

LOW TEMPERATURE THERMAL DESORPTION TREATABILITY STUDY DRAFT COST AND PERFORMANCE TEST REPORT

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK 14541

and

US ARMY CORPS OF ENGINEERS HUNTSVILLE, ALABAMA 35816

Prepared by:

Parsons Engineering Science, Inc 30 Dan Road Canton, Massachusetts 02021

Contract number DACA87-95-D-0031\ Delivery Order # 0013 734503

September 2001

EXECUTIVE SUMMARY

The US Army conducted a Treatability Study to assess the potential of using an inactive, Army Peculiar Equipment (APE) 1236 deactivation furnace as a low temperature thermal desorption (LTTD) system for treating soil contaminated with volatile and semi-volatile organic compounds. The Treatability Study was conducted using the deactivation furnace located in SEAD-17 at the Seneca Army Depot Activity (SEDA) in Romulus, New York.

The APE 1236 deactivation furnace's waste feed system was modified to allow contaminated soil to be fed into the system's rotary kiln for thermal treatment. Within the kiln, the contaminated soil was heated from ambient temperatures to a final temperature of approximately 500 to 600 degrees Fahrenheit (°F) via contact with a counter-current flow of hot combustion gases. During heating, volatile and semivolatile organic compounds contained in the contaminated soil feed were volatilized and liberated from the soil where they entered and mixed with the combustion gas stream. The combustion gases and the volatilized organics then flowed into an afterburner where they were combusted at 1,400 to 1,600 °F for a period of approximately one to two seconds before the resulting gases were channeled through a series of air pollution control devices (APCDs – i.e., High and Low Temperature Gas Coolers, a Cyclone, and a Baghouse) for exhaust gas conditioning and cooling prior to discharge to the atmosphere.

Sampling and analysis was conducted on the system's solid waste feed and residue streams to document the system's ability to thermally remove the organic contaminants from the soil via volatilization. The system's ability to remove the organic contaminants was determined by comparing the concentrations of contaminants found in the soil after treatment to those recorded for the waste feed input. Additionally, the composition of the waste gases and particulate matter liberated during the thermal treatment process (i.e., initial thermal desorption and subsequent combustion in the afterburner) and processed within the system's air pollution control device train was also documented via sampling and analysis of the waste gases and captured flyash. Finally, operational data was collected to define the economics of the treatment process.

Based on the results of the LTTD Treatability Study, the following conclusions can be made:

- The LTTD process was not entirely effective in reducing the PAH concentrations to levels below desired levels TAGMs.
- The LTTD process has no effect on metal constituent concentrations in the soils. The metal concentrations continue to exceed TAGMs following treatment, as expected.
- Fly ash will need to be disposed of in a RCRA Subtitle C or D landfill due to metals concentration far exceeding TAGMs.

p-pit-projects seneca lttd evaluation report draft submittal text exec_sum doc-

- Limited stack gas sampling generally met the emissions criteria for dioxins/furans, total hydrocarbons and carbon monoxide. The results of VOST testing for VOCs were generally inconclusive.
- The treatment cost for the LTTD process is estimated at \$85 to \$108 per ton of soil treated, due mainly to the high fuel consumption. Landfilling of the soils without treatment is significantly less costly at approximately \$40 per ton.

Based on the results of the Treatability Study and the cost comparison, it is not recommended that the LTTD process be used for treatment of onsite soils. This recommendation is based mainly on the estimated high cost of the LTTD treatment process. Additionally, LTTD treated soils will still contain metals and probably some of the higher boiling PAHs at concentrations that would necessitate alternative remedial actions.

LOW TEMPERATURE THERMAL DESORPTION TREATABILITY STUDY COST AND PERFORMANCE TEST REPORT FOR THE SENECA ARMY DEPOT ACTIVITY

TABLE OF CONTENTS

Section	n			Page
EXEC	UTIVE	SUMM	IARY	ex-1
Table	of Cont	ents		i
List of	Tables			iv
List of	Figure	8		V
List of Appendices			vi	
Acron	yms and	l Abbre	viations	vii
1.0	INTR	ODUCT	TION	1-1
2.0	ENGI	NEERII	NG DESCRIPTION	2-1
	2.1	Descri	iption of Major Components	2-1
		2.1.1	Fuel and Waste Feed Systems	2-1
		2.1.2	Rotary Kiln (Deactivation Furnace)	2-5
		2.1.3	Afterburner	2-5
		2.1.4	High Temperature Gas Cooler	2-5
		2.1.5	Low Temperature Gas Cooler	2-7
		2.1.6	Cyclone	2-8
		2.1.7	Baghouse	2-8
		2.1.8	Induced Draft Fan	2-9
		2.1.9	Exhaust Stack	2-10
	2.2	Descri	ption of Instrumentation	2-10
		2.2.1	Measurement Parameters and Methods	2-10
		2.2.2	Panel Instrumentation	2-11
		2.2.3	Automatic Waste Feed Shut Off (AWFSO) System	2-13
	2.3	Opera	ting Procedures	2-14
		2.3.1	Start-up Procedures	2-14
		2.3.2	Operation Procedures	2-15
		2.3.3	Shutdown Procedures	2-16

September 2001

p-pit projects seneca litid evaluation report draft submittal text toc doc-

TABLE OF CONTENTS

(continued)

Section	<u>n</u>			Page
		2.3.4	Baghouse Bypass	2-17
3.0	FEED	CHAR	ACTERIZATION AND HANDLING	3-1
	3.1	Soil Se	elected for Demonstration Study	3-1
		3.1.1	General	3-1
		3.1.2	SEAD-60 Soils	3-1
		3.1.3	SEAD-41 Soils	3-1
		3.1.4	Building 113 Tank Excavation Soils	3-2
	3.2	Feed S	Soil Limitations	3-2
	3.3	Soil H	andling	3-3
	3.4	Chemi	ical Characterization of Feed Soils	3-3
4.0	TREA	TMEN	T SYSTEM PERFORMANCE	4-1
	4.1	Clean-	-up Goals/Standards	4-1
	4.2	Summ	ary of Performance Test Results	4-2
		4.2.1	Soil Contaminant Reduction	4-2
		4.2.2	Gaseous Emissions	4-5
			4.2.2.1 Introduction	4-5
			4.2.2.2 Pre-Sampling Work	4-6
			4.2.2.3 Exhaust Gas Flow Rate and Moisture Content	4-7
			4.2.2.4 Continuous Monitoring for CO, O ₂ , CO ₂ and THC	4-7
			4.2.2.5 Polychlorinated Dibenzo-p-dioxins and Polychlorinated	
			Dibenzofurans Determinations	4-9
			4.2.2.6 Volatile Organic Sampling Train (VOST)	4-10
		4.2.3	Fugitive Dust Monitoring	4-12
		4.2.4	Fly Ash Sampling	4-12
		4.2.5	LTTD Systems Operations and Operating Parameters	4-13
	4.3	Opera	tional Concerns	4-14
5.0	TREA	TMENI	F SYSTEM COSTS	5-1
	5.1	LTTD	Treatment Costs	5-1
	5.2	Landfi	ill Disposal Costs	5-1
	5.3	Compa	arison of Costs	5-2

p-pit projects seneca lttd evaluation report draft submittal text toc doc

TABLE OF CONTENTS

(continued)

Section

Page

6.0	CONCLUSIONS AND RECOMMENDATIONS		
	6.1	Conclusions	6-1
	6.2	Recommendations	6-1

LIST OF TABLES

Table No.	Table Title
3-1	SEAD-60 Soil Analysis Results from ESI
3-2	SEAD-41 Soil Analysis Results from the Limited Sampling Program
3-3	Initial Characterization of Feed Soils-SEAD-41 and Building 113
3-4	Summary of Analytical Testing on Feed Soils
4-1	Comparison of Waste Feed Soils and Kiln Ash to Soil Cleanup Standards
4-2	Summary of Dioxin and Furan Testing of Kiln Ash
4-3	Summary of Method 0023 Testing for Dioxins and Furans
4-4	Summary of VOST Train Analyses
4-5	Summary of SVOC, TPH, and Metals Testing on Fly Ash
4-6	Summary of Dioxin/Furan Testing on Fly Ash
5-1	Summary of SEAD-59 Remediation Costs Using the LTTD Treatment Process

LIST OF FIGURES

Figure No.	Figure Title
1-1	Seneca Army Depot Activity Map
2-1	SEAD-17 Active Deactivation Furnace Site Plan
2-2	APE 1236 - Isometric View
2-3	Input Conveyor Concept
2-4	Deactivation Furnace
4-1	Deactivation Furnace Stack Configuration
4-2	Traverse Points
4-3	Typical Modified Method 5 (MM5) Sampling Train Set-up
4-4	Typical Volatile Organic Sampling Train (VOST) Set-up

LIST OF APPENDICES

- Appendix A Large Process Flow and Instrumentation Diagrams
- Appendix B Continuous Emissions Monitoring Data
- Appendix C Sample Calculations
- Appendix D Operating Data Logs
- Appendix E Detailed Cost Estimate

ACRONYMS and ABBREVIATIONS

Acfm	Actual cubic feet per minute
ACGIH	American Conference of Governmental Industrial Hygenists
AGC	Annual Guideline Concentration
APC	Air Pollution Control
APCD	Air Pollution Control Device
APE	Ammunition Peculiar Equipment
ASTM	American Society of Testing Materials
AWFMS	Automatic Waste Feed Monitoring System
AWFSO	Automatic Waste Feed Shut-off
Btu	British thermal unit
CD	Calibration Drift
CEM	Continuous Emissions Monitoring
cfm	Cubic Feet Minute
CFR	Code of Federal Regulations
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
DAS	Data Acquisition System
DF	Deactivation Furnace
DRE	Destruction and Removal Efficiency
dscf	dry standard cubic foot
dscfm	dry standard cubic foot per minute
DP	Differential Pressure
EC	Calibrator Error
EPA	Environmental Protection Agency
FID	Flame Ionization Detector
FM	Factory Mutual
FSG	Flame Safeguard Panel
GFC	Gas Filter Correlation
0 C	degrees Celsius
οF	degrees Fahrenheit
hp	horsepower
hr	hour
HT	High Temperature
ID	Induced Draft
IR	Infrared
IRIS	Integrated Risk Information Service

p-pit projects seneca lttd evaluation report draft submittal text toc doc-

ACRONYMS and ABBREVIATIONS

(continued)

ITRC	Interstate Technology and Regulatory Cooperation
i/o	Input/output
LDL	Lower Detectable Limit
LD50	Lethal Dose – 50
Lpm	Liters per minute
LT	Low Temperature
LTTD	Low Temperature Thermal Desorption
MM5	Modified Method 5
NDIR	Non-Dispersive Infrared
NIOSH	National Institute of Occupational Safety and Health
NYSDEC	New york State Department of Environmental Conservation
O ₂	Oxygen
PAI	Predicted Annual Impact
PC	Personnel Computer
PCDD	Polychlorinated Dibenzo-p-Dioxins
PCDF	Polychlorinated Dibenzofurans
PCOS	Personal Computer Operatives Station
PEP	Propellant/explosive/pyrotechnic
PIC	Product of Incomplete Combustion
PLC	Programmable Logic Controller
POHC	Principal Organic Hazardous Constituent
ppm	Parts per million
PSM	Point Source Method
PST	Performance Specification Test
PV	Process Variable
PVC	Polyvinyl chloride
QAC	Quality Assurance Coordinator
QA/QC	Quality Assurance/Quality Control
RA	Relative Accuracy
RAC	Reference Air Concentrators
RCRA	Resource Conservation and Recovery Act
REC	Recommended Exposure Limit
RFD	Reference Dose
RPM	Revolutions Per Minute
RSD	Risk Specific Doses
RT	Response Time

September 2001

p-pit projects seneca lttd evaluation report draft submittal text too doc

ACRONYMS and ABBREVIATIONS

(continued)

RTECS	Registry of Toxic Effects of Chemical Substances
scfm	Standard cubic feet per minute
SEAD	Seneca Army Depot
SGC	Short Term Guideline Concentration
SOP	Standing Operating Procedures
SP	Set Point
STEM	Sampling Train for Energetic Materials
ТВ	Trial Burn
TBP	Trial Burn Plan
TCE	Trichloro Ethylene
THC	Total Hydrocarbons
TLV	Threshold Limit Value
TSLoO ₂	Thermal Stability Low Oxygen
TSI	Thremal Stability Index
TWA	Time Weighted Average
UDRI	University of Dayton Research Institute
UHP	Ultra High Purity
USATHAMA	United States Army Toxic and Hazardous Material Agency
USGS	United States Geographic Service
VOST	Volatile Organic Sampling Train

1 INTRODUCTION

The US Army conducted a treatability study to assess the potential of using the Army Peculiar Equipment (APE) 1236 deactivation furnace as a low temperature thermal desorption (LTTD) system for treating soil contaminated with volatile and semi-volatile organic compounds. The proposed treatability study was conducted using the APE 1236 deactivation furnace located in SEAD-17 at the Seneca Army Depot Activity (SEDA). Figure 1-1 shows the location of the deactivation furnace at SEAD-17 at SEDA.

The existing APE 1236 furnace's waste feed system was modified to allow soil contaminated with volatile organic. semi-volatile organic. and low levels of organochlorine pesticides and polychlorinated biphenyl compounds to be fed to the LTTD system for thermal treatment. Sampling and analysis was conducted on the system's solid waste feed and residue streams to document the system's ability to thermally remove the contaminants from the soil via volatilization. The system's ability to remove the organic contaminants was determined by comparing the concentration of contaminants found in the soil after treatment to those recorded for the waste feed input. Additionally, the composition of the waste gases and particulate matter liberated during the thermal treatment process (i.e., initial thermal desorption and subsequent combustion in the afterburner) and processed within the system's air pollution control device (APCD) train was documented via sampling and analysis of the waste gases and captured flyash. Operational data was collected to assess the economics of the treatment process.

The US Army's preferred management strategy for soil found at SEDA that contains volatile organic chemicals at concentrations above regulatory limits is to treat the soil and to then reuse the treated soil as fill material. A less desirable management alternative is to partially treat the soil to reduce the concentration of contaminants and to then transport (under appropriate manifests) it off-site for further treatment or disposal. This study evaluated the cost-effectiveness of these alternatives.

Specific goals of the Treatability Study included the following determinations or demonstrations:

- Organic chemical contaminated soils could be treated to a degree that reduced concentrations of volatile organic, semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl constituents to levels lower than State of New York Technical and Administrative Guidance Memorandum (TAGM) levels which would allow reuse of the soil as fill or as top cover in landfills:
- Total Petroleum Hydrocarbon (TPH) contaminated soil could be treated to a degree that reduced TPH concentrations to below 100 parts per million:

p-pit projects seneca lttd evaluation report draft submittal text sect-1 disc

- Exhaust gases released from the APE 1236 system during its operation treating soil contained less that 100 parts per million by volume (100 ppm_v) of carbon monoxide, corrected to a level of 7 percent (%) oxygen on a rolling hourly-average basis;
- Exhaust gases released from the APE 1236 system during its operation contained less than 0.05 grains per dry standard cubic foot (dscf) of particulate matter, corrected to a 7% oxygen content;
- Exhaust gases released from the APE 1236 system during its operation treating soil contained less than 0.2 nanograms per dry standard cubic meter (dscm) of Polychlorinated dibenzo-p-dioxin (dioxins) and Polychlorinated dibenzofuran (furans) compounds, corrected to a 7% oxygen level:
- Destruction and removal efficiency (DRE) achieved for volatile organic, semi-volatile organic, polychlorinated biphenyls and organo-chlorine pesticide contaminants equaled or exceeded 99.99 percent for the process or, if the DRE level could not de demonstrated, that none of the target organic compounds were present in the exhaust gases at levels above analytical detection limits;
- Operation of the APE 1236 does not result in excessive fugitive emissions from the process or from associated waste feed or waste residue handling operations:
- The APE 1236 system's Automatic Waste Feed Shutoff (AWFSO) system is fully functional and effectively works in the event of operating system upsets: and
- The APE 1236 system is shown to pose an economically viable alternative to treat soils containing TPH and semi-volatile organic compounds.

This evaluation describes the tests that were conducted to demonstrate the performance of the APE 1236 system as an LTTD unit. The work was conducted in a manner that was consistent with the technical requirements developed and recommended by the Interstate Technology and Regulatory Cooperation (ITRC) Work Group for On-Site Thermal Desorption of Solid Media Contaminated with Hazardous Chlorinated Organics.

The Cost and Performance Test Report is divided into the following sections:

Section 2 – Engineering Description of the LTTD System: Provides a detailed description of the major components and instrumentation used in the APE 1236 LTTD system. Operating procedures for soil treatment and automatic waste feed shut off (AWFSO) procedures are also included.

Section 3 – Waste Feed Characterization: Provides a chemical characterization of the soil that was used as the feed stock for LTTD system. Soil handling and stockpiling procedures are also included.

 $p_{\rm c}$ pit projects senecal fitd evaluation report draft submittal text sect-1 d κ

Section 4 – Treatment System Performance: Provides a summary of the treatability results as compared to the goals of the study. The section presents estimates of removal efficiencies, stack gas analysis, operating parameters and fugitive dust monitoring.

Section 5 – Treatment System Costs: Provides an estimate of the remediation costs associated with the LTTD treatment process. Additionally, a cost estimate was performed for remediation of SEAD-59 soils using the LTTD process.

Section 6 – Conclusions and Recommendations: Presents the general conclusions from the LTTD Treatability Study. A recommendation will made concerning the cost-effectiveness of using this process for future treatment of site soils.

Appendices: Large Process Flow and Instrumentation Diagrams (**Appendix A**); Continuous emissions monitoring data (**Appendix B**); sample calculations (**Appendix C**); operating data logs (**Appendix D**); and detailed cost estimate (**Appendix E**).

R \GRAPHICS\SENECA\BASEMAP\FINBS1-2 CDR(CLD)

2 ENGINEERING DESCRIPTION

This section provides a detailed engineering description of the APE 1236 deactivation system that was converted to a Low Temperature Thermal Desorption (LTTD) unit for the LTTD Treatability Study.

The APE 1236 deactivation system was designed by the Ammunition Equipment Division (AED) at Tooele Army Depot. The APE 1236 is a rotary kiln incinerator that has been upgraded to include an afterburner and additional instrumentation. The US Army previously employed the APE 1236 at SEDA to deactivate munitions.

This section provides the following information:

Description of major components Description of instrumentation Operating procedures

A site plan of the APE 1236 deactivation furnace is shown in Figure 2-1. An isometric of the APE 1236 system is shown in Figure 2-2. Other figures showing additional detail of the APE 1236 design are provided in Appendix A of this document.

2.1 DESCRIPTION OF MAJOR COMPONENTS

2.1.1 Fuel and Waste Feed Systems

Number (No.) 2 fuel oil is used to fire the burners in both the kiln and afterburner, and propane is used as pilot fuel for the afterburner. The propane and fuel oil piping from the storage and pumping area to the system area are installed in a concrete ditch for leak containment. The propane storage tank is a 1,000-gallon horizontal drum mounted on a concrete pad. The appropriate valves, fittings, regulators, and piping are installed for propane pressure reduction and transportation to the afterburner burner pilot train.

The fuel oil storage tank is a 4,000-gallon drum mounted on a 24 x 14-foot rectangular, 4-inch thick concrete pad. The fuel oil storage tank pad is surrounded on all side by 30-inch high walls for secondary containment. A pump with the required valves and piping is used to transport the fuel oil to

the APE 1236 area.

Modification to the APE 1236 waste feed system was necessary to adapt this unit to feed soil rather than munitions for which it was designed. The original system included an automatic waste feed monitoring system (AWFMS), and two conveyors (i.e., waste loading conveyor and the kiln feed conveyor) that were connected in series. The AWFMS consisted of a weigh scale and push-off system that were used to weigh control amounts of waste munitions that were subsequently pushed onto the waste loading conveyor. The waste loading conveyor moved the weighed amount of munitions through the APE's concrete barrier wall where they were transferred to the kiln feed conveyor that was located inside the kiln area. The kiln feed conveyor was used to feed the munitions into the kiln. The dual conveyor arrangement is shown in **Figure 2-3**.

For the Treatability Study, components comprising the AWFMS were removed and this component was replaced by other components that were needed to pre-screen and feed the soil into the rotary kiln. The replacement soil feed system was comprised of a powerscreen (i.e., an integral unit comprised of a grizzly, a hopper, a conveyor belt, the powerscreen, and size collection chutes) and an additional stacker conveyor belt that were brought to the site prior to the initiation of the test sequence. The powerscreen was used to size and sort the waste soil. Soil passing through a two-inch screen was treated, while clumps of soil and rock measuring larger than two inches in size were rejected from the feed stream and accumulated in a separate piles that were recovered and reweighed. The additional conveyor belt was used to transport the properly sized soil from the discharge side of the powerscreen to the base of the waste loading conveyor inside the control room.

Soil feed materials were initially loaded into pre-tared 55-gallon drums that were then re-weighed. The weight difference was recorded. The weighed soil was then dumped onto the top of the grizzly where large agglomerates of soil were broken or removed. Removed materials were recovered and re-weighed to allow for the subtraction of their lost weight from the soil feed total. Lost weight was recorded. Once the hopper was loaded, soil emptied out of the hopper onto the powerscreen's integral conveyor for transport to the powerscreen. Soil passing through the shaking and vibrating powerscreen (i.e., 2-inch and less in size) was captured in a drop chute and channeled to the stacker conveyor that transported the selected soil from the outside storage/processing location into the control room. The selected soil was dumped from the stacker conveyor onto the waste loading conveyor, which in turn, dumped it onto the kiln feed conveyor and then into the kiln. Material rejected by the powerscreen (i.e., material larger than 2-inches in size) were separately recovered and weighed, and this weight was

removed from the soil feed total. Soil remaining in the hopper or on the conveyors at the conclusion of each run was also weighed at the end of the test period to allow for its subtraction from the total processed weight.

2.1.2 Rotary Kiln (Deactivation Furnace)

The rotary kiln was designed to heat the waste soil feed materials to induce volatilization of volatile and semivolatile organic compounds. The heat required to promote volatilization is provided by fuel oil firing countercurrent to the direction of soil feed. Volatilized gases, aerosols, vapors and mists, and entrained ash and dusts exit the kiln adjacent to the waste material feed chute. Non-entrained residues are discharged at the burner end of the kiln. The kiln is shown on **Figure 2-4**.

The soil feed material is fed through the kiln toward the flame at the burner end by means of spiral flights that are integral components of the kiln casting. As the soil feed approaches the flame it is heated and the volatile and semivolatile organic compounds contained are vaporized (partially or fully, depending on compound, concentration, and mixing) and enter the combustion gas stream. The combination of the rotating action and the integral spiral flights located along the kiln walls provide physical separation and mixing of the soil feed as it moves through the kiln. The rotating speed of the kiln determines the residence time for the soil material in the furnace.

The kiln is 20 feet long with an average internal diameter of 30.5-inches. It is made of four, 5-foot long sections that are bolted together. The two center sections have a wall thickness of 3.25-inches and the two end sections have a wall thickness of 2.25-inches. The kiln is constructed of ASTM A217 chromium molybdenum steel for high strength and ductility at elevated temperatures. For additional personnel safety, the kiln is surrounded by concrete-block barricade walls.

The kiln is equipped with a Hauck 783 proportioning burner installed in the breaching at the residue discharge end of the kiln. This is a distillate oil fired burner with a capacity of 3 million BTU/hr and a nominal turndown ratio of 4:1. Both atomizing air and combustion air are provided by a Hauck 5-horsepower (hp) centrifugal blower.

Fuel oil and combustion air are ratioed by links and levers connecting the fuel and air control valves. The control valves are operated by an actuator that receives a signal from the kiln exit temperature controller. The controller set point ranges from 250 degrees Fahrenheit (°F) to 900°F. The input to the

controller is provided by a thermocouple located in the kiln exit duct.

The combustion control supervisory system is a Factory Mutual (FM) approved flame safety system that includes the proper safety shut-off valves, pressure switches, pressure regulators, flame detector, and burner controller. (This is shown as the Flame Safeguard Panel, FSG on the drawing.) The burner must be ignited for waste soil materials to be fed to the rotary kiln.

The kiln is operated under a slight negative pressure (vacuum) to control and limit fugitive emissions. Typically, this pressure is -0.15 to -0.25 inches of water column. The vacuum is produced by an Induced Draft (ID) fan that is located between the baghouse and the APE 1236's exhaust stack. The negative pressure in the kiln is determined by the gas flowrate and pressure drop through the air pollution control device (APCD) system and ID fan. A damper installed in the duct upstream of the ID fan is opened and closed by an electric actuator to control the gas flow rate and maintain the appropriate negative pressure within the kin. The kiln vacuum is an input to the AWFSO system. The input to the damper actuator is provided by the kiln pressure controller. The input to the pressure controller is a pressure (draft) transmitter measuring the kiln discharge pressure.

Fugitive emissions escaping the kiln are captured and controlled by a metal shroud that covers the entire kiln assembly including the feed chute and end plates. Ducts connect the shroud to the inlet of the combustion air blower for the kiln burner. The combustion air blower creates a negative pressure inside the shroud that pulls any fugitive emissions through the blower and discharges them into the kiln via the kiln burner. The shroud is fabricated from 11 gauge, A36 carbon steel.

The kiln is trunnion driven by an electric motor. The kiln must be turning for the AWFSO interlocks to clear, allowing waste soil to be fed into the APE 1236. The drive system can vary the kiln rotation speed from 0.5 to 4.5 revolutions per minute (rpm). Varying the kiln's rotational speed changes the amount of time (i.e., kiln residence time) required for material to travel through the kiln.

Residue from the kiln is removed by the kiln residue conveyor. The kiln residue conveyor transports the waste from the kiln through the barrier wall to a collection point. The kiln residue conveyor must be operational for the AWFSO interlocks to clear, allowing waste soil to be heated. This interlock prevents the build-up soil residues within the kiln.

2.1.3 Afterburner

The kiln combustion gases are transported to the afterburner through a 24-inch diameter steel duct. Combustion gases and volatilized organic compounds previously contained in the soil feed materials enter the afterburner directly above the burner at the upstream end where they are mixed with, and heated by, gases from fuel oil combustion. The afterburner is designed to heat 4,000 standard cubic feet per minute (scfm) of combustion gas from 400-900°F to 1,200-1,800°F with a minimum gas residence time of one second. Operational experience has shown that the nominal maximum operating temperature of the afterburner is 1,600°F.

The afterburner is rectangular, with outer dimensions of 6-feet by 6-feet by 15 feet-long and with a transition cone at the discharge end. The afterburner is internally insulated with 8-inch thick, 12-pound/cubic foot (lb/ft³), ceramic fiber modules that are individually anchored to the afterburner casing. The ceramic fiber surface is coated with a rigidizer/surface coating that provides surface hardness and erosion resistance. The afterburner's skin temperature remains below 150°F during normal operation. The inside cross-section of the insulated afterburner is 4-feet 8-inches by 4-feet 8-inches with a total internal volume of 390 cubic feet. The afterburner is equipped with a Hauck WRO-164 Wide Range burner. This burner is oil-fired with a nominal capacity of 8 million Btu/hr and a 10:1 turndown ratio.

Afterburner fuel oil and combustion air are ratioed by links and levers connecting the fuel and air control valves. The control valves are operated by an actuator that receives a signal from the afterburner temperature controller. The afterburner temperature controller set point ranges from 1,200-1,800°F. The input to the controller is provided by a thermocouple located in the afterburner exit duct.

The combustion supervisor system is a Factory Mutual (FM) approved flame safety system that includes the proper safety shut-off valves, pressure switches, pressure regulator, flame detector and burner controller. (This is shown as the Flame Safeguard Panel, FSG on the drawing.) The burner must be ignited before waste feed materials can be feed to the rotary kiln. The air blower is a Cincinnati Fan #HPF-7 capable of providing 1,600 scfm of air for both atomization and combustion.

2.1.4 High Temperature Gas Cooler

High temperature combustion gases exiting the afterburner flow through a 30-inch diameter stainless

steel duct to the High Temperature (HT) gas cooler. The HT gas cooler is a gas-to-air, cross-current, forced air heat exchanger that reduces the temperature of the combustion gases to less than 850°F. The HT gas cooler is capable of cooling 4,000 scfm of combustion gas from 2200°F to 850°F. If the HT gas cooler's exit temperature exceeds 850°F, waste feed to the rotary kiln is automatically shut off. The HT gas cooler requires 25,400 cubic feet per minute (cfm) of 100°F ambient air to cool the combustion gases.

The HT gas cooler consists of two sections, each containing 65 plates. Each plate is 39-inches tall and 20.5-inches wide. The HT gas cooler is constructed of 310 stainless steel. Combustion gases enter the inlet plenum of the cooler and pass alternately downward and upward through the first and second sections and then exit the HT cooler through the outlet plenum. The heat exchanger plates are spaced so that the combustion gases pass on one side and the ambient cooling air passes on the other. There are a series of plates, a series of exhaust chambers, and a series of cooling chambers.

A 40-hp blower forces cooling air through the HT gas cooler. The blower is capable of providing 26,313 cfm of air at a static pressure of 5.2-inches of water column. The amount of air delivered by the blower is regulated by a controller that monitors the HT gas cooler's exit temperature. As the temperature changes, the output signal of the temperature controller varies the damper on the blower inlet to control air flow. A thermocouple placed in the exit duct of the HT gas cooler provides the input to the temperature controller.

The HT gas cooler is also equipped with a sonic horn to remove accumulated particles from the exchanger plates. The sonic horn emits sound pressure waves of sufficient vibrational energy to shear deposits from the surface of the plates, and it is operated by compressed air. The frequency of the sound waves and the duration of the cleaning cycle are adjustable from a local panel. Adjustments are made based on the temperature differential across the HT gas cooler. The sonic horn is an Envirocare #AH 30.

Particles and residue are removed from the HT gas cooler through a double-chamber dumping valve. The valve has two gates that are driven by an electric motor. Only one gate may be opened at any time so the vacuum within the HT gas cooler is maintained.

2.1.5 Low Temperature Gas Cooler

Combustion gases exit the HT gas cooler through a 24-inch diameter steel duct and enter the Low Temperature (LT) gas cooler. The LT gas cooler is a gas-to-air, cross-current, forced air heat exchanger that reduces the combustion gas temperature to less than 350°F. The LT gas cooler is capable of cooling 4,000 scfm of combustion gases from 900°F to 250°F. Waste feed to the rotary kiln is automatically shut off if the gas exiting the LT gas cooler exceeds 350°F. The LT gas cooler requires 16,400 cfm of 100°F ambient air to cool the combustion gases.

The LT gas cooler consists of two sections containing 75 plates each. The plates are 50-inches tall and 26-inches wide. The LT gas cooler is constructed of carbon steel. Combustion gases enter the inlet plenum of the cooler and pass alternately downward and upward through the first and second sections and then exit through the outlet plenum. Heat exchanger plates are spaced so that the combustion gases pass on one side and the ambient cooling air passes on the other. There are a series of plates, a series of exhaust chambers, and a series of cooling chambers.

A 20-hp blower forces cooling air through the LT gas cooler. The blower is capable of providing 17,054 cfm of air at a static pressure of 3.6-inches of water column. A controller that monitors the LT gas cooler's exit temperature regulates the amount of air delivered by the blower. As the temperature changes, the output signal of the temperature controller varies the damper on the blower inlet to control air flow. A thermocouple in the exit duct from the gas cooler provides the input to the LT gas cooler temperature controller.

The LT gas cooler is also equipped with a sonic horn to remove accumulated particles from the exchanger plates. The horn emits sound pressure waves with sufficient vibrational energy to shear deposits from the surface of the plates, it is operated by compressed air. The frequency of the sound waves and the duration of the cleaning cycle are adjustable from a local panel. Adjustments are made based on the temperature differential across the LT gas cooler. The sonic horn is an Envirocare #AH 30.

Particles and residue are removed from the LT gas cooler through a double-chamber dumping valve. The valve has two gates that are driven by an electric motor. Only one gate may be open at any time so the vacuum within the LT gas cooler is maintained.

2.1.6 Cyclone

Combustion gases exit the LT gas cooler and enter the cyclone through a 20-inch diameter steel duct.

The cyclone is a Ducon type VM model 700/150, size 165 with a 20-inch inlet and outlet. The cyclone is 43 inches in diameter and the inlet area is 1.65 square feet. The cyclone is fabricated from 0.1875-inch thick carbon steel.

Residue is removed from the cyclone collection hopper through an air tight slide gate valve. The slide gate valve is kept closed during operation and it is manually opened for clean-out after shutdown. The gas pressure drop across the cyclone at normal flowrates is 2- to 5-inches of water column.

2.1.7 Baghouse

Combustion gases leave the cyclone and enter the baghouse through a 20-inch diameter steel duct. The baghouse is a rectangular enclosure that measures 6-feet long by 6-feet wide and 15-feet tall. It contains 100 bags that each measure 4.5 inches in diameter and 8 feet long. This results in a total filter area of approximately 950 square feet and an air-to-cloth ratio of 5.0. The bag material is Nomex felt that is silicone treated, heat set, and flame-proofed.

The dust laden combustion gas stream enters the baghouse near the bottom of a hopper where it is dispersed evenly along the rows of bags. The combustion gas flows up through the filter bags and collects in the clean gas plenum, or exhaust manifold. As particles build up on the bags, the porosity of the bags is reduced creating a higher differential pressure between the dirty side and the clean side of the bags. This increased pressure drop across the bags reduces combustion gas flow through the baghouse.

The magnitude of baghouse pressure drop increase is limited by periodically cleaning the bags. The baghouse has a jet-pulse cleaning system that operates by inducing momentary surges of high-pressure air in the reverse direction to normal airflow. The backflow of high-pressure air flexes the bags outward and dislodges the dust particles causing them to fall into the hopper below. An automatic timing device that alternately activates one of a series of values at preset intervals is used to clean one row of filter bags at a time.

The discharge temperature of the baghouse is measured by a thermocouple installed in the duct downstream of the baghouse. This temperature is indicated and recorded at the main control panel. Additionally, a high temperature thermocouple at the baghouse exit activates an alarm at the main control panel if the gas temperature reaches 600°F (This temperature indicates a fire situation).

The Differential Pressure (DP) is also monitored across the baghouse, and low and high DP alarms are set at 2 inches and 6 inches water column, respectively. A DP below 2 inches indicates a ruptured bag, while a DP higher than 6 inches indicates excessive fouling of the bags.

The baghouse is equipped with isolation and bypass valves. The isolation valves are located in the duct immediately upstream and downstream of the baghouse. The bypass valve is located in the baghouse bypass duct. These three valves operate in unison, i.e., when the bypass valve is closed the isolation valves are open and vice-versa. The baghouse is bypassed only under the following conditions: a) when the exit temperature measurement fails, b) during high baghouse temperature, and c) during startup to protect the bags from moisture condensation and corrosion.

2.1.8 Induced Draft Fan

Combustion gases are drafted through the entire APE 1236 system by the Induced Draft (ID) fan located downstream of the baghouse. A 20-inch diameter steel duct connects the baghouse and ID fan. Under normal operating conditions, the total system pressure drop is 25 inches of water column at 4,000 scfm.

The ID fan must be operating for the AWFSO interlocks to clear, allowing waste soil to be fed to the rotary kiln and heated.

The ID fan is belt driven by a 50-hp, 1,750-rpm electric motor. The capacity of the ID fan is 6,700 actual cubic feet per minute (acfm) at 30-inches of water column. The ID fan is designed to operate at 300°F. The upper limit for the ID fan is 500°F.

A damper is installed in the duct upstream of the ID fan. This damper controls the amount of combustion gas that the fan pulls through the APE 1236 system. The damper is operated by an electric actuator that receives a signal from the kiln pressure controller. This loop is discussed in **Section 2.2.2** of this section.

2.1.9 Exhaust Stack

Exhaust combustion gases from the ID fan are discharged to the exhaust stack and then to the atmosphere. The stack is 20 inches in diameter (outside diameter - OD) and 38-feet high.

The stack originally had four sets of sampling ports, and a fifth set was added to support the stack sampling requirements for this Treatability Study. Existing ports located at approximately 20 feet above grade are used for integral component continuous gas analyzers and gas velocity measurements. The gas analyzer port services the sampling system that supplies the continuous oxygen and carbon monoxide analyzers that are used to indicate APE 1236 system performance and are interlocked with the AWFSO. The gas velocity port accommodates probes that measure gas velocity, temperature and pressure in the stack. This information provides an indication of gas residence time in the APE 1236 system and is interlocked with AWFSO.

The stack has other existing ports at approximately 20 feet above grade that were used for the Volatile Organic Sampling Train sampling and verification continuous emission monitors. A new set of ports was added to the stack at an elevation of approximately 26.5 feet above grade to support the extractive sampling systems used for total particulate, semi-volatile organic compound, and dioxin/furan determinations.

2.2 DESCRIPTION OF INSTRUMENTATION

2.2.1 Measurement Parameters and Methods

The following paragraphs discuss the different APE 1236 process parameters that were measured during the Treatability Study. The techniques that were used to make the measurements are also discussed.

Temperature is the most common process measurement. Temperatures throughout the APE 1236 system are controlled, recorded, indicated and alarmed. Type K (Chromel-Alumel) thermocouples are used for temperature measurement. The temperature range encountered at the different measurement points depends on where the thermocouple is installed in the system. Thermocouples are installed in the duct downstream of each major system component. In addition, prior to this Treatability Study, a

thermocouple was installed in the kiln's residue discharge chute where the treated soil residue exits the rotary kiln and passes to the kiln residue conveyor. This thermocouple was used to monitor the exit temperature of the soil. Temperatures measured with this thermocouple were recorded, and the values were compared to direct measurements made using a thermometer for treated soil removed from the discharge conveyor belt at regular intervals.

Pressure and differential pressure (DP) are measured at various locations in the APE 1236 system. The pressure measurement recorded at the kiln's gaseous stream exit is actually a vacuum measurement. The scale is inches of water column and the value represents the number of inches of water column below atmospheric pressure. A pressure transmitter converts the vacuum measurement into an electronic signal that is transmitted to a remote device. DP is also measured in inches of water column. DP measurements are used to indicate the pressure drop across major components in the APE 1236 system. Differential pressure is measured with a local pressure gauge or a pressure transmitter that transmits an electronic signal that is proportional to the differential pressure being measured.

The total fuel oil flow to the two APE 1236 burner systems (i.e., kiln burner and afterburner) were measured with a flowmeter. The flowmeter is located in the fuel oil piping that is installed upstream of the piping split that is located between the storage tank and the two burners. The flowmeter is a positive displacement type that transmits an electronic signal to the main control panel for recording.

The stack gas velocity, oxygen, carbon monoxide, were monitored continuously using systems that are described in further detail in Section 4.

2.2.2 Panel Instrumentation

The system's panel instrumentation includes devices located in the main control panel or in local panels throughout the APE 1236 system. Instruments that control, indicate, record, and alarm process parameters are included in and are considered panel instrumentation. The following paragraphs describe the equipment that is employed to perform the various functions listed above.

The APE 1236 system is equipped with numerous process controllers to control various process parameters. A process variable (PV - e.g., temperature or system pressure/vacuum) is measured at a strategic location using a thermocouple, thermistor or pressure and the measured value is converted to an analog signal that is transmitted to the process controller. The process controller compares the

measured level of the PV to a pre-determined Set Point (SP), which represents the desired value of the process variable, and if a difference (i.e., error) between the PV and the SP exists, the process controller generates an output signal that is proportional to the error. The output signal is transmitted to a final control element (e.g., damper valve, burner control, variable speed motor) that adjusts the process to alter the PV and move it towards the pre-determined SP.

The APE 1236 system uses process controllers to control the kiln temperature (Loop # TIC-601), kiln draft (Loop # PIC-1201), afterburner temperature (Loop # TIC-701), HT gas cooler exit (Loop #TIC-801) and LT gas cooler exit temperature (Loop # TIC-901). The process controllers also communicate with the computer system that is described later. The APE 1236 system uses Honeywell UDC 3000 process controllers.

The APE 1236 system is equipped with burner control systems to monitor and control the kiln and afterburner burners. A burner controller is a sequence controller that supervises the pre-ignition air purge, ignition, main flame operation and post operation air purge. The burner controller monitors pre-ignition interlocks such as combustion air availability, fuel oil pressure, and ID fan status. A flame detector monitors the flame status. Burner controller outputs spark the flame igniter, open the pilot valve during ignition, and open the fuel oil safety shut-off valves during main flame operation. The burner controller systems are FM approved flame safety systems. Honeywell BC 7000 burner controllers are used.

A multi-point digital recorder is used to record process parameters. The recorder accepts analog signals from transmitters that measure specific process variables. The recorder is capable of recording 14 process parameters on an input value versus time scale. The Honeywell DPR 1500 recorder also communicates with the computer system. The following is a list of the process parameters that are recorded:

- Total fuel oil flow, Process Loop FR-101
- Kiln temperature, Process Loop FR-601
- Kiln draft, Process Loop PR-1201
- Afterburner temperature, Process Loop TR-701
- High temperature gas cooler exit temperature, Process Loop TR-801
- Low temperature gas cooler exit temperature, Process Loop TR-901
- Baghouse differential pressure, Process Loop PDR-1001

- Baghouse exit temperature, Process Loop TR-1002
- Stack gas velocity, Process Loop FR-1401
- Stack gas oxygen concentration, Process Loop AR-1301
- Stack gas CO concentration, Process Loop AR-1301

The baghouse status (on-line or standby) is not usually recorded; however, this information is stored internally in the computer system and can be accessed as required.

Logic control for the APE 1236 system is performed by a programmable logic controller (PLC). The PLC receives both discrete (on/off) inputs from switches and analog inputs from transmitters. The PLC operates motor starters, the AWFSO and other interlocks, and alarms by employing configurable functions of math, counter, sequence, relay, and time. The PLC is a Honeywell IPC 620 system complete with discrete and analog I/O and a data communication link so information can be shared with the computer system.

The computer system is a Personal Computer Operating Station (PCOS) that provides centralized and integrated data management, process graphics, operator interface, and report generation. Through a serial data link, the PCOS communicates with the process controllers, the PLC, and the multi-point recorder. All process parameters and information contained in these devices are available to the PCOS. The PCOS generates reports, logs data, records historical trends, displays process parameters, and alarms process parameters based on information gathered from the process controllers, PLC, and recorder. One of the primary functions of the PCOS is to record process data for internal use and regulatory compliance. The PCOS includes the following items: personal computer with keyboard and color graphics monitor, line printer and distributed automation and control software.

2.2.3 Automatic Waste Feed Shut Off (AWFSO) System

Certain process conditions are required before waste feed can be introduced into the APE 1236 system. The required conditions include minimum and maximum values of some process parameters, status of certain motors, status of burner flames, and operability of certain instruments. If waste soil is being fed and the APE 1236 deviates from any of the required conditions, waste feed is automatically shut off. When waste feed is automatically shut off, the waste loading conveyor is stopped instantly but the kiln feed conveyor continues to run so that any waste soil located in the kiln area will be loaded into the kiln. Other components of the APE-1236 continue to operate until the operator manually shuts them

down after allowing the fed waste to clear the kiln and emissions to be processed through the air pollution control train.

2.3 OPERATING PROCEDURES

This subsection outlines the procedures used to operate the APE 1236 system. The description presents a general overview of the operating procedures. The APE 1236 operational manual and the standard operating procedures (SOP) contain more detail and are the official documents used to operate the APE 1236 system.

The different operational items to be performed are listed for each of the various operating procedures. The following procedures are covered:

- Startup
- Operation
- Shutdown
- Scrap and residue handling
- Baghouse bypass

2.3.1 Startup Procedures

Perform operational inspection and complete pre-startup check list.

The following procedures will be completed automatically upon automatic start-up but would be conducted in this manner if manual start-up were to be undertaken.

- Bypass the baghouse.
- Start the ID fan with the kiln pressure controller in manual.
- Start the gas cooler blowers with the LT gas cooler motor speed controller in manual.
- Start the air compressor.
- Start the fuel oil pump and open the hand valves to the burners.
- Start the afterburner combustion air blower.

- Place the afterburner temperature controller in manual and slightly open the control valve.
- Ignite the afterburner burner.
- Start the kiln rotation.
- Start the kiln combustion air blower.
- Place the kiln temperature controller in manual and slightly open the control valve.
- Ignite the kiln burner.
- Adjust the set points on the process controllers and place the controls in the automatic mode.
- Date and sign the recorder chart. Verify all recorded conditions are being correctly recorded.
- Enter the name of the waste feed being fed to the kiln into the computer system.
- Adjust the rotation speed of kiln to the desired level (based on desired residence time).
- Adjust the kiln temperature set point to the desired level.
- Start the waste loading, waste feed, and residue conveyors.
- Start the baghouse bag cleaning cycle.
- Open the baghouse block valves and close the baghouse bypass valve.
- Start the gas cooler sonic cleaners.
- Close the kiln barrier walls.
- Feed the soil at specified feedrate.

Note that no waste is fed to the kiln until the baghouse is on-line.

2.3.2 Operation Procedures

These procedures were performed while the APE 1236 system was processing waste soils. Necessary data and observations were recorded in the operating log that is kept for the system.

- Monitor the main control panel closely to:
 - Monitor process conditions.
 - Verify that correct recording and data logging are being performed;
 - Verify that control functions are being performed.
 - Handle alarm conditions as required.
- Inspect exhaust stack emissions hourly (minimum).
- Check all local indicators on the APE 1236 system for proper values.
- Inspect the operation of rotating equipment outside of kiln barrier walls.
- Monitor the waste feed stockpile, the kiln residue stockpile, and all components of the

deactivation furnace/LTTD for evidence of fugitive emissions.

2.3.3 Shutdown Procedures

The following procedures were performed during automatic shutdown (Note: these procedures can be initiated manually or as an automatic response from the AWFSO system):

- Stop waste feed to kiln.
- Maintain all other operating conditions, including kiln and afterburner temperature, for 15 minutes (minimum) or until kiln residue conveyor is empty, whichever is greater.
- Place process controllers in manual.
- Shut-off the kiln burner flame but keep combustion air blower on and combustion air valve open.
- Shut-off the afterburner burner flame but keep combustion air blower on and combustion air valve open.
- Shutdown fuel oil pump.
- Open ID fan damper fully.

Once kiln temperature is below 400°F and the afterburner temperature is below 600°F, the following equipment is shutdown:

- Kiln combustion air blower.
- Afterburner combustion air blower.
- ID fan.
- Gas cooler blowers.
- Baghouse residue valve.
- Gas cooler residue valves.
- Kiln rotation drive.
- Kiln residue conveyor.

Conditions that could have initiated an automatic shutdown are discussed in Section 2.2.3. It is important to note that kiln and afterburner conditions are maintained until all of the waste passes through the rotary kiln and the offgases are treated in the afterburner. This continues the volatilization and combustion of organic compounds contained in the feed that remains in the kiln and ensures safety

and treatment of offgases.

2.3.5 Baghouse Bypass

If the baghouse was bypassed for any reason, waste feed to the rotary kiln was stopped by the AWFSO System. Bypass of the baghouse would only occur if: 1) there was an exit temperature measurement failure; 2) the high baghouse temperature alarm sounded during a fire condition; or 3) during startup operations prior to the initiation of waste feed.

The bypass is interlocked with the AWFSO system so that waste cannot be fed if the baghouse is bypassed.

() -

Figure 2-2 APE 1236 - Isometric View

12.00

yê vê dertin têrên têrdirên têrtirê tertirê yerdir. Dirê diş sakar

Figure 2-3 Input Conveyor Concept

a Alexandra a Societa da

land ya Anga Kayon Malakasiy

ş

Figure 2-4 Deactivation Furnace

teri de de de la trajector de la del properto, e de la speci

3 FEED CHARACTERIZATION

3.1 SOIL SELECTED FOR DEMONSTRATION STUDY

3.1.1 General

Soil selected for the LTTD Treatability Study was collected from three source areas. The source areas are as follows:

- SEAD-60, which is an oil discharge area adjacent to Building 609.
- SEAD-41, which is the boiler blowdown pit adjacent to Building 718.
- Near Building 113 where an underground storage tank was removed.

A summary of the chemical characterization of the soils from each source area is discussed below.

3.1.2 SEAD-60 Soils

Soil from SEAD-60 (Oil Discharge Area adjacent to Building 609) was used as feed material in the LTTD Treatability Study. SEAD-60 was part of an Expanded Site Inspection (ESI) that confirmed that a release of petroleum hydrocarbons had occurred (Parsons ES, 1996) at the site. On March 3 and 4, 1999, approximately 150 cubic yards of soil from this site was excavated from the area and stockpiled near the APE 1236 system (LTTD).

Based on the analysis of soil samples collected from SEAD-60 during the ESI, the surface soils in this area have been impacted primarily by total petroleum hydrocarbons (TPHs) and polynuclear aromatic hydrocarbons (PAHs) (see **Table 3-1**). TPH concentrations of 218,000 mg/Kg and 50,900 mg/Kg were found in the area of the oil-stained soil. Concentrations of PAHs (up to 18,000 mg/Kg) correlated spatially with the elevated TPH concentrations in the surface soils. TAGM exceedances for PAHs were more numerous in the surface soil samples. The concentrations of TPH and PAHs in soil were reduced at depth.

Additionally, two polychlorinated biphenyl (PCB) congeners (i.e., Aroclor®-1248 and Aroclor®-1260) were found at concentrations above their respective TAGM values, and heavy metals concentrations were also present above TAGM values.

3.1.3 SEAD-41 Soils

Soils were excavated as part of a removal action of the boiler blowdown pit in SEAD-41. Soil sampling

was conducted during a 1994 investigation and in January 2000 during the pit excavation. The results of the chemical analysis of these samples are presented in **Table 3-2 and 3-3**.

Results of the January 1994 sampling showed that the five soil samples had TPH concentrations ranging from 40 to 300 mg/Kg. No other chemical analyses were performed in January 1994. Results of the January 2000 sampling showed that one of the five samples collected contained PAH concentrations exceeding TAGM levels.

3.1.4 Building 113 Tank Excavation Soils

Soils were removed in July 2000 as part of an underground storage tank excavation near Building 113. The results of the analysis are shown on **Table 3-3**. The sampling results show that one of the two samples analyzed for PAHs contained concentrations exceeding TAGM criteria levels. PCBs were also detected in one of the two samples at a concentration below the TAGM level at 0.51 ppm. Other contaminants were not detected. TPH analyses were not performed on samples collected from the Building 113 excavation site.

3.2 FEED SOIL LIMITATIONS

The soils used for the Treatability Study also needed to meet physical criteria. According to ITRC Guidance, soils outside of the following limits needed to be pretreated prior to use in the LTTD study:

- 1. soil moisture > 35%
- 2. material > 2-inch diameter
- 3. soil has high plasticity
- 4. soil has high humus content
- 5. either soil TPHC > 20,000 parts per million (ppm) or greater than 25% lower explosive limit (LEL) in gas in desorption chamber

The soils from all source areas met the limits described above prior to processing in the LTTD. Percent solids data collected from the waste feed soils contained between 83.0 and 95.1% total solids (i.e., soil moisture content ranged between 4.9 - 17.0%). Waste feed soil was pretreated using a powerscreen to ensure that the waste feed soil met the 2 inches diameter size limitation recommended by the ITRC.

Soils at SEAD-60 were comprised of till that were generally gray brown and consisted of silt, with little clay, little very fine sand, and little dark gray-black shale fragments. A trace of organic material was occasionally noted in the boring logs from SEAD-60 and one log noted plastic soils (Parsons ES, 1996); however, the plasticity of the soils from SEAD-60 appeared to be low. A physical description of the

other soils excavated from SEAD-41 and near Builling 113 was not provided.

Two of the four samples collected from the excavated area at SEAD-60 had TPH concentrations which exceeded 20,000 ppm (maximum concentration = 218,000 ppm). Accordingly, TPH screening of the feed soils was performed throughout the Treatability Study to demonstrate that the average feed concentration did not exceed 20,000 ppm, which is the upper limit recommended by the ITRC. A description of the TPH screening process is discussed in the following section.

Pre-testing of the soils during the work plan preparation provided evidence that low concentrations of Total Organic Halogen (TOX) content existed in the proposed waste feed material. Due to the presence of TOX in the stockpiled soil, additional testing requirements for both the waste feed and treated soil, and the stack gas emissions were implemented in accordance with the recommendations of the ITRC Work Group as defined in the document "Technical Requirements for On-site Thermal Desorption of Solid Media Contaminated with Hazardous Chlorinated Organics."

The excavated soils from SEAD-60, SEAD-41 and the tank excavation at Building 113 were selected for the LTTD demonstration study since they showed relatively high concentrations of petroleum hydrocarbons and PAHs, and met the requirements of ITRC Guidance.

3.3 SOIL HANDLING

Prior to beginning the Treatability Study, soil excavated from SEAD-60, SEAD-41 and near Building 113 was moved to the LTTD demonstration area and staged on a plastic liner. During storage, stockpiles were covered to minimize exposure to precipitation and to prevent dust generation. When necessary, water spray was used to prevent dust generation. Fugitive dust monitoring was performed during handling operations to ensure that unacceptable levels of dust that could migrate off-site or pose a hazard to workers were not generated. Monitoring is described in **Section 4.0**.

3.4 CHEMICAL CHARACTERIZATION OF FEED SOILS

Prior to treatment in the LTTD, samples of the proposed feed soils were collected for pre-screening determinations and for shipment off-site for more detailed chemical evaluation. Soil screening consisted of on-site immuno-assay TPH determinations to verify that waste feed did not exceed the 20,000 mg/Kg TPH threshold established by the ITRC. More comprehensive chemical analyses performed at an off-site laboratory included determinations for semivolatile organic compounds (via SW-846 Method 8270), PCBs (via SW-846 Method 8082), TPH (via SW-846 Method 8015) and metals (via SW-846 Method 6010B). Samples shipped off-site for chemical analyses were collected by compositing up to eight discrete samples from the feed soils during each demonstration run.

Accordingly, one composite sample was produced for each of the six test runs. The results of the comprehensive analyses are presented in **Table 3-4**.

The results of the testing on the feed soils showed that all six of the feed soil samples contained one or more PAH compound that exceeded its TAGM criteria level. Metals, particularly lead, copper, thallium and zinc, were also detected at concentrations exceeding their respective TAGM values. PCBs were detected in five of the six samples at concentrations below their respective TAGM levels, while TPH was detected in all six feed soil samples at concentrations ranging up to 770 mg/Kg.

TABLE 3-1

SENECA ARMY DEPOT ACTIVITY LTTD TREATABILITY STUDY COST AND PERFORMANCE TEST REPORT SEAD-60 SOIL ANALYSIS RESULTS FROM THE

			SUIL ANAL	I SIS RESULIS FRU	M THE ESI		
	MATRIX			SOIL	IUS	IIOS	
	LOCATION			SEADED		STIL I	SUL
	DEPTH (FEET)				SEAU-60	SEAD-60	SEAD-60
	SAMPI F DATE			2.0-0	Z-0	0-0.2	0-0.2
				12/2/00	02/28/94	06/07/94	06/08/94
		TADA T	NUMBER	SB60-1-00	SB60-1.01	SB60-2-00	SB60-3 00
		14GM (1)	ABOVE	222473	212883	223339	0078400
	SUG NUMBER	(ng/Kg)	TAGM	44410	42510	44410	44665
	CINO						
Methylene Chloride							
	6y/6n	001	0	12 U	11 U	27 J	21
	ng/Kg	200	0	12 U	11 U	170 1	11 44
Carbon Disulfide	ug/Kg	2700	0	12 U	11		⊃ : ₹ ;
2-Butanone	ug/Kg	300	0	12 11	: ;		14 U
2-Hexanone	ua/Ka	NA	NA	10 10	5	f 97	14 U
Tetrachloroethene	ua/Ka	1400	c				14 U
Toluene		1500	0 0	0 2 2	0 11	11 UJ	14 U
Ethulhanzana	De la	0001	2	12 U	11 U	13 J	14 11
	ng/kg	5500	0	12 U	11 U	4	
Aylene (total)	ug/Kg	1200	0	12 U	11 U	rσ	5 5 2 2
					C.	5	5
SEMIVULATILE ORGANICS							
Naphthalene	ug/Kg	13000	0	38.1	370 11	11 00001	
2-Methylnaphthalene	ug/Ka	36400	C	300 11			2200 U
Acenaphthene	un/Ka	50000 /2/				r nort	2200 U
Dibenzofuran	ua/Ka	6200) c		3/0 0	1400 J	2200 U
Fluorene			0 0	23 1	3/0 U	18000 U	2200 U
Phenanthrana	BY JP		5	48 J	370 U	1300 J	2200 U
Anthrocono	6y/6n	20000 (2)	0	570 J	25 J	L 0088	680 I
	ng/Kg	50000 (2)	0	58 J	370 U	1. 0002	
	ng/Kg	50000 (2)	0	L 97	370 U	18000 11	
	ng/Kg	8100	0	390 U	370 U	1500 1	
r luorantnene	ng/Kg	50000 (2)	0	1100 J	33 J		1 200 1
Pyrene	ug/Kg	50000 (2)	0	L 007	31 J	1 00020	
Benzo(a)anthracene	ug/Kg	220	F	340 .1	370 11		r nnnz
Chrysene	ug/Kg	400	0	400			2200 U
bis(2-Ethylhexyl)phthalate	ua/Ka	50000 (2)	I C	54 1			1100 J
Benzo(b)fluoranthene		1100	0 0		2/0 0	18000 U	2200 U
Benzo(k)flitoranthene			4 0	130 J	370 U	16000 J	1500 J
Renzola)nurana	5 Vinn	0011	D	190 J	370 U	18000 U	2200 U.I
	ng/Kg	61	-	350 J	370 U	18000 11	11 0000
Indeno(1,2,3-cd)pyrene	ug/Kg	3200	0	220 J	370 U	18000 11	1100 1
Ulbenz(a,n)anthracene	ug/Kg	14	3	110 J	370 11		
Benzo(g,h,i)perylene	ug/Kg	50000 (2)	0	220 J	370 11		
		100.000			> > > >	0 0000	r nnai

p:\pit\projects\seneca\lttd\evaluation report\draft submittal\tables\tbl3-1.wk3

TABLE 3-1

SENECA ARMY DEPOT ACTIVITY LTTD TREATABILITY STUDY COST AND PERFORMANCE TEST REPORT SEAD-60 SOIL ANALYSIS RESULTS FROM THE ESI

	MATRIX			SOIL	IUS	1103	
	LOCATION			SEAD AD		SOIL	SOIL
	DEPTH (FEET)			00-00-00	SEAU-60	SEAD-60	SEAD-60
	CAMPI L DATT			0-0.2	0-2	0-0.2	0-0.2
	SAIVIFLE UALE			05/27/94	02/28/94	UEINTION	10000
	ES ID		NUMBER	SB60-1-00	CDED 4 04		100/00/24
	LAB ID	TAGM (1)	AROVE	CLYCCC	10.1-0000	00-7-0990	SB60-3.00
	SDG NUMBER	(ind Ka)	TACAN	014777	212883	223339	223499
COMPOUND	INITS	184,851	MOCI	44410	42510	44410	44665
PESTICIDES/PCB							
alpha-BHC	unika.	011	c	1990			
Aldrin		2	C	4 UJ	1.9 U	5 J	111 0 6
	ng/kg	41	0	4 UJ	19 U	- 4	
Endosuitan I	ug/Kg	006	0	321		2.0	2.9 UJ
4,4'-DDE	ua/Ka	2100	c		י - כ	34 J	6.3 J
4.4'-DDD		0000	5 0		2.1 J	31 J	28 J
4 4'-DDT		7300	S	7.8 UJ	3.7 U	55.1	1001
	ng/kg	2100	0	84 J	3.7 U	130 1	
	ug/Kg	AN	NA	7.8 UJ	3711		0.0.0
alpha-Chlordane	ug/Kg	540	0	4 111		C +-	5.6 UJ
gamma-Chlordane	ua/Ka	540	C		ייס	27 J	3 J
Aroclor-1242	iid/Ka	1000/1000/0/0/	0 0		D R.I	10 J	2.9 UJ
Aroclor-1248			- c	18 01	37 U	970 J	56 11.1
Aroclor-1260	6V/An	1000/10000(a)	-	78 UJ	37 U	2100 .1	56 111
	ng/kg	1000/10000(a)	-	78 UJ	37 U	4400 1	
METALS))	r 077
	mg/Kg	19300	0	10800	RAAD	0070	
Antimony	mg/Kg	5.9	0	0.28.1	- 67 0	3420	14100
Arsenic	ma/Ka	8.2	c	2 2 2		1.8 J	0.49 J
Barium	ma/Ka	300	0 0	0.0	4.1 J	8.1	7
Beryllium	ma/ka		4 0		98.3	679	416
Cadmium		- c - c	5 0	U.4/ J	0.43 J	0.42 J	0.66 J
Calcium	By/Bill	×.3	D	0.58 J	0.36 J	2	151
Chromium	mg/kg	121000	0	65800	75100	56200	
Critornum	mg/Kg	29.6	0	18.3	14.2	18.8	
Cobalt	mg/Kg	30	0	9.6	- 6 8	- 40	23.3
Copper	mg/Kg	33	~	0 70		L C.B	13.1 J
Iron	ma/Ka	36500	C	22800	0.12	130	74.1
Lead	ma/Ka	SA R	0 0	00077	18900	22800	25700
Magnesium		24600	0.0	1.1.1	L C.14	66.7	50.6
Mannanese		00017	5	13300	11300	12200	8570
Morenter	64/6III	1060	0	422	333	317	EVV
Ni-II	mg/Kg	0.1	0	0.06 J	0.08 .1		
NICKEI	mg/Kg	49	0	30.9	23.5	205	0 20.0
Potassium	mg/Kg	2380	0	1. 0261	1470	0.67	31.3
Selenium	mg/Kg	2	0	0.43 11		C 0/01	1820 J
Sodium	ma/ka	172			0.32 0	1.5 J	1.2 J
Vanadium	BU MU	211	5 0	L CUT	75 J	127 J	118 J
Zinc	54/BIII	nei	D	18.6	14.8	21.2	26.2
2	mg/kg	110	2	85	58.6	569	314
							1
UTHER ANALYSES							
Total Petroleum Hydrocarhons	malka						
Total Solids	INVIVI%	NA	NA	87 J	29 U	218000	50900
	AA/AA0/			85.4	88.4	90.1	59.1

TAGM = NYSDEC Technical and Administrative Guidance Memorandum # 4046, "Determination of Soil Cleanup Objectives and Cleanup Levels", January 1994
 Individual SVOC concentrations less than 50 ppm or 50,000 ppb.

p:\pit\projects\seneca\\ttd\evaluation report\draft submitta\\tables\tbl3-1.wk3

Table 3-2 SENECA ARMY DEPOT ACTIVITY LTTD TREATABILITY STUDY COST AND PERFORMACE REPORT SEAD-41 SOIL ANALYSIS RESULTS FROM THE LIMITED SAMPLING PROGRAM

COMPOUND	TAGM (1) Value	Units	208407 1/11/94	208408 1/11/94	208409 1/11/94	208410 1/11/94	208402 1/11/94
Total Petroleum Hydrocarbons	NA	mg/Kg	144	40	300	70	99
Hd	NA	Standard Units	8.74	8.57	8.49	8.19	8.64
Total Solids	NA	MM%	88.3	86.5	84.4	84	85.1

(1) TAGM = NYSDEC Technical and Administrative Guidance Memorandum # 4046, "Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994 NA = None Available

%WW = percentage by weight

Initial Characterization of Feed Soils - SEAD-41 and Building 113 Seneca Army Depot Activity LTTD Treatablity Study Table 3-3

222428 7/6/00 0.51 Building 113 Tank Pull 222427 7/6/00 <0.5 ANANAN 222426 7/6/00 <0.2 <0.2 0.42 <14< <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 0.2 NA 0.31 ¢0.2 AN 222425 7/6/00 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <50
<50
<50
<50
<50
<50
</pre> <0.2 <0.2 <0.2 <14 <50 <0.2 A0.2 <0.2 <0.2 AN A0046302 | A0046303 | A0046304 | A0046305 1/21/00 0.57 0.57 ND ND 1.2 AN 0.048 J 0.099 J ND ND 0.049 J 0.072 J 0.075 J ND 1/21/00 0.13 J ND 0.98 0.98 ND 0.34 Q Q Q 1.5 Q AN SEAD-41 Blowdown Pit 0.063 J UD UD 0.059 J 0.068 J C 0000 J 1/21/00 0.11 J 0.12 J 1.1 0.99 0.52 0.52 ND ND Q 2 2 Q AN 01/21/00 0.063 J 0.26 J 0.29 J 1.4 0.26 J 0.17 J 0.27 J 0.71 0.66 0.060 J 0.73 0.59 0.33 0.33 0.33 0.24 ND 0.84 1.4 1.3 N AN A0046301 1/21/00 0.041 J 0.061 J 0.73 0.73 ND 0.41 N N Q AN Date Sampled Sample ID: Location Value (1) 1 or 10 (2) TAGM #4046 50 50 0.224 1.1 50 0.061 0.4 60 1500 NA NA NA 50 50 50 50 13 UNITS mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg gX/gu 1,2,4-Trimethylbenzene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Benzo(b)fluoranthene Benzo(a)anthracene Benzo(ghi)perylene PCB-Aroclor 1254 Benzo(a)pyrene PARAMETER Acenaphthene Total Xylenes Phenanthrene Fluoranthene Naphthalene Anthracene p-Cymene m-Xylene Chrysene Benzene Toluene Fluorene Pyrene

NOTES:

Only those parameters detected in one or more samples are listed

Shaded values exceed the NYSDEC guidance value

ND = Not Detected

NA = Not Analyzed

J = Indicates an estimate value

TAGM = NYSDEC Technical and Adminstrative Guidance Memorandum #4046, Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994
 1.0 ppm limit for surface soils and 10 ppm limit for subsurface soile

1.0 ppm limit for surface soils and 10 ppm limit for subsurface soils

Table 3-3 Initial Characterization of Feed Soils - SEAD-41 and Building 113 LTTD Treatablity Study Seneca Army Depot Activity

222428 222427 222426 A0046301 | A0046302 | A0046303 | A0046304 | A0046305 | 222425 Sample ID: #4046 UNITS PARAMETER

Sead 41 SOIL.xls

Table 3-4 Summary of Analytical Testing on Feed Soils LTTD Treatibility Study Seneca Army Depot Activity

	SAMPLE TYPE		Waste	Waste	Waste	Waste	Waste	Waste	Waste	Waste
SAMPLE	DENTIFICATION		174000	Feed	Feed	Feed	Feed	Feed	Feed	Feed
SAMPLET	RUN NO.		RUN 1	RUN 2	RUN 3	LT4013 DUP of LT4012 RUN 3	LT4020	LT4028	LT4029 DUP of LT4028	LT4036
TR	EATMENT RATE	TAGM	2 tons/hour	2 tons/hour	2 tons/hour	2 tons/hour	5 tons/hour	5 tops hour	RUN 5	RUNE
	SAMPLE DATE	Value (1)	30-Aug-00	1-Sep-00	20-Sep-00	20-Sep-00	21-Sep-00	22-Sep-00	22-Sep-00	23-Sep-00
PARAMETER	UNIT									
2-Methylnaphthalene	ug/kg	36,400	29. J	28. J	360. U	380 U	360 U	360 11	24 1	260 11
Acenaphthene	ug/kg	50,000	360. U	22. J	360. U	17. J	360. U	35 J	56 .1	360.11
Anthracene	ug/kg	50,000	21. J	55. J	360. U	23. J	43. J	64. J	91 J	36 1
Benzo(a)anthracene	ug/kg	224	100. J	170. J	120. J	130. J	180. J	210, J	300. J	120 .1
Benzo(a)pyrene	ug/kg	61	150. J	220. J	160. J	170. J	250. J	220. J	360. J	120. J
Benzo(b)fluoranthene	ug/kg	1,100	170. J	320. J	140. J	180. J	310. J	290. J	490.	130. J
Benzo(gni)perviene	ug/kg	50,000	160. J	250. J	160. J	180. J	280. J	210. J	430.	110, J
Benzo(k)nuorantnene	ug/kg	1,100	140. J	270. J	190. J	230. J	270. J	210. J	440.	130. J
Benzoic Acid	ug/kg		910. U	920. U	890. U	940. U	900. U	910. U	910. U	900. U
Corbozele	ug/kg	50,000	360. U	220. JB	36. JB	380. U	47. J	360. U	360. U	360. U
Choisene	ug/kg	100	360. U	51. J	360. U	380. U	36. J	42. J	73. J	360. U
Di-n-butylohthalate	ug/kg	400	170. J	340. J	180. J	230. J	320. J	300. J	440.	150. J
Di-n-octylobthalate	ug/kg	50,000	360. 0	370. 0	360. U	380. U	360. U	360. U	360. U	360. U
Dibenz(a h)anthracene	ug/kg	14	500.0	370. 0	360. U	380. U	360. U	360. U	360. U	360. U
Dibenzofuran	ug/kg	6 200	60. J	89. J	55. J	48. J	85. J	45. J	140. J	39. J
Diethyl phthalate	ug/kg	7 100	260 11	20. J	360. 0	380, U	360. U	17. J	36. J	360. U
Fluoranthene	ug/kg	50,000	300. 0	370. 0	360. 0	380. U	360. U	360. U	360. U	360. U
Fluorene	ug/kg	50,000	21 1	270. 3	180. J	180. J	360.	470.	600.	300. J
Indeno(1.2.3-cd)pyrene	ug/kg	3 200	120 1	25. J	360. 0	380. U	360. U	28. J	55. J	360. U
Naphthalene	ug/kg	13,000	23.1	200, J	120. J	160. J	230. J	180. J	380.	98. J
Phenanthrene	ug/kg	50,000	120.1	20. J	360. 0	380. 0	16. J	360. U	42. J	360. U
Phenol	ughg	20	120. 5	170. 5	72. J	110. J	210. J	310. J	440.	210. J
Pyrene	ug/kg	50 000	360. 0	370. 0	360. U	380. U	360. U	360. U	360. U	360. U
Total SVOCs	ug/kg	50,000	1,682.	3,078.	250. J 1,627.	310. J	420. 3,057.	480. 3,111.	680.	300. J 1,743.
Aroclor-1254	ug/kg	1.000	19.	18 11	18	18 1	25	20		
Aroclor-1260	ug/kg	1,000	23.	21.	27.	24.	25. 41.	26. 38.	24. 34.	18. U 18. U
Diesel Oil	mg/kg		92 Y	140 Y	43	69	80			
Motor Oil	ma/ka		420 Y	630 Y	53	490	600.	64.	81.	18.
TPH (Total) (2)	mg/kg		512.	770.	48.3	400.	760.	5.3 89.3	720.	93. 111.
Aluminum	mg/kg	19,300	9,710,	10,100	8 600 F*	12 000 E*	9 980 5*	10.400 E	11 600 51	44 400 54
Antimony	mg/kg	6	.93 UN	.99 UN	1.4 BN	11 BN	2 BN	2.7 PM	11,000. E	11,100. E-
Arsenic	mg/kg	8	4. N	4.6 N	2.9 *	35 *	34 .	30	2.1 DN	.57 BN
Barium	mg/kg	300	85. •	79.6 •	78.6 *	113 •	99.9 •	105	08.1 *	72.2 •
Beryllium	mg/kg	1	.73	.73	.62	.78	.68	55	76	72 72
Cadmium	mg/kg	2	.38 B*	.47 *	.22 B	2.3	37 B	1.5	26 B	03.11
Calcium	mg/kg	121,000	69,500.	75,500.	104,000. •	83,200. *	102.000 •	58 000 E*	62.600 *	61 400 *
Chromium	mg/kg	30	17. N*	18.9 N*	15.7 E*	20.9 E*	17.7 E*	18.2	20.6 F*	214 5*
Cobalt	mg/kg	30	10.	9.7	8.4	10.5	9.5	9.4	10.6	11.2
Copper	mg/kg	33	31.8 N	41.8 N	39.3 EN	51.1 EN	53.7 EN	77. N*	67.2 EN	32 EN
ron	mg/kg	36,500	20,100. *	20,300. *	17,000. E*	23,800. E*	19,700. E*	22,900. E	22.700 E*	23 800 E*
ead	mg/kg	25	61.6 E*	105. E*	165. E	171. E	243. E	222. E	257. E	32.7 E
Magnesium	mg/kg	21,500	12,400. •	14,300. *	12,100. *	14,400. •	15,700. *	14,100. E*	16,700. •	15.300 .
Manganese	mg/kg	1,060	484. *	497. *	466.	554.	451.	428. E	506.	528.
lickol	mg/kg	0.1	.02 U	.02 U	.03 B	.03 B	.03 B	.02 U	.03 B	.02 U
Potassium	mg/kg	49	30.5 E	30. E	25.1 *	33.4 •	29. *	31. E	32.9 •	30.5 •
Selenium	mg/kg	2,380	1,530. *	1,610. •	1,840.	1,970.	2,120.	1,950. E	2,190.	1,760.
Silver	mg/kg	2	.23 UN	.25 UN	.22 U	.24 U	.25 U	.27 U	.28 U	.28 B
Sodium	mg/kg	1	.16 UN	.18 UN	.32 BN	.25 BN	.25 BN	.36 BN	.29 BN	.17 BN
Challium	mg/kg	1/2	133. B	135. B	104. B	121. B	127. B	88.3 B	97.1 B	91.3 B
/anadium	mg/kg	150	2.3	2.3	2.3	2.9	2.3	3.1	2.2	2.5
linc	maka	110	10.7	16.2	20.2 E*	27.7 E*	21.4 E*	16.8	21.6 E*	20.1 E*
	inging	110	102. N	90.2 N	101. EN	175. EN	119. EN	129. EN	139. EN	67.3 EN

Notes:

(1) Technical and Administrative Guidance Memorandum #4046, Determination of Soil Cleanup Objectives and Cleanup Levels, January 1994

(2) Total TPH is approximated by the sum of the diesel and motor oil concentrations.

(3) Only those parameters detected in one or more samples are listed.

(4) Shaded values exceeded the TAGM guidance value (5) Lab Qualifiers are defined as follows:

Sector recent of the end of a factor for the sector for

GC/MS Qualifiers J = Indicates an estimated value. This flag is used when the result is less than reporting limit, but greater than 1/2 reporting limit.

- U = Indicates the analyte was analyzed for but not detected above the instrument detection limit.
- B = The reported analyte was detected in the associated method blank as well as the sample.

B = the reported analyse has detected a the associated instance matter and the second Metals Qualifiers E(ICP) = The reported value is estimated because of the presence of interference.

- N = Matrix spike sample recovery not within control limits. = Duplicate analysis not within control limits
- B = Entered if the report is less than the Contract Required Detection Limit (CRDL) but greater than the Instrument Detection Limit (IDL)

and a second second second

U = Entered if the analyte was analyzed for but not detected, less than IDL

p:\pit\projects\seneca\ttd\evaluation report\draft submittaf\soii_analytical xts\Final Waste Feed Sum

4 TREATMENT SYSTEM PERFORMANCE

4.1 INTRODUCTION AND CLEAN-UP GOALS/STANDARDS

The LTTD Treatability Study was performed to assess the feasibility of treating soils contaminated with semivolatile organic compounds and TPH in the existing APE 1236 furnace. This section assesses the effectiveness and performance of the system. Specific goals of the Treatability Study included the following determinations or demonstrations:

- Organic chemical contaminated soils could be treated to a degree that reduced concentrations of volatile organic, semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl constituents to levels lower than State of New York Technical and Administrative Guidance Memorandum (TAGM) levels which would allow reuse of the soil as fill or as top cover in landfills;
- Total Petroleum Hydrocarbon (TPH) contaminated soil could be treated to a degree that reduced TPH concentrations to below 100 parts per million;
- Exhaust gases released from the APE 1236 system during its operation treating soil contained less that 100 parts per million by volume (100 ppm_v) of carbon monoxide, corrected to a level of 7 percent (%) oxygen on a rolling hourly-average basis;
- Exhaust gases released from the APE 1236 system during its operation contained less than 0.05 grains per dry standard cubic foot (dscf) of particulate matter, corrected to a 7% oxygen content;
- Exhaust gases released from the APE 1236 system during its operation treating soil contained less than 0.2 nanograms per dry standard cubic meter (dscm) of Polychlorinated dibenzo-p-dioxin (dioxins) and Polychlorinated dibenzofuran (furans) compounds, corrected to a 7% oxygen level;
- Destruction and removal efficiency (DRE) achieved for volatile organic, semi-volatile organic, polychlorinated biphenyls and organochlorine pesticide contaminants equaled or exceeded 99.99 percent for the process or, if the DRE level could not de demonstrated, that none of the target organic compounds were present in the exhaust gases at levels above analytical detection limits;
- Operation of the APE 1236 does not result in excessive fugitive emissions from the process or from associated waste feed or waste residue handling operations;
- The APE 1236 system's Automatic Waste Feed Shutoff (AWFSO) system is fully functional

and effectively works in the event of operating system upsets; and

The APE 1236 system is shown to pose an economically viable alternative to treat soils containing TPH and semi-volatile organic compounds.

The following sections discuss the results of the Treatability Study with respect to these performance criteria.

4.2 SUMMARY OF PERFORMANCE TEST RESULTS

4.2.1 Soil Contaminant Reduction

In order to determine the contaminant reduction accomplished by the APE 1236 furnace, the treated soils or kiln ash were sampled and analyzed and the results were compared to the results for the feed soils. The kiln ash was discharged into an accumulation pile outside of the system's confining wall where discrete samples were collected in the same manner that the waste soil feed samples were collected. The discrete sub-samples were then combined into one composite sample per test that was analyzed for each of the runs. The kiln ash samples were submitted for the analysis of TPH (SW846 Method 8015B), semi-volatiles (SW846 Method 8270), pesticides/PCBs (SW846 Method 8082), metals (SW846 Method 6010B) and dioxins/furans (SW846 Method 8290).

A comprehensive comparison of the analytical results obtained for the feed soils and kiln ash is presented as **Table 4-1**. The results of this comparison show the following:

Generally, the quantity of semivolatile organic chemicals found in the waste feed soil was reduced by the LTTD treatment process. A summary of the percent reduction achieved for semivolatile organic compounds within the Treatability Study is provided below:

Sample Identification	Concentration in Waste Feed Soil (1)	Concentration in Treated Soil – Kiln Ash (1)	Percent Reduction
	(ug/Kg)	(ug/Kg)	(%)
Run 1 – 2 ton/hour	1,682	5,965	None
Run 2 – 2 ton/hour	3,078	472 (2)	85

p \pit\projects\seneca\lttd\evaluation report\draft submittal\text\sect-4 doc

Page 4-2

Sample Identification	Concentration in Waste Feed Soil (1)	Concentration in Treated Soil – Kiln Ash (1)	Percent Reduction
	(ug/Kg)	(ug/Kg)	(%)
Run 3 – 2 ton/hour	1,798 (2)	409	77
Run 4 – 5 ton/hour	3,057	629	79
Run 5 – 5 ton/hour	4,094 (2)	1,187	71
Run 6 – 5 ton/hour	1,743	ND - 165	Greater than 90

- 1. Only semivolatile organic compounds (SVOCs) detected in sample were included in the calculation of the sum.
- 2. Results from duplicate samples were combined and averaged.

Data from the first run is considered anomalous, as concentrations of semivolatile organics contained in the treated soil are found to be higher than the concentrations of semivolatile organic compounds detected in the untreated soils.

Concentrations of benzo(a)pyrene and dibenzo(a,h)anthracene exceeded NYSDEC TAGM levels in samples of waste feed collected during all six of the demonstration runs. Samples of the treated soil showed that only two samples contained residual concentrations of benzo(a)pyrene, and three samples of treated soil contained concentrations of dibenzo(a,h)anthracene above TAGM levels after treatment; however, with the exception of the first run, all concentrations of both of these PAHs were reduced by the LTTD treatment process.

Concentrations of benzo(a)anthracene and chrysene contained in samples of the waste feed soil of run five also exceeded NYSDEC TAGM levels in Run 5, and the available data indicates that the concentrations of both of these compounds were reduced to less than TAGM levels by the LTTD treatment process. The concentrations of both of these PAH compounds was found to be above TAGM levels in the samples of the treated soil collected during Run 1, even though both compounds were found at lower concentrations in samples of the waste feed collected during this same run.

Aroclor® 1254 was detected at low concentrations (i.e., less than 30 ug/Kg) in waste feed samples collected during four of the six demonstration test runs, while Aroclor® 1260 was detected at low

concentrations in waste feed samples collected during five of the demonstration runs. Neither of these compounds was detected in any sample of treated soil collected during the Treatability Study.

Diesel oil and motor oil fractions were reported and are representative of the total TPH concentration. In all samples, the TPH concentration was reduced following treatment. The TPH concentrations were reduced as follows:

	Concentration in Waste Feed Soil (1)	Concentration in Treated Soil – Kiln Ash (1)	Percent Reduction
Sample Identification	(mg/Kg)	(mg/Kg)	(%)
Run $1 - 2$ ton/hour	512	149	72
Run 2 – 2 ton/hour	770	48 (2)	94
Run 3 – 2 ton/hour	298 (2)	95.7	68
Run 4 – 5 ton/hour	760	ND	Greater than 85
Run 5 – 5 ton/hour	445 (2)	379	15
Run 6 – 5 ton/hour	111	ND	Greater than 88

1. Only TPH compounds detected in sample were included in the calculation of the sum.

2. Results from duplicate samples were combined and averaged.

Data generated for two of the demonstration test runs indicate that the LTTD process was not able to meet the treatment goal of 100 mg/Kg in the kiln ash (i.e., treated soil) during two (i.e., Run 2 and Run 5) of the six tests.

Other results and conclusions that may be drawn from a review of the data collected for waste feed and treated soil samples are:

• Generally, metal concentrations measured in the feed and treated soils were similar. The single exception to this general result is lead where concentrations increased by an order of magnitude in two samples following treatment. Based on the prevalence of lead in the munitions, which were previously treated and deactivated in the APE 1236 kiln, it is assumed that the soils may have been affected by residual lead remaining within the treatment process.

September 2001

p/pit/projects/seneca/lttd/evaluation report/draft submittal/text/sect-4.doc

- Copper, lead, potassium, sodium and zinc exceeded the TAGM clean-up goals in one or more of the treated soil samples.
- The treatment effectiveness did not appear to be affected by the rate of the incoming soil feed. Contaminant reductions appeared to be similar for the 2 tons per hour and 5 tons per hour treatment rates.

Dioxin and furan analysis was also completed on the kiln ash samples. The results of this analysis are presented in **Table 4-2.** A comparison to the feed soil concentrations could not be performed since this analysis was not performed on the feed soils. The dioxin/furan analyses showed that the concentrations were generally consistent for each of the six demonstration runs.

4.2.2 Gaseous Emissions

4.2.2.1 Introduction

Another set of goals established for the LTTD demonstration study at SEDA was to ensure collection of valid data that showed compliance with applicable air pollution regulations and standards regarding the operation of the LTTD process. Necessary data was collected based on guidance provided by USEPA, NYSDEC and the ITRC. In addition, descriptions and definitions specific to air pollution monitoring procedures and continuous emission monitoring requirements for stationary sources were derived from material provided in Title 40 Code of Federal Regulations (40 CFR) Part 60, Appendices A and B and incorporated by reference in the NYSDEC regulations. Finally, procedures associated with specialized air pollution monitoring procedures were based on protocols defined in USEPA's SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition.

The air sampling and monitoring data collected as part of the LTTD Treatability Study included the following:

- exhaust gas flow rate and moisture content;
- continuous emission monitoring for oxygen, carbon dioxide, total hydrocarbons, and carbon monoxide;
- semivolatile organic compounds in the stack gas;
- volatile organic compounds in the stack gas; and
- polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in the stack gas.

p \pit/projects\seneca\lttdievaluation report\draft submittal\text\sect-4.doc

The work plan also proposed the collection of additional gas and monitoring data; however, this data was inadvertently not collected. The data that was not collected included metals concentrations, hydrochloric acid and particulate counts in the exhaust gas.

A description of the air and gas sampling techniques and testing results are summarized in the following sections.

4.2.2.2 Pre-Sampling Activities

The APE 1236 system is equipped with an unlined, 38-foot steel stack that is 20-inches in diameter (outside diameter - OD). Originally, four sets of sampling ports were installed at strategic locations on the stack to allow for the collection of exhaust gas samples and data, and a fifth set of sampling ports was installed above the previously existing four sets to support the additional sampling and monitoring required for the LTTD Treatability Study. The approximate location of all of the sampling ports is shown on **Figure 4-1**.

The newest and highest positioned ports were used for perpendicular sampling traverses for the required extractive Modified Method 5 and Method 0023 determinations. The lower sampling ports were used for the installation of sampling probes associated with the APE's integral CEM system, the independent performance evaluation CEM system, the APE's integral exhaust flow-rate pitot tube assembly, and for collection of volatile organic sampling train (VOST) samples as are shown in **Figure 4-1**.

The new set of sampling ports is located slightly more than two stack diameter equivalents downstream, and roughly 6.9 stack diameter equivalents upstream of all flow disturbances. In accordance with procedures outlined in US EPA Reference Method 1, this positioning of the sampling ports allows for the collection of stack gas samples using a 24-point (i.e., 12 points per axis) traverse. Consistent with additional stipulations of Reference Method 1, none of the 12 sampling points along any axis were placed closer than 0.5 inches to the wall of the stack. Information summarizing the location of sampling points used during exhaust gas sampling traverses is provide in **Figure 4-2**.

The required cyclonic flow check was conducted prior to each series of demonstration runs (i.e., prior to the 2 ton and 5 ton per hour sequences), with the LTTD system (i.e., both the deactivation furnace and the afterburner) operating at conditions that were representative of those that were anticipated to exist

during the proposed test sequence. Each of these determinations indicated that the overall average yaw angle was less than 20 degrees, and thus, the upper sampling ports were suitable for use during extractive sampling events.

4.2.2.3 Exhaust Gas Flow Rate and Moisture Content

Stack gas flow determinations were made in accordance with procedures identified in USEPA Reference Method 2 (RM2 – 40 CFR Part 60, Appendix A). Preliminary flow determinations were made each time the soil feed rate to the rotary kiln was adjusted, or when the operation of the rotary kiln or afterburner was altered (substantially). Additionally, flow determinations were made and recorded as part of the first two of the SW 846 Method 0023 determination. During these events, the velocity head and static pressure determinations were performed at each of the traverse points. Flow data for other extractive sample events were lost, and thus flow rates used for other runs were estimated.

Preliminary stack gas moisture determinations were completed prior to the initiation of each series of performance tests in accordance with the procedures identified in USEPA Reference Method 4 (RM4 – 40 CFR Part 60, Appendix A). The data collected from the preliminary RM4 determination was used to predict the moisture level that would be encountered during subsequent MM5 tests. Stack gas moisture determinations were also completed during Run 1 and 2 Method 0023 determinations in accordance with procedures identified in RM5 and SW846 Method 0010.

The exhaust gas flow rates and other operating data were used to calculate VOC and furan/dioxin emission rates in the exhaust gases.

4.2.2.4 Continuous Monitoring for CO, O₂, CO₂ and THC

Carbon monoxide (CO), oxygen (O2), carbon dioxide (CO2), and total hydrocarbon (THC) concentrations contained in the exhaust gas stream were measured continuously using continuous emission monitors (CEMs). The CEM train used to monitor gaseous constituents was brought to the site by the sampling contractor and did not include either of the CEMs that are components of the APE 1236 system. The APE CEMs have not been operated for several years, and require over-haul and upgrade before they can be used.

Each of the CEMs was operated and maintained in accordance with procedures defined in Title 40 CFR

Part 60 Appendix A and B. Logs for the continuous emission monitoring are presented in Appendix B.

Carbon Monoxide Monitoring

The concentration of carbon monoxide (CO) was measured using a Thermo Electron Model 48 non-dispersive infrared (NDIR) analyzer that could operate in the 0 to 10 parts per million (ppm), 0 to 20 ppm, 0 to 50 ppm, 0 to 100 ppm, 0 to 200 ppm, 0 to 500 ppm, or 0 to 1,000 ppm ranges. During testing, all measurements were collected in a manner that is consistent with the procedures identified in USEPA's Reference Method 10 (RM10 – 40 CFR Part 60, Appendix A).

The CEM monitoring showed that all readings of carbon monoxide in the exhaust gas remained well below the rolling hourly-average limit of 100 parts per million by volume (ppmv). The values ranged from 0.01 to 2.21 ppmv.

Oxygen Monitoring

The concentration of oxygen (O_2) in the stack gas was measured using a Servomex Model 1440 analyzer that could operate in the 0 to 25 percent range. The Servomex analyzer uses Faraday's principle that comparatively measures the magnetic susceptibility of a gas volume by the force acting upon a non-magnetic test body suspended in a disproportionate magnetic field. This analyzer was operated in a manner that is consistent with the procedures identified in USEPA's Reference Method 13A (RM3A – 40 CFR Part 60, Appendix A). The analyzer located in the control room is an integral component of the APE 1236 system and is monitored by the system's computer.

The CEM monitoring showed that the oxygen values ranged from 12.51 to 14.21 percent. The oxygen data was used for to correct stack gas CO and dioxin concentrations to 7 percent oxygen content.

Carbon Dioxide Monitoring

The concentration of carbon dioxide (CO₂) in the stack gas was measured using a Servomex Model 1440, non-dispersive infrared (NDIR) monitor. The carbon dioxide analyzer could operate in the 0 to 25 percent range. The system was operated in a manner that is consistent with the procedures identified in USEPA's Reference Method 3A (RM3A – 40 CFR Part 60, Appendix A).

The CEM monitoring showed that the stack gases' carbon dioxide content ranged from 5.12 to 6.55 percent.

Total Hydrocarbon Emissions Monitoring

Total hydrocarbon (THC) emissions were measured in accordance with the procedures identified in USEPA Reference Method 25A. The THC analyzer was a J.U.M. Engineering Model 3 - 300 flame ionization detector (FID) analyzer with multiple operating ranges: 0 to 10 ppm, 0 to 100 ppm, 0 to 1,000 ppm, 0 to 10,000 ppm.

The CEM monitoring showed that the THC values ranged from 2.23 to 4.54 ppm. The THC emissions decreased significantly after the first run to a range of 0.06 to 1.58 ppm. The THC emissions are well below NYSDEC's standard of 20 ppm as listed in 6 NYCRR 374-1.8 for Hazardous Waste Burned in Boiler and Industrial Furnaces.

4.2.2.5 Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans Determinations

Polychlorinated Dibenzo-*p*-dioxins (dioxin) and Polychlorinated Dibenzofuran (furan) concentrations emitted from the APE 1236 system were determined using USEPA's SW846 Method 0023. The Method 0023 system was operated in accordance with USEPA Reference Method 5 (RM5 – 40 CFR, Part 60, Appendix A, Reference Method 5) and SW846 Method 0023 procedures. A diagram of the USEPA Method 0023 sampling train is shown in **Figure 4-3**.

Dioxin/furan compounds contained in the sampled gas stream were collected in the Method 0023 system via their adsorption onto captured particulate, their adsorption onto the porous polymeric resin, and their condensation onto the sampling nozzle, the probe liner, the filter or filter housing. All front-half and sorbent module components were recovered in accordance with SW846 Method 0023 procedures after the completion of each sample run and the recovered materials were sent to an analytical laboratory for the determination of captured organic compounds via SW846 Method 8290.

During each series of the proposed LTTD system performance testing, triplicate determinations of the system's dioxin/furan and hydrochloric acid emission rates were completed for each waste feed/system operating condition tested. Each Method 0023 determination included the traverse of the stack along two perpendicular axes at a sampling location that is approximately 26.5 feet above grade. Each

Method 0023 determination encompassed a period of no less than 360 minutes of sampling time and the collection of no less than 106 dry, standard cubic feet (dscf) of gas. As is discussed above (i.e., **Section 4.2.2.2**), each Method 0023 determination required collection of stack gas from a 24-point traverse. The resulting dioxin/furan loading contained in the APE 1236 system's exhaust gas was determined in accordance with procedures defined in EPA Reference Method 23.

The results of the dioxin/furan sampling for the six demonstration runs are presented on **Table 4-3**. NYSDEC's air pollution regulations require that the exhaust gases contain less than 0.2 nanograms per dry standard cubic meter (dscm) of combined dioxin/furan. To compare the generated analytical results with NYSDEC's standard, results provided for individual dioxin/furan species (e.g., heptachloro dibenzo-p-dioxin or octachloro dibenzofuran) were converted using TCDD equivalency factors, as well as the oxygen content, exhaust gas flow rate and stack gas moisture content. The resulting TCDD equivalent concentrations, expressed in nanograms per dry standard cubic meter (ng/dscm), for each test runs are also presented in **Table 4-3**. An example calculation is provided in **Appendix C**.

As is shown on **Table 4-3**, all dioxin/furan stack gas concentrations are less than NYSDEC's standard of 0.2 ng/dscm. The dioxin/furan concentrations ranged from 0.049 to 0.16 ng/dscm. Note that the concentrations for Runs 3 (2 tons/hour feed rate) and Runs 4, 5, and 6 (5 tons/hour feed rate) are based on estimated APE 1236 exhaust gas flow data since data needed for these determinations were not recorded during the actual sampling event.

4.2.2.6 Volatile Organic Sampling Train (VOST)

Volatile organic compound (VOC) emissions discharged from the APE 1236 system were determined in accordance with the USEPA's SW846 Method 0030 "Volatile Organic Sampling Train – VOST" methodology. The VOST sampling system is shown in **Figure 4-4**.

Each VOST determination included the exposure, field collection, and analysis of six replicate pairs of sorbent traps and any associated moisture condensate that resulted from the conditioning of the sampled gas. Each sampling run, during which time one pair of clean sorbent traps arranged in series were exposed to a conditioned (i.e., cooled) sample gas stream, lasted twenty minutes with the sample gas flowrate set at approximately one liter per minute, resulting in a total stack gas sample volume of roughly 20 liters. The stack gas was collected from a point located at the center of the stack at the 17.5-foot above grade level (See Figure 4-1).

VOCs captured in the VOST system via their adsorption onto collection media (i.e., Tenax® GC and activated charcoal) loaded within the resin traps, or due to condensation in stack gas moisture, were analyzed via EPA's SW846 Method 5040 at Research Triangle Park Laboratories, Inc. in Raleigh, North Carolina.

VOST sampling was performed for Run 1 and Run 2 for a waste soil feed rate of 2 tons per hour. Sampling was not completed for the remaining four demonstration test runs. The results of the VOST sampling and analyses are presented in **Table 4-4**.

Available VOST results indicate that low concentrations of VOCs were contained in the exhaust gas of the APE 1236 LTTD system. Total mass loadings found in collected samples ranged from 752 to 6,146 nanograms (per 20 liter sample volume). The observed mass loading equate to approximately 0.00047 to 0.004 pounds of VOC emissions per day. Detected VOCs included 1,3-butadiene, 1,1-dichloroethene, methylene chloride, benzene, toluene and styrene. For most sampling trap pairs, methylene chloride, a common laboratory contaminant, comprised the largest component of the observed VOC loading.

The field blank collected during the VOST sampling also showed 1,1-dichloroethene, methylene chloride and benzene content. Levels of benzene found in the exhaust gas were generally consistent with the concentrations detected for this compound in the blank. Measured concentrations of methylene chloride in the exhaust gas were significantly higher than those found in the blank sample. The source or the methylene chloride is uncertain. Available results indicate that this species is not present at significant levels in the waste soil feed material. Methylene chloride is a common laboratory contaminant; thus, the reported concentrations of this species may be partially attributable to this cause. Alternatively, since methylene chloride was used to recover dioxin/furan samples from the Method 0023 sampling system, it is possible that some of the VOST traps could have been exposed to this solvent during sample recovery operations in the field.

Some of the VOCs detected in VOST samples do not appear to be attributable to blank or lab contamination. For example, toluene and styrene were not detected in the blank samples analyzed, but they were frequently detected in the exhaust gas samples. Therefore, it is assumed that these compounds were either liberated or generated in the LTTD process. Accordingly, the performance criteria that no detectable concentrations of VOCs are found in the exhaust gases from the LTTD

process was not achieved.

The work plan indicated that the amount of individual VOCs emitted from the LTTD process would be compared to the amount of the same compound contained in the waste feed to allow for the computation of a destruction and removal efficiency (DRE) value for each compound. This determination could not be made however, because analyses conducted for soil and stack gas samples submitted to the two different laboratories were completed via different methods, and reported data for different sets of analytes. Soil samples were analyzed via SW846 Method 8015 that reported data for VOCs as either Motor Oil or Diesel Oil, while VOST samples were reported as individual VOC species (e.g., benzene, toluene, styrene, methylene chloride, etc.).

4.2.3 Fugitive Dust Monitoring

A MINIRAM (Miniature Real-time Aerosol Monitor manufactured by Monitoring Instruments for the Environment, Inc.) personal monitor Model PDM-3 was used during each of the six demonstration runs to monitor fugitive particulate emissions. Two different sampling stations were used. One station was located near the discharge conveyor of the rotary kiln where treated soil fell out of the kiln. The second station was located upwind of the discharge conveyor to represent background conditions. The actual location of the monitors was changed periodically to adjust to variable wind directions.

Frequently, the dust monitor located near the discharge conveyor became clogged due to excessive dust release. It is presumed that in these instances, the national primary and secondary 24-hour ambient air quality standard of 150 ug/m³ was exceeded.

4.2.4 Fly Ash Sampling

Fly ash was collected from four components of the APE 1236's air pollution control device system (i.e., high temperature and low temperature gas coolers, cyclone and baghouse). The fly ash is captured in these locations prior to the exhaust gases release to the atmosphere.

Fly ash samples were collected from all six runs from the low and high temperature gas coolers. Samples were collected from the baghouse during Runs 3 and 6. Previously, there was insufficient fly ash to collect a sample. Only one sample, containing fly ash from all six runs was collected from the cyclone since the gate valve at the bottom of this device was stuck closed until the last day of testing.

Each of the samples was analyzed for semivolatile organic compounds, TPH, and metals. The results are shown on **Table 4-5**. Two samples for the high and low temperature gas cooler and one sample from the baghouse and cyclone were analyzed for dioxins/furans. The results of the sampling were compared TCLP trigger values in order to assess disposal options. The TCLP trigger values were estimated using the "20 times rule" which approximates the soil concentrations that could theoretically leach contaminants which would classify the soils as hazardous waste due to toxicity.

The results of the fly ash sampling show that individual TCLP criterion were exceeded for one or more metals in all six of the low temperature gas cooler samples, four of the high temperature gas cooler samples, and all of the baghouse and cyclone samples. Since this evaluation is based on use of the "20 times rule" additional TCLP testing (Method 1311) must be performed to determine if the TCLP criteria are met.

Dioxin/furan testing of the fly ash was also performed and the results are shown on **Table 4-6**. There are no TCLP criteria for dioxins/furans. The testing showed that the baghouse and cyclone samples contained concentrations for dioxin/furans at least one order of magnitude higher than the gas cooler samples.

4.2.5 LTTD Systems Operations and Operating Parameters

Operating parameters were continuously recorded during each of the six demonstration runs to provide a basis for estimating operating costs associated with the use of the LTTD process. The operating parameters recorded during the program included rotary kiln temperature, afterburner temperature, high temperature gas cooler exit temperature, low temperature gas cooler exit temperature, kiln draft, burner end temperature, fuel usage, and rotary kiln speed. The operating data log sheets are presented in **Appendix D**.

The following list provides a summary of the range of operational conditions that were recorded during the Treatability Study.

Parameter

Operating Range

Rotary Kiln Temperature

274 to 585°F

September 2001

p \pit\projects\seneca\lttd\evaluation report\draft submittal\text\sect-4 doc

Page 4-13

The operating conditions were generally steady throughout each of the six demonstration runs.

The residence time of the soil within the kiln was 12 minutes during the first run and then reduced to 10 minutes for each subsequent run. Since the removal efficiency reported for TPH concentration in soil after treatment is slightly lower in Run 1, with higher residence time, then in subsequent runs, it does not appear that this change significantly impacted the treatment process.

4.3 OPERATIONAL CONCERNS

There were a few factors that temporarily impacted the operations of the LTTD system. These factors are as follows:

- The start of the demonstration test series was delayed initially due to the inability to start the burner. The electric eye was replaced and the burner was lit. There were no additional delays due to the operations of the burner.
- The feed system for the APE 1236 furnace consisting of the conveyor and hopper are impacted by wet or sticky soils. The first run was hampered by wet soil that caused clogging of the hopper. As the soil feed dried, clogging of the hopper became a less frequent occurrence.
- The furnace had to be shut down for one day due to a sheared feed belt gear. The cause of this condition was unknown.
- The treated soil discharge conveyor was shut down for a day due to a stretched belt. The original rubber belt overheated due to contact with the hot treated soil. A new belt with higher heat tolerance was used.

Although minor operational modifications were necessary, future operations would not be greatly impacted.

p.\pit\projects\seneca\lttd\evaluation report\draft submittal\text\sect-4 doc

Page 4-14

Table 4-1 Comparison of Waste Feed Soils and Kiln Ash to Soil Cleanup Standards LTTD Treatibility Study Seneca Army Depot Activity

	SAMPLE TYPE		Waste Feed	Kiln Ash	Waste Feed	Kiln Ash	Kiln Ash	Waste Feed	Waste Feed	Kiln Ash
SAMP	LE DESIGNATION RUN NO.	TAGM	LT4000 RUN 1	LT4001 RUN 1	LT4006 RUN 2	LT4007 RUN 2	LT0000 DUP of LT4007 RUN 2	LT4012 RUN 3	LT4013 DUP of LT4012 RUN 3	LT4014 PUN 3
т	SAMPLE DATE	TAGM Value ⁽¹⁾	2 tons/hour 30-Aug-00	2 tons/hour 30-Aug-00	2 tons/hour 1-Sep-00	2 tons/hour 1-Sep-00	2 tons/hour 1-Sep-00	2 tons/hour 20-Sep-00	2 tons/hour 20-Sep-00	2 tons/hour 20-Sep-00
PARAMETER	UNIT									
2-Methylnaphthalene	ug/kg	36,400	29. J	18. J	28. J	330. U	390. U	360. U	380. U	330. U
Acenaphthene	ug/kg	50,000	360. U	330. U	22. J	330. U	390. U	360. U	17. J	330. U
Anthracene	ug/kg	50,000	21. J	65. J	55. J	330. U	25. J	360. U	23. J	330. U
Benzo(a)anthracene	ug/kg	224	100. J	480.	170. J	330. U	40. J	120. J	130. J	16. J
Benzo(b)fuoranthene	ug/kg	61	150. J	560.	220. J	330. U	32. J	160. J	170. J	17. J
Benzo(chi)peo/ene	ug/kg	1,100	170. J	660.	320. J	330. U	36. J	140. J	180. J	55. JY
Benzo(k)fluoranthene	ug/kg	1 100	140 1	360.	250. J	330. U	27. J	160. J	180. J	32. J
Benzoic Acid	ug/kg	1,100	910 11	320 1	270. 3	330. 0	48. J	190, J	230. J	330. U
Bis(2-Ethylhexyl)phthalate	ug/kg	50.000	360 11	330 11	920. U	220 11	310. J	890. U	940. U	120. J
Carbazole	ug/kg		360. U	35 .1	51 1	330.11	44. JB	36. JB	380. 0	330. U
Chrysene	ug/kg	400	170, J	660.	340. J	330 U	47 1	180 1	380. 0	330. U
Di-n-butylphthalate	ug/kg	8,100	360. U	330. U	370. U	330. U	43. J	360. U	380 U	30. J
Di-n-octylphthalate	ug/kg	50,000	360. U	330. U	370. U	330. U	38. J	360. U	380 U	330 11
Dibenz(a,h)anthracene	ug/kg	14	60. J	130. J	89. J	330, U	28. J	55. J	48. J	330. U
Dibenzofuran	ug/kg	6,200	18. J	17. J	20. J	330. U	390. U	360. U	380. U	330. U
Diethyl phthalate	ug/kg	7,100	360. U	330. U	370. U	330. U	26. J	360. U	380. U	330. U
Fluoranthene	ug/kg	50,000	170. J	640.	270. J	330, U	41. J	180. J	180. J	50. J
Fluorene	ug/kg	50,000	21. J	330. U	25. J	330. U	390. U	360. U	380. U	330. U
Indeno(1,2,3-cd)pyrene	ug/kg	3,200	120. J	370.	200. J	330. U	29. J	120. J	160. J	24. J
Phasaphtasa	ug/kg	13,000	23. J	330. U	28. J	330. U	390. U	360. U	380. U	330. U
Phenantorene	ug/kg	50,000	120. J	410.	170. J	330. U	33. J	72. J	110. J	28. J
Phenol	ug/kg	30	360. U	330. U	370. U	330. U	25. J	360. U	380. U	330. U
Total SVOCa	ug/kg	50,000	210. J	570.	330. J	330. U	39. J	250. J	310. J	31. J
Total SVOCS	ug/kg	-	1,682.	5,965.	3,078.	0	943.	1,627.	1,968.	409.
Aroclor-1254	ug/kg	1,000	19,	17. U	18. U	17. U	20. U	18.	18 J	16 U
Aroclor-1260	ug/kg	1,000	23.	17. U	21.	17. U	20. U	27.	24.	16. U
Diesel Oil	mg/kg		92. Y	29 Y	140 Y	14 V	78.11	42	69	
Motor Oil	mg/kg	-	420. Y	120. Y	630 Y	60 Y	22 X	43.	68.	5.7 J
TPH (Total) (2)	mg/kg	<u>.</u>	512.	149.	770.	74.	22.	48.3	548.	95.7
Aluminum	malka	10 300	0.710	0.270	10.100					
Antimony	mo/ko	59	93 UN	1.2 BN	10,100.	9,030.	12,200,	8,600. E*	12,000. E*	11,700. E*
Arsenic	ma/ka	8.2	4 N	43 N	.99 UN	2.4 BN	4.1 BN	1.4 BN	1.1 BN	4.8 BN
Barium	ma/ka	300	85 •	75.8 *	79.6 *	87.2 *	5.7 N	2.9	3.5	3.7 •
Beryllium	mg/kg	1.1	.73	.66	.73	73	9	62	79	98.5
admium	mg/kg	2.3	.38 B*	1.5 •	.47 •	.69 *	13 .	22 B	23	.17 29 D
Calcium	mg/kg	121,000	69,500.	116,000.	75,500.	78,300.	9,190	104 000 .	83 200 *	69 900 ·
hromium	mg/kg	29.6	17. N*	15.6 N*	18.9 N*	19.8 N*	24.8 N*	15.7 E*	20.9 E*	22 9 F*
Cobalt	mg/kg	30	10.	7.9	9.7	9.2	11.5	8.4	10.5	10.3
Copper	mg/kg	33	31.8 N	37.3 N	41.8 N	53.3 N	53.4 N	39.3 EN	51.1 EN	60.6 EN
on	mg/kg	36,500	20,100.	18,300. *	20,300. •	20,400.	26,500.	17,000. E*	23,800. E*	22,900, E*
ead	mg/kg	24.8	61.6 E*	152. E*	105. E*	185. E*	315. E*	165. E	171. E	1,120. E
agnesium	mg/kg	21,500	12,400.	14,100.	14,300.	12,200. *	15,100. •	12,100. •	14,400. *	16,900. *
langanese	mg/kg	1,060	484. *	396.	497. •	443. *	573. •	466.	554.	500.
lickel	mg/kg	0.1	.02 U	.01 U	.02 U	.01 U	.02 U	.03 B	.03 B	.02 U
otassium	mg/kg	49	30.5 E	27.7 E	30. E	31.8 E	39.6 E	25.1 *	33.4 *	33.4 *
elenium	mg/kg	2,300	1,530,	1,280.	1,610.	1,540.	2,030. *	1,840.	1,970.	2,250.
ilver	mo/ko	0.75	16 UN	.2 UN	.25 UN	.21 UN	.29 UN	.22 U	.24 U	.26 U
odium	ma/ka	172	133 8	140 B	125 D	.15 UN	.36 BN	.32 BN	.25 BN	.33 BN
hallium	mg/kg	0.7	23	19	23	130. 8	100. B	104. 8	121. 8	93.1 B
anadium	mg/kg	150	15.7 •	12.9 .	16.2 *	15.7 .	21.1 .	20.2 5*	2.9	2.2
inc	mg/kg	110	102. Nº	93.7 N*	98.2 N*	105 N*	135 Nº	101 EN	21.1 E	25. E

Notes:

Technical and Administrative Guidance Memorandum #4046, Determination of Soli Cleanup Objectives and Cleanup Levels, January 1994
 Total TPH is approximated by the sum of the diesel and motor oil concentrations.

(3) Only those parameters detected in one or more samples are listed (4) Shaded values exceeded the TAGM or soil background values.

(5) Lab Qualifiers are defined as follows:

ters are defined as follows: GCMS Quatters J = indicates and estimated value. This flag is used when the result is less than reporting limit, but greater than 1/2 reporting limit. U = Indicates and estimated value. This flag is used when the result is less than reporting limit, but greater than 1/2 reporting limit. U = Indicates the analyte was analyzed for but not detected above the instrument detection limit. B = The reported analyte was detected in the associated method blank as well as the sample. Y = Combined response for benzo[b]fluoranthene and benzo[k]fluoranthene. Y for diesel/motor oil analyses = Pattern of peaks did not match calibrated standard but fell within applicable retention time window. Metals Qualifiers E(ICP) = The reported value is estimated because of the presence of interference. N = Matrix spiked sample recovery not within control limits. * = Duplicate analysis not within control limits B = Entered if the report is less than the Contract Required Detection Limit (CRDL) but greater than the Instrument Detection Limit (IDL). U = Entered if the analyte was analyzed for but not detected, less than IDL.

Table 4-1 Comparison of Waste Feed Soils and Kiln Ash to Soil Cleanup Standards LTTD Treatibility Study Seneca Army Depot Activity

. . .

	SAMPLE TYPE		Waste Feed	Kiln Ash	Waste Feed	Waste Feed	Kiln Ash	Waste Feed	Kiln Ash
	E DESIGNATION		LT4020	LT4021	LT4028	LT4029	LT4030	LT4036	LT4037
	DUNNO	TACH	DUNK			DUP of LT4028	921-5270727-2	V12073293	0.02278089
	DEATMENT DATE	TAGM	RUN 4	RUN 4	RUN 5	RUN 5	RUN 5	RUN 6	RUN 6
1	REATMENT RATE	TAGM	5 tons/nour	5 tons/nour	5 tons/hour	5 tons/hour	5 tons/hour	5 tons/hour	5 tons/hour
	SAMPLE DATE	Value (1)	21-Sep-00	21-Sep-00	22-Sep-00	22-Sep-00	22-Sep-00	23-Sep-00	23-Sep-00
PARAMETER	UNIT								
2-Methylnaphthalene	ug/kg	36,400	360. U	15. J	360. U	24. J	330. U	360. U	330. U
Acenaphthene	ug/kg	50,000	360. U	330. U	35. J	56. J	330. U	360. U	330. U
Anthracene	ug/kg	50,000	43. J	330. U	64. J	91. J	330. U	36. J	330. U
Benzo(a)pursono	ug/kg	224	180. J	25. J	210. J	300. J	66. J	120. J	330. U
Benzo(b)fluoranthene	ug/kg	1 100	200. J	25. J	220. J	360. J	73. J	120. J	330. U
Benzo(obi)perviene	ug/kg	50,000	280 1	11. JT	290. J	490.	200. JY	130. J	330. U
Benzo(k)fluoranthene	ug/kg	1 100	270 1	330 11	210. 3	430.	120, J	110. J	330. U
Benzoic Acid	uo/ko	1,100	900 U	190 .1	910. 1	940.	330, 0	130. J	330. U
Bis(2-Ethylhexyl)phthalate	ug/kg	50,000	47. J	330. U	360 U	360 U	230. 3	900.0	830. 0
Carbazole	ug/kg		36. J	330. U	42 J	73 .1	330 11	360. U	330. 0
Chrysene	ug/kg	400	320. J	51. J	300. J	440.	110 J	150 1	330. U
Di-n-butylphthalate	ug/kg	8,100	360. U	330. U	360. U	360. U	330. U	360. U	330. U
Di-n-octylphthalate	ug/kg	50,000	360. U	330. U	360. U	360. U	330. U	360, U	330 U
Dibenz(a,h)anthracene	ug/kg	14	85. J	330. U	45. J	140. J	50. J	39. J	330. U
Dibenzofuran	ug/kg	6,200	360. U	330. U	17. J	36. J	330. U	360. U	330. U
Diethyl phthalate	ug/kg	7,100	360. U	330. U	360. U	360. U	330. U	360. U	330. U
Fluoranthene	ug/kg	50,000	360.	73. J	470.	600.	140. J	300. J	330. U
Fluorene	ug/kg	50,000	360. U	330. U	28. J	55. J	330. U	360. U	330. U
Nophthelene	ug/kg	3,200	230. J	34. J	180. J	380.	100. J	98. J	330. U
Reportere	ug/kg	13,000	16. J	330. 0	360. U	42. J	330. U	360. U	330. U
Phenandirene	ug/kg	50,000	210. J	46. J	310. J	440.	88. J	210. J	330. U
Phenoi	ug/kg	30	360. U	330. U	360. U	360. U	330. U	360. U	330. U
Total SVOCa	ug/kg	50,000	420.	52. J	480.	680.	120. J	300. J	330. U
Total SVOCS	ug/kg		3,057.	629.	3,111.	5,077.	1,187.	1,743.	0
Aroclor-1254	ug/kg	1,000	25.	17. U	26.	- 24	16 U	18 11	17 11
Aroclor-1260	ug/kg	1,000	41.	17. U	38.	34.	16. U	18. U	17. U
Diesel Oil	mg/kg	22	80.	13. U	84	81	10 1	19	6611
Motor Oil	mg/kg		680.	100. U	5.3	720	360	93	0.00
TPH (Total) (2)	mg/kg		760.	0	89.3	801.	379.	111.	0.0 0
Aluminum	ma/ka	19 300	9 980 F*	10.600 E*	10.400 E	11 600 51	10 800 51	44.400 54	44 500 50
Antimony	mg/kg	5.9	2. BN	1.8 BN	2.7 BN	2 1 BN	3.7 RN	57 BM	11,500. E
Arsenic	mg/kg	8.2	3.4 *	3.3 *	3.9	3.4 *	36 *	39 *	2.4 DN
Barium	mg/kg	300	99.9 *	93.9 *	105.	98.1 *	109 .	72.2 •	76.4 *
Beryllium	mg/kg	1.1	.68	.73 J	.55	.76	.71	.73	.73
Cadmium	mg/kg	2.3	.37 B	.16 B	1.5	.26 B	.39	.03 U	5,9
Calcium	mg/kg	121,000	102,000. *	92,500.	58,000. E*	62,600. *	65,200.	61,400. *	68,000.
Chromium	mg/kg	29.6	17.7 E*	19.1 E*	18.2	20.6 E*	24.3 E*	21.4 E*	22.1 E*
Cobalt	mg/kg	30	9.5	9.7 U	9.4	10.6	9.7	11.2	11.2
Copper	mg/kg	33	53.7 EN	49.7 EN	77. N*	67.2 EN	72.3 EN	32. EN	42.9 EN
ead	mg/kg	36,500	19,700. E.	20,700. E*	22,900. E	22,700. E*	20,900. E*	23,800. E*	21,500. E*
Magnesium	mg/kg	24.0	243. E	227. E	222. E	257. E	320. E	32.7 E	270. E
Mannanese	mo/kg	1,060	15,700.	13,000.	14,100. E	16,700.	18,700.	15,300.	14,200.
Mercury	mo/ko	0.1	03 B	02.11	420. E	500. 02 P	408.	528.	466.
Nickel	mg/kg	49	29 •	30.2 .	31 E	.03 B	20.4.1	.02 0	.02 0
Potassium	mg/kg	2,380	2 120	2 350 11	1950 E	2 190	29.4	1 760	29.5
Selenium	mg/kg	2	25 U	27 11	27 11	2,190.	2,200.	28 8	2,600.
Silver	mg/kg	0.75	25 BN	38 BN	36 BN	29 BN	32 BN	17 PM	13 N
Sodium	mg/kg	172	127. B	181. B	88.3 B	97.1 B	163 B	913 B	185 B
fhallium	mg/kg	0.7	2.3	2.5 U	3.1	2.2	2.3	2.5	23
/anadium	mg/kg	150	21.4 E*	21.8 E*	16.8	21.6 E*	21.6 E*	20.1 E*	20.5 F*
Zinc	mg/kg	110	119. EN	122. EN	129 EN	139 EN	125 EN	67 3 EN	713 EN

Notes:

(1) Technical and Administrative Guidance Memorandum #4046, Determination of Soli Cleanup Objectives and Cleanup Levels, January 1994. (2) Total TPH is approximated by the sum of the deset and motor oil concentrations.

1.000

(2) Total TPM is approximated by the sum of the deset and motor of concentrations.
 (3) Only those parameters detected is one or more samples are listed.
 (4) Shade values exceeded the TAGM or soil background values.
 (5) Lab Qualifiers are defined as follows:
 GCMS Qualifiers J = Indicates and estimated value. This flag is used when the result is less than reporting limit, but greater than 1/2 reporting limit.
 U = Indicates the analytic was analyzed for but not detected above the instrument detection limit.
 B = The reported analytic was detected in the associated method bank as well as the sample.
 Y = Combined response for bunchofyblowantheme and benzofyblowantheme.
 Y for deselfmotor of analyses = Pattern of peaks did not match calibrated studied but fell within applicable retention time window.
 Metais Qualifiers E(DP) = The reported value is estimated bacause of the presence of interference.

N = Matrix spiked sample recovery not within control limits * = Duplicate analysis not within control limits

- B < Entered if the report is less than the Contract Required Detection Limit (CRDL) but greater than the Instrument Detection Limit (IDL). U = Entered if the analyte was analyzed for but not detected, less than IDL.

Table 4-2 Summary of Dioxin and Furan Testing of Kiln Ash Seneca Army Depot Activity LTTD Treatability Study

	Sample Type:	Kiln	Kiln	Kiln	Kiln	Kiln	Kiln	Kiin	Kiln
		Ash	Ash	Ash	Ash	Ash	Ash	Ash	Ach
Š	ample Number:	LT4001	LT4007	LT0000	LT4014	LT4021	LT4030	1.74031	1 T4037
	Run Number:	RUN 1	RUN 2	RUN 3	RUN 3	RUN 4	RUN 5	RUN 5	RUNG
F	reatment Rate:	2 tons/hour	2 tons/hour	2 tons/hour	2 tons/hour	5 tons/hour	5 tons/hour	5 tons/hour	5 tons/hour
1	Sampling Date:	30-Aug-00	1-Sep-00	1-Sep-00	20-Sep-00	21-Sep-00	22-Sep-00	22-Sep-00	23-Sep-00
Samp	le Designation:			DUP of LT4007				DUP of LT4030	
Parameter	Units								
2,3,7,8-TCDD	b/bd	0.188 A	0.094 U	0.114 U	0 125 11	0 141 0			1.0000
1,2,3,7,8-PeCDD	6/6d	0.531 A	0.214 U	0.187 A	0.361 U	A O	0362 0		0.049.0
1,2,3,4,7,8-HxCDD	6/6d	0.622 A	0.31 U	0.238 A	0.204 U	0 304 A	0.438 0	V 714.0	0 21.0
1,2,3,6,7,8-HxCDD	6/6d	1.72 A	0.378 U	0.453 A	0.636	0.645 A	103 4	A 5100	0 441 0
1,2,3,7,8,9-HxCDD	6/6d	1.44 A	0.322 U	0.429 A	0.536	0.625 A	A 999 A	0.861 A	0 144 11
1,2,3,4,6,7,8-HpCDD	6/6d	28.1	3.16	5.2	7.27 B	8.74 B	16.6 B	14 9 B	D TOA A R
ocdd	6/6d	144 B	15.1 B	24.1 B	38.3 B	50.3 B	110 B	99.4 B	321 AB
2,3,7,8-TCDF	6/6d	2.42	0.447	0.487 A	0.544	0.952	0.976	121	0.134 A
1,2,3,7,8-PeCDF	6/6d	0.742 A	0.19	0.239 A	0.294 A	0.308 A	0.373 A	0.402 A	0 112 A
2,3,4,7,8-PeCDF	6/6d	1.89 A	0.376	0.456 A	0.986 A	0.957 A	1.26 A	117 A	A D A
1,2,3,4,7,8-HxCDF	6/6d	0.75 A	0.224	0.274 A	0.378 A	0.369 A	0.443 A	0 447 A	0 0999 A
1,2,3,6,7,8-HxCDF	6/6d	0.66 A	0.135	0.218 A	0.347 A	0.333 A	0.448 A	0.389 A	0.0586 A
2,3,4,6,7,8-HxCDF	6/6d	0.861 A	0.163	0.253 A	0.46 A	0.401 A	0.609 A	0.512 A	0.0409 11
1,2,3,7,8,9-HxCDF	6/6d	0.168 A	0.0313 U	0.0988 A	0.0606 U	0.0865 U	0.0868 U	0.0914 A	0.0564 U
1,2,3,4,6,7,8-HpCDF	6/6d	3.38	0.446	0.838 A	1.06 A	1.3 A	2.38 A	1.88 A	A O
1,2,3,4,7,8,9-HpCDF	6/6d	0.349 A	0.0484 U	0.148 A	0.122 U	0.0861 U	0.0843 U	0.136 U	0.0729 U
OCDF	6/6d	5.96 B	0.906 A,B	1.36 A,B	2.24 A,B	2.42 A,B	4.99 A.B	3.77 A.B	0 A.B
Total TCDD	6/6d	2.47	0.175	0.174	0.125 U	1.61	2.18	1.87	8.14
Total PeCDD	6/6d	4.51	0.214 U	1.03	1.34	2.5	3.32	3.41	0.19
Total HxCDD	6/6d	16	1.96	5.17	6.48	7.72	10.9	10.5	0.629
Total HpCDD	6/6d	52.5	6.64	7	14.5 B	18.1	33.5	30.3 B	1.34 B
Total TCDF	6/6d	16.3	3.14	3.63	6.62	9.93	12.4	10.6	6.98
Total PeCDF	6/6d	16.6	3.49	4.31	9.12	7.77	12.6	12.6	0.66
Total HxCDF	6/6d	9.71	1.6	2.57	5.9	5.16	8.03	6.54	0.38
Total HpCDF	6/6d	8.11	0.95	1.7	2.25	2.87	5.49	4.5	0.133 U*

Notes:

(1) Lab qualifiers:

A = The amount detected is below the Method Calibration Limit. B = This compound was also detected in the blank.

U = The compound was not detected above the sample specific estimated detection limit. U^{\star} = The compound was not detected. Value is estimated maximum possible concentration.

(2) Soil Cleanup goals are not available for dioxins/furans.

p. pithprojects/seneca/ttd/evaluation report/draft submittal \tables\soil_analytical.xls\Dioxin-Furan Sum

Summary of Method 0023 Testing for Dioxins and Furans Seneca Army Depot Activity LTTD Treatability Study Table 4-3

						Methe	od 0023 Test R	esults for D	hioxins ⁽⁵⁾				
		æ	tun 1	æ	un 2	œ	un 3	E C	un 4	ľ	un 5	8	un 6
		2 to	ns/hour	2 tor	ns/hour	2 tor	ns/hour	5 tol	ns/hour	5 toi	ns/hour	5 tor	Is/hour
	Equivalency	Bacult	TCDD Equivalents	1000	Friivalents		TCDD		TCDD		TCDD		TCDD
Parameter	Factors ⁽¹⁾	(bd)	(pg) ⁽²⁾	(bd)	(bd)	(bg)	(pq) ⁽²⁾	(pa)	(ba) ⁽²⁾	Result	(nn) ⁽²⁾	Result	Equivalents
2.3,7,8-TCDD	1	69	69	28.3	28.3	21.4	21.4	52.8	52 8	105	F US	1641	F VC
1,2,3,7,8-PeCDD	-	160	160	55.5	55.5	38	38	157	157	140	140	70.7	202
1,2,3,4,7,8-HxCDD	0.03	81.4	2.442	23.6	0.708	27.9	0.837	109	3.27	103	3.09	RO R	1 545
1,2,3,6,7,8-HxCDD	0.03	150	4,5	44.2	1.326	57.3	1.719	218	6.54	182	5.46	97.4	0000
1,2,3,7,8,9-HxCDD	0.03	86.7	2.601	30.5	0.915	26.7	0.801	145	4.35	121	3.63	EA 5	1 035
1,2,3,4,6,7,8-HpCDD	0.001	411	0.411	111	0.111	160	0.16	740	0.74	690	0.69	330	0.32
0000	0	895	0	236	0	329	0	1230	0	1400	0	523	0
2.3.7.8-1CDF	0.33	194	64.02	102	33.66	64.8	21.384	141	46.53	138	45.54	52.5	17 325
1,2,3,/,8-PeCDF	0.33	100	33	51.7	17.061	29.5	9.735	90.4	29.832	87	28.71	37.5	12 375
2,3,4,/,8-PeCDF	0.33	199	65.67	99.3	32.769	60	19.8	228	75.24	205	67.65	9.95	31 878
1, 2, 3, 4, /, 8-HXCDF	0.01	110	1.1	42.4	0.424	37.5	0.375	144	1.44	127	1 27	66.1	0.661
1,2,3,6,7,8-HxCDF	0.01	106	1.06	48.5	0.485	37.4	0.374	141	1.41	123	1 23	612	0.612
2.3,4,6,7,8-HXCDF	0.01	165	1.65	57.9	0.579	60.1	0.601	259	2.59	224	2.24	110	11
1,2,3,7,8,9-HxCDF	0.01	32.9	0.329	11.4	0.114	14.8	0.148	54.5	0.545	44.2	0 442	23.3	0.333
1,2,3,4,6,7,8-HpCDF	0.001	257	0.257	98	860.0	113	0.113	518	0.518	448	0.448	205	0.205
1,2,3,4,7,8,9-HpCDF	0.001	22.5	0.0225	4.69	0	13.1	0	48.3	0	42		24.4	077.0
OCDF	0	75.4	0	26.4	0	40	0	184	C	180		10	
										201		8	
Total TCDD	0.01	8470		3580		2790		5490		5830		2150	
Adjusted TCDD ⁽³⁾	0.01	8401	84.01	3551.7	35.517	2768.6	27.686	5437.2	54 372	5779 9	57 700	2120.0	11 200
Total PeCDD	0.01	5740		2120		1600		5450	40.00	5480	00110	2300	21.233
Adjusted PeCDD ⁽³⁾	0.01	5580	55.8	2064.5	20.645	1562	15.62	5293	57 93	FRAD	K 23	00100	007.00
Total HxCDD	0.0003	2780		861		946		3660	2010	3350	r.oo	1620	23.130
Adjusted HxCDD ⁽³⁾	0.0003	2461.9	0.73857	762.7	0.22881	834.1	0.25023	3188	D GEEA	AAAA	0000	1407 0	00007.0
Total HpCDD	0.00001	833		232		327		1510	10000	1380	0.000	R75	07776.0
Adjusted HpCDD ⁽³⁾	0.00001	422	0.00422	121	0.00121	167	0.00167	770	0.0077	690	0 0069	345	0.00246
Total TCDF	0.003	12000		5940		4440		8230		8690	200	3300	00000
Adjusted TCDF ⁽³⁾	0.003	11806	35.418	5838	17.514	4375.2	13.1256	8089	24.267	8552	25.656	3247.5	97476
I OTAL PECUF	0.003	3970		2050		1260		3930		3920		1670	
Adjusted PeCDF ¹⁴	0.003	3671	11.013	1899	5.697	1170.5	3.5115	3611.6	10.8348	3628	10.884	1535.9	4.6077
I OTAL HXCUF	0.00001	1530		662		497		2040		1830		876	
Adjusted HxCDF ¹³	0.00001	1116.1	0.011161	501.8	0.005018	347.2	0.003472	1441.5	0.014415	1311.8	0.013118	615.4	0.006154
I OTAL HPCUF	0.00001	378		137		178		768		670		334	
Adjusted HpCDF ⁽³⁾	0.00001	98.5	0.000985	34.31	0.0003431	51.9	0.000519	201.7	0.002017	180	0.0018	87.9	0.000879
	Total TCDD E	quivalents											
		(6d)	593.1		251.7		175.6		526.2		499.1		2002
	Sample Volur	me (dscm)	7.36 (6)		7.12 (6)		7.24 (7)		7.24 (7)		7.24 (7)		7 24 (7)
	Total (n	ig/dscm) ^(*)	0.162		0.071		0.049		0.146		0.139		0 127
													1

Notes:

Toxicity Equivalency Factors (TEF) - Factors used to express furan and dioxin isomers as an equivalent concentration of 2,3,7,8-letrachlorinated dibenzo-para-dioxin. (Reference: 6NYCRR 219-1.1)
 TCDD Equivalents - Any combination or mix of polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans containing from 4 to 8 chlorine atoms which are expressed as 2,3,7,8-letrachlorinated dibenzo-para-dioxin.
 Individual Total Dioxin/Furan Isomer values (e.g., Total TXCDF) are adjusted by subtracting component, individual isomers listed above.
 Total TCD1 and CO23 was used to determine Polychlorinated Dibenzo-para-dioxins and Polychlorinated dibenzo-para-dioxin.
 USEPAs SW846 Method O023 was used to determine Polychlorinated Dibenzo-tioxins and Polychlorinated Dibenzofuran concentrations emitted from the APE 1236 system.
 Volume data based on field measurements.

Table 4-4 Summary of VOST Train Analyses LTTD Treatability Study Seneca Army Depot Activity

August 30, 2000

	LIC	Dis												
	Bla	ink	Pair	1#-	Pair	- #2	Pair	#3	Pair	#4	Pair	#5	Pair	9#
Compound	Bu	Ibs/day	Bu	lbs/day	bu	Ibs/day	gu	Ibs/day	ng	Ibs/day	ng	lbs/day	gu	Ibs/dav
								Ī	,				0	
Chloromethane	r	NA	,	ī	ı	1	1	;	1	,	260	0 00017	1	,
1,3 Butadiene	1	NA	1	1	52	0.00003	51	0.00003	70	0.00005	; ;		J	2
1,1-Dichloroethene	66	NA	;	1	1	1	ı	;	1	1	1	;	;	;
Methylene Chloride	93	NA	1,762	0.00115	863	0.00056	944	0.00062	926	0.0006	5.465	0.00357	3 542	0.00231
Benzene	285	NA	231	0.00015	627	0.00041	384	0.00025	364	0.00024	421	0.00027	78	0.00005
Toluene	;	NA	,	;	1	1	57	0.00004	j	1	1	1	,	,
Styrene	ſ.	NA	I	4	77	0.0005	ì	1	1	1	1	1	1	1
Total VOCs	444		1,993	0.0013	1,619	0.0015	1,436	0.00094	1,360	0.00089	6,146	0.00401	3,620	0.00236

September 1, 2000

	Fi	ield ank	Pair	1#-	Pair	C#-	Dail	5# -	iod	V# -	.iod	2#1	, e	211-
									1 41		1 41	C # 1	La	0 # 1
Compound	gu	lbs/day	bu	Ibs/day	gu	lbs/day	bu	Ibs/day	ng	Ibs/day	ng	Ibs/day	gu	lbs/day
Chloromethane	1	NA	£	I	I	I	1	1	;	;	260	0.00017	1	;
1,3 Butadiene	1	NA	3	1	79	0.00006	63	0.00004	70	0.00004	69	0.00004	56	0.00004
1,1-Dichloroethene	69	NA	:	I	1	1	1	1	1	1	,	1	1	1
Methylene Chloride	87	NA	1,110	0.00071	1,440	0.00092	185	0.00012	467	0.0003	374	0.00024	752	0.00048
Benzene	295	NA	299	0.00019	428	0.00027	532	0.00034	163	0.0001	439	0.00028	467	0.0003
Toluene	1	NA	109	0.00007	60	0.00004	57	0.00004	52	0.00003	88	0.00006	89	0.00006
Styrene	I	NA	I	ŀ	17	0.00005	75	0.00005	I	ı	51	0.00003	54	0.00003
Total VOCs	451		1,518	0.00097	2,102	0.00134	912	0.00059	752	0.00047	1,281	0.00082	1,418	0.00091
		4						-						

Notes:

Only those parameters detected in one or more of the sampling pairs are listed.
 NA = Not Applicable

p \pit\projects\seneca\lttd\evaluation report\tables\vostcalc.xls\Summary

Table 4-5 Summary of SVOC, TPH, and Metals Testing on Fly Ash Seneca Army Depot Activity LTTD Treatability Study

35,700. E. 8.9 N 34.1 1.4 4.1 4.1 4.5 9.81 1.5 9.81 1.5 1.5 60,000. E 17,700 .11 336. 184. 4.6 76.9 E[•] 231. EN 1.3 N 1,190. Cyclone LT4039 RUN 6 tons/hr 9/23/00 23. LT4038 RUN 6 5 tons/hr 9/23/00 8.6 330. L 130. L 40,300, E⁻ 11,4 N 11,4 N 358, 500, 0 85,000, 0 13,4 E⁻ 13,5 EN 13,5 EN 13,5 EN 13,5 EN 13,5 EN 13,5 EN 13,6 EN 1,2 A LT4032 RUN 5 tons/hr 9/22/00 6.2 33,800. 86.3 E 14.3 E 140. EN 30,700 E 21,900. 43,200. E-10.5 N 16.1 -386. -.47 54.3 -20,900. 2.6 2.1 N 1,440. 3.6 99.5 E LT4022 RUN 4 tons/hr 9/21/00 1.7 10.4 93,800. 9.6 42,900. E* 13.6 N 13.6 N 13.6 N 13.6 N 13.6 N 14.7 0 88.5 E* 142.6 N 20,000 • 667. 21,000 • 667. 22,000 • 667. 2.5 N 1,440 • 2.5 N 1,440 • 403. EN 38. J 84. J 72. J 72. J 710. J 750. J 350. J LT4016 RUN 3 tons/hr 9/20/00 24. ער ער ג 33,30,00 ער ג 33,30,00 ער ג 33,30,000 ער ג 33,30,000 ער ג 33,30,000 ער ג 33,000 ער ג 3,000 21,500. E 12,1 N 12,1 N 192. 77 44,100. E 49,4 5,510. N 25,510. N 474. E 10,560. E 74,6 74,6 74,6 74,6 3,37 B 3,3 474. E 113. EN 6.7 U 6.7 U LT4041 RUN 6 tons/hr 9/23/00 30,400. E* 5.8 N 5.8 N 5.3 * 1.3 5.3 E* 5.3 E* 5.3 E* 5.3 E* 1.2 EN 34,100. E* 12,800. * 12,800. * 6.6 U 6.6 U 02 U 60.6 • 9,050. 49 BN 3.7 52. U 3.7 62.3 E 62.3 E LT4035 RUN 5 tons/hr 9/22/00
 High Temperature Gas Cooler

 LT4019
 LT4027

 RUN 3
 RUN 4

 RUN 3
 Stons/hr

 9/20/00
 9/21/00
 330. U 33 6.7 U 6.7 U шĽ 3. 54.8 198. Fly Ash Samples 28,400. E-12.3 N 12.3 N 12.3 S 12.3 S 12.3 S 12.3 S 55,6 55,6 13.2 U 11,200. E-13.2 U 11,200. E 718. 2,430. E 13.2 U 11,200. 1 718. 2 2,430. E 7,12 S 7,1 6.7 U 6.7 U 32,200. 5.6 N 5.6 N 5.4 -1.4 5.2 S 5.2.5 N 5.2.5 N 5.2.5 N 1.1.3 N 5.2.5 N 5.2.5 N 11.3 N 5.2.5 N 11.3 N 5.2.7 E 10,200 -14,100 -603. -14,100 -603. -527 E 10,200 -527 E 10,200 -527 E 10,200 -527 E 527 E 10,200 -527 E 527 E 5 9.3 Y 14. Y LT4011 RUN 2 2 tons/hr 9/1/00 350. U 12. Y 7.1 U LT4005 RUN 1 tons/hr 8/30/00 11. 1,180. N 1,180. N 449. E 9,000. E 9,000. E 85.2 E 7,240. E 7,240. E 22,300. E 13.5 N 4.9 247. .76 .76 .76 .71. 111. .6 BN 477. B 12. 30. 319. EN LT4040 RUN 6 tons/hr 9/23/00 22 330, 330, 330, 330, 330, 330, 330, 16, 16, 16, 16, 16, 140, 21, 21, 21, 15. 25,800. E 3.8 N 3.8 N 3.5. • 3.5. • 1.1 1.1 54,200. E 105, E 10,700. • 353.8 EN 353.8 EN 10,700. • 11,4 N 11,4 N 11,4 N 11,4 N 11,4 N 332. • 11,4 N 11,4 N 332. • 11,4 N 333. • 11,4 N 33. • 11,4 N 33 LT4034 RUN 5 5 tons/hr 9/22/00 12.7 1.1 1.1 45,000 E 100. E 100. E 101.2 222,000 E 9,527 E 1,160. 1,160. 3,1 1,160. 3,1 1,160. 3,1 1,160. 3,1 1,160. 3,1 1,160. 3,1 1,160. 3,12 1,160. 3,12 1,160. 1,172. 1,173. 1,17 22,700. E-13.6 N 4.9 -273. -31. 1 3460 U 346 ιū
 Low Temperature Gas Coc

 L14018
 L14026

 L14013
 L14026

 RUN 3
 RUN 4

 2 tons/hr
 5 tons/hr

 9/20/00
 9/21/00
 13.2 52.7 412. 35. .98 35,000 39,070 17,2 663,EN 316,000 1,340, 1,340, 1,340, 660, 1,340, 660, 660, 1,340, 1,340, 660, 1,340, 662, 1,340, 1, 19,600, E[•] 15,4 N 1.3 • 237, • 6.5 1.1 N 78. B 19.4 51.1 E* 481. EN 330. 68. 3.750. 33.5 N 133.5 N 343. N 53 53.5 N 53.5 N 197. N 23.5 N 23.5 N 23.5 N 197. N 14. N 14. N 14. N 14. N 14. N 19. N 29.9 N 431. S 29.9 N 710. J 370. U 370. U 17. J 77. J 270. U 27. J 27 120. Y 65. Y LT4010 RUN 2 2 tons/hr 9/1/00 1,850. 10.3 N 10.3 N 10.3 N 214. V 214. V 214. N 214. N 215.000. 314. N 215.000. 115. N 10.3 N 10.3 N 10.3 N 10.3 N 10.3 N 10.3 N 22.2 U 10.3 N 10.3 N 22.2 N 10.3 N 22.2 N 10.3 N 22.2 N 10.3 N 22.2 41. J 340. U 69. J 69. J 69. J 777. J 740. J 280. J 200. J 200. J 200. J 200. J * * LT4004 RUN 1 tons/hr 8/30/00 88. Sample Location: Sample Number: Run Number: Treatment Rate: Sampling Date: AGM TCLP Criteria 100 20 20 . . . 81 · · 2 00 Value (1) TAGM 36,400 50,000 50,000 224 61 1,100 50,000 1,100 50,000 50,000 3,200 50,000 30 50,000 19,300 400 6,200 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units ug/kg ug/kg mg/kg Ba/6m mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg By/6w ug/kg mg/kg Benzo(ghi)perylene Benzo(k)fluoranthene Bis(2-Ethylhexyl)phthalate Carbazole Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzidine Benzo(a)anthracene cenaphthylene Chrysene Dibenzofuran Naphthalene Anthracene Aurminum Antimony Antimony Banum Banum Calcum Calcum Copper Iten Copper Iten Magnesium Magnesium Magnesium Magnesium Silver Silver Thallium rameter Diesel Oil Motor Oil henol rene

orandum #4046, Determination of Soil Cleanup Objectives and Cleanup Levels. (1) NYSDEC Technical and Administrative Guidance Merr

concentration that could potentially leach contaminants that would classify the soil as a hazardous waste (2) The Toxicity Characteristic Leaching Procedure (TCLP) criteria are estimated based on the "20 times (20x) Rule". The 20x Rule appri-

(3) Only those parameters detected in one or more samples are listed

(4) Values that exceed the TAGMs are bolded. Values that exceed the TCLP criteria are shaded

(5) Lab Qualifiers are defined as follows

GCMS Qualifiers J = indicates and estimated value. This flag is used when the result is less than reporting limit, but greater

 \mathbf{U} = Indicates the analyte was analyzed for but not detected above the instrument detection limit

22

B = The reported analyte was detected in the associated method blank as well as the sample

Y = Combined response for benzo(b)fluorantiene and benzo(k)fluorantienotor oil analyses = Pattern of peaks did not match

retention time window Indicable standard but fell within calibrated

B = Entered if the report is less than the Contract Required Detection Limit (CRDL) but U = Entered if the analyte was analyzed for but not detected, less than IDL. N = Matrix spiked sample recovery not within control limits. * = Duplicate analysis not within control limits

Metals Qualifiers E(ICP) = The reported value is estimated because of the presence

Entered if the analyte was analyzed for but not detected, less than IDL.
Table 4-6 Summary of Dioxin/Furan Testing on Fly Ash LTTD Treatability Study Seneca Army Depot Activity

High Temperature Gas Cooler LT4005 RUN 1 2 tons/hr 2 tons/hr	ooler High Temperature Gas Cooler LT4005 LT4011 RUN 1 RUN 2	Gas Cooler High Temperature Gas Cooler LT4010 LT4005 LT4011 RUN 2 RUN 1 RUN 2	rature Gas Cooler High Temperature Gas Cooler LT4010 LT4010 LT4005 LT4011 RUN 2 RUN 1 RUN 2 RUN 2 RUN 1 RUN 2 RUN 2 RUN 1 RUN 2 RUN 2 RUN 2 RUN 2 RUN 2 RUN 1 RUN 2 RUN	Temperature Gas Cooler High Temperature Gas Cooler LT4010 LT4005 RUN 2 RUN 1	Low Temperature Gas Cooler High Temperature Gas Cooler 004 LT4010 LT4005	Low Temperature Gas Cooler High Temperature Gas Cooler LT4004 LT4010 LT4005 LT4011 PIIN 1 PIIN 2 DIIN 4 DIIN 2	ation: Low Temperature Gas Cooler High Temperature Gas Cooler mber: LT4004 LT4010 LT4005 LT4011	Ile Location: Low Temperature Gas Cooler High Temperature Gas Cooler ple Number: LT4004 LT4010 LT4005 LT4011 un Number: RUN 1 RUN 2 RUN 1 RUN 2	Sample Location: Low Temperature Gas Cooler High Temperature Gas Cooler Sample Number: LT4004 LT4010 LT4005 LT4011 Run Number: RUN 1 RUN 2 RUN 1 RUN 2	Sample Location: Low Temperature Gas Cooler High Temperature Gas Cooler Sample Number: LT4004 LT4010 LT4005 LT4011 Run Number: RUN 1 RUN 2 RUN 1 RUN 2 RUN 1
LT4005 LT4011 RUN 1 RUN 2 2 tons/hr 2 tons/hr	LT4005 LT4011 RUN1 RUN2	LT4010 LT4005 LT4011 RUN 2 RUN 1 RUN 2	LT4010 LT4005 LT4011 RUN 2 RUN 1 RUN 2	LT4010 LT4005 LT4011 RUN 2 RUN 1 RUN 2	004 LT4010 LT4005 LT4011	LT4004 LT4010 LT4005 LT4011 PIN1 PIN2 DIN3 DIN4	mber: LT4004 LT4010 LT4005 LT4011	ple Number: LT4004 LT4010 LT4005 LT4011 un Number: RUN 1 RUN 2 RUN 1 RUN 2	Sample Number: LT4004 LT4010 LT4005 LT4011 Run Number: RUN 1 RUN 2 RUN 1 RUN 2	Sample Number: LT4004 LT4010 LT4015 LT4011 Run Number: RUN 1 RUN 2 RUN 1 RUN 2
2 tons/hr 2 tons/hr	RUN 1 RUN 2	RUN 2 RUN 1 RUN 2	RUN 2 RUN 1 RUN 2	RUN 2 RUN 1 RUN 2				un Number: RUN 1 RUN 2 RUN 1 RUN 1 RUN 2	Run Number: RUN 1 RUN 2 RUN 2 RUN 2 RUN 2	Run Number: RUN 1 RUN 2 RUN 1 RUN 2
2 tons/hr 2 tons/hr	o tomother of the second secon				IN 1 RUN 2 RUN 1 RUN 2		mber: RUN1 RUN2 RUN1 RUN2 RUN2		Torrect Date of the second sec	
		tons/nr 2 tons/hr 2 tons/hr	2 tons/nf 2 tons/hr 2 tons/hr	2 tons/nr 2 tons/hr	s/hr 2 tons/hr 2 tons/hr 2 tons/hr	2 tons/hr 2 tons/hr 2 tons/hr 2 tons/hr	Rate: 2 tons/hr 2 tons/hr 2 tons/hr 2 tons/hr	tment Rate: 2 tons/hr 2 tons/hr 2 tons/hr 2 tons/hr	I reatment Kate: 2 tons/nr 2 tons/nr 2 tons/hr 2 tons/hr	Treatment Rate: 2 tons/hr 2 tons/hr 2 tons/hr 2 tons/hr
8/30/00 9/1/00	8/30/00 9/1/00	9/1/00 8/30/00 9/1/00	9/1/00 8/30/00 9/1/00	9/1/00 8/30/00 9/1/00	0/00 9/1/00 8/30/00 9/1/00	8/30/00 9/1/00 8/30/00 9/1/00	Date: 8/30/00 9/1/00 8/30/00 9/1/00	npling Date: 8/30/00 9/1/00 8/30/00 9/1/00	Sampling Date: 8/30/00 9/1/00 8/30/00 9/1/00	Sampling Date: 8/30/00 9/1/00 8/30/00 9/1/00
0 103 U 0 0797 U	0 103 U 0 1797 U	0.182 U 0.103 U 0.103 U	0.182 U 0.103 U 0.1707 U	0.182 U 0.103 U 0.103 U	827 U 0.182 U 0.103 U 0.0707 U	0.0827 U 0.182 U 0.103 U 0.0797 U	0.0827 U 0.182 U 0.103 U 0.027 U	Da/a 0.0827 U 0.182 U 0.162 U 0.103 U 0.0827 U	Da/a 0.0827 U 0.182 U 0.103 U 0.0797 U	2DD bold 0.0827 U 0.182 U 0.103 U 0.0797 U
0.113 U 0.0917 U	7 U 0.113 U 0.0917 U	0.137 U 0.113 U 0.0917 U	0.137 U 0.113 U 0.0917 U	0.137 U 0.113 U 0.0917 U	102 U 0.137 U 0.113 U 0.0917 U	0.102 U 0.137 U 0.113 U 0.0917 U	Ma 0.102 U 0.137 U 0.113 U 0.0917 U	pg/g 0.102 U 0.137 U 0.113 U 0.0917 U	D paía 0.102 U 0.137 U 0.113 U 0.0917 U	PeCDD baya 0.102 U 0.137 U 0.113 U 0.0917 U
0.144 U 0.0957 U	5 U 0.144 U 0.0957 U	0.196 U 0.144 U 0.0957 U	0.196 U 0.144 U 0.0957 U	0.196 U 0.144 U 0.0957 U	208 U 0.196 U 0.144 U 0.0957 U	0.208 U 0.196 U 0.144 U 0.0957 U	Vg 0.208 U 0.196 U 0.144 U 0.0957 U	pg/g 0.208 U 0.196 U 0.144 U 0.0957 U	DD pg/g 0.208 U 0.196 U 0.144 U 0.0957 U	8-HxCDD pg/g 0.208 U 0.196 U 0.144 U 0.0957 U
0.171 U 0.114 U	3 A 0.171 U 0.114 U	0.273 A 0.171 U 0.114 U	0.273 A 0.171 U 0.114 U	0.273 A 0.171 U 0.114 U	352 A 0.273 A 0.171 U 0.114 U	0.352 A 0.273 A 0.171 U 0.114 U	Vg 0.352 A 0.273 A 0.171 U 0.114 U	pg/g 0.352 A 0.273 A 0.171 U 0.114 U	DD pg/g 0.352 A 0.273 A 0.171 U 0.114 U	8-HxCDD pg/g 0.352 A 0.273 A 0.171 U 0.114 U
0.148 U 0.0982 U	3 U 0.148 U 0.0982 U	0.198 U 0.148 U 0.0982 U	0.198 U 0.148 U 0.0982 U	0.198 U 0.148 U 0.0982 U	221 U 0.198 U 0.148 U 0.0982 U	0.221 U 0.198 U 0.148 U 0.0982 U	yg 0.221 U 0.198 U 0.148 U 0.0982 U	pg/g 0.221 U 0.198 U 0.148 U 0.0982 U	DD pg/g 0.221 U 0.198 U 0.148 U 0.0982 U	9-HxCDD pg/g 0.221 U 0.198 U 0.148 U 0.0982 U
0.621 A 1.72 A	3 A 0.621 A 1.72 A	2.23 A 0.621 A 1.72 A	2.23 A 0.621 A 1.72 A	2:23 A 0.621 A 1.72 A	5.59 2.23 A 0.621 A 1.72 A	5.59 2.23 A 0.621 A 1.72 A	Vg 5.59 2.23 A 0.621 A 1.72 A	pg/g 5.59 2.23 A 0.621 A 1.72 A	0.000 pg/g 5.59 2.23 A 0.621 A 1.72 A	7,8-HpCDD pg/g 5.59 2.23 A 0.621 A 1.72 A 1
2.97 A,B 7.63 B	3 B 2.97 A,B 7.63 B	12.8 B 2.97 A,B 7.63 B	12.8 B 2.97 A,B 7.63 B	12.8 B 2.97 A,B 7.63 B	33.6 B 12.8 B 2.97 A,B 7.63 B	33.6 B 12.8 B 2.97 A,B 7.63 B	Vg 33.6 B 12.8 B 2.97 A,B 7.63 B	pg/g 33.6 B 12.8 B 2.97 A,B 7.63 B	pg/g 33.6 B 12.8 B 2.97 A,B 7.63 B	pg/g 33.6 B 12.8 B 2.97 A,B 7.63 B
0.32 A 0.437 A	4 0.32 A 0.437 A	1.24 0.32 A 0.437 A	1.24 0.32 A 0.437 A	1.24 0.32 A 0.437 A	585 1.24 0.32 A 0.437 A	0.585 1.24 0.32 A 0.437 A	yg 0.585 1.24 0.32 A 0.437 A	pg/g 0.585 1.24 0.32 A 0.437 A	pg/g 0.585 1.24 0.32 A 0.437 A	CDF pg/g 0.585 1.24 0.32 A 0.437 A
0.134 A 0.176 A	5 A 0.134 A 0.176 A	0.655 A 0.134 A 0.176 A	0.655 A 0.134 A 0.176 A	0.655 A 0.134 A 0.176 A	355 A 0.655 A 0.134 A 0.176 A	0.355 A 0.655 A 0.134 A 0.176 A	J/g 0.355 A 0.655 A 0.134 A 0.176 A	pg/g 0.355 A 0.655 A 0.134 A 0.176 A	F pg/g 0.355 A 0.655 A 0.134 A 0.176 A	PeCDF pg/g 0.355 A 0.655 A 0.134 A 0.176 A
0.406 A 0.415 A	7 A 0.406 A 0.415 A	1.17 A 0.406 A 0.415 A	1.17 A 0.406 A 0.415 A	1.17 A 0.406 A 0.415 A	605 A 1.17 A 0.406 A 0.415 A	0.605 A 1.17 A 0.406 A 0.415 A	Vg 0.605 A 1.17 A 0.406 A 0.415 A	pg/g 0.605 A 1.17 A 0.406 A 0.415 A	F pg/g 0.605 A 1.17 A 0.406 A 0.415 A	PeCDF pg/g 0.605 A 1.17 A 0.406 A 0.415 A
0.206 A 0.202 A	2 A 0.206 A 0.202 A	0.682 A 0.206 A 0.202 A	0.682 A 0.206 A 0.202 A	0.682 A 0.206 A 0.202 A	394 A 0.682 A 0.206 A 0.202 A	0.394 A 0.682 A 0.206 A 0.202 A	Vg 0.394 A 0.682 A 0.206 A 0.202 A	pg/g 0.394 A 0.682 A 0.206 A 0.202 A	DF pg/g 0.334 A 0.682 A 0.206 A 0.202 A	8-HXCDF pg/g 0.394 A 0.682 A 0.206 A 0.202 A
0.137 A 0.121 A	3 A 0.137 A 0.121 A	0.649 A 0.137 A 0.121 A	0.649 A 0.137 A 0.121 A	0.649 A 0.137 A 0.121 A	386 A 0.649 A 0.137 A 0.121 A	0.386 A 0.649 A 0.137 A 0.121 A	Vg 0.386 A 0.649 A 0.137 A 0.121 A	pg/g 0.386 A 0.649 A 0.137 A 0.121 A	DF pg/g 0.386 A 0.649 A 0.137 A 0.121 A	8-HxCDF pg/g 0.386 A 0.649 A 0.137 A 0.121 A
0.169 A 0.155 A	3 A 0.169 A 0.155 A	0.683 A 0.169 A 0.155 A	0.683 A 0.169 A 0.155 A	0.683 A 0.169 A 0.155 A	426 A 0.683 A 0.169 A 0.155 A	0.426 A 0.683 A 0.169 A 0.155 A	1/9 0.426 A 0.683 A 0.169 A 0.155 A	pg/g 0.426 A 0.683 A 0.169 A 0.155 A	DF pg/g 0.426 A 0.683 A 0.169 A 0.155 A	8-HxCDF pg/g 0.426 A 0.683 A 0.169 A 0.155 A
0.0361 U 0.0422 U 2.9	3 A 0.0361 U 0.0422 U 2.9	0.173 A 0.0361 U 0.0422 U 2.9	0.173 A 0.0361 U 0.0422 U 2.9	0.173 A 0.0361 U 0.0422 U 2.9	135 U 0.173 A 0.0361 U 0.0422 U 2.9	0.135 U 0.173 A 0.0361 U 0.0422 U 2.9	Vg 0.135 U 0.173 A 0.0361 U 0.0422 U 2.9	pg/g 0.135 U 0.173 A 0.0361 U 0.0422 U 2.9	DF pg/g 0.135 U 0.173 A 0.0361 U 0.0422 U 2.9	9-HxCDF pg/g 0.135 U 0.173 A 0.0361 U 0.0422 U 2.9
0.365 A 0.295 A 36.9	7 A 0.365 A 0.295 A 36.9	1.67 A 0.365 A 0.295 A 36.9	1.67 A 0.365 A 0.295 A 36.9	1.67 A 0.365 A 0.295 A 36.9	1.79 A 1.67 A 0.365 A 0.295 A 36.9	1.79 A 1.67 A 0.365 A 0.295 A 36.9	Vg 1.79 A 1.67 A 0.365 A 0.295 A 36.9	pg/g 1.79 A 1.67 A 0.365 A 0.295 A 36.9	0.00F pg/g 1.79 A 1.67 A 0.365 A 0.295 A 36.9	7,8-HpCDF pg/g 1.79 A 1.67 A 0.365 A 0.295 A 36.9
0.355 A 0.295 A 36.9 0.0372 11 0.0703 11 3.01	7 A 0.372 11 0.770 1.363 A 36.9	0.157 A 0.365 A 0.295 A 36.9 0.157 A 0.372 U 0.772 U 3.01	0.157 A 0.365 A 0.365 A 36.9 0.157 A 0.0372 II 0.0703 II 3.01	0.157 A 0.1365 A 0.295 A 36.9 0.157 A 0.0372 11 3 0.0	144 A 0 157 A 0.350 A 0.295 A 36.9 144 A 0 157 A 0.372 II 30.1	0.144 A 0.157 A 0.350 A 0.295 A 36.9 0.144 A 0.157 A 0.137 1 37.1	VI 0.144 A 0.157 A 0.372 U 0.365 A 0.245 A 36.9	Pg/g 1./9 A 1./9 A 1./9 A 0.36.9 A 36.9 Dg/g 0.144 A 0.157 A 0.372 11 3 A 36.9	OLUF P9/9 1./9 A 1.5/A 0.505 A 0.295 A 36.9 OLDF pa/a 0.144 A 0.157 A 0.372 II 0.773 II 3.01	7,0-TPCUF Pg/g 1./9 A 1.6/ A 0.365 A 0.295 A 36.9 8.9-HoCDF pg/g 0.144 A 0.157 A 0.0372 II 0.0703 II 3.01
0.0372 U 0.0703 U 3.	7 A 0.0372 U 0.0703 U 3.	0.157 A 0.0372 U 0.0703 U 3.	0.157 A 0.0372 U 0.0703 U 3.	0.157 A 0.0372 U 0.0703 U 3.	144 A 0.157 A 0.0372 U 0.0703 U 3.	0.144 A 0.157 A 0.0372 U 0.0703 U 3.	Vg 0.144 A 0.157 A 0.0372 U 0.0703 U 3.	pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 3.	0.00F pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 3.	8,9-HpCDF pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 3.
0.0372 U 0.0703 U 0.0703 U 0.0703 U	7 A 0.0372 U 0.0703 U 5 A 0.0703 U 6.0703 U	0.157 A 0.0372 U 0.0703 U 16 A B 0.469 A B 0.0703 U	0.157 A 0.0372 U 0.0703 U 16 A B 0.602 A B	B 16 A 0.0372 U 0.0703 U B 16 A 0.469 A 0.0703 A B	144 A 0.157 A 0.0372 U 0.0703 U 3.8 A B 16 A B 0.6703 U	0.144 A 0.157 A 0.0372 U 0.0703 U 3.8 A.B 16 A.B 0.469 A.B 0.6703 U	1/g 0.144 A 0.157 A 0.0372 U 0.0703 U 0	pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U pg/g 38 A B 16 A B 0.460 A B 0.6703 U	0CDF pg/g 0.144 A 0.157 A 0.0372 U 0.0703	8,9-HpCDF pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 8,9-HpCDF pg/g 3.8 A B 1.6 A 0.0703 U 1.6 A 0.0703 U
0.469 A,B 0.602 A,B	3 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	,B 1.6 A,B 0.469 A,B 0.602 A,B	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B	1/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B
0.469 A,B 0.602 A,B	3 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	,B 1.6 A,B 0.469 A,B 0.602 A,B	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.202 A,B	1/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.402 A,B 0.602 A,B 0.602 A,B 0.478 0.	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 2010 A,B 2010A,B 2010 A,B 2010 A,B 2010 A,B 2010 A,B 2010 A,B	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B no/n 0.428 0.325 0.375 11	DD D0/0 0.408 1.6 A,B 0.409 A,B 0.602 A,B 0.602 A,B 0.602 A,B 0.602 A,B 0.735 0.102 11 0.0707 11
0.469 A,B 0.602 A,B	5 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	,B 1.6 A,B 0.469 A,B 0.602 A,B 0.602 A,B	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 1.0.002 A,B 1.0.002 A,B 1.0.002 A,B 1.0.002 A,B 1.0.0002 A,B 1.0.0000 A,B 1.0.0000 A,B 1.0.00000 A,B 1.0.000000 A,B 1.0.000000 A,B 1.0.0000000000000000000000000000000000	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.402 A,B 0.402 A,B	Vg 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B Vg 0.479 A,B 0.602 A,B 10	Pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B Da/a 0.428 0.335 0.103 U 0.428	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.01 0.403 A,B 0.602 A,B 0.472 B	DD pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B DD pg/g 0.428 0.335 0.103 U 0.103 U
0.403 A,B 0.502 A,B 0	0 A,D 0.409 A,B 0.602 A,B 0	1.0 A,D U.403 A,B U.602 A,B	1.0 A,D 0.409 A,D 0.002 A,B	, D D D D D D D D D D D D D D D D D D D	3.0 A,D 1.0 A,D 0.403 A,D 0.602 A,D 1.0 A,D 1.	0.0 A,D 1.0 A,D 0.409 A,D 0.502 A,D 0.502 A,D 0.502 A,D 0.502 A,D 0.505 1.	Vg 0.408 A,D 1.0 A,D 0.408 A,D 0.002 A,D 10 A A	Pg/g 3.0 A,D 1.0 A,D 0.409 A,D 0.002 A,D Dg/g 0.428 0.335 0.103 U 0.797 U	pg/g 3.0 A,B 1.0 A,B 0.409 A,B 0.5012 A,B 0.5012 A,B 0.5012 A,B 0.502 A,B 0.502 A,B 0.502 11	pg/g 3:0 A,B 1:0 A,B 0:403 A,B 0:002 A,B D DD pg/g 0.428 0.335 0.103 U 0.797 U 0
0.469 A,B 0.602 A,B	5 A,B 0.469 A,B 0.602 A,B 0	1.6 A,B 0.469 A,B 0.602 A,B	1.6 A,B 0.469 A,B 0.602 A,B	,B 1.6 A,B 0.469 A,B 0.602 A,B 0.602 A,B	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 1.0 0.502 A,B 1.0 0.50	3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.409 A,B 0.602 A,B	Vg 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 10 0.602 A,B 10 0.428	Pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B Dg/g 0.428 0.335 0.103 U 0.797 U	pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.602 A,B 0.602 A,B 0.602 A,B 0.335 0.103 11 0.0707 11	2.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.002 A,B 0.602 A,B 0.032 D 0.0335 0.103 U 0.0797 U
0.0372 U 0.0703 U 0.0703 U 0.469 A,B 0.602 A,B	7 A 0.0372 U 0.0703 U 5 A,B 0.469 A,B 0.602 A,B	0.157 A 0.0372 U 0.0703 U 1.6 A.B 0.469 A,B 0.602 A,B	0.157 A 0.0372 U 0.0703 U 1.6 A,B 0.469 A,B 0.602 A,B	B 0.157 A 0.0372 U 0.0703 U 16 A.B 0.469 A.B 0.602 A.B	144 A 0.157 A 0.0372 U 0.0703 U 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 428 0.325 0.400 II	0.144 A 0.157 A 0.0372 U 0.0703 U 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.460 A,B 0.400 A,B 0.602 A,B 0.400 A,000 A,	Vg 0.144 A 0.157 A 0.0372 U 0.0703 U Vg 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B Vn 0.428 0.335 0.375 11	pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B pg/g 0.428 0.335 0.4703 U 0.703 U	0.017 pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B pg/g 0.428 0.335 0.103 II 0.0707 II	8,9-HpCUF pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 8,9-HpCUF pg/g 3.8 A,B 1.6 A,B 0.469 A,B 0.602 A,B 0.002 A,B 0.0102 H 0.025 A,B 0.0102 H
0.0361 U 0.0422 U 0.0422 U 0.0372 U 0.0372 U 0.0703 U 0.0703 U	3 A 0.0361 U 0.0422 U 7 A 0.365 A 0.295 A 7 A 0.0372 U 0.0703 U	0.173 A 0.0361 U 0.0422 U 1.67 A 0.365 A 0.295 A 0.157 A 0.0372 U 0.0703 U	0.173 A 0.0361 U 0.0422 U 1.67 A 0.365 A 0.295 A 0.157 A 0.0372 U 0.0703 U	0.173 A 0.0361 U 0.0422 U 1.67 A 0.365 A 0.295 A 0.157 A 0.0372 U 0.0703 U	135 U 0.173 A 0.0361 U 0.0422 U 1.79 A 1.67 A 0.365 A 0.295 A 144 A 0.157 A 0.0372 U 0.0703 U	0.135 U 0.173 A 0.0361 U 0.0422 U 1.79 A 1.67 A 0.365 A 0.295 A 0.144 A 0.157 A 0.0372 U 0.0703 U 3.8 A 0.157 A 0.0372 U 0.0703 U	V/g 0.135 U 0.173 A 0.0361 U 0.0422 U V/g 1.79 A 1.67 A 0.365 A 0.295 A V/g 0.144 A 0.157 A 0.0372 U 0.0703 U	pg/g 0.135 U 0.173 A 0.0361 U 0.0422 U pg/g 1.79 A 1.67 A 0.365 A 0.295 A pg/g 0.144 A 0.157 A 0.3372 U 0.0703 U color 38 A 0.157 A 0.0372 U 0.0703 U	DF pg/g 0.135 U 0.173 A 0.0361 U 0.0422 U CDF pg/g 1.79 A 1.67 A 0.365 A 0.295 A CDF pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 2.600 A 0.600 A 0.0703 U	9-HXCDF pg/g 0.135 U 0.173 A 0.0361 U 0.0422 U 7,8-HpCDF pg/g 1.79 A 1.67 A 0.365 A 0.295 A 8,9-HpCDF pg/g 0.144 A 0.157 A 0.0372 U 0.0703 U 2,9,4 A 0.157 A 0.0372 U 0.0703 U
0.113 U 0.0917 0.144 U 0.0957 0.144 U 0.114 0.148 U 0.0982 0.621 A 1.72 2.97 A,B 7.63 0.32 A 0.176 0.134 A 0.176 0.134 A 0.176 0.137 A 0.177 0.155 A 0.155 0.0355 A 0.155 0.0352 U 0.205	7 U 0.113 U 0.0917 8 A 0.174 U 0.0957 8 A 0.171 U 0.0982 8 A 0.174 U 0.0982 8 A 0.174 U 0.0982 8 A 0.174 U 0.0982 8 B 0.148 U 0.0982 9 A 0.148 U 0.0982 1 7.53 0.32 A 0.0176 8 B 2.97 A, B 7.63 9 A 0.134 A 0.176 7 A 0.134 A 0.176 7 A 0.134 A 0.176 7 A 0.137 A 0.121 8 A 0.137 A 0.121 8 A 0.169 A 0.155 8 A 0.0361 U 0.0422 7 A 0.0361 U 0.0422 8 A 0.0362 A 0.0723 8 A 0.0362 A 0.0703	0.137 U 0.113 U 0.0917 0.196 U 0.114 U 0.0957 0.273 A 0.171 U 0.0982 0.23 A 0.174 U 0.0982 0.198 U 0.144 U 0.0982 1.23 A 0.144 U 0.0982 2.23 A 0.651 A 1.72 12.8 B 2.97 A, B 7.63 1.24 0.322 A 0.437 0.655 A 0.134 A 0.176 1.17 A 0.134 A 0.176 0.655 A 0.137 A 0.121 0.665 A 0.137 A 0.121 0.683 A 0.137 A 0.156 0.683 A 0.137 A 0.152 0.683 A 0.136 A 0.152 0.683 A 0.169 A 0.152 0.173 A 0.3365 A 0.0422 0.157 A 0.3655 A 0.0703	0.137 U 0.113 U 0.0917 0.196 U 0.1144 U 0.0957 0.273 A 0.171 U 0.0982 0.273 A 0.174 U 0.0982 0.273 A 0.174 U 0.0982 0.273 A 0.174 U 0.0982 0.273 A 0.144 U 0.0982 0.198 U 0.148 U 0.0982 12.23 A 0.651 A 1.72 12.8 B 2.97 A, B 7.63 1.24 0.651 A 1.72 0.655 A 0.134 A 0.176 0.665 A 0.137 A 0.176 0.682 A 0.137 A 0.121 0.683 A 0.137 A 0.156 0.683 A 0.137 A 0.152 0.683 A 0.136 A 0.152 0.165 A 0.156 A 0.0422 0.157 A 0.0361 U 0.0422 0.157 A 0.0365 A 0.0703 0.157 A 0.0356 A 0.0703	0.137 U 0.113 U 0.0917 0.196 U 0.113 U 0.0957 0.196 U 0.144 U 0.0957 0.273 A 0.171 U 0.0982 0.273 A 0.148 U 0.0982 0.198 U 0.148 U 0.0982 1.23 A 0.148 U 0.0982 12.23 A 0.651 A 1.72 12.8 B 2.97 A, B 7.63 12.8 B 0.32 A 0.437 0.655 A 0.134 A 0.176 0.17 A 0.134 A 0.176 0.665 A 0.134 A 0.176 0.6682 A 0.137 A 0.121 0.683 A 0.137 A 0.121 0.683 A 0.137 A 0.160 0.683 A 0.137 A 0.160 0.165 A 0.136 A 0.151 1.67 A 0.3051 U 0.0422 0.157 A 0.3055 A 0.0703 0.157 A 0.3056 A 0.0703	102 U 0.137 U 0.137 U 0.0917 208 U 0.196 U 0.196 U 0.0957 352 A 0.273 A 0.171 U 0.0982 352 A 0.273 A 0.174 U 0.0982 352 A 0.273 A 0.174 U 0.0982 355 A 0.273 A 0.144 U 0.0982 355 A 0.198 U 0.148 U 0.0982 355 A 0.198 U 0.148 U 0.0982 355 A 1.24 0.651 A 1.72 355 A 1.28 B 2.97 A, B 7.63 355 A 1.28 B 0.322 A 0.437 355 A 0.655 A 0.134 A 0.176 356 A 1.17 A 0.326 A 0.121 356 A 0.137 A 0.137 A 0.121 356 A 0.663 A 0.137 A 0.157 376 A 0.683 A 0.137 A 0.157 376 A 0.137 A 0.157 A 0.157 376 A 0.137 A 0.157 A 0.157 386 A 0.683 A 0.156 A 0.156 376 A 0.157 A 0.157 A 0.157 386 A 0.168 A 0.156 A 0.157 387 U 0.167 A	0.102 U 0.137 U 0.137 U 0.0917 0.208 U 0.196 U 0.134 U 0.0957 0.352 A 0.273 A 0.144 U 0.0982 5.59 2.23 A 0.148 U 0.0982 5.59 2.23 A 0.651 A 1.72 33.6 B 12.8 B 2.97 A, B 7.63 0.555 A 0.134 A 0.176 A 0.176 0.355 A 0.555 A 0.322 A 0.437 0.355 A 1.24 0.655 A 0.134 A 0.176 0.355 A 0.655 A 0.134 A 0.176 0.356 A 1.17 A 0.322 A 0.415 0.358 A 0.665 A 0.134 A 0.176 0.358 A 0.665 A 0.134 A 0.176 0.358 A 0.665 A 0.137 A 0.121 0.336 A 0.6683 A 0.137 A 0.157 0.336 A 0.683 A 0.137 A 0.157 0.135 U 0.137 A 0.157 0.0422 0.157 A 0.137 A 0.157 0.0422 0.157 A 0.157 A 0.157 0.157 0.157 A 0.157 A 0.157 0.0422	I/g 0.102 U 0.137 U 0.113 U 0.0917 I/g 0.208 U 0.196 U 0.114 U 0.0957 I/g 0.221 U 0.196 U 0.114 U 0.0982 I/g 0.221 U 0.198 U 0.114 U 0.0982 I/g 0.221 U 0.198 U 0.114 U 0.0982 I/g 0.221 U 0.198 U 0.144 U 0.0982 I/g 0.221 U 0.198 U 0.148 U 0.0982 I/g 0.223 A 0.148 U 0.0982 1.763 I/g 0.585 A 1.28 B 2.97 A, B 7.63 I/g 0.585 A 0.134 A 0.176 A 0.176 I/g 0.585 A 0.134 A 0.176 A 0.176 I/g 0.336 A 0.137 A 0.176 0.176 I/g 0.338 A 0.6083 A 0.169 A 0.162 I/g 0.336 A 0.137 A 0.157 A 0.157 I/g 0.386 A 0.6083 A 0.169 A	pg/g 0.102 U 0.137 U 0.113 U 0.0917 pg/g 0.208 U 0.196 U 0.114 U 0.0957 pg/g 0.208 U 0.196 U 0.114 U 0.0957 pg/g 0.252 A 0.273 A 0.114 U 0.0982 pg/g 0.221 U 0.198 U 0.114 U 0.0982 pg/g 0.221 U 0.198 U 0.144 U 0.0982 pg/g 0.221 U 0.198 U 0.144 U 0.0982 pg/g 0.221 U 0.198 U 0.144 U 0.0982 pg/g 0.255 A 0.138 B 2.97 A, B 7.63 pg/g 0.585 A 1.17 A 0.32 A 0.415 pg/g 0.585 A 0.134 A 0.176 0.176 pg/g 0.336 A 0.177 A 0.137 A 0.176 pg/g 0.338 A 0.663 A 0.173 A 0.160 A 0.162 pg/g 0.336 A 0.167 A 0.173 A 0.157 A 0.157 pg/g	D pg/g 0.102 U 0.137 U 0.113 U 0.0917 DD pg/g 0.0102 U 0.137 U 0.113 U 0.0957 DD pg/g 0.208 U 0.196 U 0.114 U 0.0957 DD pg/g 0.208 U 0.208 U 0.196 U 0.114 U 0.0987 DD pg/g 0.352 A 0.273 A 0.171 U 0.114 U 0.0982 DD pg/g 0.221 U 0.198 U 0.174 U 0.0982 Pg/g 0.225 A 0.198 U 0.148 U 0.0982 Pg/g 0.565 A 0.134 A 0.176 DF pg/g 0.555 A 0.525 A 0.173 A DF pg/g 0.565 A 0.134 A 0.176 DF pg/g 0.336 A 0.174 A 0.176 DF pg/g 0.386 A 0.6683 A 0.173 A 0.176 DF pg/g 0.135 U 0.137 A 0.157 A 0.167 DF pg/g	PecDD pg/g 0.102 U 0.137 U 0.113 U 0.0917 8-HxCDD pg/g 0.102 U 0.137 U 0.113 U 0.0957 8-HxCDD pg/g 0.208 U 0.196 U 0.114 U 0.0957 8-HxCDD pg/g 0.208 U 0.171 U 0.114 U 0.0982 7.8-HpCDD pg/g 0.221 U 0.198 U 0.174 U 0.0982 7.8-HpCDD pg/g 0.221 U 0.198 U 0.174 U 0.0982 7.8-HpCDD pg/g 0.221 U 0.198 U 0.174 U 0.0982 7.8-HpCDD pg/g 0.255 A 0.128 B 2.97 A, B 7.63 7.8-HpCDF pg/g 0.585 A 1.17 A 0.621 A 1.72 PecDF pg/g 0.585 A 0.134 A 0.176 0.176 8-HxCDF pg/g 0.336 A 0.177 A 0.177 A 0.121 8-HxCDF pg/g 0.386 A 0.683 A 0.137 A 0.156 8-HxCDF pg/g <t< td=""></t<>
0.103 U 0.113 U 0.114 U 0.144 U 0.148 U 0.124 A 0.32 A 0.137 A 0.169 A 0.169 A 0.169 A 0.0361 U 0.365 A 0.0372 U	2 U 0.103 U 0.103 U 0.113 U 0.113 U 0.113 U 0.1144 U 0.1144 U 0.1148 U 0.171 U 0.1448 U 0.171 U 0.0521 A 2.8 A 0.0521 A 2.8 A 0.0525 A 4 0.1137 A 0.0551 U 0.0355 A 4 0.0355 U 1555 A 2 0.0355 A 2 0.0355 U 1555 A 2 0.0355 U 15555 A 2 0.03555 U 15555 A 2 0.03555 U 155555 A 2 0.03555 U 155555 A 2 0.03555 U 15555555 A 2 0.03555 U 155555 A 2 0.03555 U 155555555555555555555555555555555	0.182 U 0.103 U 0.137 U 0.137 U 0.137 U 0.133 A 0.113 U 0.136 U 0.113 U 0.114 U 0.198 U 0.171 U 0.148 U 2.23 A 0.148 U 0.148 U 0.148 U 0.148 U 0.148 U 0.148 A 0.148 U 0.148 A 0.148 A 0.154 A 0.154 A 0.154 A 0.154 A 0.137 A 0.157 A 0.0372 U 1.6 A B 0.0372 U 1.6 A B 0.0372 U 1.6 A B 0.0372 U 0.105 A 0.157 A 0.0372 U 0.155 A 0.155 A 0.105 A 0.157 A 0.0372 U 0.155 A 0.0372 U 0.157 A 0.0372 U 0.157 A 0.0372 U 0.155 A 0.0375 U 0.155 A 0.0375 U 0.0355 A 0.0375 U 0.0355 A 0.0375 U 0.155 A 0.0375 U 0.0375 U 0.155 A 0.0375 U 0.155 A 0.0375 U	0.182 U 0.103 U 0.137 U 0.133 U 0.137 U 0.133 U 0.136 U 0.113 U 0.113 U 0.113 U 0.123 A 0.171 U 0.171 U 0.128 B 0.171 U 0.124 A 0.124 A 0.124 A 0.124 A 0.124 A 0.124 A 0.137 A 0.137 A 0.137 A 0.137 A 0.137 A 0.135 A 0.157 A 0.157 A 0.155 A 0.157 A 0.155 A 0.157 A 0.155 A 0.155 A 0.157 A 0.155 A 0.155 A 0.157 A 0.155	0.182 U 0.103 U 0.113 U 0.137 U 0.137 U 0.137 U 0.136 U 0.1144 U 0.1136 U 0.171 U 0.171 U 0.171 U 0.1718 U 0.1748 U 0.1748 U 0.1748 U 0.1748 U 0.1748 U 0.174 A 0.175 A 0.175 A 0.175 A 0.175 A 0.175 A 0.175 A 0.0351 U 1.6 A.B 0.0469 A.B 0.	827 U 0.182 U 0.103 U 102 U 0.137 U 0.137 U 0.113 U 0.137 U 0.1144 U 0.1352 A 0.171 U 0.1148 U 0.171 U 0.1148 U 0.171 U 0.1148 U 0.171 U 0.171 U 0.171 U 0.171 A 0.171 U 0.122 A 0.132 A 0.132 A 0.137 A 0.131	0.0827 U 0.182 U 0.103 U 0.102 U 0.137 U 0.137 U 0.113 U 0.208 U 0.137 U 0.113 U 0.113 U 0.221 U 0.196 U 0.114 U 0.114 U 0.221 U 0.198 U 0.171 U 0.171 U 0.221 U 0.198 U 0.148 U 0.171 U 0.223 A 0.171 U 0.148 U 0.171 U 0.223 A 0.198 U 0.148 U 0.171 A 0.555 A 1.28 B 2.97 A, B 0.32 A 0.565 A 0.132 A 0.322 A 0.32 A 0.355 A 0.655 A 0.137 A 0.326 A 0.366 A 0.338 A 0.137 A 0.137 A 0.386 A 0.6682 A 0.137 A 0.137 A 0.355 U 0.173 A 0.167 A 0.366 A 0.356 A 0.173 A 0.366 A 0.169 A, B 0.144 A 0.157 A 0.335 U 0.365 A 0.144 A 0.157 A 0.335 U 0.469 A, B	//g 0.0827 U 0.182 U 0.103 U //g 0.102 U 0.137 U 0.113 U //g 0.102 U 0.137 U 0.113 U //g 0.208 U 0.196 U 0.113 U //g 0.208 U 0.196 U 0.114 U //g 0.352 A 0.273 A 0.171 U //g 0.352 A 0.273 A 0.171 U //g 0.221 U 0.198 U 0.148 U //g 0.221 U 0.198 U 0.148 U //g 0.255 A 0.198 U 0.148 U 0.559 2.23 A 0.148 U 0.322 A 0.621 A 1.24 0.148 U 0.322 A 0.932 A 1.28 B 2.97 A, B 0.322 A 0.935 A 1.17 A 0.322 A 0.332 A 0.905 A 0.565 A 0.137 A 0.332 A 0.905 A 0.135 A 0.157 A 0.157 A 0.9065 A 0.157 A 0.365 A 0.157 A 0.9167 A 0.157 A 0.0361 U 0.9157 A 0.157 A 0.335 U	pg/g 0.0827 U 0.182 U 0.103 U pg/g 0.102 U 0.137 U 0.103 U pg/g 0.102 U 0.137 U 0.113 U pg/g 0.208 U 0.137 U 0.113 U pg/g 0.208 U 0.137 U 0.114 U pg/g 0.221 U 0.196 U 0.114 U pg/g 0.221 U 0.198 U 0.1148 U pg/g 5.59 2.23 A 0.148 U pg/g 5.59 2.23 A 0.621 A pg/g 0.2585 1.24 0.32 A pg/g 0.585 A 0.655 A 0.134 A pg/g 0.585 A 0.32 A 0.32 A pg/g 0.356 A 0.365 A 0.336 A pg/g 0.356 A 0.137 A 0.366 A pg/g 0.356 A 0.165 A 0.137 A pg/g 0.135 U 0.157 A 0.365 U pg/g 0.144 A 0.157 A 0.335 U pg/g 0.157 A 0.337 U	pg/g 0.0827 U 0.182 U 0.103 U DD pg/g 0.102 U 0.137 U 0.113 U DD pg/g 0.102 U 0.137 U 0.113 U DD pg/g 0.208 U 0.137 U 0.113 U DD pg/g 0.208 U 0.137 U 0.113 U DD pg/g 0.221 U 0.198 U 0.171 U DD pg/g 0.221 U 0.198 U 0.144 U OCDD pg/g 0.221 U 0.198 U 0.148 U PG/g 0.221 U 0.198 U 0.148 U 0.322 A DCDD pg/g 0.235 A 0.158 B 2.97 A, B PG/g 0.355 A 1.24 0.322 A 0.322 A DF pg/g 0.355 A 0.665 A 0.137 A DF pg/g 0.356 A 0.137 A 0.336 A DF pg/g 0.336 A 0.137 A 0.137 A DF pg/g 0.336 A 0.157 A 0.167 A 0.167 A<	CDD pg/g 0.0827 U 0.182 U 0.103 U PeCDD pg/g 0.102 U 0.137 U 0.113 U 8-HXCDD pg/g 0.102 U 0.137 U 0.113 U 8-HXCDD pg/g 0.208 U 0.137 U 0.113 U 8-HXCDD pg/g 0.208 U 0.137 U 0.114 U 8-HXCDD pg/g 0.221 U 0.198 U 0.171 U 9-HXCDD pg/g 0.221 U 0.198 U 0.148 U 7.8-HpCDD pg/g 5.59 2.23 A 0.148 U 7.8-HpCDD pg/g 0.221 U 0.198 U 0.148 U 7.8-HpCDD pg/g 0.2585 A 0.2655 A 0.322 A CDF pg/g 0.3585 A 1.24 0.322 A PECDF pg/g 0.3585 A 0.6655 A 0.137 A B-HXCDF pg/g 0.3386 A 0.6665 A 0.137 A B-HXCDF pg/g 0.3386 A 0.167 A 0.137 A S-HXCDF pg/g 0.338
0.103 U 0.113 U 0.1144 U 0.1148 U 0.148 U 0.148 A 0.132 A 0.132 A 0.134 A 0.135 A 0.137 A 0.169 A 0.136 A 0.136 A 0.137 U 0.365 A 0.0372 U 0.469 A,B	2 U 0.103 U 0.103 U 0.113 U 0.113 U 0.113 U 0.1144 U 0.1144 U 0.1148 A A 0.1169 A A A 0.0146 A 0	0.182 U 0.103 U 0.137 U 0.103 U 0.137 U 0.103 U 0.137 U 0.113 U 0.196 U 0.1144 U 0.273 A 0.171 U 0.198 U 0.144 U 0.198 U 0.171 U 0.198 U 0.171 U 0.198 U 0.171 U 0.198 U 0.171 U 0.171 D 0.171 U 0.172 A 0.174 U 0.655 A 0.134 A 1.17 A 0.322 A 0.668 A 0.134 A 0.134 A 0.137 A 0.668 A 0.137 A 0.173 A 0.169 A 0.173 A 0.169 A 0.173 A 0.169 A 0.157 A 0.365 A 0.157 A 0.365 A 0.157 A 0.365 A	0.182 U 0.103 U 0.137 U 0.103 U 0.137 U 0.113 U 0.137 U 0.113 U 0.196 U 0.1144 U 0.198 U 0.171 U 0.171 D 0.171 U 0.171 D 0.171 U 0.172 B 2.97 A,B 1.28 B 0.322 A 0.655 A 0.134 A 1.17 A 0.322 A 0.668 A 0.134 A 0.137 A 0.137 A 0.668 A 0.137 A 0.173 A 0.169 A 0.173 A 0.166 A 0.173 A 0.167 A 0.157 A 0.365 A 0.157 A 0.365 A 0.157 A 0.365 A	0.182 U 0.103 U 0.137 U 0.103 U 0.137 U 0.103 U 0.137 U 0.113 U 0.196 U 0.1144 U 0.198 U 0.144 U 0.171 D 0.148 U 1.28 B 2.97 A, B 1.17 A 0.134 A 1.17 A 0.134 A 0.134 A 0.134 A 1.17 A 0.137 A 0.668 A 0.137 A 0.157 A 0.0361 U 1.6 A, B 0.365 A 0.157 A 0.365 A 0.157 A 0.365 A	827 U 0.182 U 0.103 U 827 U 0.137 U 0.103 U 208 U 0.137 U 0.113 U 2102 U 0.137 U 0.113 U 252 H 0.137 U 0.113 U 352 A 0.137 U 0.114 U 355 A 0.198 U 0.144 U 5.59 2.23 A 0.171 U 5.59 2.23 A 0.171 U 5.59 1.28 B 2.97 A, B 5.55 A 0.134 A 0.134 A 355 A 1.28 B 0.322 A 355 A 0.655 A 0.134 A 356 A 1.17 A 0.326 A 356 A 0.6682 A 0.137 A 386 A 0.6683 A 0.137 A 157 A 0.366 A 0.365 A 157 A 0.365 A 0.366 A 38 A, B 1.6 A, B 0.365 A	0.0827 U 0.182 U 0.103 U 0.102 U 0.137 U 0.103 U 0.208 U 0.137 U 0.113 U 0.208 U 0.137 U 0.113 U 0.352 A 0.137 U 0.113 U 0.352 A 0.198 U 0.1144 U 0.352 A 0.198 U 0.1148 U 0.355 A 1.24 0 0.134 A 0.358 A 0.655 A 0.134 A 0.358 A 0.665 A 0.134 A 0.358 A 0.668 A 0.326 A 0.358 A 0.668 A 0.134 A 0.358 A 0.668 A 0.137 A 0.358 A 0.668 A 0.136 A 0.135 U 0.173 A 0.365 A 0.144 A 0.167 A 0.365 A 0.144 A 0.167 A 0.365 A 0.146 A,B 0.157 A	IIIS 0.0827 U 0.182 U 0.103 U 09 0.102 U 0.137 U 0.103 U 09 0.208 U 0.137 U 0.113 U 09 0.208 U 0.137 U 0.113 U 09 0.208 U 0.137 U 0.113 U 01 0.108 U 0.137 U 0.113 U 01 0.208 U 0.137 U 0.114 U 01 0.210 U 0.113 U 0.114 U 01 0.221 U 0.198 U 0.114 U 01 0.235 A 0.137 A 0.113 A 01 0.355 A 1.24 0.32 A 01 0.555 A 0.655 A 0.134 A 01 0.356 A 1.17 A 0.326 A 01 0.565 A 0.134 A 0.137 A 01 0.565 A 0.134 A 0.134 A 01 0.356 A 0.137 A 0.366 A 01 0.365 A 0.173 A 0.169 A 01 0.173 A 0.167 A 0.365 A	Units 0.0827 U 0.182 U 0.103 U pg/g 0.0827 U 0.137 U 0.103 U pg/g 0.102 U 0.137 U 0.113 U pg/g 0.208 U 0.137 U 0.113 U pg/g 0.221 U 0.137 U 0.1144 U pg/g 0.221 U 0.198 U 0.144 U pg/g 0.255 A 0.158 B 0.171 U pg/g 0.355 A 0.198 U 0.148 U 0.355 A 0.198 U 0.148 U 0.322 A pg/g 0.355 A 0.198 U 0.114 A pg/g 0.355 A 0.198 U 0.134 A pg/g 0.356 A 1.17 A 0.134 A pg/g 0.358 A 0.665 A 0.134 A pg/g 0.336 A 0.137 A 0.366 A pg/g 0.335 A 0.6683 A 0.137 A pg/g 0.336 A 0.173 A 0.136 A pg/g 0.135 U 0.173 A 0.366 A pg/g 0.173 A <	Dills 0.182 U 0.182 U 0.103 U DD pg/g 0.0827 U 0.137 U 0.103 U DD pg/g 0.102 U 0.137 U 0.113 U DD pg/g 0.208 U 0.137 U 0.113 U DD pg/g 0.208 U 0.135 A 0.171 U DD pg/g 0.255 A 0.273 A 0.171 U DD pg/g 0.355 A 0.138 U 0.144 U OCDD pg/g 0.355 A 0.138 U 0.148 U PG/g 0.585 1.2.8 B 2.97 A, B 0.322 A DF pg/g 0.555 A 0.655 A 0.134 A DF pg/g 0.585 A 1.17 A 0.326 A DF pg/g 0.336 A 0.663 A 0.134 A DF pg/g 0.336 A 0.683 A 0.137 A DF pg/g 0.336 A 0.137 A 0.137 A DF pg/g 0.336 A 0.177 A 0.169 A	Instructure 0.0827 U 0.182 U 0.103 U PeCDD pg/g 0.0827 U 0.137 U 0.103 U 8-HxCDD pg/g 0.102 U 0.137 U 0.113 U 8-HxCDD pg/g 0.208 U 0.137 U 0.113 U 9-HxCDD pg/g 0.2221 U 0.135 A 0.171 U 7.8-HpCDD pg/g 0.255 A 0.273 A 0.171 U 7.8-HpCDD pg/g 0.355 A 0.273 A 0.171 U 7.8-HpCDD pg/g 0.355 A 0.138 U 0.144 U 7.8-HpCDD pg/g 0.355 A 0.148 U 0.148 U 7.8-HpCDF pg/g 0.585 1.24 0.322 A 7.8-HpCDF pg/g 0.585 A 1.17 A 0.322 A 7.8-HxCDF pg/g 0.585 A 1.17 A 0.326 A 8-HxCDF pg/g 0.585 A 0.665 A 0.134 A 8-HxCDF pg/g 0.386 A 0.134 A 0.134 A 8-HxCDF pg/g 0.386 A
0.103 U 0.113 U 0.113 U 0.114 U 0.148 U 0.148 U 0.148 U 0.137 A 0.137 A 0.136 A 0.169 A 0.0372 U 0.0372 U 0.065 A 0.0372 U	2 U 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A	0.182 U 0.103 U 0.137 U 0.113 U 0.137 U 0.113 U 0.196 U 0.113 U 0.198 U 0.171 U 0.198 U 0.171 U 0.198 U 0.171 U 0.198 U 0.171 U 0.198 U 0.144 U 0.223 A 0.148 U 2.23 A 0.148 U 2.23 A 0.148 U 2.23 A 0.148 U 0.148 U 0.148 U 0.148 U 0.148 U 0.148 U 0.148 U 0.148 U 0.148 U 0.174 A 0.137 A 0.665 A 0.133 A 0.665 A 0.133 A 0.169 A 0.137 A 0.173 A 0.0361 U 1.6 A, B 0.0352 U 1.6 A, B 0.469 A	0.182 U 0.137 U 0.137 U 0.137 U 0.136 U 0.138 U 0.144 U 0.148 U 0.171 U 0.148 U 0.036 U 0.148 U 0.036 U 0.148 U 0.036 U 0.148 U 0.036 U 0.046 U 0.036 U 0.036 U 0.046 U 0.036 U 0.046 U 0.046 U 0.046 U 0.036 U 0.046 U 0.0	0.182 U 0.137 U 0.137 U 0.137 U 0.136 U 0.138 U 0.144 U 0.148 U 0.173 A 0.168 A 0.168 A 0.168 A 0.173 A 0.168 A 0.173 A 0.168 A 0.173 A 0.169 A 0.0372 U 1.67 A 0.0372 U 0.0372 U	827 U 0.182 U 0.103 U 102 U 0.137 U 0.113 U 208 U 0.137 U 0.113 U 352 A 0.273 A 0.171 U 352 A 0.273 A 0.171 U 221 U 0.196 U 0.144 U 355 A 0.273 A 0.171 U 355 A 0.273 A 0.148 U 355 A 12.8 B 2.97 A 355 A 12.8 B 2.97 A 355 A 12.8 B 0.32 A 355 A 0.655 A 0.137 A 365 A 0.655 A 0.137 A 374 A 0.653 A 0.137 A 386 A 0.668 A 0.137 A 386 A 0.683 A 0.137 A 373 A 1.67 A 0.336 A 386 A 0.157 A 0.365 A 388 A,B 1.67 A 0.355 A 388 A,B 0.157 A 0.365 A	0.0827 U 0.182 U 0.103 U 0.102 U 0.137 U 0.113 U 0.102 U 0.137 U 0.113 U 0.208 U 0.196 U 0.113 U 0.221 U 0.196 U 0.171 U 0.255 A 0.273 A 0.171 U 0.265 A 0.198 U 0.148 U 0.355 A 0.233 A 0.148 U 0.356 B 1.2.8 B 2.97 A 0.355 A 0.138 U 0.148 U 0.355 A 0.565 A 0.134 A 0.356 A 0.655 A 0.326 A 0.358 A 0.658 A 0.326 A 0.336 A 0.658 A 0.326 A 0.338 A 0.658 A 0.326 A 0.338 A 0.658 A 0.326 A 0.157 A 0.157 A 0.336 A 0.158 A 0.157 A 0.336 A 0.157 A 0.355 A 0.335 U 1.66 A 0.157 A 0.336 A 0.144 A 0.157 A 0.355 A 0.157 A 0.469 A <td>inits 0.0827 U 0.182 U 0.103 U 1/9 0.102 U 0.137 U 0.113 U 1/9 0.102 U 0.137 U 0.113 U 1/9 0.102 U 0.137 U 0.113 U 1/9 0.208 U 0.196 U 0.114 U 1/9 0.273 A 0.171 U 0.148 U 1/9 0.273 A 0.148 U 0.148 U 1/9 0.273 A 0.148 U 0.148 U 1/9 0.273 A 0.148 U 0.148 U 1/9 0.255 A 0.158 B 2.297 A 1/9 0.555 A 1.28 B 2.97 A 0/9 0.565 A 0.137 A 0.326 A 0/9 0.565 A 0.137 A 0.326 A 0/9 0.565 A 0.658 A 0.137 A 0/9 0.336 A 0.668 A 0.137 A 0/9 0.335 U 0.173 A 0.0361 U 0/9 0.135 U 0.169 A 0.0361 U 0/9 0.135 A 0.167 A</td> <td>Units 0.0827 U 0.182 U 0.103 U pg/g 0.0827 U 0.182 U 0.103 U pg/g 0.102 U 0.137 U 0.113 U pg/g 0.102 U 0.137 U 0.113 U pg/g 0.208 U 0.196 U 0.114 U pg/g 0.208 U 0.196 U 0.114 U pg/g 0.273 A 0.171 U 0.148 U pg/g 0.352 A 0.273 A 0.148 U pg/g 0.355 A 0.198 U 0.148 U pg/g 0.559 1.28 B 2.97 A pg/g 0.565 A 0.134 A 0.326 A pg/g 0.565 A 0.137 A 0.326 A pg/g 0.336 A 0.665 A 0.137 A pg/g 0.336 A 0.663 A 0.137 A pg/g 0.335 U 0.173 A 0.0361 U pg/g 0.135 U 0.169 A 0.0361 U pg/g 0.137 A 0.167 A 0.0361 U pg/g 0.135 U 0.</td> <td>Units 0.0827 U 0.182 U 0.103 U DD pg/g 0.0827 U 0.182 U 0.103 U DD pg/g 0.102 U 0.137 U 0.113 U DD pg/g 0.208 U 0.137 U 0.1141 U DD pg/g 0.221 U 0.137 U 0.171 U DD pg/g 0.2221 U 0.198 U 0.171 U DD pg/g 0.221 U 0.198 U 0.148 U DD pg/g 0.221 U 0.132 A 0.148 U DD pg/g 0.235 A 0.273 A 0.148 U DD pg/g 0.235 A 0.138 A 0.148 U DS 0.336 A 1.28 B 2.297 A 0.326 A DF pg/g 0.335 A 0.655 A 0.134 A 0.326 A DF pg/g 0.336 A 0.655 A 0.137 A 0.326 A DF pg/g 0.336 A 0.658 A 0.137 A 0.365 A DF pg/g 0.336 A</td> <td>rr Units 0.0827 U 0.182 U 0.103 U CDD pg/g 0.0827 U 0.182 U 0.103 U PECDD pg/g 0.102 U 0.137 U 0.113 U 8-HxCDD pg/g 0.208 U 0.137 U 0.114 U 8-HxCDD pg/g 0.208 U 0.137 U 0.114 U 7.8-HpCDD pg/g 0.221 U 0.137 U 0.148 U 7.8-HpCDD pg/g 0.221 U 0.138 U 0.148 U 7.8-HpCDD pg/g 0.555 0.232 A 0.134 A 7.8-HpCDD pg/g 0.555 1.24 0.134 A 7.8-HpCDF pg/g 0.565 A 1.17 A 0.137 A 8-HxCDF pg/g 0.336 A 0.658 A 0.137 A 8-HxCDF pg/g 0.336 A 0.658 A 0.137 A 8-HxCDF pg/g 0.336 A 0.658 A 0.137 A 8-HxCDF pg/g 0.336 A 0.137 A 0.137 A 8-HxCDF pg/g 0.135 U<</td>	inits 0.0827 U 0.182 U 0.103 U 1/9 0.102 U 0.137 U 0.113 U 1/9 0.102 U 0.137 U 0.113 U 1/9 0.102 U 0.137 U 0.113 U 1/9 0.208 U 0.196 U 0.114 U 1/9 0.273 A 0.171 U 0.148 U 1/9 0.273 A 0.148 U 0.148 U 1/9 0.273 A 0.148 U 0.148 U 1/9 0.273 A 0.148 U 0.148 U 1/9 0.255 A 0.158 B 2.297 A 1/9 0.555 A 1.28 B 2.97 A 0/9 0.565 A 0.137 A 0.326 A 0/9 0.565 A 0.137 A 0.326 A 0/9 0.565 A 0.658 A 0.137 A 0/9 0.336 A 0.668 A 0.137 A 0/9 0.335 U 0.173 A 0.0361 U 0/9 0.135 U 0.169 A 0.0361 U 0/9 0.135 A 0.167 A	Units 0.0827 U 0.182 U 0.103 U pg/g 0.0827 U 0.182 U 0.103 U pg/g 0.102 U 0.137 U 0.113 U pg/g 0.102 U 0.137 U 0.113 U pg/g 0.208 U 0.196 U 0.114 U pg/g 0.208 U 0.196 U 0.114 U pg/g 0.273 A 0.171 U 0.148 U pg/g 0.352 A 0.273 A 0.148 U pg/g 0.355 A 0.198 U 0.148 U pg/g 0.559 1.28 B 2.97 A pg/g 0.565 A 0.134 A 0.326 A pg/g 0.565 A 0.137 A 0.326 A pg/g 0.336 A 0.665 A 0.137 A pg/g 0.336 A 0.663 A 0.137 A pg/g 0.335 U 0.173 A 0.0361 U pg/g 0.135 U 0.169 A 0.0361 U pg/g 0.137 A 0.167 A 0.0361 U pg/g 0.135 U 0.	Units 0.0827 U 0.182 U 0.103 U DD pg/g 0.0827 U 0.182 U 0.103 U DD pg/g 0.102 U 0.137 U 0.113 U DD pg/g 0.208 U 0.137 U 0.1141 U DD pg/g 0.221 U 0.137 U 0.171 U DD pg/g 0.2221 U 0.198 U 0.171 U DD pg/g 0.221 U 0.198 U 0.148 U DD pg/g 0.221 U 0.132 A 0.148 U DD pg/g 0.235 A 0.273 A 0.148 U DD pg/g 0.235 A 0.138 A 0.148 U DS 0.336 A 1.28 B 2.297 A 0.326 A DF pg/g 0.335 A 0.655 A 0.134 A 0.326 A DF pg/g 0.336 A 0.655 A 0.137 A 0.326 A DF pg/g 0.336 A 0.658 A 0.137 A 0.365 A DF pg/g 0.336 A	rr Units 0.0827 U 0.182 U 0.103 U CDD pg/g 0.0827 U 0.182 U 0.103 U PECDD pg/g 0.102 U 0.137 U 0.113 U 8-HxCDD pg/g 0.208 U 0.137 U 0.114 U 8-HxCDD pg/g 0.208 U 0.137 U 0.114 U 7.8-HpCDD pg/g 0.221 U 0.137 U 0.148 U 7.8-HpCDD pg/g 0.221 U 0.138 U 0.148 U 7.8-HpCDD pg/g 0.555 0.232 A 0.134 A 7.8-HpCDD pg/g 0.555 1.24 0.134 A 7.8-HpCDF pg/g 0.565 A 1.17 A 0.137 A 8-HxCDF pg/g 0.336 A 0.658 A 0.137 A 8-HxCDF pg/g 0.336 A 0.658 A 0.137 A 8-HxCDF pg/g 0.336 A 0.658 A 0.137 A 8-HxCDF pg/g 0.336 A 0.137 A 0.137 A 8-HxCDF pg/g 0.135 U<
		9/1/00 0.182 U 0.137 U 0.196 U 0.273 A 0.273 A 0.273 A 0.273 A 0.273 A 0.273 A 0.273 A 0.157 A 0.655 A 0.157 A 0.6655 A 0.6655 A 0.177 A 0.6655 A 0.177 A 0.6655 A 0.177 A 0.6655 A 0.177 A 0.177 A 0.157 A 0.000	9/1/00 0.182 U 0.137 U 0.137 U 0.136 U 0.273 A 0.273 A 0.273 A 0.273 A 0.273 A 0.233 A 1.24 0.655 A 0.157 A 0.6682 A 0.6683 A 0.6655 A 0.6555 A 0.0555 A 0.6555 A 0.0555 A 0.05555 A 0.05555 A 0.05555 A 0.05555 A 0.055555555 A 0.05555 A 0.0555555555555555555555	9/1/00 9/1/00 0.137 U 0.137 U 0.136 U 0.198 U 0.273 A 0.273 A 0.198 U 1.24 0.157 A 0.655 A 0.655 A 0.655 A 0.655 A 0.655 A 0.73 A 0.653 A 0.73 A 0.73 A 0.73 A 0.73 A 0.73 A 0.75 A 0.	0/00 9/1/00 8/3 827 U 0.182 U 0 102 U 0.137 U 0 208 U 0.196 U 0 355 A 0.273 A 0 259 L 0.198 U 0 355 A 0.273 A 0 559 L 2.23 A 0 355 A 0.565 A 0 355 A 0.655 A 0 365 A 1.17 A 0 384 A 0.649 A 0 385 A 0.655 A 0 315 B 1.17 A 0 354 A 0.658 A 0 355 A 0.583 A 0 364 A 0.658 A 0 38 A,B 1.67 A 0 3.8 A,B 1.67 A 0	8/30/00 9/1/00 9/30 0.0827 U 0.182 U 0 0.102 U 0.137 U 0 0.208 U 0.137 U 0 0.221 U 0.137 U 0 0.221 U 0.196 U 0 0.221 U 0.198 U 0 5.59 2.23 A 0 5.59 1.24 0 0.355 A 0.555 A 0 0.366 A 1.17 A 0 0.365 A 0.649 A 0 0.355 U 0.633 A 0 0.355 A 0.633 A 0 0.355 A 0.633 A 0 0.356 A 0.633 A 0 0.355 A 0.633 A 0 0.356 A 0.633 A 0 0.135 U 0.157 A 0 0.144 A 0.157 A 0	Date: 8/30/00 9/1/00 8/30 1/9 0.0827 U 0.182 U 0 1/9 0.102 U 0.137 U 0 1/9 0.102 U 0.137 U 0 1/9 0.208 U 0.196 U 0 0 1/9 0.221 U 0.198 U 0 0 1/9 0.221 U 0.198 U 0 0 1/9 0.221 U 0.198 U 0 0 1/9 0.223 A 0.273 A 0 0 1/9 0.255 A 0.198 U 0 0 1/9 0.565 A 1.24 0 0 1/9 0.565 A 1.17 A 0 0 1/9 0.336 A 0.655 A 0.655 A 0 1/9 0.366 A 0.655 A 0.655 A 0 1/9 0.386 A 0.665 A 0.177 A 0 1/9 0.386 A 0.665 A 0.167 A 0 1/9 0.167	mpling Date: 8/30/00 9/1/00 8/30 Units 0.0827 U 0.182 U 0 pg/g 0.102 U 0.137 U 0 pg/g 0.102 U 0.137 U 0 pg/g 0.208 U 0.196 U 0 0 pg/g 0.221 U 0.198 U 0 0 0 pg/g 0.221 U 0.198 U 0 0 0 0 pg/g 0.221 U 0.198 U 0 0 0 0 0 pg/g 0.235 A 0.273 A 0 0 0 0 0 pg/g 0.251 U 0.198 U 0 0 0 0 0 pg/g 0.355 A 1.2.8 B 1.74 0 0 0 pg/g 0.355 A 1.17 A 0 0 0 0 pg/g 0.356 A 0.356 A 0.655 A 0 0 0 pg/g 0.356 A 0.665 A	Sampling Date: 8/30/00 9/1/00 8/3 Units 0.0827 U 0.182 U 0 DD pg/g 0.102 U 0.137 U 0 DD pg/g 0.102 U 0.137 U 0 0 DD pg/g 0.208 U 0.196 U 0 0 0 DD pg/g 0.221 U 0.198 U 0 0 0 0 DD pg/g 0.221 U 0.198 U 0 0 0 0 Pg/g 0.221 U 0.198 U 0 0 0 0 0 Pg/g 0.221 U 0.198 U 0 0 0 0 0 Pg/g 0.224 A 0.126 A 1.17 A 0 0 0 0 F pg/g 0.336 A 0.665 A 1.17 A 0 0 0 F pg/g 0.336 A 0.665 A 0.663 A 0 0 0 DF pg/	Sampling Date: 8/30/00 9/100 8/3 CDD pg/g 0.0827 U 0.182 U 0 PECDD pg/g 0.1022 U 0 0 0 8-HxCDD pg/g 0.1022 U 0.137 U 0 0 0 8-HxCDD pg/g 0.102 U 0.1351 U 0 </td
		9/1/00 0.132 U 0.137 U 0.136 U 0.273 A 0.273 A 0.198 U 2.23 A 1.17 A 0.655 A 1.17 A 0.655 A 0.653 A 0.653 A 0.653 A 0.653 A 0.157 A 0.157 A 0.157 A 0.157 A	9/1/00 0.182 U 0.137 U 0.196 U 0.273 A 0.273 A 0.273 A 1.28 B 1.28 B 1.28 B 1.28 B 1.28 A 0.683 A 0.683 A 0.649 A 0.649 A 0.648 A 0.648 A 0.157 A 0.157 A	9/1/00 0.132 U 0.137 U 0.196 U 0.273 A 0.273 A 0.273 A 0.273 A 1.28 B 1.28 B 1.28 B 1.28 A 0.157 A 0.157 A 0.157 A 0.157 A 0.157 A	0/00 9/1/00 827 U 0.182 U 102 U 0.137 U 2208 U 0.136 U 352 A 0.137 U 221 U 0.196 U 355 A 0.273 A 559 2.23 A 555 A 0.265 A 555 A 1.24 555 A 0.655 A 355 A 0.655 A 355 A 0.655 A 354 A 0.649 A 355 A 0.655 A 324 A 0.643 A 355 A 0.563 A 334 A 0.643 A 355 A 0.157 A 338 A,B 1.67 A	8/30/00 9/1/00 0.0827 U 0.182 U 0.102 U 0.137 U 0.208 U 0.137 U 0.221 U 0.196 U 0.352 A 0.273 A 0.255 A 0.273 A 0.355 A 0.273 A 5.59 2.23 A 3.36 B 12.8 B 0.355 A 0.655 A 0.355 A 0.655 A 0.355 A 0.665 A 0.355 A 0.665 A 0.355 A 0.663 A 0.355 A 0.663 A 0.356 A 0.663 A 0.356 A 0.663 A 0.135 U 0.173 A 1.79 A 0.157 A 3.8 A,B 0.157 A	Date: 8/30/00 9/1/00 //g 0.0827 U 0.182 U //g 0.102 U 0.182 U //g 0.102 U 0.137 U //g 0.102 U 0.137 U //g 0.208 U 0.198 U //g 0.221 U 0.198 U //g 0.221 U 0.198 U //g 0.255 A 0.273 A //g 0.255 A 0.174 A //g 0.555 A 1.124 //g 0.3355 A 0.682 A //g 0.3355 A 0.682 A //g 0.3355 A 0.683 A //g 0.3355 U 0.683 A //g 0.177 A 0.167 A //g 0.173 A 0.157 A //g 0.157 A 0.157 A	mpling Date: 8/30/00 9/1/00 Units 0.0827 U 0.182 U pg/g 0.102 U 0.137 U pg/g 0.102 U 0.137 U pg/g 0.102 U 0.137 U pg/g 0.208 U 0.137 U pg/g 0.211 U 0.198 U pg/g 0.352 A 0.273 A pg/g 0.221 U 0.198 U pg/g 0.255 A 0.273 A pg/g 0.255 A 1.2.8 B pg/g 0.555 A 1.24 pg/g 0.555 A 1.24 pg/g 0.355 A 0.682 A pg/g 0.355 A 0.682 A pg/g 0.355 A 0.683 A pg/g 0.355 A 0.683 A pg/g 0.336 A 0.683 A pg/g 0.336 A 0.683 A pg/g 0.135 U 0.173 A pg/g 0.144 A 0.157 A pg/g 0.144 A 0.157 A	Sampling Date: 8/30/00 9/1/00 Units 0.0827 U 0.182 U DD pg/g 0.102 U 0.137 U DD pg/g 0.102 U 0.137 U DD pg/g 0.102 U 0.137 U DD pg/g 0.221 U 0.198 U DD pg/g 0.221 U 0.198 U DD pg/g 0.255 A 0.273 A DD pg/g 0.255 A 0.273 A DCD pg/g 0.256 A 1.2.8 B DS 33.6 B 1.2.8 B 1.17 A DF pg/g 0.565 A 1.2.8 B DF pg/g 0.565 A 1.17 A DF pg/g 0.565 A 1.17 A DF pg/g 0.336 A 0.683 A DF pg/g 0.355 A 1.17 A DF pg/g 0.356 A 0.683 A DF pg/g 0.356 A 0.673 A DF pg/g 0.135 U	Sampling Date: 8/30/00 9/1/00 r Units 0.0827 U 0.182 U PeCDD pg/g 0.102 U 0.132 U 8-HxCDD pg/g 0.102 U 0.137 U 8-HxCDD pg/g 0.102 U 0.137 U 9/1/00 0.102 U 0.198 U 0.137 U 8-HxCDD pg/g 0.221 U 0.198 U 7.8-HpCDD pg/g 0.2585 1.24 7.8-HpCDD pg/g 0.2585 1.24 7.8-HpCDF pg/g 0.555 A 0.198 U 7.8-HpCDF pg/g 0.336 B 1.24 7.8-HpCDF pg/g 0.356 A 1.24 7.8-HpCDF pg/g 0.356 A 0.665 A 7.8-HpCDF pg/g 0.356 A 0.665 A 8-HxCDF pg/g 0.356 A 0.663 A 8-HxCDF pg/g 0.356 A 0.773 A 8-HxCDF pg/g 0.135 U 0.173 A 7.8-HpCDF pg/g 0.157 A <
		0.182 U 0.137 U 0.136 U 0.273 A 0.273 A 1.28 B 1.28 B 1.28 B 1.28 A 1.27 A 0.655 A 1.17 A 0.653 A 0.653 A 0.653 A 0.157 A 0.157 A 0.157 A	0.182 U 0.137 U 0.196 U 0.273 A 0.273 A 0.273 A 1.28 B 1.28 B 1.24 0.655 A 1.124 0.655 A 1.17 A 0.683 A 0.683 A 0.683 A 0.157 A 0.157 A 0.157 A	0.182 U 0.137 U 0.137 U 0.196 U 0.273 A 0.273 A 0.198 U 2.23 A 1.17 A 0.655 A 1.17 A 0.649 A 0.649 A 0.683 A 0.173 A 1.67 A 0.157 A 0.157 A	827 U 0.182 U 102 U 102 U 0.137 U 0.137 U 0.137 U 0.137 U 0.136 U 0.136 U 0.138 U 0.196 U 0.137 A 0.273 A 0.273 A 0.273 A 0.128 B 336 A 0.265 A 0.128 B 336 A 0.128 A 117 A 336 A 0.157 A 117 A 117 A 116 A, B 115 U 116 A, B 116 A,	0.0827 U 0.182 U 0.102 U 0.137 U 0.208 U 0.136 U 0.221 U 0.196 U 0.352 A 0.273 A 0.221 U 0.198 U 5.59 2.23 A 33.6 B 1.24 0.555 A 0.555 A 0.365 A 0.555 A 0.365 A 0.649 A 0.386 A 0.655 A 0.386 A 0.663 A 0.135 U 0.683 A 0.135 U 0.173 A 0.144 A 0.157 A 0.156 A 0.156 A	nits 0.0827 U 0.182 U 7/9 0.102 U 0.137 U 7/9 0.102 U 0.137 U 7/9 0.208 U 0.137 U 7/9 0.221 U 0.137 U 7/9 0.221 U 0.198 U 7/9 0.221 U 0.198 U 7/9 0.221 U 0.198 U 7/9 0.255 A 0.198 U 7/9 0.355 A 0.198 U 7/9 0.356 A 1.124 7/9 0.356 A 0.655 A 7/9 0.356 A 0.655 A 7/177 A 0.653 A 1.177 A 7/9 0.356 A 0.653 A 7/9 0.356 A 0.653 A 7/9 0.356 A 0.653 A 7/9 0.173 A 1.177 A 7/9 0.173 A 0.175 A 7/9 0.157 A 1.167 A 7/9 0.157 A 0.157 A	Units 0.0827 U 0.182 U pg/g 0.102 U 0.137 U pg/g 0.102 U 0.137 U pg/g 0.102 U 0.137 U pg/g 0.208 U 0.137 U pg/g 0.210 U 0.137 U pg/g 0.221 U 0.138 U pg/g 0.221 U 0.198 U pg/g 0.255 A 0.198 U pg/g 0.355 A 0.198 U pg/g 0.356 A 1.124 pg/g 0.356 A 1.124 pg/g 0.356 A 0.665 A pg/g 0.356 A 0.655 A pg/g 0.356 A 0.655 A pg/g 0.356 A 0.653 A pg/g 0.356 A 0.653 A pg/g 0.135 U 0.653 A pg/g 0.135 U 0.173 A pg/g 0.174 A 0.175 A pg/g 3.8 A, B 0.165 A	Units Units 0.182 U 0.182 U DD pg/g 0.0827 U 0.137 U DD pg/g 0.102 U 0.137 U DD pg/g 0.102 U 0.137 U DD pg/g 0.208 U 0.136 U DD pg/g 0.352 A 0.136 U DD pg/g 0.355 A 0.198 U DD pg/g 0.221 U 0.198 U DD pg/g 0.255 A 0.198 U 0.0198 U 0.355 A 0.198 U 1.24 DCD pg/g 0.585 A 1.124 DF pg/g 0.585 A 0.655 A DF pg/g 0.336 A 0.655 A DF pg/g 0.386 A 0.658 A DF pg/g 0.386 A 0.658 A DF pg/g 0.135 U 0.173 A DF pg/g 0.135 U 0.173 A DF pg/g 0.157 A 0.157 A DCDF	Inflex Units Inflex Units CDD pg/g 0.0827 U 0.182 U PeCDD pg/g 0.102 U 0.137 U 8+HxCDD pg/g 0.102 U 0.137 U 8+HxCDD pg/g 0.208 U 0.137 U 9-HxCDD pg/g 0.225 A 0.135 U 9-HxCDD pg/g 0.221 U 0.198 U 7,8-HpCDD pg/g 0.255 A 0.223 A 7,8-HpCDD pg/g 0.255 A 0.2655 A 7,8-HpCDF pg/g 0.555 A 0.198 U 7,8-HpCDF pg/g 0.555 A 1.24 8-HxCDF pg/g 0.336 B 1.24 8-HxCDF pg/g 0.336 A 0.655 A 8-HxCDF pg/g 0.386 A 0.655 A 8-HxCDF pg/g 0.336 A 0.658 A 8-HxCDF pg/g 0.135 U 0.173 A 8.9-HyCDF pg/g 0.135 U 0.173 A 8.9-HyCDF pg/g 0.157

(1) Lab qualifiers: Notes:

A = The amount detected is below the Method Calibration Limit.

B = This compound was also detected in the blank. U = The compound was not detected above the sample specific estimated detection limit.

U* = The compound was not detected. Value is estimated maximum possible concentration.

(2) There are no TCLP criteria or TAGM cleanup goals for dioxins/furans.

p:\pit\projects\seneca\lttd\tables\ashresults.xls\collapsed-dioxins

Traverse Point	Percentage of Diameter	Calculated (1)	Repositioned
1	2.1	0.42	0.5
2	6.7	1.34	1.34
3	11.8	2.36	2.36
4	17.7	3.54	3.54
5	25	5	5
6	35.6	7.12	7.12
7	64.4	12.88	12.88
8	75	15	15
9	82.3	16.46	16.46
10	88.2	17.46	17.46
11	93.3	18.66	18.66
12	97.9	19.58	19.5

Figure 4-2 Traverse Points

(1) Assumes inside diameter of 20 inches; actual measurement to be field verified.

5 TREATMENT SYSTEM COSTS

5.1 LTTD TREATMENT COSTS

Remediation of contaminated soils from SEAD-59 may involve treatment using the LTTD process. For this reason, a cost estimate for remediation of SEAD-59 assuming LTTD treatment was developed. The cost was developed based on site data and the operational data presented in this report. Additionally, a cost for the LTTD treatment process alone was developed. The remediation costs for SEAD-59 are presented in **Table 5-1**. The complete cost analysis including assumptions is presented in **Appendix E**.

As shown in **Table 5-1**, the total cost for remediating soils contaminated with volatile and semivolatile organic compounds found in SEAD-59 using the LTTD process is \$5,640,000. A cost for the LTTD treatment process was also developed. The cost included purchase of additional soil handling equipment, labor (three operators), fuel for the treatment unit, controls and fees associated with the performance of a trial burn. Based on a treatment volume of 25,650 tons of soil and a LTTD treatment cost of \$2,773,000, the cost per ton for LTTD treatment is approximately \$108 per ton. Since the capital costs of purchasing processing equipment and the trial burn would be reduced as more soil is treated, the cost for treatment would reduce to approximately \$85 per ton by apportioning these costs over a longer period of time.

5.2 LANDFILL DISPOSAL COSTS

The alternative to treating organic compound contaminated soils with concentrations exceeding TAGMs is to dispose of them in a RCRA Subtitle D landfill. Therefore, landfill disposal costs were developed for comparison to the costs of treating the soils onsite using the LTTD process. The landfill disposal costs included tipping fees at a non-hazardous waste landfill, transportation costs and the costs of purchasing and placing clean fill in the excavations. All other costs are common between the LTTD soil treatment and landfilling alternative. The landfill disposal costs are estimated as follows:

Item	Cost
Transport and Disposal at Non-Hazardous Landfill	\$31.50/ton
Furnish and Install Common Backfill	<u>\$6.00/ton</u>
Total	\$37.50/ton

5.3 COMPARISON OF COSTS

The alternative to treating soils with concentrations exceeding TAGMs is to dispose of them in a RCRA Subtitle D landfill. Clearly, if the cost of treating and backfilling the treated soils exceeds the costs of disposal in a landfill with backfilling excavations with clean fill, LTTD treatment is not cost-effective. Therefore this comparison was performed.

Based on the unit rates presented and described above, the landfilling cost of approximately \$40/ton is significantly less expensive than LTTD treatment at between \$85 and \$108 per ton. LTTD treatment costs will only be competitive if fuel prices drop, landfill capacity is reduced or landfill disposal costs increase significantly.

.

Table 5-1 Summary of SEAD-59 Remediation Costs Using the LTTD Treatment Process LTTD Treatability Study Seneca Army Depot Activity

Remediation Task	Total Cost
Mobilization	\$5,290
Sampling and Testing	\$502,410
Site Work	\$244,120
Fencing	\$63,630
Wastewater Handling and Treatment	\$41,540
Soils Handling	\$1,116,520
Drum Removal and Disposal	\$222,850
Vegetative Cover (Area 1)	\$135,700
LTTD Process	\$2,773,710
Demobilization	\$37,040
Remedial Design	\$492,120
Well Installation	\$5,240
Total Remediation Cost	\$5,640,170

Notes:

See Appendix E for detailed cost-estimate and assumptions.

p:\pit\projects\seneca\lttd\evaluation report\costs\lttd\summary.xls

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Based on the results of the LTTD Treatability Study, the following conclusions can be made:

- The LTTD process was not entirely effective in reducing the PAH concentrations to levels below desired levels TAGMs.
- The LTTD process has no effect on metal constituent concentrations in the soils. The metal concentrations continue to exceed TAGMs following treatment, as expected.
- Fly ash will need to be disposed of in a RCRA Subtitle C or D landfill due to metals concentration far exceeding TAGMs.
- Limited stack gas sampling generally met the emissions criteria for dioxins/furans, total hydrocarbons and carbon monoxide. The results of VOST testing for VOCs were generally inconclusive.
- The treatment cost for the LTTD process is estimated at \$85 to \$108 per ton of soil treated, due mainly to the high fuel consumption. Landfilling of the soils without treatment is significantly less costly at approximately \$40 per ton.

6.2 **RECOMMENDATIONS**

Based on the results of the Treatability Study and the cost comparison, it is not recommended that the LTTD process be used for treatment of onsite soils. This recommendation is based mainly on the estimated high cost of the LTTD treatment process. Additionally, LTTD treated soils will still contain metals and probably some of the higher boiling PAHs at concentrations that would necessitate alternative remedial actions.

Appendix A

Large Process Flow and Instrumentation Diagrams

			* * * * 3			
/ ··· 0 +0.	914	Jun T	NOMENCLAFURE	WARKS DOC 40.	PART 10	541C

LEGEND FOR INSTRUMENT SYMBOLS

PAR .

金属

	ARST LETTER	SECOND LETTER	THIRD LETTER
A	ANALYSIS	ALARM	
3	BURNER FLAME		
С	CONDUCTIVITY		CONTROL
0	CENSITY	DIFFERENTIAL	
ε	VOLTAGE (EMF)	PRIMARY ELEMENT	
F	FLOW RATE	RATIO (FRACTION)	
G	GAGING	GLASS	
н	HAND		нісн
1	CURRENT	INDICATE	
J	POWER	SCAN	
ĸ	TIME		
4	LEVEL	LIGHT (PILOT)	LOW
м	MOISTURE		1.0
0		ORIFICE	
P	PRESSURE OR	POINT	19
q	QUANTITY OR	INTEGRATE OR TOTALIZE	- , A-
2		RECORD OR PRINT	
s	SPEED OR FREQUENCY	SAFETY	SWITCH
τ	TEMPERATURE		TRANSMIT
U	MULTIVARIABLE	MULTIFUNCTION	MULTIFUNCTION
v	VISCOSITY	1.	VALVE
w	NEIGHT OR FORCE	WELL .	1.1
Y	USER'S CHOICE		RELAY OR COMPUTER
z	POSITION		DRIVE

r	TOLDA	ANCES S NOTED												1	1
	DECIMAL		REV	DATE	SY			OESCA	PTIC	N			ZONE	CHKD	APVO
	TWO PLACES S	; 1				4	εv	3.23	3	1 0	N	5			(.in)
	FRACTIONAL =	-	TOOLE	ED ARMY CEPO	T SOSTE	ACC	ARMA	MENT	r N	ATE	us ERIEL	RE		ss co	MMANE
			SWETT	APPROVED					MAR	NI TION	PECU	LIAR	EQUIPME	NT .	24 C 2
	RUIGE	TS & 0 014	DARCON	FIELD SAFE	TY ACTIVI	TY		FU	NC	TIO	NAL	PR	ROCE	SS	i nig
	TRACER	PROJ ENGR.	1			_		CI	21	TRI	21	NIA	CDA	M	1
	1		FINAL A	PPROVAL				~	200	Inc	7L	UIP	un-	- 1	1
	OFTG CHECK	ENGRG. OV	1	DESAR - WAD		- 1		Al	E	1236	6 Ur	GRA	10E	14.00	+28
		1				1	301 3000	NT. NO.	SIZ	E		SI	7.22	-07	-
	PROJECT COORD	RT L M DIV		u	S NOW NW	MOD	216	24	F			20	100		
						ī	DATE 3	MAY 8	8	SCALE	: NON	16	. 12	or 11 m	i have
	CERTIFICATION AND AND AND AND AND AND AND AND AND AN	a management of the						N 7 2 1 1 1 1	- 11	TYCEP'	7 44 W	TO			2 4 4 C 1 2 5 6 6

STE Form JIAJ IREVI IJ Da H 8

21624 F SK 88-55-04

OATE 5/2/89 SCALE 1/2 - 1-0 STT 3 OF 9

P NOJECT COORD

DESIGN APPVL APPROVALS

ATLMO

3

5

STE Form 3183 / REV1 +3 Dec 64 8 6

USED ON

				2			1			1			,
		11				4 . 1						al la compañía de la	
	FN0 40. 0	TY UNIT			ENGLA	TURE	0.014.00	-	CODE NO.	PA	AT YUA	ABER	
													D
		SPARE									67		С
													3
										1			AC
	EXCEPT DECIMAL	AS NOTED	2	5/1/89	KDH	UPDAT	ED CO	NFIGUE	RATION	ALL	_	KDH	
	THO PLACES	± ±	464	DATE	5Y	9 E	VI	S I (0 N S	ZONE	CHKO	A	
	FRACTIONAL #	M.	SUBMIT	ARHYDER	-	ARN	AMENT	r, MUNIT	US ARIA	CHEMIC	AL CON	MAND	
1	DRAFTER	TS & O DIV	SAFETY	APPROVED		-	A	APE	1236 UP	GRADE	T		
	R VIGIL	PROJ ENGR.	FINAL	FIELD SAFE	TY ACTIV	ידוי	P 480	OWER					
_	DFTO CHECK	ENGINO. OV	-	USAR	MY ANC	COM	000	SENEC	A ARMY	DEPO	T		
_	PROJECT COORD	AT & M OIV	1-			21	624	F	SK	88-5	0-20	4	
	DESKIN APPYL	APPROVALS	1			DATE		EXCEP	T AS NOTED	2	rt 4 or	, 9	

Appendix B

Continuous Emissions Monitoring Data

SENECA ARMY DEPOT LTTD

Date: 30-Aug-00

Parameter	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	
Oxygen (%)	14.16	14.19	14.18	14.21	14.15	
Carbon Dioxide (%)	5.12	5.12	5.13	5.18	5.22	
Qs(std) dscfm						
HC as Propago (THC)		Calcu	lations			
npm dry	1.71	1 44	0.93	0.84	0.84	
ppm @ 3% O2	4.54	3.84	2.47	2 24	2 23	
lb/hr	0.00	0.00	0.00	0.00	0.00	
Carbon Monoxide (CO)						
ppm, dry	0.26	0.22	0.17	0.20	0.20	
ppm @ 3% O ₂	0.70	0.60	0.46	0.54	0.54	

EMISSIONS DATA

Equations:

lb/hr = $(1.3711-6 \text{ lb-Mole }^{\circ}\text{R} / \text{ft}^3) \times 60 \text{ min/hr } x \text{ Qs(std) } x \text{ MW } x \text{ ppm } / (T(\text{std}) + 460)$ ppm @ %O2 Correction = ppm measured x ((20.9 - O2 Correction)/(20.9 - %O2 measured))

> 68 3

Constants:

Standar Temp. T(std): Oxygen Correction:

CO, MW = 28.010 lb/lb-mole

SENECA ARMY DEPOT LTTD

Date: 1-Sep-00

EMISSIONS DATA

RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6
13.03	13.25	13.40	13.36	13.25	13.21
6.22	5.76	5.67	5.71	5.84	5.75
	Calcu	ations			
0.63	0.80	0.59	0.69	0.79	0.38
1.11	1.46	1.10	1.28	1.43	0.69
0.00	0.00	0.00	0.00	0.00	0.00
0.16	0.17	0.16	0.19	0.14	0.14
0.29	0.31	0.30	0.36	0.26	0.26
0.00	0.00	0.00	0.00	0.00	0.00
	RUN 1 13.03 6.22 0.63 1.11 0.00 0.16 0.29 0.00	RUN 1 RUN 2 13.03 13.25 6.22 5.76 Calcul 0.63 0.80 1.11 1.46 0.00 0.00 0.16 0.17 0.29 0.31 0.00 0.00	RUN 1 RUN 2 RUN 3 13.03 13.25 13.40 6.22 5.76 5.67 Calculations 0.63 0.80 0.59 1.11 1.46 1.10 0.00 0.00 0.00 0.16 0.17 0.16 0.29 0.31 0.30 0.00 0.00 0.00	RUN 1 RUN 2 RUN 3 RUN 4 13.03 13.25 13.40 13.36 6.22 5.76 5.67 5.71 Calculations 0.63 0.80 0.59 0.69 1.11 1.46 1.10 1.28 0.00 0.00 0.00 0.00 0.16 0.17 0.16 0.19 0.29 0.31 0.30 0.36 0.00 0.00 0.00 0.00	RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 13.03 13.25 13.40 13.36 13.25 6.22 5.76 5.67 5.71 5.84 Calculations 0.63 0.80 0.59 0.69 0.79 1.11 1.46 1.10 1.28 1.43 0.00 0.00 0.00 0.00 0.00 0.16 0.17 0.16 0.19 0.14 0.29 0.31 0.30 0.36 0.26 0.00 0.00 0.00 0.00 0.00

Equations:

lb/hr = (1.3711-6 lb-Mole $^{\circ}$ R / ft³) x 60 min/hr x Qs(std) x MW x ppm / (T(std) + 460) ppm @ %O2 Correction = ppm measured x ((20.9 - O2 Correction)/(20.9 - %O2 measured))

Constants:

Standar Temp. T(std): 68 Oxygen Correction: 7

CO, MW = 28.010 lb/lb-mole

SENECA ARMY DEPOT LTTD

Date: 21-Sep-00

EMISSIONS DATA

Parameter	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	
Oxygen (%)	13.25	12.87	12.65	12.51	12.54	
Carbon Dioxide (%)	5.71	6.07	6.20	6.39	6.38	
Qs(std) dscfm						
UC as Property (TUC)		Calcul	ations			
HC as Propane (THC)	0.97	0.52	0.57	0.45	0.24	
ppin, dry	1.59	0.52	0.37	0.45	0.24	
lb/hr	0.00	0.00	0.00	0.00	0.00	
Carbon Monoxide (CO)						
ppm, dry	0.90	0.13	0.03	0.04	0.01	
ppm @ 3% O ₂	1.64	0.22	0.06	0.06	0.01	
lb/hr	0.00	0.00	0.00	0.00	0.00	

Equations:

lb/hr = (1.3711-6 lb-Mole $^{\circ}$ R / ft³) x 60 min/hr x Qs(std) x MW x ppm / (T(std) + 460) ppm @ %O2 Correction = ppm measured x ((20.9 - O2 Correction)/(20.9 - %O2 measured))

Constants:

Standar Temp. T(std): Oxygen Correction: <u>68</u> 7

CO, MW = 28.010 lb/lb-mole

SENECA ARMY DEPOT LTTD

Date: 21-Sep-00

EMISSIONS DATA

Parameter	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	
Oxygen (%)	13.37	13.24	13.43	14.07	14.04	
Carbon Dioxide (%)	5.87	5.87	5.83	5.24	5.27	
Qs(std) dscfm						
		Calcul	ations			
nc as Propane (THC)	0.61	0.48	0.55	0.22	0.22	
ppm @ 3% O2	1.12	0.46	1.02	0.55	0.45	
lb/hr	0.00	0.00	0.00	0.00	0.00	
Carbon Monoxide (CO)						
ppm, dry	0.25	0.10	0.73	0.87	1.09	
ppm @ 3% O ₂	0.47	0.18	1.36	1.76	2.21	
lb/hr	0.00	0.00	0.00	0.00	0.00	

Equations:

 $lb/hr = (1.3711-6 lb-Mole ^{\circ}R / ft^{3}) x 60 min/hr x Qs(std) x MW x ppm / (T(std) + 460) ppm @ %O2 Correction = ppm measured x ((20.9 - O2 Correction)/(20.9 - %O2 measured))$

Constants:

Standar Temp. T(std): Oxygen Correction: <u>68</u> 7

CO, MW = 28.010 lb/lb-mole

SENECA ARMY DEPOT LTTD

Date:

22-Sep-00

EMISSIONS DATA

Parameter	RUN 1	RUN 2	RUN 3	RUN 4	RUN 5	
Oxygen (%)	13.65	13.53	13.27	13.19	13.17	
Carbon Dioxide (%)	5.63	5.52	5.69	5.78	6.55	
Qs(std) dscfm						
		Calcu	lations			
HC as Propane (THC)						
ppm, dry	0.08	0.45	0.46	0.39	0.54	
ppm @ 3% O2	0.15	0.84	0.84	0.69	0.98	
lb/hr	0.00	0.00	0.00	0.00	0.00	
Carbon Monoxide (CO)						
ppm, dry	0.33	0.28	0.20	0.21	0.36	
ppm @ 3% O ₂	0.63	0.53	0.37	0.38	0.64	
lb/hr	0.00	0.00	0.00	0.00	0.00	

Equations:

lb/hr = (1.3711-6 lb-Mole $^{\circ}$ R / ft³) x 60 min/hr x Qs(std) x MW x ppm / (T(std) + 460) ppm @ %O2 Correction = ppm measured x ((20.9 - O2 Correction)/(20.9 - %O2 measured))

Constants:

Standar Temp. T(std): 68 7 Oxygen Correction:

CO, MW = 28.010 lb/lb-mole

SENECA ARMY DEPOT LTTD

Date:

23-Sep-00

EMISSIONS DATA

Parameter	RUN 1	RUN 2	RUN 3	RUN 4	
Oxygen (%)	13.71	13.60	13.33	13.75	
Carbon Dioxide (%)	5.63	5.49	5.69	5.64	
Qs(std) dscfm					
		Calcu	ations		
HC as Propane (THC)					
ppm, dry	0.08	0.44	0.46	0.03	
ppm @ 3% O2	0.15	0.85	0.84	0.06	
lb/hr	0.00	0.00	0.00	0.00	
Carbon Monoxide (CO)					
ppm, dry	0.33	0.28	0.20	0.33	
ppm @ 3% O ₂	0.64	0.53	0.37	0.65	
lb/hr	0.00	0.00	0.00	0.00	

Equations:

lb/hr = (1.3711-6 lb-Mole °R / ft³) x 60 min/hr x Qs(std) x MW x ppm / (T(std) + 460) ppm @ %O2 Correction = ppm measured x ((20.9 - O2 Correction)/(20.9 - %O2 measured))

> 68 7

Constants:

Standar Temp. T(std): Oxygen Correction:

CO, MW = 28.010 lb/lb-mole

Appendix C

Sample Calculations

Reference Method 1 - Cyclonic Flow Check Calculations

Nomenclature

R	=	Average "yaw" angle, degree.
Y(i)	=	yaw angle measured at traverse point i, degree.
n	=	Total number of traverse points.

Calculate the average "yaw" angle found in the stack:

$$R = \sum \underline{Y(i)}_{n}$$

The measurement location is acceptable if \overline{R} <= 20°.

Reference Method 2 - Determination of Stack Gas Velocity

Nomenclature

- A Cross-sectional area of stack, m² (ft²)
- B(ws) Water vapor in the gas stream (from Method 5 or Reference Method 4), proportion by volume.

1/2

- C(p) Pitot tube coefficient, dimensionless.
- K(p) Pitot tube constant

for the metric system and

for the English system.

M(d) Molecular weight of stack gas, dry basis (see section 3.6) g/g-mole (lb/lb-mole).
 M(s) Molecular weight of stack gas, wet basis, g/g-mole (lb/lb-mole)

= M(d) (1 - B(ws)) + 18.0 B(ws)

- P(bar) Barometric pressure at measurement site, mm Hg (in. Hg).
- P(g) stack static pressure, mm Hg (in. Hg).
- P(s) Absolute stack gas pressure, mm Hg (in. Hg) = P(bar)+ P(g)
- P(std) Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
- Q(sd) Dry volumetric stack gas flow rate corrected to standard conditions, dcsm/hr (dscf/hr).
- t(s) Stack temperature, °C (°F).
- T(s) Absolute stack temperature, °K, (°R).

= 273 + t(s) for metric.

= 460 + t(s) for English.

- T(std) Standard absolute temperature, 293°K (528°R).
- v(s) Average stack gas velocity, m/sec (ft/sec).
- p Velocity head of stack gas, mm H_2O (in. H_2O).
- 3,600 Conversion factor, sec/hr.
- 18.0 Molecular weight of water, g/g-mole (lb/lb-mole).

Reference Method 2 - Determination of Stack Gas Velocity (continued)

Average Stack Gas Velocity.

Average Stack Gas Dry Volumetric Flow Rate.

To convert Q(sd) from dscm/hr (dscf/hr) to dscm/min (dscf/min), divide Q(sd) by 60.

Reference Method 4 – Moisture Content

Nomenclature

B(ws)	= Proportion of water vapor, by volume, in the gas stream.
M(w)	= Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-mole).
P(m)	= Absolute pressure (for this method, same as barometric pressure) at the dry gas meter, mm Hg (in. Hg).
P(std) R	= Standard absolute pressure, 760 mm Hg (29.92 in. Hg). = Ideal gas constant.
	0.06236 (mm Hg) (m[3])/(g-mole) (°K) for metric units and 21.85 (in. Hg) (ft[3])/(lb-mole) (°R) for English units.
T(m)	= Absolute temperature at meter, °K (°R).
T(std)	= Standard absolute temperature, 293°K (528°R).
V(m)	= Dry gas volume measured by dry gas meter, dcm (dcf).
∆V(m)	= Incremental dry gas volume measured by dry gas meter at each traverse point, dcm (dcf).
V(m(std))	= Dry gas volume measured by the dry gas meter, corrected to standard conditions, dcsm (dscf).
V(wc(std))	= Volume of water vapor condensed corrected to standard conditions, scm (scf).
V(wsg(std)) = Volume of water vapor collected in silica gel corrected to standard conditions.
1990 - 1997 (Britishing 1997)	scm (scf).
V(f)	= Final volume of condenser water, ml.
V(i)	= Initial volume, if any, of condenser water, ml.
W(f)	= Final weight of silica gel or silica gel plus impinger, g.
W(i)	= Initial weight of silica gel or silica gel plus impinger g

- Initial weight of silica gel or silica gel plus impinger, g.
- Y = Dry gas meter calibration factor.
- ρ(**w**) = Density of water, 0.9982 g/ml (0.002201 lb/ml).

Volume of Water Vapor Condensed

$$V(wc)std)) = \begin{array}{l} (V(f) - V(i) * \rho(w) * R * T(std) \\ ------ = K(_1) * (V(f) - V(i)) \\ P(std) * M(w) \end{array}$$

Where:

 $K(_1) = 0.001333 \text{ m}^3/\text{ml}$ for metric units = 0.04707 ft³/ml for English units

Volume of Water Vapor Collected in Silica Gel.

(W(f) - W(i)) * R * T(std) $= K(_2) * (W(f) - W(i))$ V(wsg(std)) =P(std) * M(w)

Where:

 $K(_2) = 0.001335 \text{ m}^3/\text{g}$ for metric units = 0.04715 ft³/g for English units Reference Method 4 – Moisture Content (continued)

Sample Gas Volume

 $V(m(std)) = V(m) * Y * \frac{(P(m)) * (T(std))}{(P(std)) * (T(m))} = K_{(3)} * Y * \frac{V(m) * P(m)}{(T(m))}$

Where:

K(₃) = 0.3858 °K/mm Hg for metric units = 17.64 °R/in. Hg for English units

NOTE: If the post-test leak rate (Section 2.2.6) exceeds the allowable rate, correct the value of V(m) per guidance in Method 5

Moisture Content

$$B(ws) = \frac{V(wc(std)) + V(wsg(std))}{V(wc(std)) + V(wsg(std)) + V(m(std))}$$

NOTE: In saturated or moisture droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one using a value based upon the saturated conditions (see Section 1.2), and another based upon the results of the impinger analysis. The lower of these two values of B(ws), shall be considered correct.

Verification of Constant Sampling Rate. For each time increment, determine the V(m). Calculate the average. If the value for any time increment differs from the average by more than 10 percent, reject the results and repeat the run.

Reference Method 5 – Determination of Particulate Emissions from Stationary Sources

Nomenclature

1

- A(n) Cross-sectional area of nozzle, m² (ft²).
- B(ws) Water vapor in the gas stream, proportion by volume.
- C(a) Acetone blank residue concentration, mg/mg.
- C(s) Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscm (g/dscf).
 - Percent of isokinetic sampling.
- L(a) Maximum acceptable leakage rate for either a pretest leak check or for a leak check following a component change; equal to 0.00057 m[3]/min (0.02 cfm) or 4 percent of the average sampling rate, whichever is less.
- L(i) Individual leakage rate observed during the leak check conducted prior to the "i[th]" component change (i = 1, 2, 3 n), m[3]/min (cfm).
- L(p) Leakage rate observed during the post-test leak check, m[3]/min (cfm).
- m(a) Mass of residue of acetone after evaporation, mg.
- m(n) Total amount of particulate matter collected, mg.
- M(w) Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-mole).
- P(bar) Barometric pressure at the sampling site, mm Hg (in. Hg).
- P(s) Absolute stack gas pressure, mm Hg (in. Hg).
- P(std) Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
- R Ideal gas constant,
 - 0.06236 mm Hg-m[3]/°K-g-mole
 - (21.85 in. Hg-ft[3]/°R-lb-mole).
- T(m) Absolute average dry gas meter temperature, °K (°R).
- T(s) Absolute average stack gas temperature, °K (°R).
- T(std) Standard absolute temperature, 293°K (528°R).
- V(a) Volume of acetone blank, ml.
- V(aw) Volume of acetone used in wash, ml.
- V(Ic) Total volume of liquid collected in impingers and silica gel, ml.
- V(m) Volume of gas sample as measured by dry gas meter, dcm (dscf).
- V(m(std)) Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscm (dscf).
- V(w(std)) Volume of water vapor in the gas sample, corrected to standard conditions, scm (scf).
- v(s) Stack gas velocity, calculated by Method 2, using data obtained from Method 5, m/sec (ft/sec).
- W(a) Weight of residue in acetone wash, mg.
- Y Dry gas meter calibration factor.
- ΔH Average pressure differential across the orifice meter, mm H₂O (in. H₂O).
- I(a) Density of acetone, mg/ml (see label on bottle).
- I(w) Density of water, 0.9982 g/ml (0.002201 lb/ml).

 Total sampling time, min. - (1) = Sampling time interval, from the beginning of a run until the first component change, min. - (i) = Sampling time interval, between two successive component changes, beginning with the interval between the first and second changes, min. - (p) = Sampling time interval, from the final (n[th]) component change until the end of the sampling run, min.

- 13.6 Specific gravity of mercury.
- 60 Seconds / minute
- 100 Conversion to percent.

Reference Method 5 – Determination of Particulate Emissions from Stationary Sources (continued)

Dry Gas Volume.

Correct the sample volume measured by the dry gas meter to standard conditions (20°C, 760 mm Hg or 68°F, 29.92 in. Hg) using:

$$V(m(std)) = \frac{V(m)^* Y * [T(std)] * [P(bar) + (13.6)]]}{\lfloor T(m) \rfloor} \frac{\Delta H}{\lfloor P(std) \rfloor}$$
$$= \frac{K(1) * V(m) * Y * [P(bar) + (13.6)]}{T(m)}$$

Where

NOTE: Equation can be used as written unless the leakage rate observed during any of the mandatory leak checks (i.e., the post-test leak check or leak checks conducted prior to component changes) exceeds L(a). If L(p), or (i) exceeds L(a), Equation must be modified as follows:

(a) Case I. No component changes made during sampling run. In this case, replace V(m) in Equation with the expression:

 $V(m) - \{(L(p) - L(a)) * \phi\}$

(b) Case II. One or more component changes made during the sampling run. In this case, replace V(m) by the expression:

$$V(m) - [(L(i) - L(a)) * \phi(1)] - \sum_{i=2}^{n} [(L(i) - (L(a)) * \phi(i)] - [(L(p) - L(a)) * \phi(p)]$$

and substitute only for those leakage rates (L(i), or L(p)) which exceed L(a).

Reference Method 5 – Determination of Particulate Emissions from Stationary Sources (continued)

Volume of Water Vapor

 $V(lc) * \{ \rho(w) \} * \{ RT(std) \}$ $V(w(std)) = ------ = K(_2) * V(lc)$ (M(w)) * (P(std))Where: $K(_2) = 0.001333 \text{ m}^3/\text{ml for metric units}$ $= 0.04707 \text{ ft}^3/\text{ml for English units}.$

Moisture Content.

 $B(ws) = \frac{V(w)((std))}{V(m)((std)) + V(w) ((std))}$

NOTE: In saturated or water droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one from the impinger analysis, and a second from the assumption of saturated conditions. The lower of the two values of B(w) shall be considered correct. The procedure for determining the moisture content based upon assumption of saturated conditions is given in the Note of Section 1.2 of Method 4. For the purposes of this method, the average stack gas temperature from Figure 5-2 may be used to make this determination, provided that the accuracy of the in-stack temperature sensor is $\pm 1^{\circ}C$ (2°F).

Acetone Blank Concentration

Acetone Wash Blank

 $W(a) = C(a) * V(aw) * \rho(a)$

Total Particulate Weight. Determine the total particulate catch from the sum of the weights obtained from Containers 1 and 2 less the acetone blank (see Figure 5-3).

Particulate Concentration.

 $c(s) = 0.001 \text{ g/mg} \quad \frac{* \text{ m(n)}}{V(m)(\text{std})}$

Reference Method 5 – Determination of Particulate Emissions from Stationary Sources (continued)

Conversion Factors:

From	То	Multiply by 0.02832	
Scf	m ³		
G	mg	0.001	
g/ft ³	gr/ft ³	15.43	
g/ft ³	lb/ft ³	2.205 x 10 ⁻³	
g/ft ³	g/m³	35.31	

Isokinetic Variation.

Calculation From Raw Data.

Where:

 $K_{(3)} = 0.003454 \text{ mm Hg} - m^3/\text{ml} - ^{\circ}\text{K}$ for metric units. = 0.002669-in. Hg - ft³/ml - $^{\circ}\text{R}$ for English units.

Calculation From Intermediate Values.

100 * T(s) * V(m(std) * P(std)

60 * T(std) * v(s) * \phi * A(n) * P(s) * (1 - B(ws))

= ------P(s) * V(s) * A(n) * φ * (1 - B(ws))

where:

| = ----

 $K_4 = 4.320$ for metric units

= 0.09450 for English units.

6.12 Acceptable Results. If 90 percent $\leq I \leq 110$ percent, the results are acceptable. If the particulate results are low in comparison to the standard, and I is over 110 percent or less than 90 percent, the Administrator may accept the results.
Seneca Depot LTTD EPA23

	FIELD I	DATA	
Standard Pressure P(std)	29.92 "Hg	Area of the nozzle	0.000456 ft ²
Standard Temperature, T(std)	68 °F	Pitot Coefficient, Cp	0.84
Meter Temperature, Tm	120.30 °F	Stack I.D.	19.75 inches
Stack Temperature, Ts	197.90 °F	Duct Length	0.00 inches
SQ. RT. dP	0.5859	Duct Width	0.00 inches
Meter Orifice, dH	2.24 "H ₂ O	Test Time	360.0 min.
Meter Volume, Vm	287.41 ft ³	Nozzle Diameter	0.2890 inch
Meter Correction, Y	0.9920	Stack Gas O ₂	14.00 % O2
Barometric Pressure, Pbar	29.82 "Hg	Stack Gas CO ₂	5.00 % CO2
Static Pressure, Pstatic	0.08 "H ₂ O	Stack Gas CO	0.00 % CO
Condensate - Vlc	467.8 grams	Stack Gas N ₂	81.00 % N ₂
		Stack Area, As	2.127 ft ²

CALCULATIONS

Vm(std) = [T(std) + 460 / Pstd] x Vm x y x (Pbar + (dH / 13.6)) / (Tm + 46	0) 259.98 dscf
Vw(std) = (0.04715 ft3/g) / 528 x [T(std) + 460] x Vlc	22.06 scf
Bws = Vw(std) / [Vm(std) + Vw(std)]	0.078
$Md = (0.44 \text{ x } \%CO_2) + (0.32 \text{ x } \%O_2) + [0.28 \text{ x } (\%N_2 + \%CO)]$	29.36 lb/lb-mole
Ms = (Md x (1-Bws)) + (18.0 x Bws)	28.47 lb/lb-mole
P(Stack) = Pbar + [Pstatic / 13.6]	29.83 "Hg
vs = 85.49 x Cp x (Sq.rt.dP) x [Sq.rt.(Ts + 460) / (Ms x P(stack))]	37.03 ft/sec
Qs = vs x As x 60	4727.25 acfm
$Qs(std) = Qs \times (1-Bws) \times [(T(std) + 460) / (Ts + 460)] \times (P(stack) / Pstd)$	3486.16 dscfm
I = 100 x Ts [0.002669 x Vlc + (Vm x Y / Tm) (Pbar + dH / 13.6)] / (Test time x vs x Pstack x An x 60)	96.74 %

Seneca Depot LTTD EPA23

Г

٦

	FIELD I	DATA	
Standard Pressure P(std)	29.92 "Hg	Area of the nozzle	0.000456 ft ²
Standard Temperature, T(std)	68 °F	Pitot Coefficient, Cp	0.84
Meter Temperature, Tm	109.30 °F	Stack I.D.	19.75 inches
Stack Temperature, Ts SQ. RT. dP	197.50 °F 0.5787	Duct Length Duct Width	0.00 inches 0.00 inches
Meter Orifice, dH	2.19 "H ₂ O	Test Time	360.0 min.
Meter Volume, Vm Meter Correction, Y	273.401 ft ³ 0.9920	Nozzle Diameter Stack Gas O ₂	0.2890 inch 14.00 % O2
Barometric Pressure, Pbar	29.74 "Hg	Stack Gas CO ₂	5.00 % CO2
Static Pressure, Pstatic	0.07 "H ₂ O	Stack Gas CO	0.00 % CO
Condensate - Vlc	478.3 grams	Stack Gas N ₂	81.00 % N ₂
		Stack Area, As	2.127 ft^2

CALCULATIONS

$Vm(std) = [T(std) + 460 / Pstd] \times Vm \times y \times (Pbar + (dH / 13.6)) / (Tm + 460)$) 251.38 dscf
Vw(std) = (0.04715 ft3/g) / 528 x [T(std) + 460] x Vlc	22.55 scf
Bws = Vw(std) / [Vm(std) + Vw(std)]	0.082
$Md = (0.44 \text{ x } \%CO_2) + (0.32 \text{ x } \%O_2) + [0.28 \text{ x } (\%N_2 + \%CO)]$	29.36 lb/lb-mole
$M_s = (Md x (1-Bws)) + (18.0 x Bws)$	28.42 lb/lb-mole
P(Stack) = Pbar + [Pstatic / 13.6]	29.75 "Hg
vs = 85.49 x Cp x (Sq.rt.dP) x [Sq.rt.(Ts + 460) / (Ms x P(stack))]	36.65 ft/sec
Qs = vs x As x 60	4677.91 acfm
$Qs(std) = Qs \times (1-Bws) \times [(T(std) + 460) / (Ts + 460)] \times (P(stack) / Pstd)$	3427.15 dscfm
I = 100 x Ts [0.002669 x Vlc + (Vm x Y / Tm) (Pbar + dH / 13.6)] / (Test time x vs x Pstack x An x 60)	95.15 %

PARSONS ENGINEERING SCIENCE, INC. Run 7

S S 9-Z Operator: Date:

K-FACTOR: 6.538

				•				
	11	0.014	Final	62.7	2375	952.2	a Gel	Silici
T. T. S. S. S. S. S.	15	0.010	Initial	\wedge			NA -	5
m	"Hg Vacuur	cfm Jpm	LEAK RATE	1			NIA -	4
	a second second second	a then be and the	A Provide State of State	5.1	515.8	5.025	Din	3
				1.141	632.9	1.4LL	DI	2
	5.0	14.0		269.3	587.8	857.1	ы	1
8	CO_2	02	Time	Net	Initial	Final	Contents	npinger
	IPOSITION	GAS CON		ms	INTS, gra	CONTE	PINGER	IM

9.2.89

266.01 18.1

BROWN

161

QTZ

Probe Type / Length:

Nozzle # / Size:

Orifice dH@ / y:

Control Box #:

Comments	7446 0927												
Rotameter (liters/min)	NA						_	_	_		_		· (
Vacuum	9.0	9.0	9.0	9.6	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	\langle
Impinger	50	5	52	SI	52	53	53	53	3	54	55	52	
°F Oven	228	622	052	022	231	230	231	230	231	232	230	612	1
nperatu e Prohe	250	250	252	252	052	250	NS2.	250	250	252	250	250	CHANG
Stack	193	192	193	193	191	193	195	195	198	200	201	Jak.	Poet
Meter	100	101	103	104	103	104	105	106	L01	107	110	112	く
diff.	for2	2.09	2,10	2.09	2.16	2.16	2.22	2.10	22.2	2.29	2.2	2.22	7
ur cH ₂ O	0.32	0.32	0.33	0.32	0.33	0.53	0.34	0.33	0.34	0.35	0.34	+C. 0))
(fd* Merer (ff* or Hiers):	021.011	183.055	195.105	206.285	071.112	228.511	239.90	251.47	262.704	274.0	285.3	186.962	308.437
	0	15	30	45	00)	75	90	501	120	135	150	105	081
Samle	~	1	3	4	8	e	2	8	4	al	11	21	

Run #:

SENELA ARMY DIDOT

Ltro outer STACK

Test Location: Test Method /

Company:

ŝ

NIXOID

EPA-23

Parameter:

"H₂O

10.07 0.84

Static Pressure:

Pitot Coeff .:

Filter #:

"Hg

29.74 19.75

Barometric Pressure: Stack Dimensions:

A D
) "H ₂ 0 N
2 2.09 11
1 2.22 112
1 2.22 113
2,28 111
2-22 114
2.22 115
2.16 114
2.22 114
2.28 119
11 82.2 5
3 2.14 111
27 2-19 100

and the end of the terms and the second area

en el sector de la constante de la constancia de constancia de la Address the state

	<u> </u>				·							d'	-													
E, INC.	.538		8				u u				and the second	a cha a c	668	2201	107.2	578	570	(our	575	4	2010	11	45	22 3	40	N
SCIENC	5) H (?	POSITION	g	5,0			Hg Vacuur	15	10"				stat							F (124)		L.	1.2	1 1	10	
ERING	K-FACTO	GAS COM	õ	14.0			cfm Ipm	0.010	610.0				121							÷						
IS ENGINE			Time				LEAK RATE	Initial	Final				MA												+	
ARSON		ams	Net	214.8	205.9	9.4	1	1	1.64	467.8	Variation	2 F	<u>.</u>	7.0	016	012	9L	7.0	0.2	7.0	7.0	7.0	20	2.6		
e		ENTS, gra	Initial	638.9	015.0	6145			1219	TOTAL:		10	20	21	51	Ś	25	15	15	C	52	53	25	52		
2		R CONT	ts Final	943.7	5.028	545.9			7105.1			121	Ś	220	225	222	225	226	822	225	222	226	172	522		
- 30-0	St S	MPINGE	r Content	DIHIC	DIHIO	EWIN	MA	N/M -	ca Gel		and a		624	052	150	250	ç,	252	152	252	252	252	152	052		
8	M.	II	Impinge		2	3	4	5	Sili) ea 	192	101	190	198	L61	191	198	194	002	200	200	194	241		
Run #: Date:	Operator											láta	~	108	. 021	124	124	127	126	124	125	126	124	021		
Ditt.)		1				ī	1	2	1	5	in the second	A 11-	0.7	91.2	2.16	2.01	2.07	2.22	E E E	the state	11.2	32.2	1.35	2.23		
y Depet (1	(Nix)		_"Hg	_"H2O				1 0.99	- 6.	1 0.28		220	1	\$5.0	0.33	0.32	ŋ.32	0.34	0.35	0.35	0.34	0.35	0.36	0.35		
US ARMY SENEGARM	EA-23 (DIO	s: 19.75"	ure: 29.82	0.08	0.84	11 mar (1)	trun and	1.81	igth: QTE			88 2.118	1.1.1.0	022.220	405.115	916.850	920.720	940.680	0151-196	964:255	975.960	987.96	999.8	1011.78	1023.621	
ny: cation:	ethod / ter:	imension	tric Press	ressure:	Jell.:	Dou #.	BOX #:	ung / y:	ype / Ler	I SIZIC:	1.	0		15	æ	45	00	75	06	501	021	135	13	105	180	
Compai Test Lo	Test Mo Paramet	Stack D	Barome	Static P	Filter #	Fuler #	Control of		Probe 1	Nozzie		-		1	m.	4	2	0	1	æ	8	01	=	12	*	

to da

N.

0

	5-111 9 TE		Comments	560	SUS	595	538	SSU	556	S4S	543	544	547	562	553		outlet Dirt tend			
ŕ.	VI OVEN	Rotameter	(liters/mln)	NA	· mal										>	6				
- 259	SH -	Vacuum	Hg	Ø	\$	\mathcal{S}	Ø	20	8	0	0	8	8	8	\$					
1	Ple		Impinger	\$3	54	55	55	55	54	55	55	21	55	55	55					
		, °F	Oven	225	225	220	052	228	2.30	122	130	1251	622	422.	230					
		nperature	Probe	052	052	252	122	250	252	p\$7.	250	052	052	250	1:30					
		Ten	Stack	199	002	198	199	102	200	001.	199	198	199	2002	nol.		,			197.9
			Meter	ニー	112	113	120	120	071	120	122	123	124	123	122					120.3
		Hp	"H ₂ 0	2.22	2.35	2.28	2.35	82.28	22.2	2.22	228	2.22	222	82-2	92.2					2.24
		dÞ	"H ₂ 0	0.34	0.36	0.35	0.36	0.35	0:34	0.34	b. 35	0.34	0.34	0.35	0.35					0.583
	ζ.x	Gas Meter	(ft ³ or liters)	1023.621	1035.84	1047.300	1058,890	505.1201	011-2801.	-1095.16-	1107.1	1121,00	1134.24	202.1411	11 58.305	169.520				281.410 ft
	- 1 DIO		Time	100	561	012	225	240	252	Obe	582	300	315	330	345	300				360min
	Run:	Sample	Point	1	2	Μ	4	С	e	ŕ	œ	8	01	11	21					total leve.

0

-

1 7.11

X

Appendix D

Operating Data Logs

Ó

Company: SENECA ARMY DEPOT Test I Arration: TTTT

Date: 8/30/2000

LTTD OPERATING DATA

0

Company: SENECA ARMY DEPOT Test Location: LTTD

Date: 9/1/2000

		Barrels	1	3	9	8	12	14	16	18	21	24	26	28	31	34				
Outlet	Soil Temp	Ч°																		
Rotary	Kiln	RPM	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1				
Fuel	Usage	Gals	1903	1924	1962	1976	2007	2023	2048	2071	2104	2131	2158	2171	2197	2219				
Burner End	Temp	Чo	1413	1398	1466	1454	1421	1381	1409	1364	1387	1435	1425	1414	1383	1437				
Draft	Fan	%	32	33	33	42	35	39	36	32	34	33	33	34	32	34				
Jow Temp	Cooler	Чo	244	247	250	250	250	251	251	252	256	256	256	250	252	256				
High Templ	Cooler	4°	678	676	670	670	673	679	673	675	686	685	682	686	680	689				
Afterburner H	Temp	Ч°	1572	1577	1563	1566	1567	1579	1570	1575	1596	1596	1596	1601	1613	1620				
Rotary Kiln	Temp	Ъ	513	489	441	441	449	474	426	438	494	428	430	433	451	429				Javal
		Time	906	930	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530				Revised 04/12/05 . c.

 \bigcirc

Company: SENECA ARMY DEPOT T I Acretion: T TTTD T Company: SENECA ARMY DEPOT

Date: 9/20/2000

 \bigcirc

Barrels

 $^{\circ}$

Soil Temp Outlet

	-	· .															
	Rotary	Kiln	RPM	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	
	Fuel	Usage	Gals	2294	2324	2348	2372	2396	2420	2448	2468	2498	2540	2568	2599	2629	
	Burner End	Temp	\mathbf{H}^{0}	1178	1171	1183	1183	1285	1305	1311	1321	1345	1366	1365	1360	1491	
	Draft	Fan	%	46	48	33	32	31	31	33	33	33	33	33	33	36	
	Low Temp	Cooler	Чo	202	205	210	210	212	215	215	219	220	223	220	222	223	
	High Temp	Cooler	^{o}F	627	640	672	674	672	679	680	682	695	697	694	696	717	
I TTD	Afterburner	Temp	Ч°	1425	1463	1549	1551	1549	1590	1592	1595	1620	1639	1610	1604	1703	
ect I oration.	Rotary Kiln	Temp	Ч°	373	369	455	456	457	450	444	442	440	402	408	410	325	
F			Time	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730	
																- P.C.	

Revised 04/12/95 - c:\excel

0

		Date: 9/21/2000		Fuel Rotary Outlet	Usage Kiln Soil Temp	Gals RPM ^o F Barrels	2694 1.5	2719 1.2	2743 1.5	2775 1.4	2799 1.4	2824 1.4	2848 1.4	2872 1.4	2896 1.4	2926 1.4	2951 1.4	2985 1.4	3022 1.4				
	DATA			Burner End	1 emp	Ϋ́	1244	1333	1370	1420	1480	1534	1560	1484	1447	1450	1450	1451	1471				
)	LITID			Draft I	ran	%	34	41	33	33	34	33	38	41	41	42	41	42	42				
	OPERA			ow Temp	00101	H,	192	193	200	199	200	198	201	213	212	212	211	214	213				
	-	IY DEPOT		ligh TempL	0	<u>Ч</u>	644	656	660	661	664	665	660	663	664	665	665	663	670				
		ENECA ARN	011	Afterburner H Temn	on on	L	1490	1533	1601	1580	1575	1554	1550	1440	1447	1451	1451	1451	1465				
		Company: S St Location: L		Rotary Kiln	1 Citty	I.	341	274	280	320	370	368	369	375	388	379	380	385	384				
		Te			Timo	1 Ime	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830				

Company: SENECA ARMY DEPOT t Location: TTTD T DEPOT

Date: 9/22/2000

tion: LTT	ocation: LTT	4	
tion: L	ocation: L	E	_
tion	ocation	•	Ц Ц
	oca	•	tior
st L		E	le

		Barrels																	
Outlet	Soil Temp	Ч°																	
Rotary	Kiln	RPM	1.5	1.2	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4				
Fuel	Usage	Gals	3082	3112	3137	3161	3192	3237	3261	3298	3329	3369	3394	3418	3442				
Burner End	Temp	Чo	1158	1226	1226	1256	1260	1291	1290	1294	1298	1370	1377	1377	1381				
Draft	Fan	%	35	44	44	44	44	43	43	44	44	44	45	48	44				
Low Temp	Cooler	Чo	213	223	220	230	228	231	231	233	230	233	232	234	233				
High Templ	Cooler	Чo	664	697	669	722	716	719	710	726	728	728	729	732	721				
Afterburner	Temp	Ч°	1436	1537	1550	1577	1573	1587	1585	1588	1585	1618	1616	1612	1593				
Rotary Kiln	Temp	Ч°	316	332	348	409	415	407	406	399	399	372	399	341	403				
		Time	1035	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630				

Revised 04/12/95 - c:\excel

LTTD OPERATING DATA

 \bigcirc

Company: SENECA ARMY DEPOT Test Location: LTTD

Date: 9/23/2000

	Dorrolo	DallEl													
Outlet	ou temp	4		5											
Rotary	DDM	IN IN	1.5	1.2	1.5	1.4	1.4	1.4							
Fuel L ^{Ieage}	Gale	Callo	3507	3570	3630	3682	3750	3778							
Burner End Temp	or Delinit		1271	1368	1379	1368	1323	1337							
Draft Fan	rdii 0,	~	41	41	52	45	46	45							
ow Temp Cooler	oF P		209	230	216	216	227	228							
ligh TempL Cooler	- Holici		C/9	729	723	696	726	728							
Afterburner H Temn	durar 4,		14/8	1608	1599	1565	1600	1595							
Rotary Kiln	duro 1		40/	342	585	449	551	530							
	Time	1100	C160	1015	1115	1215	1315	1350							

Revised 04/12/95 - c:\excel

Appendix E

Detailed Cost Estimate

APPENDIX E SENECA ARMY DEPOT ACTIVITY SEAD-59 SOIL REMEDIATION USING LTTD PROCESS COST ESTIMATE TABLE OF CONTENTS

Introduction

A detailed cost estimate was developed for remediation of SEAD-59 soils using the LTTD process. The cost estimate was developed using the site information for SEAD-59 contained in the *Decision Document for Removal Actions at SWMUs SEAD-59 and SEAD-71 Senaca Army Depot Activity*, April 2001. Quantities used were based on figures presented in Section 4. Costs were based on information from the Micro Computer Aided Cost Engineering System (MCACES, a component of the Tri-Service Automated Cost Engineering System, TRACES), Version 1.2 (copyright 1994-1997). Quotes from area suppliers, generic unit costs, vendor information, conventional cost estimating guides and prior experience were used to supplement this information. The cost estimates presented have been prepared for guidance in project evaluation. The actual costs of the project will depend on true labor and materials costs at the time of construction, actual site conditions, competitive market condition, final project scope, and other variables.

Construction costs include those expenditures required to implement the remedial action. Both direct and indirect costs are considered in the development of construction cost estimates. Direct costs include construction costs or expenditures for equipment, labor, and materials required to implement a remedial action. Indirect costs include those associated with engineering, construction management, and other services necessary to carry out a remedial action. O & M and monitoring costs, which include labor, maintenance materials, and purchased services, have also been estimated.

Assumptions

The following assumptions were used to develop the cost estimates:

- The contractor(s) will mobilize to the site, clear and grub the area of work, establish access roads and survey the areas to be remediated. It was estimated that 3 acres of land will require light clearing and grubbing. Clearing and grubbing is necessary to perform soil excavation.
- Erosion control (silt fence and haybales) will be installed around drainage swales, excavation areas, and stockpile areas. Erosion control is necessary to prevent soil particles from

migrating off-site and into drainage swales during construction. The erosion control will be maintained throughout construction.

- A temporary chain link fence will be constructed around the excavation areas. The fence will be removed following backfilling.
- A surveyor will be on site for approximately 10 days to layout the excavation areas and survey record information.
- In situ volumes of material are based on the areas and proposed excavation depths presented in Figures 4-1 of the SEAD-59 Decision Document. For estimating purposes, an expansion factor of 30 percent was used to estimate ex situ volumes for soil. An additional 10% was used to address the uncertainty of the volume estimation. A conversion factor of 1 cubic yard equals 1.5 tons of moist material was used for estimating purposes. The volume of material requiring excavation is estimated at 32,235 cy.
- It is assumed that approximately 20 55-gallon drums will be encountered during the excavation. The drums will be overpacked and sent to a hazardous waste landfill. Additionally, 3,800 tons of non-hazardous debris will be encountered during the excavation.
- Cleanup verification sampling of the excavations will be conducted at a frequency of one sample every 50 feet of excavation walls or floors. This frequency will be revised based on the actual cleanup verification work plan.
- The excavations will need to be dewatered prior to performing cleanup verification sampling. It is assumed that four 21,000 gallon steel tanks will be required to hold the water prior to sampling and treatment. An air stripper will be used to treat the soil. Approximately 15 water samples will be analyzed to confirm the effectiveness of treatment.
- Excavated soils will be placed in a stockpile area prior to treatment. The stockpile areas will be lined (and covered) with a 6-mil polyethylene liner. Each pile will consist of 150 cubic yards and will occupy a space of approximately 5000 square feet. Prior to treatement, one composite sample from each pile will be obtained and submitted for analysis.
- Depending on the results of the testing, the soil will either be processed by LTTD or transported and placed back in the excavation areas. It is assumed that 75 percent of the excavated soil will be treated due to the presence of PAHs and TPH.
- The LTTD treatment process will be completed by three operators. Maintenance of the equipment will be minimal. Fuel oil consumption of 12 gallons per ton was based on the treatability study.
- Additional costs for the LTTD process will include a screen, input and exit conveyors, continuous emissions monitoring equipment, controls, and a trial burn test. A wheeled frontend loader will be used to unload the piles from the conveyor for transport back to the excavation areas.
- The treated soils will sampled and analyzed at a rate of one sample for every 150 cy of treated soils.

- The excavated soils and treated soil results will be compared to NYSDEC TAGM 4046 standards or background. Untreated or treated soils which meet the TAGMs will be backfilled. It is assumed that 15 percent of the soils will require retreatment to further decrease concentrations below TAGMs.
- Area 1 will be backfilled using treated soil which meets the TAGMs. All other areas will be backfilled with clean common fill. Six inches of topsoil will be placed to finalize the grade and establish vegetative growth.
- Confirmatory soil borings will be advanced in the vicinity of the excavated areas to show that soils above TAGMs are not present. One sample will be collected and analyzed from each of 60 borings. One sample per drum of boring cuttings will be sampled and analyzed.

Post-Closure Monitoring

• Site groundwater will be monitored on a semi-annual basis. Four new wells will be installed as necessary to ensure that the monitoring program is sufficient to detect any migration from the area.

Operations and Maintenance (O & M)

• It is assumed that long-term operations and maintenance will not be required.

Contingencies

The following markups were used to develop the cost estimate.

Contractor costs are calculated as a percentage of the running total as:

- 5% for field office support. Field office support includes items such as supervision at the job, site, temporary facilities, temporary material storage, temporary utilities, operation and maintenance of temporary job-site facilities, preparatory work, health and safety supplies and requirements, transportation vehicles, cleanup, and equipment costs not chargeable to a specific task.
- 15% for home office support. Home office support includes items such as management and office staff salary and expense, main office building furniture and equipment, utilities, general communications and travel, supplies, general business insurance, and taxes. It also includes job specific items such as engineering and shop drawings/surveys, insurance (project coverage), schedules & reports, and quality control.

- 10% for profit. Profit provides the contractor with an incentive to perform the work as efficiently as possible. The profit used in the cost estimates is based on the current average profit for contractors in the Syracuse area.
- 4% for bond. The bond rate is based on recommendations from the USACE Engineering Instructions – Construction Cost Estimates (September 1997) for hazardous, toxic and radioactive waste (HTRW) projects.

Owner's cost are calculated as a percentage of running total as:

- 10% for design contingency. Design contingencies include construction cost increases due to design incompleteness, detail changes, alternative design changes, and associated costing inaccuracy. The design contingency used is based on recommendations from the USACE Engineering Instructions – Construction Cost Estimates (September 1997) for remedial action projects.
- 3% for escalation. This item reflects the cost inflation beyond the effective pricing date of the baseline estimate. A rate of 3% per year is assumed.
- 25% for construction contingency. Construction contingencies are a reserve for construction cost increases due to adverse or unexpected conditions such as unforeseeable relocations, site conditions, utility lines in unknown locations, quantity overruns, or other unforeseen problems beyond interpretation at the time of or after contract award. The construction contingency used is based on recommendations from the USACE Engineering Instructions Construction Cost Estimates (September 1997) for remedial action projects and on experience.
- 3.5% for other costs. Other government costs include the following: engineering during construction (EDC) (1.5%), as-builts (0.5%), operation and maintenance (O&M) manuals (0.5%), and government laboratory quality assurance (1.0%). These rates are based on recommendations from the USACE Engineering Instructions Construction Cost Estimates (September 1997) for remedial action projects.
- 8% for construction management. These rates are based on recommendations from the USACE Engineering Instructions – Construction Cost Estimates (September 1997) for remedial action projects.

Thu 03 May 2001 Eff. Date 10/03/96

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate

.....

TIME 14:37:00

TITLE PAGE 1

SEAD-59 EXCAVATION/LTTD/VEGETATIVE COVER OVER TREATED SOILS

Designed By: Parsons ES Estimated By: Parsons ES

Prepared By: Parsons ES

Preparation Date: 12/12/00 Effective Date of Pricing: 10/03/96 Est Construction Time: 120 Days

> Sales Tax: 7.0%

This report is not copyrighted, but the information contained herein is For Official Use Only.

> MCACES for Windows Software Copyright (c) 1985-1997 by Building Systems Design, Inc. Release 1.2

> > Currency in DOLLARS

TIME 14:37:00

Thu 03 May 2001 Eff. Date 10/03/96 TABLE OF CONTENTS

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate

CONTENTS PAGE 1

SUMMARY REPORTS SUMMARY PAGE	
PROJECT OWNER SUMMARY - SUBSYSTM1	
DETAILED ESTIMATE DETAIL PAGE	
33. Remedial Action	
01. Mobilization1	
02. Sampling, & Testing	
06. Groundwater1	
11. Soil1	
16. Confirmatory-Soil1	
17. Post LTTD Treatment2	
18. Soil Boring Grid South of Road	
20. IDW from Soil Borings2	
03. Site Work	
02. Clearing and Grubbing2	
08. Survey Remediation Area	
11. Erosion control	
04. Fencing	
05. Wastewater	
1. Wastewater	
07. Air Stripping	
10. Soil Remediation	
02. Sitework - Soils	
04. Drum Removal	
06. Disposal: hazardous	
10. Vegetative Cover at Area 1	
15. LTTD	
18. Confirmatory Soil Borings	
26. Demobilization	
04. Decontaminate Equipment	
06. Demobilization	
28. Remedial Design.	
30. Well Installation 6	

No Backup Reports...

* * * END TABLE OF CONTENTS * * *

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate

.....

TIME 14:37:00

TITLE PAGE 2

PROJECT BREAKDOWN:

The estimate is structured as follows and uses a 2 digit number at each level. The 2 digit numbers for the first 3 title levels are taken from the HTRW Remedial Action Work Breakdown Structure. The 2 digit numbers for the remaining title levels are user defined. The detail items are at LEVEL 6.

> LEVEL 1 - WBS Level 1 (Account) LEVEL 2 - WBS Level 2 (System) LEVEL 3 - WBS Level 3 (Subsystem) LEVEL 4 - User Defined (Assembly Category or Other) LEVEL 5 - User Defined (Assembly or Other)

PROJECT DESCRIPTION:

The following is a summary of the activities that are presently included in Alternative 2.

LTTD: Excavate/Treat/Solid Waste Cover

- Mobilize, site prep, clear/grub, erosion control, and survey
- Excavate soils from Areas 1, 2, 3, 4 and Others.
- Treat water by air stripping.
- Screen excavated soils to remove drums, paint cans, debris.
- Drums to hazardous waste landfill and construction debris to solid waste landfill.

- Install 40 soil borings in the area south of the road between Areas 2,3,4,0ther to fill data gap by confirming that no contamination in these areas.

- Transport soils with PAHS > TAGM to on-site LTTD and treat.
- Backfill excavations south of road with clean fill.
- Backfill Area 1 with treated soil.
- Cover Area 1 with vegetative cover to protect the eco system.
- Demobilize
- Long term monitoring.

PRODUCTIVITY:

Productivity, as a baseline and as taken from the Unit Price Book

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate

(UPB) Database, assumes a non-contaminated working environment with no level of protection productivity reduction factors. When required, productivity for appropriate activities will be adjusted for this project as follows:

1.	Level	of	Protection	A	-	Productivity _	%
2.	Level	of	Protection	В	-	Productivity _	_%
3.	Level	of	Protection	С	•	Productivity _	_%

4. Level of Protection D - Productivity 85%.

All activities are conducted in Level of Protection D.

The following daily time breakdown was assumed.

.....

	Level	A Level	B Level	C Level D
Availiable Time (minutes)	480	480	480	480
Non-Productive Time (minutes):				
Safety meetings	20	20	10	10
Suit-up/off	60	60	40	10
Air tank change	160	20	0	0
*Breaks	60	60	40	30
Cleanup/decontamination	20	20	20	20
Productive Time (minutes)	160	300	370	410
Productivity:	160/480	300/480	370/480	410/480
	X100%	X100%	X100%	X100%
	33%	63%	77%	85%
Example:				
Normal Production Rate (CY/H	IR) 250	250	250	250
X Productivity	.33	.63	.77	.85
=Reduced Production Rate(CY/H	IR) 83	158	193	213
* Break time ranges (minutes)	60-140	60-140	40-140	30-70

The following list are the areas where there is the biggest potential for changes in cost due to uncertainties:

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate

TITLE PAGE 4

Quantities of soil over TAGMs could increase based on the results of the confirmatory sampling done in the excavation.
The quantities of soil requiring disposal as hazardous waste could increase

based on the results of the confirmatory sampling done in the soil piles.

Contractor costs are calculated as a percentage of running total as 5 % for field office support 15 % for home office support

10 % C

- 10 % for profit
- 4 %for bond

Owner's cost are calculated as a percentage of running total as

2 % for design contingency

3 % for escalation

25 % for construction contingency

- 3.5 % for other costs
- 8 % for construction management

OTHER GOVERNMENT COSTS:

Other Government Costs consist of:

*Engineering and Design During Construction (EDC)	1.5%
As-Builts	0.5%
Operation and Maintenance (O&M) Manuals	0.5%
Laboratory Quality Assurance	1.0%
Total, use	3.5%

Thu 03 May 2001 Tri-S Eff. Date 10/03/96 PROJECT DETAILED ESTIMATE	Service Automa LTTDX_: SEA	T	IME 14:37:00					
33.01. Mobilization	QUANTY UOM	MANHOUR	LABOR	EQUIPMNT	MATERIAL	SUBCONTR	TOTAL COST	UNIT COST
33. Remedial Action								
33.01. Mobilization								
USR AA Mobilization	1.00 EA	0	793	2,500	535	0	3,828	3827.72
33.02. Sampling, & Testing								
33.02.06. Groundwater								
Groundwater from hol	ding tanks	•						124200-0000
VOCs, volatile organics , groundwater (Severn Trent Lab 9/98) (Assume 1 sample for each tank)	15.00 EA	U	U	U	0	2,625	2,625	175.00
AFH AA For Disposal: NYSDEC CLP TAL SVOCs modified , groundwater, (Severn Trent Lab, 9/98) (Assume 1 sample per tank)	15.00 EA	0	0	0	0	5,550	5,550	370.00
AFH AA For Disposal: NYSDEC TAL - Inorganics, groundwater (Severn Trent Lab, 9/98) (Assume 1 sample per tank)	15.00 EA	0	0	0	0	2,325	2,325	155.00
33.02.11. Soil								
Areas 2,3,4,0ther for	r Treatment.	Assume 1	sample ev	ery 150 cy	/ + 20 OC =	=		
23,025 cy x 1.40/150	x 1.20 = 260)						
HTW AA For Treatment: Volatile organics, soil (Severn Trent	260.00 EA	0	0	0	0	31,200	31,200	120.00
AFH AA For Treatment: SVOCs , soil (Severn Trent Lab, 9/99) (Assume 1 sample every 150cy)	260.00 EA	0	0	0	0	59,800	59,800	230.00
AFH AA For Treatment: TAL Metals (Assume 1 sample every 150cy)	260.00 EA	0	0	0	0	31,200	31,200	120.00
33.02.16. Confirmatory-Soil Areas 1,2,3,4,0ther HTW AA Confirmatory: NYSDEC CLP, volatile organics, soil (Severn Trent Lab, 9/99) (Assume 1 sample every 50 ft of wall adn	156.00 EA	0	0	0	0	27,300	27,300	175.00
floor or excavation. AFH AA Confirmatory: NYSDEC CLP-SVOCs , soil (Severn Trent Lab, 9/99) (Assume 1 sample every 50 ft of wall and floor of	156.00 EA	0	0	0	0	57,720	57,720	370.00
AFH AA Confirmatory: NYSDEC CLP TAL - Metals , soil (Severn Trent	156.00 EA	0	0	0	0	24,180	24,180	155.00

PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER Eff. Date 10/03/96 DETAILED ESTIMATE LTTD Cost Estimate DETAIL PAGE 2 33. Remedial Action 33.02. Sampling, & Testing QUANTY UOM MANHOUR LABOR EQUIPMNT MATERIAL SUBCONTR TOTAL COST UNIT COST 33.02.17. Post LTTD Treatment HTW AA TCLP, volatile organics (SW-846 140.00 EA 0 0 0 0 16,800 16,800 120.00 Methods 1311&8240), soil (Severn Trent Lab, 9/99) (Assume 1 sample every 150cy) AFH AA TCLP-SVOCs (SW-846 Methods 1311 140.00 EA 0 0 0 0 32,200 32,200 230.00 & 8270A), soil (Severn Trent Lab, 9/99) (Assume 1 sample every 150cy) AFH AA TCLP - Metals (SW-846 Methods 140.00 EA 0 0 0 0 16,800 16,800 120.00 1311 & 6010 & 7470), soil (Severn Trent Lab, 9/99) (Assume 1 sample every 150cy) 33.02.18. Soil Boring Grid South of Road from soil boring south of road to confirm no contamination between Areas 2,3,4, Others 60.00 EA HTW AA Confirmatory: NYSDEC CLP, 0 0 0 0 10,500 10,500 175.00 volatile organics, soil (Severn Trent Lab, 9/99) (Assume 1 sample per boring) AFH AA Confirmatory: NYSDEC CLP-SVOCs 60.00 EA 0 0 0 0 22,200 22,200 370.00 , soil (Severn Trent Lab, 9/99) (Assume 1 sample per boring) AFH AA Confirmatory: NYSDEC CLP TAL -0 0 0 0 60.00 EA 9,300 9,300 155.00 Metals , soil (Severn Trent, 9/99) (Assume 1 sample per boring) 33.02.20. IDW from Soil Borings HTW AA IDW: NYSDEC CLP, volatile 20.00 EA 0 0 0 0 3,500 3,500 175.00 organics, soil (Severn Trent Lab, 9/99) (Assume 1 sample per drum.) AFH AA IDW: NYSDEC CLP-SVOCs , soil 20.00 EA 0 7,400 0 0 0 7,400 370.00 (Severn Trent Lab, 9/99) (Assume 1 sample per drum. AFH AA IDW: NYSDEC CLP TAL - Metals , 20.00 EA 0 0 0 0 3,100 3,100 155.00 soil (Severn Trent - assume one sample per drum) 33.03. Site Work 33.03.02. Clearing and Grubbing AF AA Clearing, brush w/dozer & brush 1,887 3.00 ACR 48 1,298 0 0 3,185 1061.54 rake, light brush

Tri-Service Automated Cost Engineering System (TRACES)

TIME 14:37:00

Thu 03 May 2001

Thu 03 May 2001 Eff. Date 10/03/96 DETAILED ESTIMATE

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate 33. Remedial Action

DETAIL PAGE 3

33.03.	Site Work	QUANTY	UOM	MANHOUR	LABOR	EQUIPMNT	MATERIAL	SUBCONTR	TOTAL COST	UNIT COST
	33.03.08. Survey Remediation	Area								
	Survey remediation a	геа								
USR	AA Survey remediation area	10.00	DAY	0	15,000	2,500	2,675	0	20,175	2017.50
	33.03.11. Erosion control									
B MIL	AA Silt Fence: Installation and materials	16000	LF	3,360	80,000	8,000	25,680	0	113,680	7.11
в нты	AA Hay bales - stalked	16000	LE	5	2 720	0	17 120	0	10 8/0	1.0/
BMIL	AA Maintain silt fence and remove	16000	LF	107	2,720	0	17,120	0	19,840	1.24
		100000	<i></i>	0.74	-/	ě			17,040	1.24
	33.04. Fencing									
MIL	AA Site dml, chain link fence, remove & salvage for reuse	2000.00	LF	103	2,600	0	0	0	2,600	1.30
MIL	AA Fence, CL scty, std FE-6, 6' high, no gates/signs	2000.00	LF	96	2,820	0	39,847	0	42,667	21.33
MIL	AA Fence, CL, set in conc, 6' H, indl, corner post, galv stl, 4"	4.00	EA	2	55	9	295	0	358	89.48
MIL	AA Fence, CL, double, 24' W, indl, gates, swing, 6' high	1.00	EA	0	0	0	435	0	435	435.38
	33.05. Wastewater									
	33.05. 1. Wastewater									
L MIL /	AA Pump, cntfgl,6"D, horiz mtd, horiz splt, sgl stg,1500GPM,50HP	1.00	EA	0	0	0	10,767	0	10,767	10766.88
м нту /	AA 21,000 Gal, Steel, hold tank stationary	4.00	EA	0	0	0	5,264	0	5,264	1316.10
	33.07. Air Stripping									
HTW A	AA HTRW,PTTU,1'dia,14.5'pkng hgt, 30GPM,850CFM,FRP shell	1.00	EA	97	3,257	0	7,009	0	10,265	10265.47
AFH A	A HTRW,PTTU, >= 12' high, install air strip tower, 1'- 3' diam.	1.00	EA	91	3,035	226	0	0	3,261	3261.05
HTW A	A HTRW, PT opt, air flow switch	1.00 8	EA	0	0	0	512	0	512	511.81
	failure)									
	33.10. Soil Remediation									
	33.10.02. Sitework - Soils									
	Excavating Areas 1,2,3	3,4,0ther	. (2	23,025 cy	insitu)					
	Volumes are increased	by 30% f	for e	expansion	and 10% f	or conting	ency. For	ŝ		
	weight calculations,	the volum	ne is	increase	d by 10%	only.				
	All fill, topsoil, and	d seeding	ite	ems for so	il remedi	ation are	included i	n		
	the Sitework - Soils o	category.	ē 105	24701						
USR A	A Excavate, screen, and stockpile Soil	32235 0	Y	0	0	0	0	644,700	644,700	20.00
USR A	A Plastic sheeting for ground:	537250 s	F	0	0	0	45,989	0	45,989	0.09

6mil polyethylene liner (1000sf

Thu 03 May 2001	hu 03 May 2001 Tri-Service Automated Cost Engineering System (TRACES)						
Eff. Date 10/03/96	PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER						
DETAILED ESTIMATE	LTTD Cost Estimate	DETAIL PAGE 4					
	33. Remedial Action						

33.10	. s	oil Remediation	QUANTY	UOM	MANHOUR	LABOR	EQUIPMNT	MATERIAL	SUBCONTR	TOTAL COST	UNIT COST
US	R A.	A Cover stockpiles w/ plastic sheeting: Plastic sheeting:	537250	SF	0	0	0	45,989	0	45,989	0.09
		<pre>6mil polyethylene liner (1000sf / roll; 1 roll = \$75)</pre>									
MI	LA	A Loam or topsoil, furnish & place, imported, 6" deep	700.00	CY	62	1,869	973	13,654	0	16,496	23.57
US	R A/	A Common fill (6") - Material for Backfill, includes cost of material (bank sand) and delivery (Delitt 1000)	6425.00	TON	0	0	0	29,905	0	29,905	4.65
AF	AA	Fill spread borrow w/dozer	5445 00	CY	65	1 060	3 530	0	0	5 (00	1 01
AF	AA	Compaction, steel wheel tandem	5445.00	CY	39	1,143	980	0	0	2,124	0.39
CI	V AA	Hauling, off hwy haulers, 85 CY	22230	CY	80	2,001	14,227	0	0	16,228	0.73
		, 1 mile RT @ 20 mph (4.2 cyc/hr) to haul to LTTD									
RS	1 AA	Seeding, athletic field mix, 8#/MSFpush spreader	19.10	MSF	19	483	0	850	0	1,333	69.79
		33.10.04. Drum Removal									
1. MTI		Approx. 20 drums in A	rea 1	-	2	707					
LMIL	. АА	Level B	20.00	EA	2	525	445	0	0	768	38.40
LMIL	. AA	Excavator for drum moving at Level B	20.00	EA	2	323	445	0	0	768	38.40
L MIL	AA	Level B breathing unit, suit, overboots, gloves	4.00	EA	0	0	2,000	0	0	2,000	500.00
		33.10.06. Disposal: hazardous									
		Disposal and transpor	t of dru	ms t	o hazardou	s waste l	andfill;	disposal d	of		
		debris to solid waste	landfil	ι.							
HTW	AA	HW packaging, overpacks, 18"dia x 34"H, 16ga stl drum, 55gal, por 17c	20.00	EA	0	0	0	1,583	0	1,583	79.13
USR	AA	Drums/Paint Cans: Transportatio	1.00	EA	0	0	0	0	546	546	545.70
		of Drums by dedicated van									
USR	AA	Drums/Paint Cans: Disposal of Drums (Price quoted by Waste	20.00	EA	0	0	0	2,862	0	2,862	143.11
USR	AA	Extra fees for overpack use	20.00	EA	0	0	0	0	800	800	40.00
USR	AA	Debris: Transport and Dispose 3 nonhaz waste, bulk solid,	3800.00	TON	0	0	0	0	152,000	152,000	40.00
		33.10.10. Vegetative Cover at /	Area 1								
MIL	AA	Loam or topsoil, furnish & 2 place, imported, 6" deep	2835.00 (CY	250	7,569	3,941	55,300	0	66,810	23.57
RSM	AA	Seeding, athletic field mix, 8#/MSFpush spreader	63.90 1	ISF	64	1,615	0	2,844	0	4,460	69.79
AF	AA	Fill, spread borrow w/dozer, to backfill stabilized soils	26700 (CY	320	9,612	17,355	0	0	26,967	1.01

Thu 03 May 2001 Tri	-Service A	sean-59	Cost	Engineeri	ing System	(TRACES)	P		TIME 14:37:00
DETAILED ESTIMATE		LTTD	DETAIL PAGE						
		33.	Remed	dial Actic	on			DET	AIL PAGE D
)									
33.10. Soil Remediation	QUANTY	UOM MANH	OUR	LABOR	EQUIPMNT	MATERIAL	SUBCONTR	TOTAL COST	UNIT COST
						•••••			
77 10 15 1 770									
55.10.15. LITD	with DAWs	> TACH							
25 650 tons of soil	ls from Ar	eas 1 2 3	4 Ot	her					
Assuming that 10%	is debris/	drums by	weigh	t					
Assuming that 75%	remaining	soil will	reau	ire treat	ment becau	se of PAHs			
Assuming LTTD proc	esses 5 to	ns soil/h	our						
Assuming that 15%	of soil ha	s to be re	etrea	ted to re	duce PAHs	below TAGM	s.		
Assuming that 20%	of the tim	e that ope	erato	rs are on	stand by.				
L MIL AA Three operators to run LTTD;	21238	HR	0	849,520	0	0	0	849,520	40.00
unit price is for 3 operators									
a\$40/hr each									
USR AA Fuel oil, 12 gal. per ton of	424760	GAL	0	0	0	731,734	0	731,734	1.72
soil with 5 tons of soil/ hr	3 22		57						
B AF AA Screen, conveyors, CEM equipm	en 1.00	EA	0	0	275,000	0	0	275,000	275000.00
t									
and controls	4 00	-	•			•	470 777	470 777	
HIW AA HIKW, Incin, W/ analysis, rotar	y 1.00	EA	U	U	U	U	132,333	132,333	132333.33
min	11.								
MIL AA Excavate & load wheeled load	ar 22230	CY 4	18	12 671	6 660	0	0	10 3/0	0.97
			10	12,071	0,007	U	U	19,540	0.07
1.5 CY, medium matl									
33.18. Confirmatory Soil Borings	5								
B CIV AA Mob/Demob	2.00	EA	0	0	0	0	800	800	400.00
facility									
L AFH AA Decon Pad	1.00	EA	0	0	0	0	150	150	150.00
L AFH AA Decon Time	40.00	HR	0	0	0	0	6,000	6,000	150.00
M HTW AA HW packaging, DOT steel drums,	15.00	EA	0	0	0	0	750	750	50.00
55 gal,	45 00		•						22, 222
L AFH AA MOVE drums	15.00	LA	0	0	0	0	3/5	375	25.00
L MIL AA Borings, auger notes in earth,	280.00	LF	U	U	U	0	3,920	3,920	14.00
HTU AA Split spoop sampling	16 00	1 5	0	0	0	0	102	102	12.00
	10.00	L1	U	0	U	U	192	192	12.00
L AFH AA Standby Time	4.00	HR	0	0	0	0	600	600	150 00
L AFH AA Grout Boreholes	280.00	LF	0	0	0	0	1.680	1,680	6.00
			0	5	253			.,	0.00
33.26. Demobilization									
TOTAL Decontaminate Equipment	1.00	EA	0	1,321	5,000	2,500	0	8,821	8821.20
TOTAL Demobilization	1.00	EA	0	528	2,500	500	0	3,528	3528.48
33.28. Remedial Design	134 - 1889 - 18		7725		6903	12			
B HTW AA Remedial Design Workplan	1.00	EA	0	27,600	0	2,568	0	30,168	30168.00
B HIW AA Preliminary Design Report	1.00	EA	0	46,000	0	4,280	0	50,280	50280.00
B HIW AA Pre-Tinal/Final Design Report,	1.00	EA	0	168,000	0	7,490	0	175,490	175490.00
Including U&M Plan, S&A Plan,									
WA Flan, contingency Plan,									

Waste

Thu 03 May 2001	Tri-Service A	utoma SEA	ted Cost	Engineeri	ing System	(TRACES)	D		т	IME 14:	37:00
DETAILED ESTIMATE	rkouldt Littox	33	LTTD Cost 3. Remed	Estimate	en on	ATTVE COVE	-K		DETA	IL PAGE	6
)										ગ્ર	
33.28. Remedial Design	QUANTY	UOM N	ANHOUR	LABOR	EQUIPMNT	MATERIAL	SUBCONTR	TOTAL	COST	UNIT	COST

B HTW AA Remedial Action Workplan,	1.00 EA	0	47,500	0	2,675	0	50,175	50175.00
including QA/QC Plan, H&S Plan								
B HTW AA Project Closeout Plan	1.00 EA	0	48,000	0	2,140	0	50,140	50140.00
33.30. Well Installation								
B CIV AA Mob/Demob	1.00 EA	0	0	0	0	600	600	600.00
facility								
L AFH AA Decon Pad	1.00 EA	0	0	0	0	150	150	150.00
B HTW AA Installation of Monitoring well	4.00 EA	0	0	0	0	2,320	2,320	580.00
threaded							EV.	
L HTW AA Monitor well, drilling, HS	40.00 LF	0	0	0	0	720	720	18.00
auger, 4.25" ID x 8" OD								

TOTAL SEAD-59

5,230 1,342,337 348,195 1,080,121 1,312,336 4,082,990

Thu 03 May 2001 Eff. Date 10/03/96	Tri- PROJECT	Service Auto	omated Cos SEAD-59 - I LTTD Cos	t Engineer EXCAVATION st Estimat	ing System /LTTD/VEGE e /Pounded t	(TRACES) TATIVE COVE	R	SUMM	TIME 14:37:00 MARY PAGE 1		
	r Ki	OJECT OWNER	SUMMARI -	3003131M	(Rounded to	0 10'S) **					
)	QUANTY UOM	CONTRACT	DES CONT	ESCALATN	CON CONT	OTHER	CON MGMT	TOTAL COST	UNIT COST		
33 Remedial Action											
33 01 Mobilization	1 00 64	5 200	110	140	1 700	2/0	570	7 7/0			
					1,390		570	7,760	//61.84		
TOTAL Mobilization	1.00 EA	5,290	110	160	1,390	240	570	7,760	7761.84		
33.02 Sampling, & Testing					c						
33.02.06 Groundwater	1.00 EA	14,500	290	440	3.810	670	1.580	21 200	21201 88		
33.02.11 Soil	1.00 EA	168,800	3,380	5,170	44,340	7,760	18,360	247,800	247796 91		
33.02.16 Confirmatory-Soil	1.00 EA	150,850	3,020	4,620	39,620	6,930	16,400	221,440	221435.54		
33.02.17 Post LTTD Treatme	1.00 EA	90,890	1,820	2,780	23,870	4,180	9,880	133,430	133429.10		
33.02.18 Soil Boring Grid	1.00 EA	58,020	1,160	1,780	15,240	2,670	6,310	85,170	85167.51		
33.02.20 IDW from Soil Bor	1.00 EA	19,340	390	590	5,080	890	2,100	28,390	28389.17		
TOTAL Sampling, & Testi	1.00 EA	502,410	10,050	15,370	131,960	23,090	54,630	737,510	737510.11		
33.03 Site Work											
33.03.02 Clearing and Grub	3.00 ACR	4,400	90	130	1,160	200	480	6.460	2152 58		
33.03.08 Survey Remediatio	1.00 ACR	- 27,870	560	850	7,320	1,280	3,030	40,910	40910-82		
33.03.11 Erosion control	1.00 LF	211,850	4,240	6,480	55,640	9,740	23,040	310,980	310983.09		
TOTAL Site Work	1.00 EA	244,120	4,880	7,470	64,120	11,220	26,540	358,350	358351.66		
33.04 Fencing	1.00 EA	63,630	1,270	1,950	16,710	2,920	6,920	93,400	93400.60		
33.05 Wastewater											
33.05. 1 Wastewater	1.00 EA	22,150	440	680	5,820	1,020	2,410	32,510	32508.19		
TOTAL Wastewater	1.00 EA	22,150	440	680	5,820	1,020	2,410	32,510	32508.19		
33.07 Air Stripping	1.00 EA	19,390	390	590	5,090	890	2,110	28,470	28466.90		
33.10 Soil Remediation											
33.10.02 Sitework - Soils	1.00 EA	1,116,520	22,330	34,170	293,250	51,320	121,410	1,638,990	1638993.16		
33.10.04 Drum Removal	1.00 EA	4,880	100	150	1,280	220	530	7,170	7170.29		
33.10.06 Disposal: hazardo	1.00 EA	217,970	4,360	6,670	57,250	10,020	23,700	319,970	319967.21		
33.10.10 Vegetative Cover	1.00 EA	135,700	2,710	4,150	35,640	6,240	14,760	199,200	199203.98		
33.10.15 LTTD	1.00 EA	2,773,710	55,470	84,880	728,520	127,490	301,610	4,071,670	4071671.22		
TOTAL Soil Remediation	1.00 EA	4,248,780	84,980	130,010	1,115,940	195,290	462,000	6,237,010	6237005.86		
33.18 Confirmatory Soil Bo	1.00 EA	19,980	400	610	5,250	920	2,170	29,340	29336.15		

33.26 Demobilization

Currency in DOLLARS

-

Thu 03 May 2001 Eff. Date 10/03/96

Tri-Service Automated Cost Engineering System (TRACES) PROJECT LTTDX_: SEAD-59 - EXCAVATION/LTTD/VEGETATIVE COVER LTTD Cost Estimate ** PROJECT OWNER SUMMARY - SUBSYSTM (Rounded to 10's) **

TIME 14:37:00

SUMMARY PAGE 2

	QUANTY UOM	CONTRACT	DES CONT	ESCALATN	CON CONT	OTHER	CON MGMT	TOTAL COST	UNIT COST
33.26.04 Decontaminate Equ	1.00 EA	12,190	240	370	3,200	560	1,330	17,890	17887.61
33.26.06 Demobilization	1.00 EA	4,870	100	150	1,280	220	530	7,160	7155.04
TOTAL Demobilization	1.00 EA	17,060	340	520	4,480	780	1,860	25,040	25042.66
33.28 Remedial Design	1.00 EA	492,120	9,840	15,060	129,260	22,620	53,510	722,410	722409.10
33.30 Well Installation	1.00 EA	5,240	80	160	1,370	240	570	7,650	7646.83
TOTAL Remedial Action	1.00 EA	5,640,160	112,780	172,590	1,481,380	259,240	613,290	8,279,440	8279439.91