	65	77.7	0.3	27 T <i>CA</i> 41	7.3Z	. 4		1.85
16241		- 2 2 2 2 2		J 2							

S	SENEC	A ARMY	DEPOT ACTIVITY	Y			PAF	1501	IS		W	ELL #: M	617-5
	ROJEC		SEAD-16/17			Water LUS, N		g - Roun	d 5	_		PECTORS:	2/11/12 1370 Loc Rugs
V	VEATHE	R/ FIELD	CONDITIONS CHEC	CKLIS	Г	(R	ECORD	MAJOR	CHAN	IGES)	SAN	APLE ID #:	
				R	EL.	WIN	D (I	FROM)		ND / SITE	17	LA 201	and the second s
	TIME	TEMP	WEATHER		IDITY	VELO		RECTION		RFACE DITIONS	INC	MONIT TRUMENT	ORING DETECTOR
	4 HR) ZZ	(APPRX	1.34 - Show sha		EN)	(APP)-360) J-35E	CONL	THONS	INS	OVM-580	
	60	3)	overcost									0 4 141-500	TID
DIA G	METER ALLONS LITERS/	(INCHES): / FOOT:	LUME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3	4 0.654 2.475	6 1.47 5.564						ILIZED WATER I	
			DEPTH TO POINT OF WELL			TH TO P OF	SCREEN LENGTH	D	WELL	ENT	DE	WELL VELOPMENT	WELL DEVELOPMENT
	HISTORIC	DATA	(TOC)		SCREE	N (TOC)	(FT)		TURBIDIT	ΓY		рН	SPEC. COND
-			10.13						DEBONIS				
DA	TA COLLE		PID READING			DEPTH T	C		DEPTH T	ED	DEP	TH TO PUMP INTAKE	PUMPING START TIME
	WELL S	MIE	(OPENING WELL)		_	I 58		WAI	ER LEVEI			(TOC)	
RAD		CREENING	PUMP PRIOR TO		L	150			PUMP AFT			<u> </u>	
	DATA		SAMPLING (cps)	001	IDO		DUDI		MPLING		EDA	TIONS	
TIME	WATER	PUMPING	CUMULATIVE VOL	-	ISSOLV	TED	TEMP	SPEC.	COND	NG OP	ERA	ORP	TURBIDITY
(min)	LEVEL	RATE (ml/min)	(GALLONS)	0X	YGEN (n	ng/L)	(C)	ms/co	Noc)	pH	-	(mV)	(NTU)
1021	2.59	1241	tabay in c	ell	Vet	-	Ver	1.1	>	11 1	-	11 1	11 1
1022	-	Punp	Horted		YSI		AZT	Har	-	Herof		tovo ba	Hech
	2.69	100 -4	a		.88		8.2	0.4		6.9.		207	4.2
	2.65				.87		8.2	0.4		6.78		199	30.0
1040	2.66	114			86	-	8.1	0.4		6.62		189	18.5
1045		1.0			82	_	8.1	0.4		6.93		155	13.0
	2.66	109			85			0.47		7.20		120	10.5
	2.66				89			0.4		7.20		108	8.92
	2.66	19.0			14			0.4		7.2		85	8.54
		120	~1.25%		05		8.0			7.2	_	65	6.64
	2,67		0151	0.7			8.1	0.4		7.2	4	50	5.42
	2.67		21.5 9013		55			0.4		7.11		46	4.47
	267	116	22.0 gals		97		8.1			7.00		47	4.90
	2.67				50		8.1	0.4	_	7.07		42	3.21
	2.68		~2.5 gals		64		8.0			7.0-		32	2.25
	2.68				56			0.4		7.03		33	2.07
1150	2.68	-	23.0 gali	1.	67		8.0	0.4	4	7.00		34	1.87
		172											-
260	Cull	ected ?	panples				244				_		
		100		171	MZ	.00	24F	120	5				


C:\Documents and Settings\c0010112\My Documents\Field Forms\Field Forms for OB & S-25 GW.xls

12/5/2012

APPENDIX D

COMPLETE GROUNDWATER DATA RESULTS FOR YEARS 1 THROUGH 5

March 2013 Appendices
\Bosts02\Projects\PIT\Projects\IIuntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr
5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

Area Loc ID Matrix Sample ID Sample Depth Interval (FT) Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹	on 1 1	SEAD-16 MW16-1 GW 16LM20000 0-0 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-1 GW 16LM20001 0-0 12/20/2007 DU LTM 1 Total	SEAD-16 MW16-1 GW 16LM20013 0-0.1 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-1 GW 16LM20014FIL 0-0 11/13/2009 SA LTM 3 Dissolved	SEAD-16 MW16-1 GW 16LM20014UNFIL 0-0 11/13/2009 SA LTM 3 Total	SEAD-16 MW16-1 GW 16LM20021FIL 0-0.1 12/16/2010 SA LTM 4 Dissolved	SEAD-16 MW16-1 GW 16LM20021UNF 0-0.1 12/16/2010 SA LTM 4 Total	SEAD-16 MW16-1 GW 16LM20028F 0-0.1 12/15/2012 SA LTM 5 Dissolved
Parameter	Unit	Source	Level	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			61.4 J	91.6 J	148 J	24 U	45 J	23 U	50 U	23 U
Antimony	UG/L	GA	3	1 U	1.02	0.95 J	1 U	1 U	2.3 U	2 U	2.3 U
Arsenic	UG/L	MCL	10	4.2 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	60.4	59	125	105	104	110	97 J	78
Beryllium	ŲG/L	MCL	4	0.27 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U
Cadmium	UG/L	GA	5	0.36 U	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U
Calcium	UG/L			107,000 J	105,000 J	176,000	111,000 J	110,000 J	140,000	130,000	120,000
Chromium	UG/L	GA	50	0.84 U	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			0.89 U	0.89 U	1.1 U	1.1 U	1.1 U	1.1	1.1	0.15 U
Copper	UG/L	GA	200	1.3 U	1.3 U	1.3 U	1.6 J	1.6 J	1.1 U	1.1 U	5.2
Iron	UG/L	GA	300	35.8 J	68.3	93.3	19 UJ	19 UJ	77 J	100	33 U
Iron+Mangariese	UG/L	GA	500	39 J	73	105	1 J	2.4 J	131 J	152	34 U
Lead	UG/L	MCL	15	2.9 U	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 U
Magnesium	UG/L			16,100 J	15,900 J	25,800	18,000	17,900	21,000	20,000 J	18,000
Manganese	UG/L	GA	300	3.3	5	11.8	1 J	2.4 J	54	52	1 U
Mercury	UG/L	GA	0.7	0.12 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U
Nickel	UG/L	GA	100	1.2 U	1.2 U	1 U	1.8 J	1.2 J	2.8 J	2.7 J	2.3 J
Potassium	UG/L			886 R	907 R	1,340 J	1,110	1,100	1,200	1,100	900
Selenium	UG/L	GA	10	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U
Silver	UG/L	GA	50	1 U	10	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U
Sodium	UG/L	GA	20,000	34.200 J	25,300 J	182.000	8,000 J	8,000 J	170,000	160,000	63,000
Thallium	UG/L	MCL	2	0.03 U	0.03 U	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U	0.5 U
Vanadium	UG/L			0.78 U	0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U
Zinc	UG/L			4.4 J	7.8 J	5.8 J	3.6 U	3.6 U	8.3 U	8.8 J	8.3 U
Turbidity (post)	NTU								0		0.87
Turbidity (pre)	NTU			0.4	0.4	5		0.4		0.7	

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-16_LTM_GW_Rnd_1-5_Data.xls

Area Loc ID Matrix Sample ID Sample Depth Interval (FT) Sample Date QC Type Study ID Sample Round Filtered				SEAD-16 MW16-1 GW 16LM20028U 0-0.1 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-2 GW 16LM20002 0-0 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-2 GW 16LM20007 0-0.1 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-2 GW 16LM20015FIL 0-0 11/11/2009 SA LTM 3 Dissolved	SEAD-16 MW16-2 GW 16LM20015UNFIL 0-0 11/11/2009 SA LTM 3 Total	SEAD-16 MW16-2 GW 16LM20022FIL 0-0.1 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-2 GW 16LM20022UNF 0-0.1 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-2 GW 16LM20023FIL 0-0.1 12/15/2010 DU LTM 4 Dissolved
Parameter	Unit	Criteria ¹ Source	Criteria ' Level	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics	Onic	000100	20101	value (at)	(d)	Value (a)	raice (a)			(u)	t allos (al)
Aluminum	UG/L			50 U	98.8 J	97.1 J	24 U	205	23 U	50 U	23 U
Antimony	UG/L	GA	3	2 U	3.36	5.53	3.6	3.6	6.1	6.6	6.1
Arsenic	UG/L	MCL	10	1.3 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	78	64.6	69.7	71.9	72.7	68	77 J	67
Beryllium	UG/L	MCL	4	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U
Cadmium	UG/L	GA	5	0.13 U	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U
Calcium	UG/L			120,000	143,000 J	138,000	118,000 J	117,000 J	100,000 J	110,000 J	96,000
Chromium	UG/L	GA	50	2.5 U	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			0.16 J	0.89 U	1.1 U	1.1 U	1.1 U	0.15 U	0.12 U	0.15 U
Copper	UG/L	GA	200	3.3 J	4.5 J	4 J	3.4 J	5.1 J	4.4 J	5.9	4.5 J
Iron	UG/L	GA	300	44 U	49.5 J	26.1 J	19 UJ	197 J	33 U	89 J	33 U
Iron+Manganese	UG/L	GA	500	46 U	53 J	27	39.5	260.7 J	12	105 J	12
Lead	UG/L	MCL	15	0.5 U	2.9 U	2.9 U	2.9 U	2.9 U	0.21 J	1.3 J	0.2 U
Magnesium	UG/L			18,000	15,600 J	15,700	12,600	12,300	12,000	14,000 J	11,000
Manganese	UG/L	GA	300	2 U	3.4	0.84 J	39.5	63.7	12	16	12
Mercury	UG/L	GA	0.7	0.091 U	0.12 U	0.148 J	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U
Nickel	UG/L	GA	100	2 U	1.2 U	1.6 J	2.2 J	2.6 J	2 U	2 J	2.2 J
Potassium	UG/L			870 J	2,050 R	2,410 J	3,170	3,140	2,300	2,500	2,200
Selenium	UG/L	GA	10	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U
Silver	UG/L	GA	50	0.18 U	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U
Sodium	UG/L	GA	20,000	12,000 ·	1 100,000.3	100,500	19,500 J	18,800 J	33,000,01	34,000	3,1,000
Thallium	UG/L	MCL	2	0.25 U	0.03 U	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U	0.5 U
Vanadium	UG/L			3.2 U	0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U
Zinc	UG/L			8.4 U	8.2 J	10.2	11.1	11.3	11 J	14 J	12 J
Turbidity (post)	NTU			0.87					0.25	4.9	0.25
Turbidity (pre)	NTU			1.04	7.3	1.4		17.9		2.1	

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

Is used. A blank cell indicates no criteria value available.

2.Data validation gualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:/PIT/Projects/Huntsville Cont W912DY-08-D-0003/TO#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr 5/Draft/Appendix D/App-D_S-16_LTM_GW_Rnd_1-5_Data.xls

Page 2 of 7

Loc	FT) Date ype y ID und	Criteria		SEAD-16 MW16-2 GW 16LM20023UNF 0-0.1 12/15/2010 DU LTM 4 Total	SEAD-16 MW16-2 GW 16LM20029F 0-0.1 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-2 GW 16LM20029U 0-0.1 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-4 GW 16LM20003 0-0 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-4 GW 16LM20008 0-0.1 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-4 GW 16LM20009 0-0.1 12/9/2008 DU LTM 2 Total	SEAD-16 MW16-4 GW 16LM20016FIL 0-0 11/17/2009 SA LTM 3 Dissolved	SEAD-16 MW16-4 GW 16LM20016UNFIL 0-0 11/17/2009 SA LTM 3 Total
Parameter	Unit	Source		Value (Q) [∠]	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			50 U	23 U	50 U	167 J	104 J	101 J	24 U	68 J
Antimony	UG/L	GA	3	6	7.8	7.1	5.11	2.89	2.94	6	6.3
Arsenic	UG/L	MCL	10	1.3 U	1.3 U	1.3 U	4.2 U	3.7 U	3.7 U	3.7 U	3.7 U
Barium	UG/L	GA	1,000	69 J	65	62	44.5	290	279	129	123
Beryllium	UG/L	MCL	4	0.15 U	0.25 U	0.15 U	0.27 U	0.33 U	0.33 U	0.3 U	0.3 U
Cadmium	UG/L	GA	5	0.13 U	0.095 U	0.13 U	0.36 U	0.33 U	0.33 U	0.3 U	0.3 U
Calcium	UG/L			100,000	110,000	100,000	87,100 J	275,000	267,000	130,000 J	125,000 J
Chromium	UG/L	GA	50	2.5 U	2.5 U	2.5 U	1 J	0.88 U	0.88 U	0.9 U	0.9 U
Cobalt	UG/L			0.12 U	0.15 U	0.12 U	0.89 U	1.1 U	1.1 U	1.8 J	2 J
Copper	UG/L	GA	200	5.1	4.5 J	5	5.4 J	4.4 J	4.2 J	2.4 J	6.2 J
Iron	UG/L	GA	300	63 J	33 U	44 U	95.4	57 J	38.4 J	32955	E DANS AND
Iron+Manganese	UG/L	GA	500	76 J	34 U	46 U	127	65	46 J	417.7 J	
Lead	UG/L	MCL	15	0.97 J	0.24 J	0.66 J	2.9 U	2.9 U	2.9 U	2.9 U	2.9 U
Magnesium	UG/L			12,000 J	13,000	11,000	9,440 R	35,200	34,500	16,800	16,000
Manganese	UG/L	GA	300	13	1 U	2 U	31.2	7.7	8	88.7	94.5
Mercury	UG/L	GA	0.7	0.091 U	0.091 U	0.091 U	0.12 U	0.12 U	0.12 U	0.1 U	0.1 U
Nickel	UG/L	GA	100	2.2 J	2.2 J	2 U	1.2 U	2.2 J	1.9 J	1.7 J	1.4 J
Potassium	UG/L			2,200	2,200	1,900	1,300 R	3,830 J	3,690 J	3,270	3,270
Selenium	UG/L	GA	10	1.1 U	1 U	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver	UG/L	GA	50	0.18 U	0.25 U	0.18 U	1 U	1.3 U	1.3 U	1.3 U	1.3 U
Sodium	UG/L	GA	20,000	32.000	20,000	17,000	40,800 J	434.000	419.000	380,000 J	363,000 J
Thallium	UG/L	MCL	2	0.25 U	0.5 U	0.25 U	0.03 U	0.09 U	0.09 U	0.2 U	0.2 U
Vanadium	UG/L			3.2 U	3.8 U	3.2 U	0.78 U	0.98 U	0.98 U	1.1 J	1.1 J
Zinc	UG/L			12 J	9.5 J	8.8 J	5.3 J	14.6 J	9.8 J	3.6 U	3.6 U
Turbidity (post)	NTU			4.9	3.01	3.01					
Turbidity (pre)	NTU			2.1		1.2	4.5	0.4	0.4		0.03

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-16_LTM_GW_Rnd_1-5_Data.xis

	Area				SEAD-16							
	Loc ID				MW16-4	MW16-4	MW16-4	MW16-4	MW16-5	MW16-5	MW16-5	MW16-5
	Matrix				GW							
	nple ID				16LM20024FIL	16LM20024UNF	16LM20030F	16LM20030U	16LM20004	16LM20010	16LM20017FIL	16LM20017UNFIL
Sample Depth Interv	al (FT)				0-0.1	0-0.1	0-0.1	0-0.1	0-0	0-0.1	0-0	0-0
Sampl	e Date				12/16/2010	12/16/2010	12/15/2012	12/15/2012	12/20/2007	12/10/2008	11/16/2009	11/16/2009
QC	С Туре				SA							
St	udy ID				LTM							
Sample	Round				4	4	5	5	1	2	3	3
F	iltered				Dissolved	Total	Dissolved	Total	Total	Total	Dissolved	Total
		(Criteria 1	Criteria 1								
Parameter	Ur	nit	Source	Level	Value (Q) ²							
norganics	UG	- 4			00.11	50.11	00.11		400 1		24.11	101.1
Aluminum	00		GA	3	23 U 2.3 U	50 U 2 U	23 U	50 U 3.9 J	160 J	563	24 U	164 J
Antimony	00		MCL	10			4 J		1.82		10	10
Arsenic					1.3 U	1.3 U	1.5 J	1.3 J	4.2 U	3.7 U	3.7 U	3.7 U
Barium	UC		GA	1,000	220	240 J	240	230	38.9	22	42.8	42
Beryllium	UC		MCL	4	0.25 U	0.15 U	0.25 U	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U
Cadmium	UC		GA	5	0.095 U	0.13 U	0.095 U	0.23 J	0.36 U	0.33 U	0.3 U	0.3 U
Calcium	UC		~	50	210,000	210,000	230,000	220,000	89,000 J	53,100	115,000 J	110,000 J
Chromium	UC		GA	50	2.5 U	2.5 U	2.5 U	2.5 U	1.1 J	1.2 J	0.9 U	0.9 U
Cobalt	UC				0.7	0.71	1.9	1.9	0.89 U	1.1 U	1.1 U	1.1 U
Copper	UC		GA	200	1.4 J	2.8 J	4.1 J	11	3.1 J	10.6	1.3 U	1.3 U
ron		G/L	GA	300	130	150	130	140	1,200	699	1.005	
ron+Manganese		G/L	GA	500	260	290	270	280	1,238	734	3400 34	HANNE FOR FILM
ead	UC		MCL	15	0.7 J	3	0.2 U	3.4	2.9 U	10.1	2.9 U	2.9 U
Magnesium		G/L			31,000	32,000 J	34,000	32,000	9,380 R	6,050	12,200	11,800
Manganese	UC		GA	300	130	140	140	140	37.6	32.4	170	173
Aercury		G/L	GA	0.7	0.091 U	0.091 U	0.091 U	0.091 U	0.12 U	0.12 U	0.1 U	0.1 U
Nickel		G/L	GA	100	2.2 J	2.3 J	2.6 J	3.2 J	1.2 U	2.6 J	1.8 J	2 J
Potassium		G/L			2,600	2,600	3,200	3,100	4,420 R	2,610 J	2,370	2,380
Selenium		G/L	GA	10	1 U	1.1 U	1 U	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver		G/L	GA	50	0.25 U	0.18 U	0.25 U	0.18 U	1 U	1.3 U	1.3 U	1.3 U
Sodium	UC		GA	20,000	540,000	560,008	340,000	310,000	8,410 R	2,180	2,700 J	2,800 J
Thailium	UC		MCL	2	0.5 U	0.25 U	0.5 U	0.25 U	0.03 U	0.09 U	0.2 U	0.2 U
Vanadium		G/L			3.8 U	3.2 U	3.8 U	3.2 U	1.2 J	2.3 J	1 U	1.1 J
Zinc		G/L			9.2 J	13 J	12 J	11 J	34.4	10.3	3.6 U	3.6 U
Turbidity (post)	N.	TU			0		1.01	1.01				
Turbidity (pre)	N'	TU				0.7		0.48	4.9	29		10

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\DraftAppendix D\App-D_S-16_LTM_GW_Rnd 1-5 Data.xts

Area Loc ID Matrix Sample Depth Interval (FT) Sample Depth Interval (FT) Sample Date QC Type Study ID Sample Round Filtered		o 1	o # . 1	SEAD-16 MW16-5 GW 16LM20025FIL 0-0.1 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-5 GW 16LM20025UNF 0-0.1 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-5 GW 16LM20031F 0-0.1 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-5 GW 16LM20031U 0-0.1 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-6 GW 16LM20005 0-0 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-6 GW 16LM20011 0-0.1 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-6 GW 16LM20018FIL 0-0 11/17/2009 SA LTM 3 Dissolved	SEAD-16 MW16-6 GW 16LM20018UNFIL 0-0 11/17/2009 SA LTM 3 Total
Parameter	Unit	Source	Criteria 1 Level	Value (Q) ²	Value (Q) ²	Value (Q)2	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics										(a)	
Aluminum	UG/L			23 U	160	23 U	50 U	168 J	189 J	107 J	442
Antimony	UG/L	GA	3	2.3 U	2 U	2.3 U	2 U	1 U	0.92 J	0.9 J	1 U
Arsenic	UG/L	MCL	10	1.3 U	1.3 U	2.6	2.7	4.2 U	3.7 U	3.7 U	3.7 U
Barium	UG/L	GA	1,000	34	33 J	34	39	31.8	39.1	78.5	80.2
Beryllium	UG/L	MCL	4	0.25 U	0.15 U	0.25 U	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U
Cadmium	UG/L	GA	5	0.095 U	0.13 U	0.095 U	0.13 U	0.36 U	0.33 U	0.3 U	0.3 U
Calcium	UG/L			90,000	86,000	97,000	96,000	80,400 J	84,300	112,000 J	112,000 J
Chromium	UG/L	GA	50	2.5 U	2.5 U	2.5 U	2.5 U	0.84 U	0.88 U	0.9 U	0.9 U
Cobalt	UG/L			0.15 U	0.12 U	0.22 J	0.23 J	0.89 U	1.1 U	1.1 U	1.1 U
Copper	UG/L	GA	200	1.1 U	1.1 U	1.1 J	3 J	3.4 J	2.1 J	1.9 J	2.5 J
Iron	UG/L	GA	300	490	660	4,100	1,300	418	153	55 J	440 J
Iron+Manganese	UG/L	GA	500			1.1.1	1,430	441	158	153.4 J	545 J
Lead	UG/L	MCL	15	0.2 U	0.77 J	0.2 U	0.5 U	2.9 U	2.9 U	2.9 U	2.9 U
Magnesium	UG/L			10,000	9,700 J	9,900	9,800	7,100 R	7,380	9,970	9,950
Manganese	UG/L	GA	300	200	160	130	130	23.3	4.8	98.4	75
Mercury	UG/L	GA	0.7	0.091 U	0.091 U	0.1 J	0.091 U	0.12 U	0.12 U	0.1 U	0.1 U
Nickel	UG/L	GA	100	2 U	2 U	2.1 J	2 U	1.2 U	1 U	1.2 J	2.6 J
Potassium	UG/L			2,200	2,100	2,100	2,100	2,690 R	2,310 J	2,380	2,580
Selenium	UG/L	GA	10	1 U	1.1 U	1 U	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver	UG/L	GA	50	0.25 U	0.18 U	0.25 U	0.18 U	1 U	1.3 U	1.3 U	1.3 U
Sodium	UG/L	GA	20,000	1,800	1,800	1,600	1,500	6,110 R	9,200	22,000 1	20,600
Thallium	UG/L	MCL	2	0.5 U	0.25 U	0.5 U	0.25 U	0.03 U	0.09 U	0.008 U	0.008 U
Vanadium	UG/L			3.8 U	3.2 U	3.8 U	3.2 U	0.86 J	0.98 U	1 U	1.3 J
Zinc	UG/L			8.3 U	8.4 U	8.3 U	8.4 U	5.5 J	3.7 J	3.6 U	3.6 U
Turbidity (post)	NTU			0	6.5	1.39	1.39				
Turbidity (pre)	NTU				1.4		0.94	7	1.5		7.3

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.htmi#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:/PIT/Projects/Huntsville Cont W912DY-08-D-0003/TO#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr 5/Draft/Appendix D/App-D_S-16_LTM_GW_Rnd_1-5_Data.xis

Page 5 of 7

Area Loc ID Matrix Sample ID Sample Depth Interval (FT) Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹	Critoria ¹	SEAD-16 MW16-6 GW 16LM20026FIL 0-0.1 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-6 GW 16LM20026UNF 0-0.1 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-6 GW 16LM20032F 0-0.1 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-6 GW 16LM20032U 0-0.1 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20006 0-0 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-7 GW 16LM20012 0-0.1 12/10/2008 SA LTM 2 Total	SEAD-16 MW16-7 GW 16LM20019FIL 0-0 11/12/2009 SA LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20019UNFIL 0-0 11/12/2009 SA LTM 3 Total
Parameter	Unit	Source		Value (Q)2	Value (Q) ²	Value (Q) ²	Value (Q)2	Value (Q) ²	Value (Q)2	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			23 U	61 J	23 U	300	45.9 J	577	32 J	182 J
Antimony	UG/L	GA	3	2.3 U	2 U	2.3 U	2 U	9.58	13.6	15.2	15.7
Arsenic	UG/L	MCL	10	1.3 U	1.3 U	1.3 U	1.3 J	4.2 U	3.7 U	3.7 U	3.7 U
Barium	UG/L	GA	1,000	44	50 J	41	45	170	122	83.6	81.6
Beryllium	UG/L	MCL	4	0.25 U	0.15 U	0.25 U	0.15 U	0.27 U	0.33 U	0.3 U	0.3 U
Cadmium	UG/L	GA	5	0.095 U	0.13 U	0.095 U	0.13 U	0.46 J	0.33 U	0.3 U	0.3 U
Calcium	UG/L			68,000	78,000	70,000	74,000	194,000	133,000	85,000 J	84,600 J
Chromium	UG/L	GA	50	2.5 U	2.5 U	2.5 U	2.5 U	0.84 U	1.6 J	0.9 U	0.9 U
Cobalt	UG/L			0.15 U	0.12 U	0.18 J	0.43 J	1.6 J	1.1 J	1.1 U	1.1 U
Copper	UG/L	GA	200	1.5 J	2 J	4.5 J	4.1 J	34.7	20 2	3.1 J	5 J
Iron	UG/L	GA	300	33 U	110	33 J	790	29.2 J	770	1 19 UJ	135 J
Iron+Manganese	UG/L	GA	500	2.1 J	113.5 J	43 J	816	660 J	990	136	244 J
Lead	UG/L	MCL	15	0.2 U	0.5 U	0.2 U	0.5 U	26.5	88.6	4.4 J	12.1
Magnesium	UG/L			6,600	7.600 J	7,200	7,600	32,000 J	25,100	15,900	16,500
Manganese	UG/L	GA	300	2.1 J	3.5 J	10	26	631	220	136	109
Mercury	UG/L	GA	0.7	0.091 U	0.091 U	0.091 U	0.091 U	0.507	0.12 U	0.1 U	0.1 U
Nickel	UG/L	GA	100	2 U	2 U	2 U	2 J	5.5 J	2.6 J	1.9 J	1.7 J
Potassium	UG/L			1,500	1.800	2,400	2,400	5,480 J	5,670 J	6,520	5,780
Selenium	UG/L	GA	10	1 U	1.1 U	1 U	1.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver	UG/L	GA	50	0.25 U	0.18 U	0.25 U	0.18 U	1 U	1.3 U	1.3 U	1.3 U
Sodium	UG/L	GA	20,000	7,600	8,400	8,700	8,000	TTA BENGEN	WHEN A PROPERTY.	52 400 5	47.400
Thallium	UG/L	MCL	2	0.5 U	0.25 U	0.5 U	0.25 U	0.03 J	0.09 U	0.2 U	0.2 U
Vanadium	UG/L			3.8 U	3.2 U	3.8 U	3.2 U	0.78 U	0.98 U	1 U	1 U
Zinc	UG/L			8.3 U	8.4 U	8.3 U	8.4 U	3.6 U	8.6 J	3.6 U	3.6 U
Turbidity (post)	NTU			0.25	3.3	3.58	3.58				0.00
Turbidity (pre)	NTU				3.1		1.67	0.3	3.1		0.8

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\DraftAppendix D\App-D_S-16_LTM_GW_Rnd_1-5_Data.xis

Page 6 of 7

Area Loc ID Matrix Sample ID Sample Depth Interval (FT) Sample Date QC Type Study ID Sample Round Filtered		o 1 1	Criteria ¹	SEAD-16 MW16-7 GW 16LM20020FIL 0-0 11/12/2009 DU LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20020UNFIL 0-0 11/12/2009 DU LTM 3 Total	SEAD-16 MW16-7 GW 16LM20027FIL 0-0.1 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-7 GW 16LM20027UNF 0-0.1 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-7 GW 16LM20033F 0-0.1 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20033U 0-0.1 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20034F 0-0.1 12/15/2012 DU LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20034U 0-0.1 12/15/2012 DU LTM 5 Total
Parameter	Unit	Source	Level	Value (Q) ²	Value (Q)2	Value (Q)2	Value (Q) ²	Value (Q)2	Value (Q) ²	Value (Q)2	Value (Q) ²
Inorganics											
Aluminum	UG/L			25 J	116 J	23 U	50 U	23 U	50 U	23 U	50 U
Antimony	UG/L	GA	3	13.9	16.3	15	16	13	13	13	14
Arsenic	UG/L	MCL	10	3.7 U	3.7 U	1.3 U	1.3 U	1.3 J	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	83.9	80.3	69	71 J	100	100	99	100
Beryllium	UG/L	MCL	4	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	GA	5	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L			81,900 J	82,800 J	82,000	86,000	110,000 J	100,000 J	100,000	110,000
Chromium	UG/L	GA	50	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			1.1 U	1.1 U	0.15 U	0.12 U	0.23 J	0.22 J	0.24 J	0.24 J
Copper	UG/L	GA	200	3.5 J	4.1 J	1.8 J	2.7 J	4.1 J	8.3	1.7 J	5.6
Iron	UG/L	GA	300	19 UJ	61 J	33 U	45 J	33 U	44 U	33 U	44 U
Iron+Manganese	UG/L	GA	500	152	168 J	35	79 J	92	90	98	91
Lead	UG/L	MCL	15	4.9 J	9.4	1 J	6.3	1.3 J	2.5	2.3	2.6
Magnesium	UG/L			14,800	16,200	18,000	19,000 J	21,000	21,000 J	20,000	22,000
Manganese	UG/L	GA	300	152	107	35	34	92	90	98	91
Mercury	UG/L	GA	0.7	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U J	0.091 U	0.091 U	0.091 U
Nickel	UG/L	GA	100	2 J	1.1 J	2 U	2 U	2 U	2.2 J	2 U	2.4 J
Potassium	UG/L			7,010	5,630	2,800	2,700	5,300	5,200	5,100	5,400
Selenium	UG/L	GA	10	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	GA	50	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	GA	20,000	55,900 J	46,100 1	29,000	28,808	35,000.	32,000	.33,800	32,000
Thallium	UG/L	MCL	2	0.2 U	0.2 U	0.5 Ü	0.25 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L			1 U	1 U	3.8 U	3.2 U	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L			3.6 U	3.6 U	8.3 U	8.4 U	8.3 U	8.4 U	8.3 U	8.4 U
Turbidity (post)	NTU					0	1	1.29	1.29	1.29	1.29
Turbidity (pre)	NTU				0.8		0.15		1.14		1.14

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-16_LTM_GW_Rnd_1-5_Data.xls

Lo M Samp Sample Depth Interval Sample QC Stuc Sample Ro	(FT) Date Type dy ID	Criterio	Criteria ¹	SEAD-17 MW17-1 GW 17LM20000 0-0 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-1 GW 17LM20005 0-0.1 12/11/2008 SA LTM 2 Total	SEAD-17 MW17-1 GW 17LM20010FIL 0-0 11/18/2009 SA LTM 3 Dissolved	SEAD-17 MW17-1 GW 17LM20010UNFIL 0-0 11/18/2009 SA LTM 3 Total	SEAD-17 MW17-1 GW 17LM20016FIL 0-0.1 12/17/2010 SA LTM 4 Dissolved	SEAD-17 MW17-1 GW 17LM20016UNF 0-0.1 12/17/2010 SA LTM 4 Total	SEAD-17 MW17-1 GW 17LM20020F 0-0.1 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-1 GW 17LM20020U 0-0.1 12/11/2012 SA LTM 5 Total
Parameter	Unit	Source		Value (Q) ²	Value (Q) ²	Value (Q)2	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			204	219	37 J	59 J	23 U	50 U	23 U	50 U
Antimony	UG/L	GA	3	1 U	1 U	1 U	· 1U	2.3 U	2 U	2.3 U	2.7 J
Arsenic	UG/L	MCL	10	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	70	79	99.1	99	61	63 J	28	28
Beryllium	UG/L	MCL	4	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	GA	5	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U	0.44 J
Calcium	UG/L			98,300 J	95,600	109,000 J	108,000 J	96,000	100,000	53,000	55,000
Chromium	UG/L	GA	50	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			0.89 U	1.1 U	1.1 U	1.1 U	0.15 U	0.3 J	0.32 J	0.37 J
Copper	UG/L	GA	200	1.3 U	1.3 U	1.3 U	1.3 U	1.1 U	1.1 J	4.7 J	5.4
Iron	UG/L	GA	300	106	126	19 UJ	42 J	33 U	270	47 J	90 J
Iron+Manganese	UG/L	GA	500	119	141	38.9	67.6 J	4.2 J	312	54.2 J	98.1 J
Lead	UG/L	MCL	15	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 U	1.1 J
Magnesium	UG/L			21,800 J	20,600	24,300	24,000	19,000	20,000 J	7,200	7,700
Manganese	UG/L	GA	300	13.2	14.9	38.9	25.6	4.2 J	42	7.2	8.1
Mercury	UG/L	GA	0.7	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.14 J	0.091 U
Nickel	UG/L	GA	100	1.2 U	1.3 J	1 U	1 U	2 U	2 U	2 U	2 U
Potassium	UG/L			614 R	462 J	260 J	254 J	690	690 J	380 J	410 J
Selenium	UG/L	GA	10	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	GA	50	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	GA	20,000	7,790 R	8,380	7,300 J	7,400 J	6,000	6,200	2,400	2,500
Thallium	UG/L		2	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L			0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L			4.7 J	4 J	3.6 U	3.6 U	8.3 U	8.4 U	8.3 U	8.4 U
Turbidity (post)	NTU							0	1.2	3.28	3.28
Turbidity (pre)	NTU			4	3		0.4		1.6		3.6

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safawater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

 R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-17_LTM_GW_Rnd_1-5_Data.xls

Appendix D Table 2
SEAD-17 Post Remedial Action Groundwater Monitoring Results
SEAD-16 SEAD-17 Long-term Monitoring Report
Seneca Army Depot Activity

Lo M Samp Sample Depth Interval Sample QC Stuc Stuc	(FT) Date Type dy ID	Criteria ¹	Criteria ¹	SEAD-17 MW17-2 GW 17LM20001 0-0 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-2 GW 17LM20006 0-0.1 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-2 GW 17LM20011FIL 0-0 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-2 GW 17LM20011UNFIL 0-0 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-2 GW 17LM20015FIL 0-0.1 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-2 GW 17LM20015UNF 0-0.1 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-2 GW 17LM20021F 0-0.1 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-2 GW 17LM20021U 0-0.1 12/11/2012 SA LTM 5 Total
Parameter	Unit	Source	Level	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			110 J	142 J	88 J	19,600	23 U	51 J	23 U	50 U
Antimony	UG/L	GA	3	3.44	2.76	2.2	3,7	2.3 U	2 U	4.1	4.4. J.
Arsenic	UG/L	MCL	10	4.2 U	3.7 U	3.7 U	7.8 J	1.3 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	58.8	51.8	82.3	251	54	58 J	69	68
Beryllium	UG/L	MCL	4	0.27 U	0.33 U	0.3 U	1.2 J	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	GA	5	0.36 U	0.33 U	0.3 U	1.7	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L			110,000 J	112,000	154,000 J	195,000 J	140,000	150,000	120,000	120,000
Chromium	UG/L	GA	50	0.84 U	2.9 J	0.9 U	37.2	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			0.89 U	1.1 U	1.1 U	10.5	0.32 J	0.46 J	0.39 J	0.42 J
Copper	UG/L	GA	200	6.2 J	4.4 J	2.9 J	46.7	1.5 J	1.9 J	7.7	7.8
Iron	UG/L	GA	300	140	115	19 UJ	25,500 J	33 U	130	33 U	44 U
Iroл+Manganese	UG/L	GA	500	160	121	1.5 J	25,929 J	23	173	12	14
Lead	UG/L	MCL	15	2.9 U	2.9 U	2.9 U	103	0.2 U	0.6 J	0.2 U	0.99 J
Magnesium	UG/L			11,000 R	11,200	18,200	23,300	18,000	19,000 J	12,000	12,000
Manganese	UG/L	GA	300	20.5	6.1	1.5 J	429	23	43	12	14
Mercury	UG/L	GA	0.7	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U	0.091 U
Nickel	UG/L	GA	100	1.2 U	2.8 J	1.2 J	34	2 U	2 U	2 U	2 U
Potassium	UG/L			1,690 R	1,260 J	2,390	7,810	1,300	1,300	2,500	2,500
Selenium	UG/L	GA	10	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	GA	50	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	GA	20,000	6,620 R	7,860	19,800 J	20,300	14,000	14,000	8,400	8,400
Thallium	UG/L	MCL	2	0.03 U	0.09 U	0.008 U	0.2 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L			0.78 U	0.98 U	1 U	32.8	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L			72 J	27.6	28.6	935	17 J	21	24	26
Turbidity (post)	NTU							0.4	1.4	2.16	2.16
Turbidity (pre)	NTU			3.3	6.6		24.4		0.96		2.17

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-17_LTM_GW_Rnd_1-5_Data.xls

Are Loc II Matri Sample II Sample Depth Interval (FT Sample Dat QC Typ Study II Sample Roun Filtere	D x D e e D d		1	SEAD-17 MW17-3 GW 17LM20002 0-0 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-3 GW 17LM20007 0-0.1 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-3 GW 17LM20012FIL 0-0 11/18/2009 SA LTM 3 Dissolved	SEAD-17 MW17-3 GW 17LM20012UNFIL 0-0 11/18/2009 SA LTM 3 Total	SEAD-17 MW17-3 GW 17LM20017FIL 0-0.1 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-3 GW 17LM20017UNF 0-0.1 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-3 GW 17LM20022F 0-0.1 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-3 GW 17LM20022U 0-0.1 12/11/2012 SA LTM 5 Total
Parameter	Unit	Source	Criteria 1 Level	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			106 J	386	141 J	1,550 J	23 U	50 U	23 U	50 U
Antimony	UG/L	GA	3	1 U	1 U	1 U	1.5	2.3 U	2 U	2.3 U	2 U
Arsenic	UG/L	MCL	10	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	39	29.3	49.4	54.5	37	38 J	37	36
Beryllium	UG/L	MCL	4	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	GA	5	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L			69,000 J	67,200	99,400 J	95,900 J	90,000	93,000	74,000	67,000
Chromium	UG/L	GA	50	0.84 U	0.88 U	0.9 U	5.2	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			0.89 U	1.1 U	1.5 J	1.7 J	0.63	0.7	0.15 U	0.12 U
Copper	UG/L	GA	200	2.6 J	2.8 J	2.5 J	7.9 J	1.1 U	1.1 U	3.3 J	3.2 J
Iron	UG/L	GA	300	133	1,300	827 J	2,690 J	730	770	33 U	44 U
Iron+Manganese	UG/L	GA	500	170	1,573	968 J	2,858 J	890	940	34 U	46 U
Lead	UG/L	MCL	15	2.9 U	2.9 U	2.9 U	8.6	0.2 U	0.5 U	0.24 J	0.78 J
Magnesium	UG/L			7,560 R	7,400	9,850	9,170	9,900	10,000 J	6,100	5,800
Manganese	UG/L	GA	300	36.7	273	141	168	160	170	1 U	2 U
Mercury	UG/L	GA	0.7	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U	0.091 U
Nickel	UG/L	GA	100	1.2 U	1.8 J	3.1 J	4.5 J	2 U	2 U	2 U	2 U
Potassium	UG/L			2,620 R	1,840 J	1,290	1,590	1,200	1,200	1,800	1,700
Selenium	UG/L	GA	10	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	GA	50	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	GA	20,000	4,550 R	5,500	7,500 J	6,200 J	6,000	6,100	3,300	3,100
Thallium	UG/L	MCL	2	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L			0.78 U	0.98 U	1 U	1.7 J	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L			27 J	14.2	21.1	45.7	8.3 U	12 J	29	26
Turbidity (post)	NTU							0	1.2	2.02	2.02
Turbidity (pre)	NTU			1.2	20.8				1.3		1.9

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

 R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:/PIT/Projects/Huntsville Cont W912DY-08-D-0003/TO#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr 5/Draft/Appendix D/App-D_S-17_LTM_GW_Rnd_1-5_Data.xls

Area Loc ID Matrix Sample ID Sample Depth Interval (FT) Sample Date QC Type Study ID Sample Round Filtered				SEAD-17 MW17-4 GW 17LM20003 0-0 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-4 GW 17LM20008 0-0.1 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-4 GW 17LM20013FIL 0-0 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-4 GW 17LM20013UNFIL 0-0 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-4 GW 17LM20018FIL 0-0.1 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-4 GW 17LM20018UNF 0-0.1 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-4 GW 17LM20023F 0-0.1 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-4 GW 17LM20023U 0-0.1 12/11/2012 SA LTM 5 Total
Parameter	Unit	Criteria Source	Criteria 1 Level	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics											
Aluminum	UG/L			50.2 J	125 J	28 J	70 J	23 U	50 U	23 U	50 U
Antimony	UG/L	GA	3	1 U	0.62 J	1 U	1 U	2.3 U	2 U	2.3 U	2 U
Arsenic	UG/L	MCL	10	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U	1.3 U
Barium	UG/L	GA	1,000	32.5	35.9	36.3	36.6	27	28 J	65	67
Beryllium	UG/L	MCL	4	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium	UG/L	GA	5	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U	0.13 U
Calcium	UG/L			74,900 J	74,700	96,600 J	97,600 J	90,000	88,000	83,000	87,000
Chromium	UG/L	GA	50	1 J	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt	UG/L			0.89 U	2.4 J	1.5 J	1.3 J	0.96	1.1	0.21 J	0.25 J
Copper	UG/L	GA	200	1.8 J	1.8 J	1.3 U	1.3 U	1.1 U	1.1 U	1.1 J	4.7 J
Iron	UG/L	GA	300	45.4 J	1,760	60 J	142 J	240	260	33 U	72 J
Iron+Manganese	UG/L	GA	500	59 J	2,671	258 J	355 J	370	400	9.5	83
Lead	UG/L	MCL	15	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 U	0.5 U
Magnesium	UG/L			10,400 R	10,200	12,900	13,000	13,000	13,000 J	15,000	15,000
Manganese	UG/L	GA	300	13.7	1914	198	213	130	140	9.5	11
Mercury	UG/L	GA	0.7	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U	0.091 U
Nickel	UG/L	GA	100	1.2 U	2.6 J	2.2 J	2.4 J	2 U	2 U	2 U	2.1 J
Potassium	UG/L			838 R	1,190 J	844	866	540	530 J	750	780 J
Selenium	UG/L	GA	10	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U
Silver	UG/L	GA	50	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium	UG/L	GA	20,000	28,500.J	15,500	10,400 J	10,500 J	12,000	12,000	8,900	8,600
Thallium	UG/L	MCL	2	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium	UG/L			0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U	3.2 U
Zinc	UG/L			5.1 J	6.7 J	3.6 U	3.6 U	8.7 J	8.4 U	8.3 U	8.4 U
Turbidity (post)	NTU							0	0.85	1.85	1.85
Turbidity (pre)	NTU			9.5	4.6		6.2		0.67		1.6

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:PIT/Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-17_LTM_GW_Rnd_1-5_Data.xls

Page 4 of 5

sample Depth Interva Sample Depth Interva Sample QC Stu Sample F	e Date Type udy ID		. 1		SEAD-17 MW17-5 GW 17LM20004 0-0 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-5 GW 17LM20009 0-0.1 12/11/2008 SA LTM 2 Total	SEAD-17 MW17-5 GW 17LM20014FiL 0-0 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-5 GW 17LM20014UNFIL 0-0 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-5 GW 17LM20019FIL 0-0.1 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-5 GW 17LM20019UNF 0-0.1 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-5 GW 17LM20024F 0-0.1 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-5 GW 17LM20024U 0-0.1 12/11/2012 SA LTM 5 Total
Parameter		Unit	Criteria ¹ Source	Level	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²	Value (Q) ²
Inorganics												
Aluminum		UG/L			98.5 J	125 J	29 J	98 J	23 U	50 U	23 U	50 U
Antimony		UG/L	GA	3	1 U	0.56 J	1	1	2.3 U	2 U	2.3 U	2 U
Arsenic		UG/L	MCL	10	4.2 U	3.7 U	3.7 U	* 3.7 U	1.3 U	1.3 U	1.3 U	1.3 U
Barium		UG/L	GA	1,000	86.7	82.9	166	168	81	82 J	24	26
Beryllium		UG/L	MCL	4	0.27 U	0.33 U	2 U	· 2 U	0.25 U	0.15 U	0.25 U	0.15 U
Cadmium		UG/L	GA	5	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U	0.13 U
Calcium		UG/L			97,100 J	97,300	184,000 J	185,000 J	100,000	110,000	68,000	75,000
Chromium		UG/L	GA	50	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U	2.5 U
Cobalt		UG/L			0.89 U	1.1 U	1.1 U	1.1 U	0.17 J	0.19 J	0.31 J	0.31 J
Copper		UG/L	GA	200	1.3 U	1.5 J	1.3 U	1.3 U	1.1 U	1.1 U	3.7 J	2.1 J
Iron		UG/L	GA	300	91.7	76	19 UJ	34 J	83 J	110	44 J	160
Iron+Manganese		UG/L	GA	500	128	85	24.3	61.4 J	118 J	145	82 J	219
Lead		UG/L	MCL	15	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 U	0.5 U
Magnesium		UG/L			15,800 J	15,600	27,100	27,300	17,000	18,000 J	9,900	11,000
Manganese		UG/L	GA	300	36.5	8.9	24.3	27.4	35	35	38	59
Mercury		UG/L	GA	0.7	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.12 J	0.091 U
Nickel		UG/L	GA	100	1.2 U	1.2 J	1.7 J	1.8 J	2 U	2 U	2 U	2 U
Potassium		UG/L			972 R	824 J	1,920	1,960	1,600	1,600	460 J	460 J
Selenium		UG/L	GA	10	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U	1.1 U
Silver		UG/L	GA	50	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U	0.18 U
Sodium		UG/L	GA	20,000	7,950 R	7,360	364,000£J	365,000µJ	8,200	8,300	9,400	9,100
Thallium		UG/L	MCL	2	0.03 U	0.09 U	0.08 J	0.08 J	0.5 U	0.25 U	0.5 U	0.25 U
Vanadium		UG/L			0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U	3.2 U
Zinc		UG/L			4.7 J	41.6	3.6 U	3.6 U	20	8.4 U	8.3 U	8.4 U
Turbidity (post)		NTU							0	0	2.01	2.01
Turbidity (pre)		NTU			2.4	0.8		0.04		0		1.87

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value avallable.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

 R = the result was rejected due to QA/QC considerations

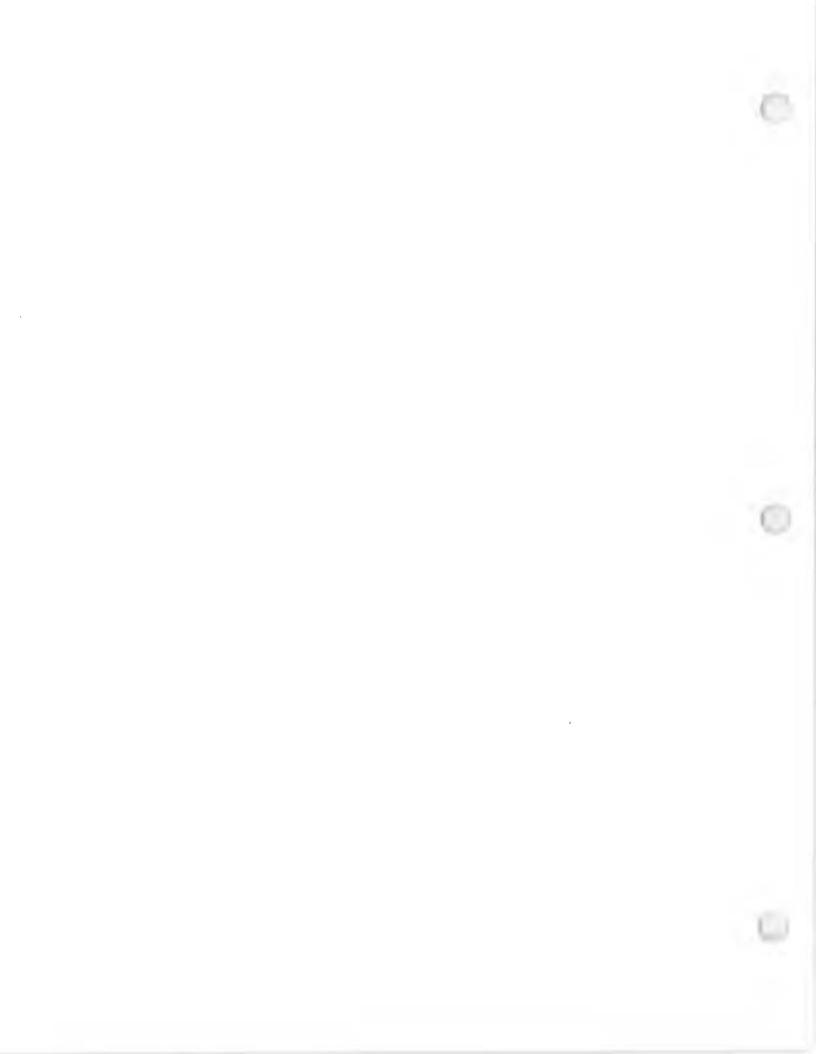
UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

P:\PIT\Projects\Huntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr 5\Draft\Appendix D\App-D_S-17_LTM_GW_Rnd_1-5_Data.xls

APPENDIX E

LABORATORY REPORTS


Laboratory Reports have been provided on the CD version of this report.

APPENDIX F

DATA VALIDATION

March 2013 Appendices
\Bosfs02\Projects\PIT\Projects\Iuntsville Cont W912DY-08-D-0003\TO#15 - LTM and LUC\SEAD 16 and 17 LTM\Annual Report - Yr
5\Draft\Draft Submittal\Text\Draft Year 5 S1617 Annual Report 040913.doc

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Round 5
LAB:	TestAmerica
SDG:	680-85871-1 (aka J85871)
FRACTION:	Metals (SW846 6020)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes	Cooler temp < 10 C. Holding Time Hg < 28 days, all other metals < 180 days from collection.	Coolers were received at 2.4°C by the laboratory. All samples were received in good condition based on the laboratory login report. Samples were properly preserved and had pH < 2. Samples were analyzed within 10 days from collection.	No
Calibration	Yes	r^2 ≥ 0.995 CCV every 10 samps or 2 hours ICV/CCV %R btw 90-110%	Calibrations available, taken every ten samples, and within recovery limits (90-110%). Initial Calibration Verification for Total metals was conducted on 12/24/12 at 19:54. The ICV and subsequent CCVs for metals were all within accetance criteria. ICV for Total Be and Na was conducted on 12/24/12 at 19:54. The ICV and subsequent CCVs for metals were all within accetance criteria. ICV for Dissolved metals was conducted on 12/21/12 at 17:00. The ICV and subsequent CCVs for metals were all within accetance criteria. ICV for Dissolved metals (Sb, As, Ba, Cd, Ca, Co, Cu, Pb, and Mg) was conducted on 12/27/12 at 18:47. The ICV and subsequent CCVs for metals were all within accetance criteria.	No
Blanks (prep blank, ICB, CCB)	No	Method blanks: 1 per 20 project samples.	ICB analyzed on 12/24/12 at 20:02 for metals and all metals were non-detected. CCBs were analyzed from 12/24/12 at 20:24 to 12/25/12 at 14:58 for Total metals every ten samples; all CCBs were non-detect for Total metals except for Na (34.6 J ug/L at 11:00). No action was taken since no samples were analyzed before or after the 11:00 CCB. CCBs were analyzed from 12/24/12 at 20:02 to 12/26/12 at 15:51 for Total Be and Na every ten samples; all CCBs were non- detect for Be and Na. CCBs were analyzed from 12/21/12 at 17:06 to 12/22/12 at 01:27 for Dissolved metals every ten samples; all CCBs were non- detect for Dissolved metals. CCBs were analyzed from 12/27/12 at 18:54 to 12/27/12 at 21:52 for Dissolved metals (Sb, As, Ba, Cd, Ca, Co, Cu, Pb, and Mg) every ten samples; all CCBs were non-detect for Dissolved metals except for Cd (0.0222 J ug/L) and Mn (0.208 J ug/L) at 12/27/12 19:17. Project samples were not associated with this CCB. Three Preparation blank were analyzed for Dissolved metals and all results were non-detect. Two Preparation blank were analyzed for Total metals and all results were non-detect. Two Preparation blank were analyzed for Total metals and all results were non-detect. Two Preparation blank were analyzed for Total metals and all results were non-detect. Two Preparation blank were analyzed for Total metals and all results were non-detect so Cl (2.06 ug/L). Qualify project samples: Total Cu detects < RL but > MDL as U and change to the RL for the following samples: 16LM20028U (5 U), 16LM20031U (5 U), 16LM20032U (5 U), 17LM20022U (5 U), 17LM20023U (5 U), and 17LM20024U (5 U).	Yes
CRDL Standard	No	CRDL results btw 70-130%	CRDL analyses for all remaining metals conducted at the beginning and end of the analysis. All met requirements except Total Ni (150%), Dissolved Be (53%), and Dissolved Cd (72%). However, all three were within the lab limits. Qualify Dissolved Be and Cd results < 2xRL as J; and qualify Total Ni detects < 2xRL as J.	Yes
Laboratory Control Sample	Yes	LCS/LCSD: 1 per 20 project samples or each preparation batch. LCS limits within 80-120%.	Two aqueous LCS results were within the limits for Total metals . Three aqueous LCS results were within the limits for Dissolved metals.	No
Duplicates	No	RPD < 20% or Absolute Diff < 2 RL when samp/dup value < 5x RL	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20033U and its duplicate 16LM20034U, and filtered sample 16LM20033F and its duplicate 16LM20034F. All RPDs were within acceptance limits except for Dissolved Pb (56%) and Total Cu (39%). Qualify both samples Dissolved Pb and Total Cu results > CRDL as J. A lab duplicate was not analyzed for this SDG. Qualify all sample results as J since a lab duplicate was not performed.	Yes

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Round 5
LAB:	TestAmerica
SDG:	680-85871-1 (aka J85871)
FRACTION:	Metals (SW846 6020)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Matrix Spike/Matrix Spike Duplicates	Yes	MS/MSD: 1 per 20 project samples or each preparation batch. Recoveries within lab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits 75-	Two spike samples were associated with this SDG; samples 16LM20033U and 16LM20033F. All spike metal recoveries were within the limits and did not have a initial conc >4x spike conc. The post digestion spike was performed on 16LM20033U and 16LM20033F. Calcium recoveries were above the limits due to parent sample conc being >4x spike.	No
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%.	All concentrations detected in all samples within the ICP Linear Range. No action was taken.	No
ICP Tune Analysis	Yes	RSD < 5%	Tune Analysis was conducted on 12/21/12, 12/24/12, and 12/27/12. All isotopes of each analyte had a RSD < 5%.	No
Internal Standard	No	Intensity within 60-125%	IS from 12/21/12 to 12/22/12 had %RI within acceptance limits. IS from 12/24/12 to 12/25/12 had %RI within acceptance limits except for 16LM20028U for Li-6 (59%) and 16LM20032U for Li-6 (58%). Qualify samples 16LM20028U and 16LM20032U results as J for metals with atomic masses between Li-6 and Sc-45 (AI, Be, Ca, Mg, Na, K). IS from 12/24/12 to 12/27/12 had %RI within acceptance limits. IS from 12/27/12 to 12/27/12 had %RI within acceptance limits.	Yes
Serial Dilution	Yes	Performed on samples of a similar matrix or 1 per 20 samples. %D ≤ 10% conc ≥ 25xDL (7470A/7471A) and 10x IDL (6010B) for 5- fold dilution.	Sample 16LM20033U serial dilution for all metal with %D < 10% and sample conc > 50xMDL met requirements. Sample 16LM20033F serial dilution for all metal with %D < 10% and sample conc > 50xMDL met requirements.	No
Total/Dissolved Comparison	No	%RPD less than 20%	Samples with Total and Dissolved results that have detected Dissolved concentrations greater than the Total and have a Dissolved concentration > 5xMDL. All sample results met this requiment except for in samples: 16LM20028U/16LM20028F for Cu (45%), and 17LM20024U/17LM20024F for Cu (55%). Qualify these samples results as J.	Yes
Field Duplicate Precision	No	%RPD less than 20%	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20033U and its duplicate 16LM20034U, and filtered sample 16LM20033F and its duplicate 16LM20034F. All RPDs were within acceptance limits except for Dissolved Pb (56%) and Total Cu (39%). Qualify both samples Dissolved Pb and Total Cu results > CRDL as J.	Yes

RT = Retention Time; %D = Percent Deviation; % TCL = Target Compound List; MS = Matrix Spike;

Deviation; %RPD = Relative Percent Difference; = Matrix Spike; MSD = Matrix Spike Duplicate; %RSD = Percent Relative Standard Deviation;

RRF = Relative Response Factor;

CCV = Continuing Calibration Ve

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Round 5
LAB:	TestAmerica
SDG:	680-85871-1 (aka J85871)
FRACTION:	Metals (SW846 7470A)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes	Cooler temp < 10 C. Holding Time Hg < 28 days, all other metals < 180 days from collection.	Coolers were received at 2.4°C by the laboratory. All samples were received in good condition based on the laboratory login report. Samples were properly preserved and had pH < 2. Samples were analyzed within 15 days from collection.	No
Calibration	Yes	r^2 ≥ 0.995 CCV every 10 samps or 2 hours ICV/CCV %R btw 90-110%	Calibrations available, taken every ten samples, and within recovery limits (80-120%). Initial Calibration Verification (ICV) for Dissolved Hg associated was conducted on 12/24/12 at 10:18. The ICV and subsequent CCVs for Dissolved Hg were all within accetance criteria. ICV for Hg associated was conducted on 12/30/12 at 13:42. The ICV and subsequent CCVs for Hg were all within accetance criteria.	No
Blanks (prep blank, ICB, CCB)	Yes	Method blanks: 1 per 20 project samples.	ICB analyzed on 12/24/12 at 10:20 for Hg Method 7470. CCBs were analyzed from 12/24/12 at 16:11 to 12/24/12 at 17:07 for Dissolved Hg every ten samples; all CCBs were non-detec for Dissolved Hg (MDL = 0.1 and RL = 0.2 ug/L). CCBs were analyzed from 12/30/12 at 13:45 to 12/30/12 at 15:19 for Hg every ten samples; all CCBs were non-detect for Hg (MDL = 0.1 and RL = 0.2 ug/L). One Preparation blank analyzed for Total Hg, it was non-detect. One Preparation blank analyzed for Dissolved Hg, it was non-detect.	No
CRDL Standard	Yes	CRDL results btw 70-130%	CRDL analyses for Hg conducted at the beginning and end of the analysis. All met requirements.	No
Laboratory Control Sample	Yes	LCS/LCSD: 1 per 20 project samples or each preparation batch. LCS limits within 80-120%.	One aqueous LCS results were within the limits for Total Hg. Two aqueous LCS results were within the limits for Dissolved Hg.	No
Duplicates	No	RPD < 20% or Absolute Diff < 2 RL when samp/dup value < 5x RL	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20033U and its duplicate 16LM20034U, and filtered sample 16LM20033F and its duplicate 16LM20034F. All results were non-detect. A lab duplicate was not analyzed for this SDG. Qualify all sample results as J since a lab duplicate was not performed.	Yes
Matrix Spike/Matrix Spike Duplicates	Yes	MS/MSD: 1 per 20 project samples or each preparation batch. Recoveries within lab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits		No
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%.	ICP Interference Check was performed and all recoveries were within acceptance limits.	No
Serial Dilution	NA	Performed on samples of a similar matrix or 1 per 20 samples. %D ≤ 10% conc ≥ 25xDL (7470A/7471A) and 10x IDL (6010B) for 5- fold dilution.	A serial dilution was not performed on this analysis.	NA
Total/Dissolved Comparison	Yes	%RPD less than 20%	Samples with Total and Dissolved results that have detected Dissolved concentrations greater than the Total and have a Dissolved concentration > 5xMDL. All sample results met this requiment.	No

PROJECT NAME/NO.	USACE - Seneca Army Depot SEAD-16/17 LTM Round 5
LAB:	TestAmerica
SDG:	680-85871-1 (aka J85871)
FRACTION:	Metals (SW846 7470A)
MEDIA:	Groundwater
NUMBER OF SAMPLES:	12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Field Duplicate Precision	Yes	%RPD less than 20%	Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20033U and its duplicate 16LM20034U, and filtered sample 16LM20033F and its duplicate 16LM20034F. Both sample duplicate pairs Hg results were non-detect; therefore no action was taken.	No

RT = Retention Time; %D = Percent Deviation; %RPD = Relative Percent Difference; %RSD = Percent Relative Standard Deviation; RRF = Relative Response Factor; CCV = Continuing Calibratic TCL = Target Compound List; MS = Matrix Spike; MSD = Matrix Spike Duplicate;

1013

Table A
Comparison of Filtered and Unfiltered Groundwater at SEAD-16

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered Status:		SEAD-16 MW16-1 GW 16LM20028U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-1 GW 16LM20028F 12/15/2012 SA LTM 5 Dissolved		SEAD-16 MW16-2 GW 16LM20029U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-2 GW 16LM20029F 12/15/2012 SA LTM 5 Dissolved		SEAD-16 MW16-4 GW 16LM20030U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-4 GW 16LM20030F 12/15/2012 SA LTM 5 Dissolved		SEAD-16 MW16-5 GW 16LM20031U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-5 GW 16LM20031F 12/15/2012 SA LTM 5 Dissolved	
Parameter	Units	Value Qual	Value Qual	RPD									
Aluminum	UG/L	50 U	23 U										
Antimony	UG/L	2 U	2.3 U		7.1	7.8	9%	3.9 [4 1	3%	2 U	2.3 U	
Arsenic	UG/L	1.3 U	1.3 U		1.3 U	1.3 U		1.3	1.5 j	14%	2.7	2.6	
Barium	UG/L	78	78		62	65	5%	230	240	4%	39	34	
Beryllium	UG/L	0.15 U	0.25 U										
Cadmium	UG/L	0.13 U	0.095 U		0.13 U	0.095 U		0.23 J	0.095 U		0.13 U	0.095 U	
Calcium	UG/L	120,000	120,000		100,000	110,000	10%	220,000	230,000	4%	96,000	97,000	1%
Chromium	UG/L	2.5 U	2.5 U										
Cobalt	UG/L	0.16 J	0.15 U		0.12 U	0.15 U		1.9	1.9		0.23 J	0.22]	
Copper	UG/L	3.3 J	5.2	45%	5	4.5 J	11%	11	4.1 j		3 j	1.1 J	
Iron	UG/L	44 U	33 U		44 U	33 U		140	130		1,300	1,100	
Iron+Manganese	UG/L	46 U	34 U		46 U	34 U		280	270		1,430	1,230	
Lead	UG/L	0.5 U	0.2 U		0.66 J	0.24]		3.4	0.2 U		0.5 U	0.2 U	
Magnesium	UG/L	18,000	18,000		11,000	13,000	17%	32,000	34,000	6%	9,800	9,900	1%
Manganese	UG/L	2 U	1 U		2 U	1 U		140	140		130	130	
Mercury	UG/L	0.091 U	0.091 U		0.091 U	0.091 U		0.091 U	0.091 U		0.091 U	0.1 J	
Nickel	UG/L	2 U	2.3 J	14%	2 U	2.2 J	10%	3.2 J	2.6 J		2 U	2.1 J	5%
Potassium	UG/L	870 }	900		1,900	2,200	15%	3,100	3,200	3%	2,100	2,100	
Selenium	UG/L	1.1 U	1 U										
Silver	UG/L	0.18 U	0.25 U										
Sodium	UG/L	62,000	63,000	2%	17,000	20,000	16%	310,000	340,000	9%	1,500	1,600	6%
Thallium	UG/L	0.25 U	0.5 U										
Vanadium	UG/L	3.2 U	3.8 U										
Zinc	UG/L	8.4 U	8.3 U		8.8 J	9.5 J	8%	11]	12 J	9%	8.4 U	8.3 U	
Turbidity (pre)	NTU	0.87	0.87		3.01	3.01		1.01	1.01		1.39	1.39	
Turbidity (post)	NTU	1.04			1.2			0.48			0.94		

U = compound was not detected

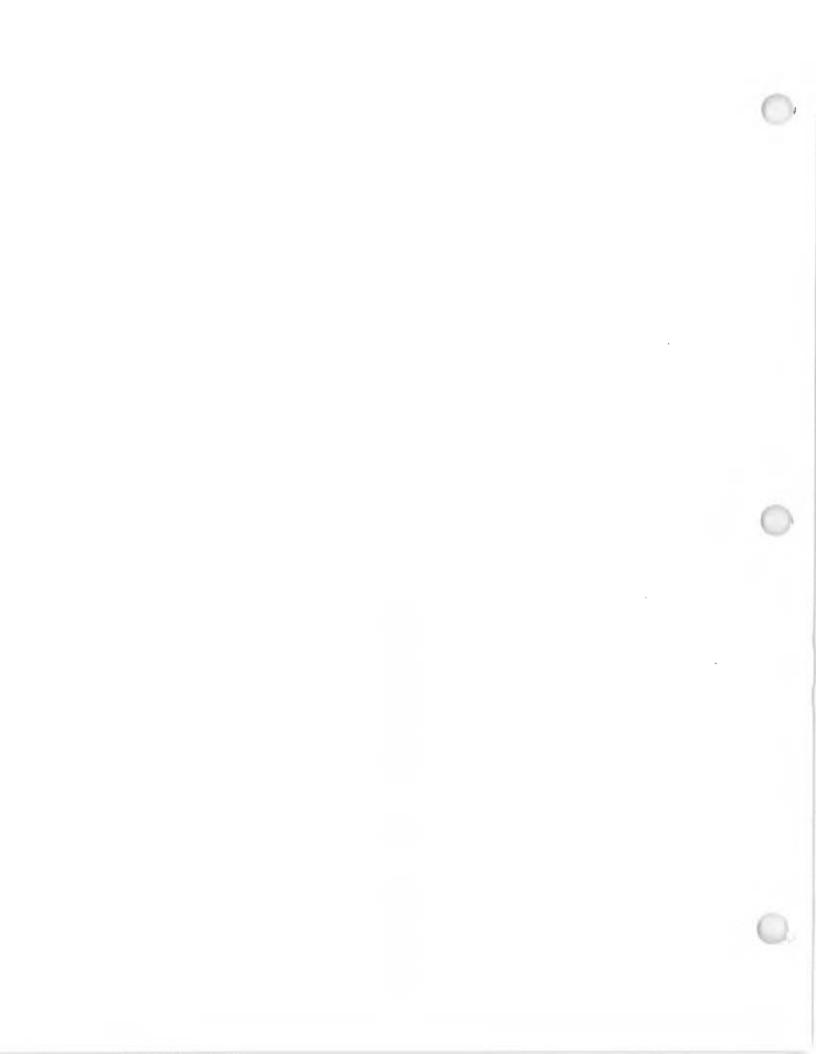
J = the reported value is

an estimated cocentration

Table A	
Comparison of Filtered and Unfiltered	Groundwater at SEAD-16

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered Status:		SEAD-16 MW16-6 GW 16LM20032U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-6 GW 16LM20032F 12/15/2012 SA LTM 5 Dissolved		SEAD-16 MW16-7 GW 16LM20033U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20033F 12/15/2012 SA LTM 5 Dissolved		SEAD-16 MW16-7 GW 16LM20034U 12/15/2012 DU LTM 5 Total	SEAD-16 MW16-7 GW 16LM20034F 12/15/2012 DU LTM 5 Dissolved	
Parameter	Units	Value Qual	Value Qual	RPD	Value Qual	Value Qual	RPD	Value Qual	Value Qual	RPD
Aluminum	UG/L	300	23 U		50 U	23 U		50 U	23 U	
Antimony	UG/L	2 U	2.3 U		13	13		14	13	
Arsenic	UG/L	1.3 J	1.3 U		1.3 U	1.3 [1.3 U	1.3 U	
Barium	UG/L	45	41		100	100		100	99	1%
Beryllium	UG/L	0.15 U	0.25 U		0.15 U	0.25 U		0.15 U	0.25 U	
Cadmium	UG/L	0.13 U	0.095 U		0.13 U	0.095 U		0.13 U	0.095 U	
Calcium	UG/L	74,000	70,000		100,000 J	110,000]	10%	110,000	100,000	
Chromium	UG/L	2.5 U	2.5 U		2.5 U	2.5 U		2.5 U	2.5 U	
Cobalt	UG/L	0.43 J	0.18 J		0.22]	0.23 J	4%	0.24]	0.24]	
Copper	UG/L	4.1 J	4.5 J	9%	8.3	4.1 J		5.6	1.7	
Iron	UG/L	790	33 J		44 U	33 U		44 U	33 U	
Iron+Manganese	UG/L	816	43 J		90	92	2%	91	98	7%
Lead	UG/L	0.5 U	0.2 U		2.5	1.3 J		2.6	2.3	
Magnesium	UG/L	7,600	7,200		21,000 J	21,000		22,000	20,000	
Manganese	UG/L	26	10		90	92	2%	91	98	7%
Mercury	UG/L	0.091 U	0.091 U		0.091 U	0.091 UJ		0.091 U	0.091 U	
Nickel	UG/L	2]	2 U		2.2]	2 U		2.4]	2 U	
Potassium	UG/L	2,400	2,400		5,200	5,300	2%	5,400	5,100	
Selenium	UG/L	1.1 U	1 U		1.1 U	1 U		1.1 U	1 U	
Silver	UG/L	0.18 U	0.25 U		0.18 U	0.25 U		0.18 U	0.25 U	
Sodium	UG/L	8,000	8,700	8%	32,000	35,000	9%	32,000	33,000	3%
Thallium	UG/L	0.25 U	0.5 U		0.25 U	0.5 U		0.25 U	0.5 U	
Vanadium	UG/L	3.2 U	3.8 U		3.2 U	3.8 U		3.2 U	3.8 U	
Zinc	UG/L	8.4 U	8.3 U		8.4 U	8.3 U		8.4 U	8.3 U	
Turbidity (pre)	NTU	3.58	3.58		1.29	1.29		1.29	1.29	
Turbidity (post)	NTU	1.67			1.14			1.14		

U = compound was not detected J = the reported value is


an estimated cocentration

P:VPITVProjects/Huntsville Cont W912DY-08-D-0003/TO#15 - LTM and LUC/SEAD 16 and 17 LTM/Annual Report - Yr 5/Draft/Appendix F/SEAD1617_Rnd-5_SDG-680-85871-1 rev1.xis/S-16_Rnd-5_Total-Dissolved

Table B	
Comparison of Filtered and Unfiltered Groundwater at SEAD-17	

Area Loe ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered Status:		SEAD-17 MW17-1 GW 17LM20020UU 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-1 GW 17LM20020F 12/11/2012 SA LTM 5 Dissolved		SEAD-17 MW17-2 GW 17LM20021U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-2 GW 17LM20021F 12/11/2012 SA LTM 5 Dissolved		SEAD-17 MW17-3 GW 17LM20022U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-3 GW 17LM20022F 12/11/2012 SA LTM 5 Dissolved		SEAD-17 MW17-4 GW 17LM20023U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-4 GW 17LM20023F 12/11/2012 SA LTM 5 Dissolved		SEAD-17 MW17-5 GW 17LM20024U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-5 GW 17LM20024F 12/11/2012 SA LTM 5 Dissolved	
Parameter	Units	Value Qual	Value Quai	RPD	Value Qual	Value Quai	RPD	Value Qual	Value Qual	RPD	Value Qual	Value Qual	RPD	Value Qual	Value Qual	RPD
Antimony	UG/L	2.7 J	2.3 U		4.4 [4		2 U	2.3 U		2 U	2.3 U		2 ป	2.3 U	
Arsenic	UGL	1.3 U	1.3 U		1.3 U	1.3 U		1.3 U	1.3 U		1.3 U	1.3 U		1.3 U	1.3 U	
Barium	UG·L	28	28		68	69	1%	36	37	3%	67	65		26	24	
Beryllium	UG 1.	0.15 U	0.25 U		0.15 U	0.25 U		0.15 U	0.25 U		0.15 U	0.25 U		0.15 U	0.25 U	
Cadmium	UG/L	0.44 J	0.095 U		0.13 U	0.095 U										
Calcium	UG/L	55,000	53,000		120,000	120,000		67,000	74,000	10%	87,000	83,000		75,000	68,000	
Chromium	UG/L	2.5 U	2.5 U		2.5 U	2.5 U		2.5 U	2.5 U		2.5 U	2.5 U		2.5 U	2.5 U	
Cobalt	UGL	0.37 J	0.32		0.42	0.39]		0.12 U	0.15 U		0.25 J	0.21 J		0.31 J	0.31 J	
Copper	UG L	5.4	4.7 J		7.8	7.7		3.2 J	3.3 J	3%	4.7]	1.1 J		2.1]	3.7 [55%
lron	UG L	90 J	47 J		44 U	33 U		44 U	33 U		72	33 U		160	44 j	
lron+Manganese	UGL	98.1]	54.2 J		14	12		46 U	34 U		83	9.5		219	82 J	
Lead	UG/L	1.1 J	0.2 U		0.99 J	0.2 U		0.78 J	0.24 J		0.5 U	0.2 U		0.5 U	0.2 U	
Magnesium	UG′L	7,700	7,200		12,000	12,000		5,800	6,100	5%	15,000	15,000		11,000	9,900	
Manganese	UG-L	8.1	7.2		14	12		2 U	1 U		11	9.5		59	38	
Mercury	UG.L	0.091 U	0.14 J		0.091 U	0.091 U		0.091 U	0.091 U		0.091 U	0.091 U		0.091 U	0.12 J	27%
Nickel	UGL	2 U	2 U		2 U	2 U		2 U	2 U		2.1 J	2 U		2 U	2 U	
Potassium	LIG-L	410 J	380 J		2,500	2,500		1,700	1,800	6%	780 J	750		460]	460 J	
Selenium	UG.L	1.1 U	1 U		1.1 U	1 U		1.1 U	1 U		1.1 U	1 U		1.1 U	1 U	
Silver	UG.'L	0.18 U	0.25 U		0.18 U	0.25 U		0.18 U	0.25 U		0.18 U	0.25 U		0.18 U	0.25 U	
Sodium	UG L	2,500	2,400		8,400	8,400		3,100	3,300	6%	8,600	8,900	3%	9,100	9,400	3%
Thallium	UG. L	0.25 U	0.5 U		0.25 U	0.5 U		0.25 U	0.5 U		0.25 U	0.5 U		0.25 U	0.5 U	
Vanadium	UG L	3.2 U	3.8 U		3.2 U	3.8 U		3.2 U	3.8 U		3.2 U	3.8 U		3.2 U	3.8 U	
Zine	UG L	8.4 U	8.3 U		26	24		26	29	11%	8.4 U	8.3 U		8.4 U	8.3 U	
Turbidity (pre)	NTU	3.28	3.28		2.16	2.16		2.02	2.02		1.85	1.85		2.01	2.01	
Turbidity (post)	NTU	3.6			2.17			1.9			1.6			1.87		

U compound was not detected J the reported value is an estimated cocentration

